1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IRReader/IRReader.h" 31 #include "llvm/Linker/IRMover.h" 32 #include "llvm/ProfileData/PGOCtxProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 extern cl::opt<std::string> UseCtxProfile; 178 179 namespace llvm { 180 extern cl::opt<bool> EnableMemProfContextDisambiguation; 181 } 182 183 // Load lazily a module from \p FileName in \p Context. 184 static std::unique_ptr<Module> loadFile(const std::string &FileName, 185 LLVMContext &Context) { 186 SMDiagnostic Err; 187 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 188 // Metadata isn't loaded until functions are imported, to minimize 189 // the memory overhead. 190 std::unique_ptr<Module> Result = 191 getLazyIRFileModule(FileName, Err, Context, 192 /* ShouldLazyLoadMetadata = */ true); 193 if (!Result) { 194 Err.print("function-import", errs()); 195 report_fatal_error("Abort"); 196 } 197 198 return Result; 199 } 200 201 static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary, 202 size_t NumDefs, 203 StringRef ImporterModule) { 204 // We can import a local when there is one definition. 205 if (NumDefs == 1) 206 return false; 207 // In other cases, make sure we import the copy in the caller's module if the 208 // referenced value has local linkage. The only time a local variable can 209 // share an entry in the index is if there is a local with the same name in 210 // another module that had the same source file name (in a different 211 // directory), where each was compiled in their own directory so there was not 212 // distinguishing path. 213 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 214 RefSummary->modulePath() != ImporterModule; 215 } 216 217 /// Given a list of possible callee implementation for a call site, qualify the 218 /// legality of importing each. The return is a range of pairs. Each pair 219 /// corresponds to a candidate. The first value is the ImportFailureReason for 220 /// that candidate, the second is the candidate. 221 static auto qualifyCalleeCandidates( 222 const ModuleSummaryIndex &Index, 223 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 224 StringRef CallerModulePath) { 225 return llvm::map_range( 226 CalleeSummaryList, 227 [&Index, CalleeSummaryList, 228 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 229 -> std::pair<FunctionImporter::ImportFailureReason, 230 const GlobalValueSummary *> { 231 auto *GVSummary = SummaryPtr.get(); 232 if (!Index.isGlobalValueLive(GVSummary)) 233 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 234 235 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 236 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 237 GVSummary}; 238 239 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 240 241 // Ignore any callees that aren't actually functions. This could happen 242 // in the case of GUID hash collisions. It could also happen in theory 243 // for SamplePGO profiles collected on old versions of the code after 244 // renaming, since we synthesize edges to any inlined callees appearing 245 // in the profile. 246 if (!Summary) 247 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 248 249 // If this is a local function, make sure we import the copy in the 250 // caller's module. The only time a local function can share an entry in 251 // the index is if there is a local with the same name in another module 252 // that had the same source file name (in a different directory), where 253 // each was compiled in their own directory so there was not 254 // distinguishing path. 255 // If the local function is from another module, it must be a reference 256 // due to indirect call profile data since a function pointer can point 257 // to a local in another module. Do the import from another module if 258 // there is only one entry in the list or when all files in the program 259 // are compiled with full path - in both cases the local function has 260 // unique PGO name and GUID. 261 if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(), 262 CallerModulePath)) 263 return { 264 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 265 GVSummary}; 266 267 // Skip if it isn't legal to import (e.g. may reference unpromotable 268 // locals). 269 if (Summary->notEligibleToImport()) 270 return {FunctionImporter::ImportFailureReason::NotEligible, 271 GVSummary}; 272 273 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 274 }); 275 } 276 277 /// Given a list of possible callee implementation for a call site, select one 278 /// that fits the \p Threshold for function definition import. If none are 279 /// found, the Reason will give the last reason for the failure (last, in the 280 /// order of CalleeSummaryList entries). While looking for a callee definition, 281 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 282 /// candidate; other modules may want to know the function summary or 283 /// declaration even if a definition is not needed. 284 /// 285 /// FIXME: select "best" instead of first that fits. But what is "best"? 286 /// - The smallest: more likely to be inlined. 287 /// - The one with the least outgoing edges (already well optimized). 288 /// - One from a module already being imported from in order to reduce the 289 /// number of source modules parsed/linked. 290 /// - One that has PGO data attached. 291 /// - [insert you fancy metric here] 292 static const GlobalValueSummary * 293 selectCallee(const ModuleSummaryIndex &Index, 294 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 295 unsigned Threshold, StringRef CallerModulePath, 296 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 297 FunctionImporter::ImportFailureReason &Reason) { 298 // Records the last summary with reason noinline or too-large. 299 TooLargeOrNoInlineSummary = nullptr; 300 auto QualifiedCandidates = 301 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 302 for (auto QualifiedValue : QualifiedCandidates) { 303 Reason = QualifiedValue.first; 304 // Skip a summary if its import is not (proved to be) legal. 305 if (Reason != FunctionImporter::ImportFailureReason::None) 306 continue; 307 auto *Summary = 308 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 309 310 // Don't bother importing the definition if the chance of inlining it is 311 // not high enough (except under `--force-import-all`). 312 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 313 !ForceImportAll) { 314 TooLargeOrNoInlineSummary = Summary; 315 Reason = FunctionImporter::ImportFailureReason::TooLarge; 316 continue; 317 } 318 319 // Don't bother importing the definition if we can't inline it anyway. 320 if (Summary->fflags().NoInline && !ForceImportAll) { 321 TooLargeOrNoInlineSummary = Summary; 322 Reason = FunctionImporter::ImportFailureReason::NoInline; 323 continue; 324 } 325 326 return Summary; 327 } 328 return nullptr; 329 } 330 331 namespace { 332 333 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 334 335 } // anonymous namespace 336 337 FunctionImporter::AddDefinitionStatus 338 FunctionImporter::addDefinition(ImportMapTy &ImportList, StringRef FromModule, 339 GlobalValue::GUID GUID) { 340 auto [It, Inserted] = 341 ImportList[FromModule].try_emplace(GUID, GlobalValueSummary::Definition); 342 if (Inserted) 343 return AddDefinitionStatus::Inserted; 344 if (It->second == GlobalValueSummary::Definition) 345 return AddDefinitionStatus::NoChange; 346 It->second = GlobalValueSummary::Definition; 347 return AddDefinitionStatus::ChangedToDefinition; 348 } 349 350 void FunctionImporter::maybeAddDeclaration(ImportMapTy &ImportList, 351 StringRef FromModule, 352 GlobalValue::GUID GUID) { 353 ImportList[FromModule].try_emplace(GUID, GlobalValueSummary::Declaration); 354 } 355 356 /// Import globals referenced by a function or other globals that are being 357 /// imported, if importing such global is possible. 358 class GlobalsImporter final { 359 const ModuleSummaryIndex &Index; 360 const GVSummaryMapTy &DefinedGVSummaries; 361 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 362 IsPrevailing; 363 FunctionImporter::ImportMapTy &ImportList; 364 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 365 366 bool shouldImportGlobal(const ValueInfo &VI) { 367 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 368 if (GVS == DefinedGVSummaries.end()) 369 return true; 370 // We should not skip import if the module contains a non-prevailing 371 // definition with interposable linkage type. This is required for 372 // correctness in the situation where there is a prevailing def available 373 // for import and marked read-only. In this case, the non-prevailing def 374 // will be converted to a declaration, while the prevailing one becomes 375 // internal, thus no definitions will be available for linking. In order to 376 // prevent undefined symbol link error, the prevailing definition must be 377 // imported. 378 // FIXME: Consider adding a check that the suitable prevailing definition 379 // exists and marked read-only. 380 if (VI.getSummaryList().size() > 1 && 381 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 382 !IsPrevailing(VI.getGUID(), GVS->second)) 383 return true; 384 385 return false; 386 } 387 388 void 389 onImportingSummaryImpl(const GlobalValueSummary &Summary, 390 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 391 for (const auto &VI : Summary.refs()) { 392 if (!shouldImportGlobal(VI)) { 393 LLVM_DEBUG( 394 dbgs() << "Ref ignored! Target already in destination module.