1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSummaryIndex.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 static cl::opt<bool> ImportAssumeUniqueLocal( 178 "import-assume-unique-local", cl::init(false), 179 cl::desc( 180 "By default, a local-linkage global variable won't be imported in the " 181 "edge mod1:func -> mod2:local-var (from value profiles) since compiler " 182 "cannot assume mod2 is compiled with full path which gives local-var a " 183 "program-wide unique GUID. Set this option to true will help cross " 184 "module import of such variables. This is only safe if the compiler " 185 "user specify the full module path."), 186 cl::Hidden); 187 188 namespace llvm { 189 extern cl::opt<bool> EnableMemProfContextDisambiguation; 190 } 191 192 // Load lazily a module from \p FileName in \p Context. 193 static std::unique_ptr<Module> loadFile(const std::string &FileName, 194 LLVMContext &Context) { 195 SMDiagnostic Err; 196 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 197 // Metadata isn't loaded until functions are imported, to minimize 198 // the memory overhead. 199 std::unique_ptr<Module> Result = 200 getLazyIRFileModule(FileName, Err, Context, 201 /* ShouldLazyLoadMetadata = */ true); 202 if (!Result) { 203 Err.print("function-import", errs()); 204 report_fatal_error("Abort"); 205 } 206 207 return Result; 208 } 209 210 static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary, 211 size_t NumDefs, 212 StringRef ImporterModule) { 213 // We can import a local from another module if all inputs are compiled 214 // with full paths or when there is one definition. 215 if (ImportAssumeUniqueLocal || NumDefs == 1) 216 return false; 217 // In other cases, make sure we import the copy in the caller's module if the 218 // referenced value has local linkage. The only time a local variable can 219 // share an entry in the index is if there is a local with the same name in 220 // another module that had the same source file name (in a different 221 // directory), where each was compiled in their own directory so there was not 222 // distinguishing path. 223 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 224 RefSummary->modulePath() != ImporterModule; 225 } 226 227 /// Given a list of possible callee implementation for a call site, qualify the 228 /// legality of importing each. The return is a range of pairs. Each pair 229 /// corresponds to a candidate. The first value is the ImportFailureReason for 230 /// that candidate, the second is the candidate. 231 static auto qualifyCalleeCandidates( 232 const ModuleSummaryIndex &Index, 233 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 234 StringRef CallerModulePath) { 235 return llvm::map_range( 236 CalleeSummaryList, 237 [&Index, CalleeSummaryList, 238 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 239 -> std::pair<FunctionImporter::ImportFailureReason, 240 const GlobalValueSummary *> { 241 auto *GVSummary = SummaryPtr.get(); 242 if (!Index.isGlobalValueLive(GVSummary)) 243 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 244 245 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 246 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 247 GVSummary}; 248 249 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 250 251 // Ignore any callees that aren't actually functions. This could happen 252 // in the case of GUID hash collisions. It could also happen in theory 253 // for SamplePGO profiles collected on old versions of the code after 254 // renaming, since we synthesize edges to any inlined callees appearing 255 // in the profile. 256 if (!Summary) 257 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 258 259 // If this is a local function, make sure we import the copy in the 260 // caller's module. The only time a local function can share an entry in 261 // the index is if there is a local with the same name in another module 262 // that had the same source file name (in a different directory), where 263 // each was compiled in their own directory so there was not 264 // distinguishing path. 265 // If the local function is from another module, it must be a reference 266 // due to indirect call profile data since a function pointer can point 267 // to a local in another module. Do the import from another module if 268 // there is only one entry in the list or when all files in the program 269 // are compiled with full path - in both cases the local function has 270 // unique PGO name and GUID. 271 if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(), 272 CallerModulePath)) 273 return { 274 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 275 GVSummary}; 276 277 // Skip if it isn't legal to import (e.g. may reference unpromotable 278 // locals). 279 if (Summary->notEligibleToImport()) 280 return {FunctionImporter::ImportFailureReason::NotEligible, 281 GVSummary}; 282 283 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 284 }); 285 } 286 287 /// Given a list of possible callee implementation for a call site, select one 288 /// that fits the \p Threshold for function definition import. If none are 289 /// found, the Reason will give the last reason for the failure (last, in the 290 /// order of CalleeSummaryList entries). While looking for a callee definition, 291 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 292 /// candidate; other modules may want to know the function summary or 293 /// declaration even if a definition is not needed. 294 /// 295 /// FIXME: select "best" instead of first that fits. But what is "best"? 296 /// - The smallest: more likely to be inlined. 297 /// - The one with the least outgoing edges (already well optimized). 298 /// - One from a module already being imported from in order to reduce the 299 /// number of source modules parsed/linked. 