\n"); 395 continue; 396 } 397 398 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 399 400 for (const auto &RefSummary : VI.getSummaryList()) { 401 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 402 // Functions could be referenced by global vars - e.g. a vtable; but we 403 // don't currently imagine a reason those would be imported here, rather 404 // than as part of the logic deciding which functions to import (i.e. 405 // based on profile information). Should we decide to handle them here, 406 // we can refactor accordingly at that time. 407 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 408 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 409 Summary.modulePath())) 410 continue; 411 412 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 413 // Otherwise, definition should take precedence over declaration. 414 if (FunctionImporter::addDefinition( 415 ImportList, RefSummary->modulePath(), VI.getGUID()) != 416 FunctionImporter::AddDefinitionStatus::Inserted) 417 break; 418 419 // Only update stat and exports if we haven't already imported this 420 // variable. 421 NumImportedGlobalVarsThinLink++; 422 // Any references made by this variable will be marked exported 423 // later, in ComputeCrossModuleImport, after import decisions are 424 // complete, which is more efficient than adding them here. 425 if (ExportLists) 426 (*ExportLists)[RefSummary->modulePath()].insert(VI); 427 428 // If variable is not writeonly we attempt to recursively analyze 429 // its references in order to import referenced constants. 430 if (!Index.isWriteOnly(GVS)) 431 Worklist.emplace_back(GVS); 432 break; 433 } 434 } 435 } 436 437 public: 438 GlobalsImporter( 439 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 440 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 441 IsPrevailing, 442 FunctionImporter::ImportMapTy &ImportList, 443 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 444 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 445 IsPrevailing(IsPrevailing), ImportList(ImportList), 446 ExportLists(ExportLists) {} 447 448 void onImportingSummary(const GlobalValueSummary &Summary) { 449 SmallVector<const GlobalVarSummary *, 128> Worklist; 450 onImportingSummaryImpl(Summary, Worklist); 451 while (!Worklist.empty()) 452 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 453 } 454 }; 455 456 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 457 458 /// Determine the list of imports and exports for each module. 459 class ModuleImportsManager { 460 protected: 461 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 462 IsPrevailing; 463 const ModuleSummaryIndex &Index; 464 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 465 466 ModuleImportsManager( 467 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 468 IsPrevailing, 469 const ModuleSummaryIndex &Index, 470 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 471 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 472 473 public: 474 virtual ~ModuleImportsManager() = default; 475 476 /// Given the list of globals defined in a module, compute the list of imports 477 /// as well as the list of "exports", i.e. the list of symbols referenced from 478 /// another module (that may require promotion). 479 virtual void 480 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 481 StringRef ModName, 482 FunctionImporter::ImportMapTy &ImportList); 483 484 static std::unique_ptr<ModuleImportsManager> 485 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 486 IsPrevailing, 487 const ModuleSummaryIndex &Index, 488 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 489 nullptr); 490 }; 491 492 /// A ModuleImportsManager that operates based on a workload definition (see 493 /// -thinlto-workload-def). For modules that do not define workload roots, it 494 /// applies the base ModuleImportsManager import policy. 495 class WorkloadImportsManager : public ModuleImportsManager { 496 // Keep a module name -> value infos to import association. We use it to 497 // determine if a module's import list should be done by the base 498 // ModuleImportsManager or by us. 499 StringMap<DenseSet<ValueInfo>> Workloads; 500 501 void 502 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 503 StringRef ModName, 504 FunctionImporter::ImportMapTy &ImportList) override { 505 auto SetIter = Workloads.find(ModName); 506 if (SetIter == Workloads.end()) { 507 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 508 << " does not contain the root of any context.\n"); 509 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 510 ModName, ImportList); 511 } 512 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 513 << " contains the root(s) of context(s).\n"); 514 515 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 516 ExportLists); 517 auto &ValueInfos = SetIter->second; 518 SmallVector<EdgeInfo, 128> GlobWorklist; 519 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 520 auto It = DefinedGVSummaries.find(VI.getGUID()); 521 if (It != DefinedGVSummaries.end() && 522 IsPrevailing(VI.getGUID(), It->second)) { 523 LLVM_DEBUG( 524 dbgs() << "[Workload] " << VI.name() 525 << " has the prevailing variant already in the module " 526 << ModName << ". No need to import\n"); 527 continue; 528 } 529 auto Candidates = 530 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 531 532 const GlobalValueSummary *GVS = nullptr; 533 auto PotentialCandidates = llvm::map_range( 534 llvm::make_filter_range( 535 Candidates, 536 [&](const auto &Candidate) { 537 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 538 << " from " << Candidate.second->modulePath() 539 << " ImportFailureReason: " 540 << getFailureName(Candidate.first) << "\n"); 541 return Candidate.first == 542 FunctionImporter::ImportFailureReason::None; 543 }), 544 [](const auto &Candidate) { return Candidate.second; }); 545 if (PotentialCandidates.empty()) { 546 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 547 << " because can't find eligible Callee. Guid is: " 548 << Function::getGUID(VI.name()) << "\n"); 549 continue; 550 } 551 /// We will prefer importing the prevailing candidate, if not, we'll 552 /// still pick the first available candidate. The reason we want to make 553 /// sure we do import the prevailing candidate is because the goal of 554 /// workload-awareness is to enable optimizations specializing the call 555 /// graph of that workload. Suppose a function is already defined in the 556 /// module, but it's not the prevailing variant. Suppose also we do not 557 /// inline it (in fact, if it were interposable, we can't inline it), 558 /// but we could specialize it to the workload in other ways. However, 559 /// the linker would drop it in the favor of the prevailing copy. 560 /// Instead, by importing the prevailing variant (assuming also the use 561 /// of `-avail-extern-to-local`), we keep the specialization. We could 562 /// alteranatively make the non-prevailing variant local, but the 563 /// prevailing one is also the one for which we would have previously 564 /// collected profiles, making it preferrable. 565 auto PrevailingCandidates = llvm::make_filter_range( 566 PotentialCandidates, [&](const auto *Candidate) { 567 return IsPrevailing(VI.getGUID(), Candidate); 568 }); 569 if (PrevailingCandidates.empty()) { 570 GVS = *PotentialCandidates.begin(); 571 if (!llvm::hasSingleElement(PotentialCandidates) && 572 GlobalValue::isLocalLinkage(GVS->linkage())) 573 LLVM_DEBUG( 574 dbgs() 575 << "[Workload] Found multiple non-prevailing candidates for " 576 << VI.name() 577 << ". This is unexpected. Are module paths passed to the " 578 "compiler unique for the modules passed to the linker?"); 579 // We could in theory have multiple (interposable) copies of a symbol 580 // when there is no prevailing candidate, if say the prevailing copy was 581 // in a native object being linked in. However, we should in theory be 582 // marking all of these non-prevailing IR copies dead in that case, in 583 // which case they won't be candidates. 584 assert(GVS->isLive()); 585 } else { 586 assert(llvm::hasSingleElement(PrevailingCandidates)); 587 GVS = *PrevailingCandidates.begin(); 588 } 589 590 auto ExportingModule = GVS->modulePath(); 591 // We checked that for the prevailing case, but if we happen to have for 592 // example an internal that's defined in this module, it'd have no 593 // PrevailingCandidates. 594 if (ExportingModule == ModName) { 595 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 596 << " because its defining module is the same as the " 597 "current module\n"); 598 continue; 599 } 600 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 601 << ExportingModule << " : " 602 << Function::getGUID(VI.name()) << "\n"); 603 FunctionImporter::addDefinition(ImportList, ExportingModule, 604 VI.getGUID()); 605 GVI.onImportingSummary(*GVS); 606 if (ExportLists) 607 (*ExportLists)[ExportingModule].insert(VI); 608 } 609 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 610 } 611 612 void loadFromJson() { 613 // Since the workload def uses names, we need a quick lookup 614 // name->ValueInfo. 615 StringMap<ValueInfo> NameToValueInfo; 616 StringSet<> AmbiguousNames; 617 for (auto &I : Index) { 618 ValueInfo VI = Index.getValueInfo(I); 619 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 620 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 621 } 622 auto DbgReportIfAmbiguous = [&](StringRef Name) { 623 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 624 dbgs() << "[Workload] Function name " << Name 625 << " present in the workload definition is ambiguous. Consider " 626 "compiling with -funique-internal-linkage-names."; 627 }); 628 }; 629 std::error_code EC; 630 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 631 if (std::error_code EC = BufferOrErr.getError()) { 632 report_fatal_error("Failed to open context file"); 633 return; 634 } 635 auto Buffer = std::move(BufferOrErr.get()); 636 std::map<std::string, std::vector<std::string>> WorkloadDefs; 637 json::Path::Root NullRoot; 638 // The JSON is supposed to contain a dictionary matching the type of 639 // WorkloadDefs. For example: 640 // { 641 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 642 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 643 // } 644 auto Parsed = json::parse(Buffer->getBuffer()); 645 if (!Parsed) 646 report_fatal_error(Parsed.takeError()); 647 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 648 report_fatal_error("Invalid thinlto contextual profile format."); 649 for (const auto &Workload : WorkloadDefs) { 650 const auto &Root = Workload.first; 651 DbgReportIfAmbiguous(Root); 652 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 653 const auto &AllCallees = Workload.second; 654 auto RootIt = NameToValueInfo.find(Root); 655 if (RootIt == NameToValueInfo.end()) { 656 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 657 << " not found in this linkage unit.\n"); 658 continue; 659 } 660 auto RootVI = RootIt->second; 661 if (RootVI.getSummaryList().size() != 1) { 662 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 663 << " should have exactly one summary, but has " 664 << RootVI.getSummaryList().size() << ". Skipping.\n"); 665 continue; 666 } 667 StringRef RootDefiningModule = 668 RootVI.getSummaryList().front()->modulePath(); 669 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 670 << " is : " << RootDefiningModule << "\n"); 671 auto &Set = Workloads[RootDefiningModule]; 672 for (const auto &Callee : AllCallees) { 673 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 674 DbgReportIfAmbiguous(Callee); 675 auto ElemIt = NameToValueInfo.find(Callee); 676 if (ElemIt == NameToValueInfo.end()) { 677 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 678 continue; 679 } 680 Set.insert(ElemIt->second); 681 } 682 } 683 } 684 685 void loadFromCtxProf() { 686 std::error_code EC; 687 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(UseCtxProfile); 688 if (std::error_code EC = BufferOrErr.getError()) { 689 report_fatal_error("Failed to open contextual profile file"); 690 return; 691 } 692 auto Buffer = std::move(BufferOrErr.get()); 693 694 PGOCtxProfileReader Reader(Buffer->getBuffer()); 695 auto Ctx = Reader.loadContexts(); 696 if (!Ctx) { 697 report_fatal_error("Failed to parse contextual profiles"); 698 return; 699 } 700 const auto &CtxMap = *Ctx; 701 DenseSet<GlobalValue::GUID> ContainedGUIDs; 702 for (const auto &[RootGuid, Root] : CtxMap) { 703 // Avoid ContainedGUIDs to get in/out of scope. Reuse its memory for 704 // subsequent roots, but clear its contents. 705 ContainedGUIDs.clear(); 706 707 auto RootVI = Index.getValueInfo(RootGuid); 708 if (!RootVI) { 709 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 710 << " not found in this linkage unit.\n"); 711 continue; 712 } 713 if (RootVI.getSummaryList().size() != 1) { 714 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 715 << " should have exactly one summary, but has " 716 << RootVI.getSummaryList().size() << ". Skipping.\n"); 717 continue; 718 } 719 StringRef RootDefiningModule = 720 RootVI.getSummaryList().front()->modulePath(); 721 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << RootGuid 722 << " is : " << RootDefiningModule << "\n"); 723 auto &Set = Workloads[RootDefiningModule]; 724 Root.getContainedGuids(ContainedGUIDs); 725 for (auto Guid : ContainedGUIDs) 726 if (auto VI = Index.getValueInfo(Guid)) 727 Set.insert(VI); 728 } 729 } 730 731 public: 732 WorkloadImportsManager( 733 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 734 IsPrevailing, 735 const ModuleSummaryIndex &Index, 736 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 737 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 738 if (UseCtxProfile.empty() == WorkloadDefinitions.empty()) { 739 report_fatal_error( 740 "Pass only one of: -thinlto-pgo-ctx-prof or -thinlto-workload-def"); 741 return; 742 } 743 if (!UseCtxProfile.empty()) 744 loadFromCtxProf(); 745 else 746 loadFromJson(); 747 LLVM_DEBUG({ 748 for (const auto &[Root, Set] : Workloads) { 749 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 750 << " distinct callees.\n"; 751 for (const auto &VI : Set) { 752 dbgs() << "[Workload] Root: " << Root 753 << " Would include: " << VI.getGUID() << "\n"; 754 } 755 } 756 }); 757 } 758 }; 759 760 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 761 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 762 IsPrevailing, 763 const ModuleSummaryIndex &Index, 764 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 765 if (WorkloadDefinitions.empty() && UseCtxProfile.empty()) { 766 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 767 return std::unique_ptr<ModuleImportsManager>( 768 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 769 } 770 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 771 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 772 ExportLists); 773 } 774 775 static const char * 776 getFailureName(FunctionImporter::ImportFailureReason Reason) { 777 switch (Reason) { 778 case FunctionImporter::ImportFailureReason::None: 779 return "None"; 780 case FunctionImporter::ImportFailureReason::GlobalVar: 781 return "GlobalVar"; 782 case FunctionImporter::ImportFailureReason::NotLive: 783 return "NotLive"; 784 case FunctionImporter::ImportFailureReason::TooLarge: 785 return "TooLarge"; 786 case FunctionImporter::ImportFailureReason::InterposableLinkage: 787 return "InterposableLinkage"; 788 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 789 return "LocalLinkageNotInModule"; 790 case FunctionImporter::ImportFailureReason::NotEligible: 791 return "NotEligible"; 792 case FunctionImporter::ImportFailureReason::NoInline: 793 return "NoInline"; 794 } 795 llvm_unreachable("invalid reason"); 796 } 797 798 /// Compute the list of functions to import for a given caller. Mark these 799 /// imported functions and the symbols they reference in their source module as 800 /// exported from their source module. 801 static void computeImportForFunction( 802 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 803 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 804 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 805 isPrevailing, 806 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 807 FunctionImporter::ImportMapTy &ImportList, 808 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 809 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 810 GVImporter.onImportingSummary(Summary); 811 static int ImportCount = 0; 812 for (const auto &Edge : Summary.calls()) { 813 ValueInfo VI = Edge.first; 814 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 815 << "\n"); 816 817 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 818 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 819 << " reached.\n"); 820 continue; 821 } 822 823 if (DefinedGVSummaries.count(VI.getGUID())) { 824 // FIXME: Consider not skipping import if the module contains 825 // a non-prevailing def with interposable linkage. The prevailing copy 826 // can safely be imported (see shouldImportGlobal()). 827 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 828 continue; 829 } 830 831 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 832 if (Hotness == CalleeInfo::HotnessType::Hot) 833 return ImportHotMultiplier; 834 if (Hotness == CalleeInfo::HotnessType::Cold) 835 return ImportColdMultiplier; 836 if (Hotness == CalleeInfo::HotnessType::Critical) 837 return ImportCriticalMultiplier; 838 return 1.0; 839 }; 840 841 const auto NewThreshold = 842 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 843 844 auto IT = ImportThresholds.insert(std::make_pair( 845 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 846 bool PreviouslyVisited = !IT.second; 847 auto &ProcessedThreshold = std::get<0>(IT.first->second); 848 auto &CalleeSummary = std::get<1>(IT.first->second); 849 auto &FailureInfo = std::get<2>(IT.first->second); 850 851 bool IsHotCallsite = 852 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 853 bool IsCriticalCallsite = 854 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 855 856 const FunctionSummary *ResolvedCalleeSummary = nullptr; 857 if (CalleeSummary) { 858 assert(PreviouslyVisited); 859 // Since the traversal of the call graph is DFS, we can revisit a function 860 // a second time with a higher threshold. In this case, it is added back 861 // to the worklist with the new threshold (so that its own callee chains 862 // can be considered with the higher threshold). 