300 /// - One that has PGO data attached. 301 /// - [insert you fancy metric here] 302 static const GlobalValueSummary * 303 selectCallee(const ModuleSummaryIndex &Index, 304 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 305 unsigned Threshold, StringRef CallerModulePath, 306 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 307 FunctionImporter::ImportFailureReason &Reason) { 308 // Records the last summary with reason noinline or too-large. 309 TooLargeOrNoInlineSummary = nullptr; 310 auto QualifiedCandidates = 311 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 312 for (auto QualifiedValue : QualifiedCandidates) { 313 Reason = QualifiedValue.first; 314 // Skip a summary if its import is not (proved to be) legal. 315 if (Reason != FunctionImporter::ImportFailureReason::None) 316 continue; 317 auto *Summary = 318 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 319 320 // Don't bother importing the definition if the chance of inlining it is 321 // not high enough (except under `--force-import-all`). 322 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 323 !ForceImportAll) { 324 TooLargeOrNoInlineSummary = Summary; 325 Reason = FunctionImporter::ImportFailureReason::TooLarge; 326 continue; 327 } 328 329 // Don't bother importing the definition if we can't inline it anyway. 330 if (Summary->fflags().NoInline && !ForceImportAll) { 331 TooLargeOrNoInlineSummary = Summary; 332 Reason = FunctionImporter::ImportFailureReason::NoInline; 333 continue; 334 } 335 336 return Summary; 337 } 338 return nullptr; 339 } 340 341 namespace { 342 343 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 344 345 } // anonymous namespace 346 347 /// Import globals referenced by a function or other globals that are being 348 /// imported, if importing such global is possible. 349 class GlobalsImporter final { 350 const ModuleSummaryIndex &Index; 351 const GVSummaryMapTy &DefinedGVSummaries; 352 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 353 IsPrevailing; 354 FunctionImporter::ImportMapTy &ImportList; 355 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 356 357 bool shouldImportGlobal(const ValueInfo &VI) { 358 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 359 if (GVS == DefinedGVSummaries.end()) 360 return true; 361 // We should not skip import if the module contains a non-prevailing 362 // definition with interposable linkage type. This is required for 363 // correctness in the situation where there is a prevailing def available 364 // for import and marked read-only. In this case, the non-prevailing def 365 // will be converted to a declaration, while the prevailing one becomes 366 // internal, thus no definitions will be available for linking. In order to 367 // prevent undefined symbol link error, the prevailing definition must be 368 // imported. 369 // FIXME: Consider adding a check that the suitable prevailing definition 370 // exists and marked read-only. 371 if (VI.getSummaryList().size() > 1 && 372 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 373 !IsPrevailing(VI.getGUID(), GVS->second)) 374 return true; 375 376 return false; 377 } 378 379 void 380 onImportingSummaryImpl(const GlobalValueSummary &Summary, 381 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 382 for (const auto &VI : Summary.refs()) { 383 if (!shouldImportGlobal(VI)) { 384 LLVM_DEBUG( 385 dbgs() << "Ref ignored! Target already in destination module.\n"); 386 continue; 387 } 388 389 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 390 391 for (const auto &RefSummary : VI.getSummaryList()) { 392 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 393 // Functions could be referenced by global vars - e.g. a vtable; but we 394 // don't currently imagine a reason those would be imported here, rather 395 // than as part of the logic deciding which functions to import (i.e. 396 // based on profile information). Should we decide to handle them here, 397 // we can refactor accordingly at that time. 398 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 399 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 400 Summary.modulePath())) 401 continue; 402 403 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 404 // Otherwise, definition should take precedence over declaration. 405 auto [Iter, Inserted] = 406 ImportList[RefSummary->modulePath()].try_emplace( 407 VI.getGUID(), GlobalValueSummary::Definition); 408 // Only update stat and exports if we haven't already imported this 409 // variable. 410 if (!Inserted) { 411 // Set the value to 'std::min(existing-value, new-value)' to make 412 // sure a definition takes precedence over a declaration. 413 Iter->second = std::min(GlobalValueSummary::Definition, Iter->second); 414 break; 415 } 416 NumImportedGlobalVarsThinLink++; 417 // Any references made by this variable will be marked exported 418 // later, in ComputeCrossModuleImport, after import decisions are 419 // complete, which is more efficient than adding them here. 420 if (ExportLists) 421 (*ExportLists)[RefSummary->modulePath()].insert(VI); 422 423 // If variable is not writeonly we attempt to recursively analyze 424 // its references in order to import referenced constants. 425 if (!Index.isWriteOnly(GVS)) 426 Worklist.emplace_back(GVS); 427 break; 428 } 429 } 430 } 431 432 public: 433 GlobalsImporter( 434 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 435 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 436 IsPrevailing, 437 FunctionImporter::ImportMapTy &ImportList, 438 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 439 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 440 IsPrevailing(IsPrevailing), ImportList(ImportList), 441 ExportLists(ExportLists) {} 442 443 void onImportingSummary(const GlobalValueSummary &Summary) { 444 SmallVector<const GlobalVarSummary *, 128> Worklist; 445 onImportingSummaryImpl(Summary, Worklist); 446 while (!Worklist.empty()) 447 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 448 } 449 }; 450 451 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 452 453 /// Determine the list of imports and exports for each module. 