863 if (NewThreshold <= ProcessedThreshold) { 864 LLVM_DEBUG( 865 dbgs() << "ignored! Target was already imported with Threshold " 866 << ProcessedThreshold << "\n"); 867 continue; 868 } 869 // Update with new larger threshold. 870 ProcessedThreshold = NewThreshold; 871 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 872 } else { 873 // If we already rejected importing a callee at the same or higher 874 // threshold, don't waste time calling selectCallee. 875 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 876 LLVM_DEBUG( 877 dbgs() << "ignored! Target was already rejected with Threshold " 878 << ProcessedThreshold << "\n"); 879 if (PrintImportFailures) { 880 assert(FailureInfo && 881 "Expected FailureInfo for previously rejected candidate"); 882 FailureInfo->Attempts++; 883 } 884 continue; 885 } 886 887 FunctionImporter::ImportFailureReason Reason{}; 888 889 // `SummaryForDeclImport` is an summary eligible for declaration import. 890 const GlobalValueSummary *SummaryForDeclImport = nullptr; 891 CalleeSummary = 892 selectCallee(Index, VI.getSummaryList(), NewThreshold, 893 Summary.modulePath(), SummaryForDeclImport, Reason); 894 if (!CalleeSummary) { 895 // There isn't a callee for definition import but one for declaration 896 // import. 897 if (ImportDeclaration && SummaryForDeclImport) { 898 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 899 900 // Note `ExportLists` only keeps track of exports due to imported 901 // definitions. 902 FunctionImporter::maybeAddDeclaration(ImportList, DeclSourceModule, 903 VI.getGUID()); 904 } 905 // Update with new larger threshold if this was a retry (otherwise 906 // we would have already inserted with NewThreshold above). Also 907 // update failure info if requested. 908 if (PreviouslyVisited) { 909 ProcessedThreshold = NewThreshold; 910 if (PrintImportFailures) { 911 assert(FailureInfo && 912 "Expected FailureInfo for previously rejected candidate"); 913 FailureInfo->Reason = Reason; 914 FailureInfo->Attempts++; 915 FailureInfo->MaxHotness = 916 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 917 } 918 } else if (PrintImportFailures) { 919 assert(!FailureInfo && 920 "Expected no FailureInfo for newly rejected candidate"); 921 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 922 VI, Edge.second.getHotness(), Reason, 1); 923 } 924 if (ForceImportAll) { 925 std::string Msg = std::string("Failed to import function ") + 926 VI.name().str() + " due to " + 927 getFailureName(Reason); 928 auto Error = make_error<StringError>( 929 Msg, make_error_code(errc::not_supported)); 930 logAllUnhandledErrors(std::move(Error), errs(), 931 "Error importing module: "); 932 break; 933 } else { 934 LLVM_DEBUG(dbgs() 935 << "ignored! No qualifying callee with summary found.\n"); 936 continue; 937 } 938 } 939 940 // "Resolve" the summary 941 CalleeSummary = CalleeSummary->getBaseObject(); 942 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 943 944 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 945 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 946 "selectCallee() didn't honor the threshold"); 947 948 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 949 950 // Try emplace the definition entry, and update stats based on insertion 951 // status. 952 if (FunctionImporter::addDefinition(ImportList, ExportModulePath, 953 VI.getGUID()) != 954 FunctionImporter::AddDefinitionStatus::NoChange) { 955 NumImportedFunctionsThinLink++; 956 if (IsHotCallsite) 957 NumImportedHotFunctionsThinLink++; 958 if (IsCriticalCallsite) 959 NumImportedCriticalFunctionsThinLink++; 960 } 961 962 // Any calls/references made by this function will be marked exported 963 // later, in ComputeCrossModuleImport, after import decisions are 964 // complete, which is more efficient than adding them here. 965 if (ExportLists) 966 (*ExportLists)[ExportModulePath].insert(VI); 967 } 968 969 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 970 // Adjust the threshold for next level of imported functions. 971 // The threshold is different for hot callsites because we can then 972 // inline chains of hot calls. 973 if (IsHotCallsite) 974 return Threshold * ImportHotInstrFactor; 975 return Threshold * ImportInstrFactor; 976 }; 977 978 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 979 980 ImportCount++; 981 982 // Insert the newly imported function to the worklist. 983 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 984 } 985 } 986 987 void ModuleImportsManager::computeImportForModule( 988 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 989 FunctionImporter::ImportMapTy &ImportList) { 990 // Worklist contains the list of function imported in this module, for which 991 // we will analyse the callees and may import further down the callgraph. 992 SmallVector<EdgeInfo, 128> Worklist; 993 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 994 ExportLists); 995 FunctionImporter::ImportThresholdsTy ImportThresholds; 996 997 // Populate the worklist with the import for the functions in the current 998 // module 999 for (const auto &GVSummary : DefinedGVSummaries) { 1000 #ifndef NDEBUG 1001 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 1002 // so this map look up (and possibly others) can be avoided. 1003 auto VI = Index.getValueInfo(GVSummary.first); 1004 #endif 1005 if (!Index.isGlobalValueLive(GVSummary.second)) { 1006 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 1007 continue; 1008 } 1009 auto *FuncSummary = 1010 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 1011 if (!FuncSummary) 1012 // Skip import for global variables 1013 continue; 1014 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 1015 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 1016 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 1017 ImportList, ExportLists, ImportThresholds); 1018 } 1019 1020 // Process the newly imported functions and add callees to the worklist. 1021 while (!Worklist.empty()) { 1022 auto GVInfo = Worklist.pop_back_val(); 1023 auto *Summary = std::get<0>(GVInfo); 1024 auto Threshold = std::get<1>(GVInfo); 1025 1026 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 1027 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 1028 IsPrevailing, Worklist, GVI, ImportList, 1029 ExportLists, ImportThresholds); 1030 } 1031 1032 // Print stats about functions considered but rejected for importing 1033 // when requested. 1034 if (PrintImportFailures) { 1035 dbgs() << "Missed imports into module " << ModName << "\n"; 1036 for (auto &I : ImportThresholds) { 1037 auto &ProcessedThreshold = std::get<0>(I.second); 1038 auto &CalleeSummary = std::get<1>(I.second); 1039 auto &FailureInfo = std::get<2>(I.second); 1040 if (CalleeSummary) 1041 continue; // We are going to import. 1042 assert(FailureInfo); 1043 FunctionSummary *FS = nullptr; 1044 if (!FailureInfo->VI.getSummaryList().empty()) 1045 FS = dyn_cast<FunctionSummary>( 1046 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 1047 dbgs() << FailureInfo->VI 1048 << ": Reason = " << getFailureName(FailureInfo->Reason) 1049 << ", Threshold = " << ProcessedThreshold 1050 << ", Size = " << (FS ? (int)FS->instCount() : -1) 1051 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 1052 << ", Attempts = " << FailureInfo->Attempts << "\n"; 1053 } 1054 } 1055 } 1056 1057 #ifndef NDEBUG 1058 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1059 auto SL = VI.getSummaryList(); 1060 return SL.empty() 1061 ? false 1062 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1063 } 1064 1065 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1066 GlobalValue::GUID G) { 1067 if (const auto &VI = Index.getValueInfo(G)) 1068 return isGlobalVarSummary(Index, VI); 1069 return false; 1070 } 1071 1072 // Return the number of global variable summaries in ExportSet. 1073 static unsigned 1074 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1075 FunctionImporter::ExportSetTy &ExportSet) { 1076 unsigned NumGVS = 0; 1077 for (auto &VI : ExportSet) 1078 if (isGlobalVarSummary(Index, VI.getGUID())) 1079 ++NumGVS; 1080 return NumGVS; 1081 } 1082 1083 // Given ImportMap, return the number of global variable summaries and record 1084 // the number of defined function summaries as output parameter. 1085 static unsigned 1086 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1087 FunctionImporter::FunctionsToImportTy &ImportMap, 1088 unsigned &DefinedFS) { 1089 unsigned NumGVS = 0; 1090 DefinedFS = 0; 1091 for (auto &[GUID, Type] : ImportMap) { 1092 if (isGlobalVarSummary(Index, GUID)) 1093 ++NumGVS; 1094 else if (Type == GlobalValueSummary::Definition) 1095 ++DefinedFS; 1096 } 1097 return NumGVS; 1098 } 1099 #endif 1100 1101 #ifndef NDEBUG 1102 static bool checkVariableImport( 1103 const ModuleSummaryIndex &Index, 1104 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1105 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1106 DenseSet<GlobalValue::GUID> FlattenedImports; 1107 1108 for (auto &ImportPerModule : ImportLists) 1109 for (auto &ExportPerModule : ImportPerModule.second) 1110 for (auto &[GUID, Type] : ExportPerModule.second) 1111 FlattenedImports.insert(GUID); 1112 1113 // Checks that all GUIDs of read/writeonly vars we see in export lists 1114 // are also in the import lists. Otherwise we my face linker undefs, 1115 // because readonly and writeonly vars are internalized in their 1116 // source modules. The exception would be if it has a linkage type indicating 1117 // that there may have been a copy existing in the importing module (e.g. 1118 // linkonce_odr). In that case we cannot accurately do this checking. 1119 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1120 const ValueInfo &VI) { 1121 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1122 Index.findSummaryInModule(VI, ModulePath)); 1123 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1124 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1125 GVS->linkage() == GlobalValue::WeakODRLinkage || 1126 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1127 }; 1128 1129 for (auto &ExportPerModule : ExportLists) 1130 for (auto &VI : ExportPerModule.second) 1131 if (!FlattenedImports.count(VI.getGUID()) && 1132 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1133 return false; 1134 1135 return true; 1136 } 1137 #endif 1138 1139 /// Compute all the import and export for every module using the Index. 1140 void llvm::ComputeCrossModuleImport( 1141 const ModuleSummaryIndex &Index, 1142 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1143 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1144 isPrevailing, 1145 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1146 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1147 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1148 // For each module that has function defined, compute the import/export lists. 1149 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1150 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1151 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1152 << DefinedGVSummaries.first << "'\n"); 1153 MIS->computeImportForModule(DefinedGVSummaries.second, 1154 DefinedGVSummaries.first, ImportList); 1155 } 1156 1157 // When computing imports we only added the variables and functions being 1158 // imported to the export list. We also need to mark any references and calls 1159 // they make as exported as well. We do this here, as it is more efficient 1160 // since we may import the same values multiple times into different modules 1161 // during the import computation. 1162 for (auto &ELI : ExportLists) { 1163 // `NewExports` tracks the VI that gets exported because the full definition 1164 // of its user/referencer gets exported. 1165 FunctionImporter::ExportSetTy NewExports; 1166 const auto &DefinedGVSummaries = 1167 ModuleToDefinedGVSummaries.lookup(ELI.first); 1168 for (auto &EI : ELI.second) { 1169 // Find the copy defined in the exporting module so that we can mark the 1170 // values it references in that specific definition as exported. 1171 // Below we will add all references and called values, without regard to 1172 // whether they are also defined in this module. We subsequently prune the 1173 // list to only include those defined in the exporting module, see comment 1174 // there as to why. 1175 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1176 // Anything marked exported during the import computation must have been 1177 // defined in the exporting module. 1178 assert(DS != DefinedGVSummaries.end()); 1179 auto *S = DS->getSecond(); 1180 S = S->getBaseObject(); 1181 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1182 // Export referenced functions and variables. We don't export/promote 1183 // objects referenced by writeonly variable initializer, because 1184 // we convert such variables initializers to "zeroinitializer". 1185 // See processGlobalForThinLTO. 1186 if (!Index.isWriteOnly(GVS)) 1187 for (const auto &VI : GVS->refs()) 1188 NewExports.insert(VI); 1189 } else { 1190 auto *FS = cast<FunctionSummary>(S); 1191 for (const auto &Edge : FS->calls()) 1192 NewExports.insert(Edge.first); 1193 for (const auto &Ref : FS->refs()) 1194 NewExports.insert(Ref); 1195 } 1196 } 1197 // Prune list computed above to only include values defined in the 1198 // exporting module. We do this after the above insertion since we may hit 1199 // the same ref/call target multiple times in above loop, and it is more 1200 // efficient to avoid a set lookup each time. 1201 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1202 if (!DefinedGVSummaries.count(EI->getGUID())) 1203 NewExports.erase(EI++); 1204 else 1205 ++EI; 1206 } 1207 ELI.second.insert(NewExports.begin(), NewExports.end()); 1208 } 1209 1210 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1211 #ifndef NDEBUG 1212 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1213 << " modules:\n"); 1214 for (auto &ModuleImports : ImportLists) { 1215 auto ModName = ModuleImports.first; 1216 auto &Exports = ExportLists[ModName]; 1217 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1218 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1219 << Exports.size() - NumGVS << " functions and " << NumGVS 1220 << " vars. Imports from " << ModuleImports.second.size() 1221 << " modules.\n"); 1222 for (auto &Src : ModuleImports.second) { 1223 auto SrcModName = Src.first; 1224 unsigned DefinedFS = 0; 1225 unsigned NumGVSPerMod = 1226 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1227 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1228 << Src.second.size() - NumGVSPerMod - DefinedFS 1229 << " function declarations imported from " << SrcModName 1230 << "\n"); 1231 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1232 << " global vars imported from " << SrcModName << "\n"); 1233 } 1234 } 1235 #endif 1236 } 1237 1238 #ifndef NDEBUG 1239 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1240 StringRef ModulePath, 1241 FunctionImporter::ImportMapTy &ImportList) { 1242 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1243 << ImportList.size() << " modules.\n"); 1244 for (auto &Src : ImportList) { 1245 auto SrcModName = Src.first; 1246 unsigned DefinedFS = 0; 1247 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1248 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1249 << Src.second.size() - DefinedFS - NumGVSPerMod 1250 << " function declarations imported from " << SrcModName 1251 << "\n"); 1252 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1253 << SrcModName << "\n"); 1254 } 1255 } 1256 #endif 1257 1258 /// Compute all the imports for the given module using the Index. 1259 /// 1260 /// \p isPrevailing is a callback that will be called with a global value's GUID 1261 /// and summary and should return whether the module corresponding to the 1262 /// summary contains the linker-prevailing copy of that value. 1263 /// 1264 /// \p ImportList will be populated with a map that can be passed to 1265 /// FunctionImporter::importFunctions() above (see description there). 1266 static void ComputeCrossModuleImportForModuleForTest( 1267 StringRef ModulePath, 1268 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1269 isPrevailing, 1270 const ModuleSummaryIndex &Index, 1271 FunctionImporter::ImportMapTy &ImportList) { 1272 // Collect the list of functions this module defines. 1273 // GUID -> Summary 1274 GVSummaryMapTy FunctionSummaryMap; 1275 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1276 1277 // Compute the import list for this module. 1278 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1279 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1280 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1281 1282 #ifndef NDEBUG 1283 dumpImportListForModule(Index, ModulePath, ImportList); 1284 #endif 1285 } 1286 1287 /// Mark all external summaries in \p Index for import into the given module. 1288 /// Used for testing the case of distributed builds using a distributed index. 1289 /// 1290 /// \p ImportList will be populated with a map that can be passed to 1291 /// FunctionImporter::importFunctions() above (see description there). 1292 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1293 StringRef ModulePath, const ModuleSummaryIndex &Index, 1294 FunctionImporter::ImportMapTy &ImportList) { 1295 for (const auto &GlobalList : Index) { 1296 // Ignore entries for undefined references. 1297 if (GlobalList.second.SummaryList.empty()) 1298 continue; 1299 1300 auto GUID = GlobalList.first; 1301 assert(GlobalList.second.SummaryList.size() == 1 && 1302 "Expected individual combined index to have one summary per GUID"); 1303 auto &Summary = GlobalList.second.SummaryList[0]; 1304 // Skip the summaries for the importing module. These are included to 1305 // e.g. record required linkage changes. 1306 if (Summary->modulePath() == ModulePath) 1307 continue; 1308 // Add an entry to provoke importing by thinBackend. 1309 FunctionImporter::addGUID(ImportList, Summary->modulePath(), GUID, 1310 Summary->importType()); 1311 } 1312 #ifndef NDEBUG 1313 dumpImportListForModule(Index, ModulePath, ImportList); 1314 #endif 1315 } 1316 1317 // For SamplePGO, the indirect call targets for local functions will 1318 // have its original name annotated in profile. We try to find the 1319 // corresponding PGOFuncName as the GUID, and fix up the edges 1320 // accordingly. 