454 class ModuleImportsManager { 455 protected: 456 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 457 IsPrevailing; 458 const ModuleSummaryIndex &Index; 459 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 460 461 ModuleImportsManager( 462 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 463 IsPrevailing, 464 const ModuleSummaryIndex &Index, 465 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 466 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 467 468 public: 469 virtual ~ModuleImportsManager() = default; 470 471 /// Given the list of globals defined in a module, compute the list of imports 472 /// as well as the list of "exports", i.e. the list of symbols referenced from 473 /// another module (that may require promotion). 474 virtual void 475 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 476 StringRef ModName, 477 FunctionImporter::ImportMapTy &ImportList); 478 479 static std::unique_ptr<ModuleImportsManager> 480 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 481 IsPrevailing, 482 const ModuleSummaryIndex &Index, 483 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 484 nullptr); 485 }; 486 487 /// A ModuleImportsManager that operates based on a workload definition (see 488 /// -thinlto-workload-def). For modules that do not define workload roots, it 489 /// applies the base ModuleImportsManager import policy. 490 class WorkloadImportsManager : public ModuleImportsManager { 491 // Keep a module name -> value infos to import association. We use it to 492 // determine if a module's import list should be done by the base 493 // ModuleImportsManager or by us. 494 StringMap<DenseSet<ValueInfo>> Workloads; 495 496 void 497 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 498 StringRef ModName, 499 FunctionImporter::ImportMapTy &ImportList) override { 500 auto SetIter = Workloads.find(ModName); 501 if (SetIter == Workloads.end()) { 502 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 503 << " does not contain the root of any context.\n"); 504 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 505 ModName, ImportList); 506 } 507 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 508 << " contains the root(s) of context(s).\n"); 509 510 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 511 ExportLists); 512 auto &ValueInfos = SetIter->second; 513 SmallVector<EdgeInfo, 128> GlobWorklist; 514 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 515 auto It = DefinedGVSummaries.find(VI.getGUID()); 516 if (It != DefinedGVSummaries.end() && 517 IsPrevailing(VI.getGUID(), It->second)) { 518 LLVM_DEBUG( 519 dbgs() << "[Workload] " << VI.name() 520 << " has the prevailing variant already in the module " 521 << ModName << ". No need to import\n"); 522 continue; 523 } 524 auto Candidates = 525 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 526 527 const GlobalValueSummary *GVS = nullptr; 528 auto PotentialCandidates = llvm::map_range( 529 llvm::make_filter_range( 530 Candidates, 531 [&](const auto &Candidate) { 532 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 533 << " from " << Candidate.second->modulePath() 534 << " ImportFailureReason: " 535 << getFailureName(Candidate.first) << "\n"); 536 return Candidate.first == 537 FunctionImporter::ImportFailureReason::None; 538 }), 539 [](const auto &Candidate) { return Candidate.second; }); 540 if (PotentialCandidates.empty()) { 541 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 542 << " because can't find eligible Callee. Guid is: " 543 << Function::getGUID(VI.name()) << "\n"); 544 continue; 545 } 546 /// We will prefer importing the prevailing candidate, if not, we'll 547 /// still pick the first available candidate. The reason we want to make 548 /// sure we do import the prevailing candidate is because the goal of 549 /// workload-awareness is to enable optimizations specializing the call 550 /// graph of that workload. Suppose a function is already defined in the 551 /// module, but it's not the prevailing variant. Suppose also we do not 552 /// inline it (in fact, if it were interposable, we can't inline it), 553 /// but we could specialize it to the workload in other ways. However, 554 /// the linker would drop it in the favor of the prevailing copy. 555 /// Instead, by importing the prevailing variant (assuming also the use 556 /// of `-avail-extern-to-local`), we keep the specialization. We could 557 /// alteranatively make the non-prevailing variant local, but the 558 /// prevailing one is also the one for which we would have previously 559 /// collected profiles, making it preferrable. 560 auto PrevailingCandidates = llvm::make_filter_range( 561 PotentialCandidates, [&](const auto *Candidate) { 562 return IsPrevailing(VI.getGUID(), Candidate); 563 }); 564 if (PrevailingCandidates.empty()) { 565 GVS = *PotentialCandidates.begin(); 566 if (!llvm::hasSingleElement(PotentialCandidates) && 567 GlobalValue::isLocalLinkage(GVS->linkage())) 568 LLVM_DEBUG( 569 dbgs() 570 << "[Workload] Found multiple non-prevailing candidates for " 571 << VI.name() 572 << ". This is unexpected. Are module paths passed to the " 573 "compiler unique for the modules passed to the linker?"); 574 // We could in theory have multiple (interposable) copies of a symbol 575 // when there is no prevailing candidate, if say the prevailing copy was 576 // in a native object being linked in. However, we should in theory be 577 // marking all of these non-prevailing IR copies dead in that case, in 578 // which case they won't be candidates. 579 assert(GVS->isLive()); 580 } else { 581 assert(llvm::hasSingleElement(PrevailingCandidates)); 582 GVS = *PrevailingCandidates.begin(); 583 } 584 585 auto ExportingModule = GVS->modulePath(); 586 // We checked that for the prevailing case, but if we happen to have for 587 // example an internal that's defined in this module, it'd have no 588 // PrevailingCandidates. 589 if (ExportingModule == ModName) { 590 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 591 << " because its defining module is the same as the " 592 "current module\n"); 593 continue; 594 } 595 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 596 << ExportingModule << " : " 597 << Function::getGUID(VI.name()) << "\n"); 598 ImportList[ExportingModule][VI.getGUID()] = 599 GlobalValueSummary::Definition; 600 GVI.onImportingSummary(*GVS); 601 if (ExportLists) 602 (*ExportLists)[ExportingModule].insert(VI); 603 } 604 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 605 } 606 607 public: 608 WorkloadImportsManager( 609 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 610 IsPrevailing, 611 const ModuleSummaryIndex &Index, 612 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 613 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 614 // Since the workload def uses names, we need a quick lookup 615 // name->ValueInfo. 616 StringMap<ValueInfo> NameToValueInfo; 617 StringSet<> AmbiguousNames; 618 for (auto &I : Index) { 619 ValueInfo VI = Index.getValueInfo(I); 620 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 621 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 622 } 623 auto DbgReportIfAmbiguous = [&](StringRef Name) { 624 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 625 dbgs() << "[Workload] Function name " << Name 626 << " present in the workload definition is ambiguous. Consider " 627 "compiling with -funique-internal-linkage-names."; 628 }); 629 }; 630 std::error_code EC; 631 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 632 if (std::error_code EC = BufferOrErr.getError()) { 633 report_fatal_error("Failed to open context file"); 634 return; 635 } 636 auto Buffer = std::move(BufferOrErr.get()); 637 std::map<std::string, std::vector<std::string>> WorkloadDefs; 638 json::Path::Root NullRoot; 639 // The JSON is supposed to contain a dictionary matching the type of 640 // WorkloadDefs. For example: 641 // { 642 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 643 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 644 // } 645 auto Parsed = json::parse(Buffer->getBuffer()); 646 if (!Parsed) 647 report_fatal_error(Parsed.takeError()); 648 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 649 report_fatal_error("Invalid thinlto contextual profile format."); 650 for (const auto &Workload : WorkloadDefs) { 651 const auto &Root = Workload.first; 652 DbgReportIfAmbiguous(Root); 653 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 654 const auto &AllCallees = Workload.second; 655 auto RootIt = NameToValueInfo.find(Root); 656 if (RootIt == NameToValueInfo.end()) { 657 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 658 << " not found in this linkage unit.\n"); 659 continue; 660 } 661 auto RootVI = RootIt->second; 662 if (RootVI.getSummaryList().size() != 1) { 663 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 664 << " should have exactly one summary, but has " 665 << RootVI.getSummaryList().size() << ". Skipping.\n"); 666 continue; 667 } 668 StringRef RootDefiningModule = 669 RootVI.getSummaryList().front()->modulePath(); 670 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 671 << " is : " << RootDefiningModule << "\n"); 672 auto &Set = Workloads[RootDefiningModule]; 673 for (const auto &Callee : AllCallees) { 674 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 675 DbgReportIfAmbiguous(Callee); 676 auto ElemIt = NameToValueInfo.find(Callee); 677 if (ElemIt == NameToValueInfo.end()) { 678 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 679 continue; 680 } 681 Set.insert(ElemIt->second); 682 } 683 LLVM_DEBUG({ 684 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 685 << " distinct callees.\n"; 686 for (const auto &VI : Set) { 687 dbgs() << "[Workload] Root: " << Root 688 << " Would include: " << VI.getGUID() << "\n"; 689 } 690 }); 691 } 692 } 693 }; 694 695 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 696 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 697 IsPrevailing, 698 const ModuleSummaryIndex &Index, 699 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 700 if (WorkloadDefinitions.empty()) { 701 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 702 return std::unique_ptr<ModuleImportsManager>( 703 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 704 } 705 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 706 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 707 ExportLists); 708 } 709 710 static const char * 711 getFailureName(FunctionImporter::ImportFailureReason Reason) { 712 switch (Reason) { 713 case FunctionImporter::ImportFailureReason::None: 714 return "None"; 715 case FunctionImporter::ImportFailureReason::GlobalVar: 716 return "GlobalVar"; 717 case FunctionImporter::ImportFailureReason::NotLive: 718 return "NotLive"; 719 case FunctionImporter::ImportFailureReason::TooLarge: 720 return "TooLarge"; 721 case FunctionImporter::ImportFailureReason::InterposableLinkage: 722 return "InterposableLinkage"; 723 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 724 return "LocalLinkageNotInModule"; 725 case FunctionImporter::ImportFailureReason::NotEligible: 726 return "NotEligible"; 727 case FunctionImporter::ImportFailureReason::NoInline: 728 return "NoInline"; 729 } 730 llvm_unreachable("invalid reason"); 731 } 732 733 /// Compute the list of functions to import for a given caller. Mark these 734 /// imported functions and the symbols they reference in their source module as 735 /// exported from their source module. 