1321 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1322 FunctionSummary *FS) { 1323 for (auto &EI : FS->mutableCalls()) { 1324 if (!EI.first.getSummaryList().empty()) 1325 continue; 1326 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1327 if (GUID == 0) 1328 continue; 1329 // Update the edge to point directly to the correct GUID. 1330 auto VI = Index.getValueInfo(GUID); 1331 if (llvm::any_of( 1332 VI.getSummaryList(), 1333 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1334 // The mapping from OriginalId to GUID may return a GUID 1335 // that corresponds to a static variable. Filter it out here. 1336 // This can happen when 1337 // 1) There is a call to a library function which is not defined 1338 // in the index. 1339 // 2) There is a static variable with the OriginalGUID identical 1340 // to the GUID of the library function in 1); 1341 // When this happens the static variable in 2) will be found, 1342 // which needs to be filtered out. 1343 return SummaryPtr->getSummaryKind() == 1344 GlobalValueSummary::GlobalVarKind; 1345 })) 1346 continue; 1347 EI.first = VI; 1348 } 1349 } 1350 1351 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1352 for (const auto &Entry : Index) { 1353 for (const auto &S : Entry.second.SummaryList) { 1354 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1355 updateValueInfoForIndirectCalls(Index, FS); 1356 } 1357 } 1358 } 1359 1360 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1361 ModuleSummaryIndex &Index, 1362 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1363 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1364 assert(!Index.withGlobalValueDeadStripping()); 1365 if (!ComputeDead || 1366 // Don't do anything when nothing is live, this is friendly with tests. 1367 GUIDPreservedSymbols.empty()) { 1368 // Still need to update indirect calls. 1369 updateIndirectCalls(Index); 1370 return; 1371 } 1372 unsigned LiveSymbols = 0; 1373 SmallVector<ValueInfo, 128> Worklist; 1374 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1375 for (auto GUID : GUIDPreservedSymbols) { 1376 ValueInfo VI = Index.getValueInfo(GUID); 1377 if (!VI) 1378 continue; 1379 for (const auto &S : VI.getSummaryList()) 1380 S->setLive(true); 1381 } 1382 1383 // Add values flagged in the index as live roots to the worklist. 1384 for (const auto &Entry : Index) { 1385 auto VI = Index.getValueInfo(Entry); 1386 for (const auto &S : Entry.second.SummaryList) { 1387 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1388 updateValueInfoForIndirectCalls(Index, FS); 1389 if (S->isLive()) { 1390 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1391 Worklist.push_back(VI); 1392 ++LiveSymbols; 1393 break; 1394 } 1395 } 1396 } 1397 1398 // Make value live and add it to the worklist if it was not live before. 1399 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1400 // FIXME: If we knew which edges were created for indirect call profiles, 1401 // we could skip them here. Any that are live should be reached via 1402 // other edges, e.g. reference edges. Otherwise, using a profile collected 1403 // on a slightly different binary might provoke preserving, importing 1404 // and ultimately promoting calls to functions not linked into this 1405 // binary, which increases the binary size unnecessarily. Note that 1406 // if this code changes, the importer needs to change so that edges 1407 // to functions marked dead are skipped. 1408 1409 if (llvm::any_of(VI.getSummaryList(), 1410 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1411 return S->isLive(); 1412 })) 1413 return; 1414 1415 // We only keep live symbols that are known to be non-prevailing if any are 1416 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1417 // later in the EliminateAvailableExternally pass and setting them to 1418 // not-live could break downstreams users of liveness information (PR36483) 1419 // or limit optimization opportunities. 1420 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1421 bool KeepAliveLinkage = false; 1422 bool Interposable = false; 1423 for (const auto &S : VI.getSummaryList()) { 1424 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1425 S->linkage() == GlobalValue::WeakODRLinkage || 1426 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1427 KeepAliveLinkage = true; 1428 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1429 Interposable = true; 1430 } 1431 1432 if (!IsAliasee) { 1433 if (!KeepAliveLinkage) 1434 return; 1435 1436 if (Interposable) 1437 report_fatal_error( 1438 "Interposable and available_externally/linkonce_odr/weak_odr " 1439 "symbol"); 1440 } 1441 } 1442 1443 for (const auto &S : VI.getSummaryList()) 1444 S->setLive(true); 1445 ++LiveSymbols; 1446 Worklist.push_back(VI); 1447 }; 1448 1449 while (!Worklist.empty()) { 1450 auto VI = Worklist.pop_back_val(); 1451 for (const auto &Summary : VI.getSummaryList()) { 1452 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1453 // If this is an alias, visit the aliasee VI to ensure that all copies 1454 // are marked live and it is added to the worklist for further 1455 // processing of its references. 1456 visit(AS->getAliaseeVI(), true); 1457 continue; 1458 } 1459 for (auto Ref : Summary->refs()) 1460 visit(Ref, false); 1461 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1462 for (auto Call : FS->calls()) 1463 visit(Call.first, false); 1464 } 1465 } 1466 Index.setWithGlobalValueDeadStripping(); 1467 1468 unsigned DeadSymbols = Index.size() - LiveSymbols; 1469 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1470 << " symbols Dead \n"); 1471 NumDeadSymbols += DeadSymbols; 1472 NumLiveSymbols += LiveSymbols; 1473 } 1474 1475 // Compute dead symbols and propagate constants in combined index. 1476 void llvm::computeDeadSymbolsWithConstProp( 1477 ModuleSummaryIndex &Index, 1478 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1479 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1480 bool ImportEnabled) { 1481 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1482 isPrevailing); 1483 if (ImportEnabled) 1484 Index.propagateAttributes(GUIDPreservedSymbols); 1485 } 1486 1487 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1488 /// \p ModulePath. 1489 void llvm::gatherImportedSummariesForModule( 1490 StringRef ModulePath, 1491 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1492 const FunctionImporter::ImportMapTy &ImportList, 1493 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex, 1494 GVSummaryPtrSet &DecSummaries) { 1495 // Include all summaries from the importing module. 1496 ModuleToSummariesForIndex[std::string(ModulePath)] = 1497 ModuleToDefinedGVSummaries.lookup(ModulePath); 1498 // Include summaries for imports. 1499 for (const auto &ILI : ImportList) { 1500 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1501 1502 const auto &DefinedGVSummaries = 1503 ModuleToDefinedGVSummaries.lookup(ILI.first); 1504 for (const auto &[GUID, Type] : ILI.second) { 1505 const auto &DS = DefinedGVSummaries.find(GUID); 1506 assert(DS != DefinedGVSummaries.end() && 1507 "Expected a defined summary for imported global value"); 1508 if (Type == GlobalValueSummary::Declaration) 1509 DecSummaries.insert(DS->second); 1510 1511 SummariesForIndex[GUID] = DS->second; 1512 } 1513 } 1514 } 1515 1516 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1517 std::error_code llvm::EmitImportsFiles( 1518 StringRef ModulePath, StringRef OutputFilename, 1519 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1520 std::error_code EC; 1521 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1522 if (EC) 1523 return EC; 1524 for (const auto &ILI : ModuleToSummariesForIndex) 1525 // The ModuleToSummariesForIndex map includes an entry for the current 1526 // Module (needed for writing out the index files). We don't want to 1527 // include it in the imports file, however, so filter it out. 1528 if (ILI.first != ModulePath) 1529 ImportsOS << ILI.first << "\n"; 1530 return std::error_code(); 1531 } 1532 1533 bool llvm::convertToDeclaration(GlobalValue &GV) { 1534 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1535 << "\n"); 1536 if (Function *F = dyn_cast<Function>(&GV)) { 1537 F->deleteBody(); 1538 F->clearMetadata(); 1539 F->setComdat(nullptr); 1540 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1541 V->setInitializer(nullptr); 1542 V->setLinkage(GlobalValue::ExternalLinkage); 1543 V->clearMetadata(); 1544 V->setComdat(nullptr); 1545 } else { 1546 GlobalValue *NewGV; 1547 if (GV.getValueType()->isFunctionTy()) 1548 NewGV = 1549 Function::Create(cast<FunctionType>(GV.getValueType()), 1550 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1551 "", GV.getParent()); 1552 else 1553 NewGV = 1554 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1555 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1556 /*init*/ nullptr, "", 1557 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1558 GV.getType()->getAddressSpace()); 1559 NewGV->takeName(&GV); 1560 GV.replaceAllUsesWith(NewGV); 1561 return false; 1562 } 1563 if (!GV.isImplicitDSOLocal()) 1564 GV.setDSOLocal(false); 1565 return true; 1566 } 1567 1568 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1569 const GVSummaryMapTy &DefinedGlobals, 1570 bool PropagateAttrs) { 1571 DenseSet<Comdat *> NonPrevailingComdats; 1572 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1573 // See if the global summary analysis computed a new resolved linkage. 