736 static void computeImportForFunction( 737 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 738 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 739 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 740 isPrevailing, 741 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 742 FunctionImporter::ImportMapTy &ImportList, 743 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 744 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 745 GVImporter.onImportingSummary(Summary); 746 static int ImportCount = 0; 747 for (const auto &Edge : Summary.calls()) { 748 ValueInfo VI = Edge.first; 749 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 750 << "\n"); 751 752 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 753 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 754 << " reached.\n"); 755 continue; 756 } 757 758 if (DefinedGVSummaries.count(VI.getGUID())) { 759 // FIXME: Consider not skipping import if the module contains 760 // a non-prevailing def with interposable linkage. The prevailing copy 761 // can safely be imported (see shouldImportGlobal()). 762 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 763 continue; 764 } 765 766 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 767 if (Hotness == CalleeInfo::HotnessType::Hot) 768 return ImportHotMultiplier; 769 if (Hotness == CalleeInfo::HotnessType::Cold) 770 return ImportColdMultiplier; 771 if (Hotness == CalleeInfo::HotnessType::Critical) 772 return ImportCriticalMultiplier; 773 return 1.0; 774 }; 775 776 const auto NewThreshold = 777 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 778 779 auto IT = ImportThresholds.insert(std::make_pair( 780 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 781 bool PreviouslyVisited = !IT.second; 782 auto &ProcessedThreshold = std::get<0>(IT.first->second); 783 auto &CalleeSummary = std::get<1>(IT.first->second); 784 auto &FailureInfo = std::get<2>(IT.first->second); 785 786 bool IsHotCallsite = 787 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 788 bool IsCriticalCallsite = 789 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 790 791 const FunctionSummary *ResolvedCalleeSummary = nullptr; 792 if (CalleeSummary) { 793 assert(PreviouslyVisited); 794 // Since the traversal of the call graph is DFS, we can revisit a function 795 // a second time with a higher threshold. In this case, it is added back 796 // to the worklist with the new threshold (so that its own callee chains 797 // can be considered with the higher threshold). 798 if (NewThreshold <= ProcessedThreshold) { 799 LLVM_DEBUG( 800 dbgs() << "ignored! Target was already imported with Threshold " 801 << ProcessedThreshold << "\n"); 802 continue; 803 } 804 // Update with new larger threshold. 805 ProcessedThreshold = NewThreshold; 806 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 807 } else { 808 // If we already rejected importing a callee at the same or higher 809 // threshold, don't waste time calling selectCallee. 810 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 811 LLVM_DEBUG( 812 dbgs() << "ignored! Target was already rejected with Threshold " 813 << ProcessedThreshold << "\n"); 814 if (PrintImportFailures) { 815 assert(FailureInfo && 816 "Expected FailureInfo for previously rejected candidate"); 817 FailureInfo->Attempts++; 818 } 819 continue; 820 } 821 822 FunctionImporter::ImportFailureReason Reason{}; 823 824 // `SummaryForDeclImport` is an summary eligible for declaration import. 825 const GlobalValueSummary *SummaryForDeclImport = nullptr; 826 CalleeSummary = 827 selectCallee(Index, VI.getSummaryList(), NewThreshold, 828 Summary.modulePath(), SummaryForDeclImport, Reason); 829 if (!CalleeSummary) { 830 // There isn't a callee for definition import but one for declaration 831 // import. 832 if (ImportDeclaration && SummaryForDeclImport) { 833 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 834 835 // Since definition takes precedence over declaration for the same VI, 836 // try emplace <VI, declaration> pair without checking insert result. 837 // If insert doesn't happen, there must be an existing entry keyed by 838 // VI. Note `ExportLists` only keeps track of exports due to imported 839 // definitions. 840 ImportList[DeclSourceModule].try_emplace( 841 VI.getGUID(), GlobalValueSummary::Declaration); 842 } 843 // Update with new larger threshold if this was a retry (otherwise 844 // we would have already inserted with NewThreshold above). Also 845 // update failure info if requested. 846 if (PreviouslyVisited) { 847 ProcessedThreshold = NewThreshold; 848 if (PrintImportFailures) { 849 assert(FailureInfo && 850 "Expected FailureInfo for previously rejected candidate"); 851 FailureInfo->Reason = Reason; 852 FailureInfo->Attempts++; 853 FailureInfo->MaxHotness = 854 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 855 } 856 } else if (PrintImportFailures) { 857 assert(!FailureInfo && 858 "Expected no FailureInfo for newly rejected candidate"); 859 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 860 VI, Edge.second.getHotness(), Reason, 1); 861 } 862 if (ForceImportAll) { 863 std::string Msg = std::string("Failed to import function ") + 864 VI.name().str() + " due to " + 865 getFailureName(Reason); 866 auto Error = make_error<StringError>( 867 Msg, make_error_code(errc::not_supported)); 868 logAllUnhandledErrors(std::move(Error), errs(), 869 "Error importing module: "); 870 break; 871 } else { 872 LLVM_DEBUG(dbgs() 873 << "ignored! No qualifying callee with summary found.