1574 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1575 if (GS == DefinedGlobals.end()) 1576 return; 1577 1578 if (Propagate) 1579 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1580 if (Function *F = dyn_cast<Function>(&GV)) { 1581 // TODO: propagate ReadNone and ReadOnly. 1582 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1583 F->setDoesNotAccessMemory(); 1584 1585 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1586 F->setOnlyReadsMemory(); 1587 1588 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1589 F->setDoesNotRecurse(); 1590 1591 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1592 F->setDoesNotThrow(); 1593 } 1594 } 1595 1596 auto NewLinkage = GS->second->linkage(); 1597 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1598 // Don't internalize anything here, because the code below 1599 // lacks necessary correctness checks. Leave this job to 1600 // LLVM 'internalize' pass. 1601 GlobalValue::isLocalLinkage(NewLinkage) || 1602 // In case it was dead and already converted to declaration. 1603 GV.isDeclaration()) 1604 return; 1605 1606 // Set the potentially more constraining visibility computed from summaries. 1607 // The DefaultVisibility condition is because older GlobalValueSummary does 1608 // not record DefaultVisibility and we don't want to change protected/hidden 1609 // to default. 1610 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1611 GV.setVisibility(GS->second->getVisibility()); 1612 1613 if (NewLinkage == GV.getLinkage()) 1614 return; 1615 1616 // Check for a non-prevailing def that has interposable linkage 1617 // (e.g. non-odr weak or linkonce). In that case we can't simply 1618 // convert to available_externally, since it would lose the 1619 // interposable property and possibly get inlined. Simply drop 1620 // the definition in that case. 1621 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1622 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1623 if (!convertToDeclaration(GV)) 1624 // FIXME: Change this to collect replaced GVs and later erase 1625 // them from the parent module once thinLTOResolvePrevailingGUID is 1626 // changed to enable this for aliases. 1627 llvm_unreachable("Expected GV to be converted"); 1628 } else { 1629 // If all copies of the original symbol had global unnamed addr and 1630 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1631 // and are constants, then it should be an auto hide symbol. In that case 1632 // the thin link would have marked it as CanAutoHide. Add hidden 1633 // visibility to the symbol to preserve the property. 1634 if (NewLinkage == GlobalValue::WeakODRLinkage && 1635 GS->second->canAutoHide()) { 1636 assert(GV.canBeOmittedFromSymbolTable()); 1637 GV.setVisibility(GlobalValue::HiddenVisibility); 1638 } 1639 1640 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1641 << "` from " << GV.getLinkage() << " to " << NewLinkage 1642 << "\n"); 1643 GV.setLinkage(NewLinkage); 1644 } 1645 // Remove declarations from comdats, including available_externally 1646 // as this is a declaration for the linker, and will be dropped eventually. 1647 // It is illegal for comdats to contain declarations. 1648 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1649 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1650 if (GO->getComdat()->getName() == GO->getName()) 1651 NonPrevailingComdats.insert(GO->getComdat()); 1652 GO->setComdat(nullptr); 1653 } 1654 }; 1655 1656 // Process functions and global now 1657 for (auto &GV : TheModule) 1658 FinalizeInModule(GV, PropagateAttrs); 1659 for (auto &GV : TheModule.globals()) 1660 FinalizeInModule(GV); 1661 for (auto &GV : TheModule.aliases()) 1662 FinalizeInModule(GV); 1663 1664 // For a non-prevailing comdat, all its members must be available_externally. 1665 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1666 // local linkage GlobalValues. 1667 if (NonPrevailingComdats.empty()) 1668 return; 1669 for (auto &GO : TheModule.global_objects()) { 1670 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1671 GO.setComdat(nullptr); 1672 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1673 } 1674 } 1675 bool Changed; 1676 do { 1677 Changed = false; 1678 // If an alias references a GlobalValue in a non-prevailing comdat, change 1679 // it to available_externally. For simplicity we only handle GlobalValue and 1680 // ConstantExpr with a base object. ConstantExpr without a base object is 1681 // unlikely used in a COMDAT. 1682 for (auto &GA : TheModule.aliases()) { 1683 if (GA.hasAvailableExternallyLinkage()) 1684 continue; 1685 GlobalObject *Obj = GA.getAliaseeObject(); 1686 assert(Obj && "aliasee without an base object is unimplemented"); 1687 if (Obj->hasAvailableExternallyLinkage()) { 1688 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1689 Changed = true; 1690 } 1691 } 1692 } while (Changed); 1693 } 1694 1695 /// Run internalization on \p TheModule based on symmary analysis. 1696 void llvm::thinLTOInternalizeModule(Module &TheModule, 1697 const GVSummaryMapTy &DefinedGlobals) { 1698 // Declare a callback for the internalize pass that will ask for every 1699 // candidate GlobalValue if it can be internalized or not. 1700 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1701 // It may be the case that GV is on a chain of an ifunc, its alias and 1702 // subsequent aliases. In this case, the summary for the value is not 1703 // available. 1704 if (isa<GlobalIFunc>(&GV) || 1705 (isa<GlobalAlias>(&GV) && 1706 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1707 return true; 1708 1709 // Lookup the linkage recorded in the summaries during global analysis. 1710 auto GS = DefinedGlobals.find(GV.getGUID()); 1711 if (GS == DefinedGlobals.end()) { 1712 // Must have been promoted (possibly conservatively). Find original 1713 // name so that we can access the correct summary and see if it can 1714 // be internalized again. 1715 // FIXME: Eventually we should control promotion instead of promoting 1716 // and internalizing again. 1717 StringRef OrigName = 1718 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1719 std::string OrigId = GlobalValue::getGlobalIdentifier( 1720 OrigName, GlobalValue::InternalLinkage, 1721 TheModule.getSourceFileName()); 1722 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1723 if (GS == DefinedGlobals.end()) { 1724 // Also check the original non-promoted non-globalized name. In some 1725 // cases a preempted weak value is linked in as a local copy because 1726 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1727 // In that case, since it was originally not a local value, it was 1728 // recorded in the index using the original name. 1729 // FIXME: This may not be needed once PR27866 is fixed. 1730 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1731 assert(GS != DefinedGlobals.end()); 1732 } 1733 } 1734 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1735 }; 1736 1737 // FIXME: See if we can just internalize directly here via linkage changes 1738 // based on the index, rather than invoking internalizeModule. 1739 internalizeModule(TheModule, MustPreserveGV); 1740 } 1741 1742 /// Make alias a clone of its aliasee. 1743 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1744 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1745 1746 ValueToValueMapTy VMap; 1747 Function *NewFn = CloneFunction(Fn, VMap); 1748 // Clone should use the original alias's linkage, visibility and name, and we 1749 // ensure all uses of alias instead use the new clone (casted if necessary). 1750 NewFn->setLinkage(GA->getLinkage()); 1751 NewFn->setVisibility(GA->getVisibility()); 1752 GA->replaceAllUsesWith(NewFn); 1753 NewFn->takeName(GA); 1754 return NewFn; 1755 } 1756 1757 // Internalize values that we marked with specific attribute 1758 // in processGlobalForThinLTO. 1759 static void internalizeGVsAfterImport(Module &M) { 1760 for (auto &GV : M.globals()) 1761 // Skip GVs which have been converted to declarations 1762 // by dropDeadSymbols. 1763 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1764 GV.setLinkage(GlobalValue::InternalLinkage); 1765 GV.setVisibility(GlobalValue::DefaultVisibility); 1766 } 1767 } 1768 1769 // Automatically import functions in Module \p DestModule based on the summaries 1770 // index. 1771 Expected<bool> FunctionImporter::importFunctions( 1772 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1773 LLVM_DEBUG(dbgs() << "Starting import for Module " 1774 << DestModule.getModuleIdentifier() << "\n"); 1775 unsigned ImportedCount = 0, ImportedGVCount = 0; 1776 1777 IRMover Mover(DestModule); 1778 // Do the actual import of functions now, one Module at a time 1779 std::set<StringRef> ModuleNameOrderedList; 1780 for (const auto &FunctionsToImportPerModule : ImportList) { 1781 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1782 } 1783 1784 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1785 GlobalValue::GUID GUID) 1786 -> std::optional<GlobalValueSummary::ImportKind> { 1787 auto Iter = GUIDToImportType.find(GUID); 1788 if (Iter == GUIDToImportType.end()) 1789 return std::nullopt; 1790 return Iter->second; 1791 }; 1792 1793 for (const auto &Name : ModuleNameOrderedList) { 1794 // Get the module for the import 1795 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1796 assert(FunctionsToImportPerModule != ImportList.end()); 1797 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1798 if (!SrcModuleOrErr) 1799 return SrcModuleOrErr.takeError(); 1800 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1801 assert(&DestModule.getContext() == &SrcModule->getContext() && 1802 "Context mismatch"); 1803 1804 // If modules were created with lazy metadata loading, materialize it 1805 // now, before linking it (otherwise this will be a noop). 1806 if (Error Err = SrcModule->materializeMetadata()) 1807 return std::move(Err); 1808 1809 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1810 1811 // Find the globals to import 1812 SetVector<GlobalValue *> GlobalsToImport; 1813 for (Function &F : *SrcModule) { 1814 if (!F.hasName()) 1815 continue; 1816 auto GUID = F.getGUID(); 1817 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1818 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1819 1820 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1821 << " importing function" 1822 << (ImportDefinition 1823 ? " definition " 1824 : (MaybeImportType ? " declaration " : " ")) 1825 << GUID << " " << F.getName() << " from " 1826 << SrcModule->getSourceFileName() << "\n"); 1827 if (ImportDefinition) { 1828 if (Error Err = F.materialize()) 1829 return std::move(Err); 1830 // MemProf should match function's definition and summary, 1831 // 'thinlto_src_module' is needed. 1832 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1833 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1834 // statistics and debugging. 1835 F.setMetadata( 1836 "thinlto_src_module", 1837 MDNode::get(DestModule.getContext(), 1838 {MDString::get(DestModule.getContext(), 1839 SrcModule->getModuleIdentifier())})); 1840 F.setMetadata( 1841 "thinlto_src_file", 1842 MDNode::get(DestModule.getContext(), 1843 {MDString::get(DestModule.getContext(), 1844 SrcModule->getSourceFileName())})); 1845 } 1846 GlobalsToImport.insert(&F); 1847 } 1848 } 1849 for (GlobalVariable &GV : SrcModule->globals()) { 1850 if (!GV.hasName()) 1851 continue; 1852 auto GUID = GV.getGUID(); 1853 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1854 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1855 1856 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1857 << " importing global" 1858 << (ImportDefinition 1859 ? " definition " 1860 : (MaybeImportType ? " declaration " : " ")) 1861 << GUID << " " << GV.getName() << " from " 1862 << SrcModule->getSourceFileName() << "\n"); 1863 if (ImportDefinition) { 1864 if (Error Err = GV.materialize()) 1865 return std::move(Err); 1866 ImportedGVCount += GlobalsToImport.insert(&GV); 1867 } 1868 } 1869 for (GlobalAlias &GA : SrcModule->aliases()) { 1870 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1871 continue; 1872 auto GUID = GA.getGUID(); 1873 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1874 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1875 1876 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1877 << " importing alias" 1878 << (ImportDefinition 1879 ? " definition " 1880 : (MaybeImportType ? " declaration " : " ")) 1881 << GUID << " " << GA.getName() << " from " 1882 << SrcModule->getSourceFileName() << "\n"); 1883 if (ImportDefinition) { 1884 if (Error Err = GA.materialize()) 1885 return std::move(Err); 1886 // Import alias as a copy of its aliasee. 1887 GlobalObject *GO = GA.getAliaseeObject(); 1888 if (Error Err = GO->materialize()) 1889 return std::move(Err); 1890 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1891 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1892 << GO->getName() << " from " 1893 << SrcModule->getSourceFileName() << "\n"); 1894 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1895 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1896 // statistics and debugging. 1897 Fn->setMetadata( 1898 "thinlto_src_module", 1899 MDNode::get(DestModule.getContext(), 1900 {MDString::get(DestModule.getContext(), 1901 SrcModule->getModuleIdentifier())})); 1902 Fn->setMetadata( 1903 "thinlto_src_file", 1904 MDNode::get(DestModule.getContext(), 1905 {MDString::get(DestModule.getContext(), 1906 SrcModule->getSourceFileName())})); 1907 } 1908 GlobalsToImport.insert(Fn); 1909 } 1910 } 1911 1912 // Upgrade debug info after we're done materializing all the globals and we 1913 // have loaded all the required metadata! 1914 UpgradeDebugInfo(*SrcModule); 1915 1916 // Set the partial sample profile ratio in the profile summary module flag 1917 // of the imported source module, if applicable, so that the profile summary 1918 // module flag will match with that of the destination module when it's 1919 // imported. 1920 SrcModule->setPartialSampleProfileRatio(Index); 1921 1922 // Link in the specified functions. 1923 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1924 &GlobalsToImport)) 1925 return true; 1926 1927 if (PrintImports) { 1928 for (const auto *GV : GlobalsToImport) 1929 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1930 << " from " << SrcModule->getSourceFileName() << "\n"; 1931 } 1932 1933 if (Error Err = Mover.move(std::move(SrcModule), 1934 GlobalsToImport.getArrayRef(), nullptr, 1935 /*IsPerformingImport=*/true)) 1936 return createStringError(errc::invalid_argument, 1937 Twine("Function Import: link error: ") + 1938 toString(std::move(Err))); 1939 1940 ImportedCount += GlobalsToImport.size(); 1941 NumImportedModules++; 1942 } 1943 1944 internalizeGVsAfterImport(DestModule); 1945 1946 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1947 NumImportedGlobalVars += ImportedGVCount; 1948 1949 // TODO: Print counters for definitions and declarations in the debugging log. 1950 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1951 << " functions for Module " 1952 << DestModule.getModuleIdentifier() << "\n"); 1953 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1954 << " global variables for Module " 1955 << DestModule.getModuleIdentifier() << "\n"); 1956 return ImportedCount; 1957 } 1958 1959 static bool doImportingForModuleForTest( 1960 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1961 isPrevailing) { 1962 if (SummaryFile.empty()) 1963 report_fatal_error("error: -function-import requires -summary-file\n"); 1964 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1965 getModuleSummaryIndexForFile(SummaryFile); 1966 if (!IndexPtrOrErr) { 1967 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1968 "Error loading file '" + SummaryFile + "': "); 1969 return false; 1970 } 1971 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1972 1973 // First step is collecting the import list. 1974 FunctionImporter::ImportMapTy ImportList; 1975 // If requested, simply import all functions in the index. This is used 1976 // when testing distributed backend handling via the opt tool, when 1977 // we have distributed indexes containing exactly the summaries to import. 1978 if (ImportAllIndex) 1979 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1980 *Index, ImportList); 1981 else 1982 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1983 isPrevailing, *Index, ImportList); 1984 1985 // Conservatively mark all internal values as promoted. This interface is 1986 // only used when doing importing via the function importing pass. The pass 1987 // is only enabled when testing importing via the 'opt' tool, which does 1988 // not do the ThinLink that would normally determine what values to promote. 1989 for (auto &I : *Index) { 1990 for (auto &S : I.second.SummaryList) { 1991 if (GlobalValue::isLocalLinkage(S->linkage())) 1992 S->setLinkage(GlobalValue::ExternalLinkage); 1993 } 1994 } 1995 1996 // Next we need to promote to global scope and rename any local values that 1997 // are potentially exported to other modules. 1998 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1999 /*GlobalsToImport=*/nullptr)) { 2000 errs() << "Error renaming module\n"; 2001 return true; 2002 } 2003 2004 // Perform the import now. 2005 auto ModuleLoader = [&M](StringRef Identifier) { 2006 return loadFile(std::string(Identifier), M.getContext()); 2007 }; 2008 FunctionImporter Importer(*Index, ModuleLoader, 2009 /*ClearDSOLocalOnDeclarations=*/false); 2010 Expected<bool> Result = Importer.importFunctions(M, ImportList); 2011 2012 // FIXME: Probably need to propagate Errors through the pass manager. 2013 if (!Result) { 2014 logAllUnhandledErrors(Result.takeError(), errs(), 2015 "Error importing module: "); 2016 return true; 2017 } 2018 2019 return true; 2020 } 2021 2022 PreservedAnalyses FunctionImportPass::run(Module &M, 2023 ModuleAnalysisManager &AM) { 2024 // This is only used for testing the function import pass via opt, where we 2025 // don't have prevailing information from the LTO context available, so just 2026 // conservatively assume everything is prevailing (which is fine for the very 2027 // limited use of prevailing checking in this pass). 2028 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 2029 return true; 2030 }; 2031 if (!doImportingForModuleForTest(M, isPrevailing)) 2032 return PreservedAnalyses::all(); 2033 2034 return PreservedAnalyses::none(); 2035 } 2036