\n"); 874 continue; 875 } 876 } 877 878 // "Resolve" the summary 879 CalleeSummary = CalleeSummary->getBaseObject(); 880 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 881 882 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 883 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 884 "selectCallee() didn't honor the threshold"); 885 886 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 887 888 // Try emplace the definition entry, and update stats based on insertion 889 // status. 890 auto [Iter, Inserted] = ImportList[ExportModulePath].try_emplace( 891 VI.getGUID(), GlobalValueSummary::Definition); 892 893 // We previously decided to import this GUID definition if it was already 894 // inserted in the set of imports from the exporting module. 895 if (Inserted || Iter->second == GlobalValueSummary::Declaration) { 896 NumImportedFunctionsThinLink++; 897 if (IsHotCallsite) 898 NumImportedHotFunctionsThinLink++; 899 if (IsCriticalCallsite) 900 NumImportedCriticalFunctionsThinLink++; 901 } 902 903 if (Iter->second == GlobalValueSummary::Declaration) 904 Iter->second = GlobalValueSummary::Definition; 905 906 // Any calls/references made by this function will be marked exported 907 // later, in ComputeCrossModuleImport, after import decisions are 908 // complete, which is more efficient than adding them here. 909 if (ExportLists) 910 (*ExportLists)[ExportModulePath].insert(VI); 911 } 912 913 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 914 // Adjust the threshold for next level of imported functions. 915 // The threshold is different for hot callsites because we can then 916 // inline chains of hot calls. 917 if (IsHotCallsite) 918 return Threshold * ImportHotInstrFactor; 919 return Threshold * ImportInstrFactor; 920 }; 921 922 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 923 924 ImportCount++; 925 926 // Insert the newly imported function to the worklist. 927 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 928 } 929 } 930 931 void ModuleImportsManager::computeImportForModule( 932 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 933 FunctionImporter::ImportMapTy &ImportList) { 934 // Worklist contains the list of function imported in this module, for which 935 // we will analyse the callees and may import further down the callgraph. 936 SmallVector<EdgeInfo, 128> Worklist; 937 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 938 ExportLists); 939 FunctionImporter::ImportThresholdsTy ImportThresholds; 940 941 // Populate the worklist with the import for the functions in the current 942 // module 943 for (const auto &GVSummary : DefinedGVSummaries) { 944 #ifndef NDEBUG 945 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 946 // so this map look up (and possibly others) can be avoided. 947 auto VI = Index.getValueInfo(GVSummary.first); 948 #endif 949 if (!Index.isGlobalValueLive(GVSummary.second)) { 950 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 951 continue; 952 } 953 auto *FuncSummary = 954 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 955 if (!FuncSummary) 956 // Skip import for global variables 957 continue; 958 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 959 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 960 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 961 ImportList, ExportLists, ImportThresholds); 962 } 963 964 // Process the newly imported functions and add callees to the worklist. 965 while (!Worklist.empty()) { 966 auto GVInfo = Worklist.pop_back_val(); 967 auto *Summary = std::get<0>(GVInfo); 968 auto Threshold = std::get<1>(GVInfo); 969 970 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 971 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 972 IsPrevailing, Worklist, GVI, ImportList, 973 ExportLists, ImportThresholds); 974 } 975 976 // Print stats about functions considered but rejected for importing 977 // when requested. 978 if (PrintImportFailures) { 979 dbgs() << "Missed imports into module " << ModName << "\n"; 980 for (auto &I : ImportThresholds) { 981 auto &ProcessedThreshold = std::get<0>(I.second); 982 auto &CalleeSummary = std::get<1>(I.second); 983 auto &FailureInfo = std::get<2>(I.second); 984 if (CalleeSummary) 985 continue; // We are going to import. 986 assert(FailureInfo); 987 FunctionSummary *FS = nullptr; 988 if (!FailureInfo->VI.getSummaryList().empty()) 989 FS = dyn_cast<FunctionSummary>( 990 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 991 dbgs() << FailureInfo->VI 992 << ": Reason = " << getFailureName(FailureInfo->Reason) 993 << ", Threshold = " << ProcessedThreshold 994 << ", Size = " << (FS ? (int)FS->instCount() : -1) 995 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 996 << ", Attempts = " << FailureInfo->Attempts << "\n"; 997 } 998 } 999 } 1000 1001 #ifndef NDEBUG 1002 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1003 auto SL = VI.getSummaryList(); 1004 return SL.empty() 1005 ? false 1006 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1007 } 1008 1009 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1010 GlobalValue::GUID G) { 1011 if (const auto &VI = Index.getValueInfo(G)) 1012 return isGlobalVarSummary(Index, VI); 1013 return false; 1014 } 1015 1016 // Return the number of global variable summaries in ExportSet. 1017 static unsigned 1018 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1019 FunctionImporter::ExportSetTy &ExportSet) { 1020 unsigned NumGVS = 0; 1021 for (auto &VI : ExportSet) 1022 if (isGlobalVarSummary(Index, VI.getGUID())) 1023 ++NumGVS; 1024 return NumGVS; 1025 } 1026 1027 // Given ImportMap, return the number of global variable summaries and record 1028 // the number of defined function summaries as output parameter. 1029 static unsigned 1030 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1031 FunctionImporter::FunctionsToImportTy &ImportMap, 1032 unsigned &DefinedFS) { 1033 unsigned NumGVS = 0; 1034 DefinedFS = 0; 1035 for (auto &[GUID, Type] : ImportMap) { 1036 if (isGlobalVarSummary(Index, GUID)) 1037 ++NumGVS; 1038 else if (Type == GlobalValueSummary::Definition) 1039 ++DefinedFS; 1040 } 1041 return NumGVS; 1042 } 1043 #endif 1044 1045 #ifndef NDEBUG 1046 static bool checkVariableImport( 1047 const ModuleSummaryIndex &Index, 1048 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1049 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1050 DenseSet<GlobalValue::GUID> FlattenedImports; 1051 1052 for (auto &ImportPerModule : ImportLists) 1053 for (auto &ExportPerModule : ImportPerModule.second) 1054 for (auto &[GUID, Type] : ExportPerModule.second) 1055 FlattenedImports.insert(GUID); 1056 1057 // Checks that all GUIDs of read/writeonly vars we see in export lists 1058 // are also in the import lists. Otherwise we my face linker undefs, 1059 // because readonly and writeonly vars are internalized in their 1060 // source modules. The exception would be if it has a linkage type indicating 1061 // that there may have been a copy existing in the importing module (e.g. 1062 // linkonce_odr). In that case we cannot accurately do this checking. 1063 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1064 const ValueInfo &VI) { 1065 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1066 Index.findSummaryInModule(VI, ModulePath)); 1067 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1068 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1069 GVS->linkage() == GlobalValue::WeakODRLinkage || 1070 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1071 }; 1072 1073 for (auto &ExportPerModule : ExportLists) 1074 for (auto &VI : ExportPerModule.second) 1075 if (!FlattenedImports.count(VI.getGUID()) && 1076 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1077 return false; 1078 1079 return true; 1080 } 1081 #endif 1082 1083 /// Compute all the import and export for every module using the Index. 1084 void llvm::ComputeCrossModuleImport( 1085 const ModuleSummaryIndex &Index, 1086 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1087 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1088 isPrevailing, 1089 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1090 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1091 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1092 // For each module that has function defined, compute the import/export lists. 1093 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1094 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1095 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1096 << DefinedGVSummaries.first << "'\n"); 1097 MIS->computeImportForModule(DefinedGVSummaries.second, 1098 DefinedGVSummaries.first, ImportList); 1099 } 1100 1101 // When computing imports we only added the variables and functions being 1102 // imported to the export list. We also need to mark any references and calls 1103 // they make as exported as well. We do this here, as it is more efficient 1104 // since we may import the same values multiple times into different modules 1105 // during the import computation. 1106 for (auto &ELI : ExportLists) { 1107 // `NewExports` tracks the VI that gets exported because the full definition 1108 // of its user/referencer gets exported. 1109 FunctionImporter::ExportSetTy NewExports; 1110 const auto &DefinedGVSummaries = 1111 ModuleToDefinedGVSummaries.lookup(ELI.first); 1112 for (auto &EI : ELI.second) { 1113 // Find the copy defined in the exporting module so that we can mark the 1114 // values it references in that specific definition as exported. 1115 // Below we will add all references and called values, without regard to 1116 // whether they are also defined in this module. We subsequently prune the 1117 // list to only include those defined in the exporting module, see comment 1118 // there as to why. 1119 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1120 // Anything marked exported during the import computation must have been 1121 // defined in the exporting module. 1122 assert(DS != DefinedGVSummaries.end()); 1123 auto *S = DS->getSecond(); 1124 S = S->getBaseObject(); 1125 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1126 // Export referenced functions and variables. We don't export/promote 1127 // objects referenced by writeonly variable initializer, because 1128 // we convert such variables initializers to "zeroinitializer". 1129 // See processGlobalForThinLTO. 1130 if (!Index.isWriteOnly(GVS)) 1131 for (const auto &VI : GVS->refs()) 1132 NewExports.insert(VI); 1133 } else { 1134 auto *FS = cast<FunctionSummary>(S); 1135 for (const auto &Edge : FS->calls()) 1136 NewExports.insert(Edge.first); 1137 for (const auto &Ref : FS->refs()) 1138 NewExports.insert(Ref); 1139 } 1140 } 1141 // Prune list computed above to only include values defined in the 1142 // exporting module. We do this after the above insertion since we may hit 1143 // the same ref/call target multiple times in above loop, and it is more 1144 // efficient to avoid a set lookup each time. 1145 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1146 if (!DefinedGVSummaries.count(EI->getGUID())) 1147 NewExports.erase(EI++); 1148 else 1149 ++EI; 1150 } 1151 ELI.second.insert(NewExports.begin(), NewExports.end()); 1152 } 1153 1154 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1155 #ifndef NDEBUG 1156 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1157 << " modules:\n"); 1158 for (auto &ModuleImports : ImportLists) { 1159 auto ModName = ModuleImports.first; 1160 auto &Exports = ExportLists[ModName]; 1161 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1162 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1163 << Exports.size() - NumGVS << " functions and " << NumGVS 1164 << " vars. Imports from " << ModuleImports.second.size() 1165 << " modules.\n"); 1166 for (auto &Src : ModuleImports.second) { 1167 auto SrcModName = Src.first; 1168 unsigned DefinedFS = 0; 1169 unsigned NumGVSPerMod = 1170 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1171 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1172 << Src.second.size() - NumGVSPerMod - DefinedFS 1173 << " function declarations imported from " << SrcModName 1174 << "\n"); 1175 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1176 << " global vars imported from " << SrcModName << "\n"); 1177 } 1178 } 1179 #endif 1180 } 1181 1182 #ifndef NDEBUG 1183 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1184 StringRef ModulePath, 1185 FunctionImporter::ImportMapTy &ImportList) { 1186 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1187 << ImportList.size() << " modules.\n"); 1188 for (auto &Src : ImportList) { 1189 auto SrcModName = Src.first; 1190 unsigned DefinedFS = 0; 1191 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1192 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1193 << Src.second.size() - DefinedFS - NumGVSPerMod 1194 << " function declarations imported from " << SrcModName 1195 << "\n"); 1196 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1197 << SrcModName << "\n"); 1198 } 1199 } 1200 #endif 1201 1202 /// Compute all the imports for the given module using the Index. 1203 /// 1204 /// \p isPrevailing is a callback that will be called with a global value's GUID 1205 /// and summary and should return whether the module corresponding to the 1206 /// summary contains the linker-prevailing copy of that value. 1207 /// 1208 /// \p ImportList will be populated with a map that can be passed to 1209 /// FunctionImporter::importFunctions() above (see description there). 1210 static void ComputeCrossModuleImportForModuleForTest( 1211 StringRef ModulePath, 1212 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1213 isPrevailing, 1214 const ModuleSummaryIndex &Index, 1215 FunctionImporter::ImportMapTy &ImportList) { 1216 // Collect the list of functions this module defines. 1217 // GUID -> Summary 1218 GVSummaryMapTy FunctionSummaryMap; 1219 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1220 1221 // Compute the import list for this module. 1222 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1223 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1224 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1225 1226 #ifndef NDEBUG 1227 dumpImportListForModule(Index, ModulePath, ImportList); 1228 #endif 1229 } 1230 1231 /// Mark all external summaries in \p Index for import into the given module. 1232 /// Used for testing the case of distributed builds using a distributed index. 1233 /// 1234 /// \p ImportList will be populated with a map that can be passed to 1235 /// FunctionImporter::importFunctions() above (see description there). 1236 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1237 StringRef ModulePath, const ModuleSummaryIndex &Index, 1238 FunctionImporter::ImportMapTy &ImportList) { 1239 for (const auto &GlobalList : Index) { 1240 // Ignore entries for undefined references. 1241 if (GlobalList.second.SummaryList.empty()) 1242 continue; 1243 1244 auto GUID = GlobalList.first; 1245 assert(GlobalList.second.SummaryList.size() == 1 && 1246 "Expected individual combined index to have one summary per GUID"); 1247 auto &Summary = GlobalList.second.SummaryList[0]; 1248 // Skip the summaries for the importing module. These are included to 1249 // e.g. record required linkage changes. 1250 if (Summary->modulePath() == ModulePath) 1251 continue; 1252 // Add an entry to provoke importing by thinBackend. 1253 auto [Iter, Inserted] = ImportList[Summary->modulePath()].try_emplace( 1254 GUID, Summary->importType()); 1255 if (!Inserted) { 1256 // Use 'std::min' to make sure definition (with enum value 0) takes 1257 // precedence over declaration (with enum value 1). 1258 Iter->second = std::min(Iter->second, Summary->importType()); 1259 } 1260 } 1261 #ifndef NDEBUG 1262 dumpImportListForModule(Index, ModulePath, ImportList); 1263 #endif 1264 } 1265 1266 // For SamplePGO, the indirect call targets for local functions will 1267 // have its original name annotated in profile. We try to find the 1268 // corresponding PGOFuncName as the GUID, and fix up the edges 1269 // accordingly. 1270 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1271 FunctionSummary *FS) { 1272 for (auto &EI : FS->mutableCalls()) { 1273 if (!EI.first.getSummaryList().empty()) 1274 continue; 1275 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1276 if (GUID == 0) 1277 continue; 1278 // Update the edge to point directly to the correct GUID. 1279 auto VI = Index.getValueInfo(GUID); 1280 if (llvm::any_of( 1281 VI.getSummaryList(), 1282 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1283 // The mapping from OriginalId to GUID may return a GUID 1284 // that corresponds to a static variable. Filter it out here. 1285 // This can happen when 1286 // 1) There is a call to a library function which is not defined 1287 // in the index. 1288 // 2) There is a static variable with the OriginalGUID identical 1289 // to the GUID of the library function in 1); 1290 // When this happens the static variable in 2) will be found, 1291 // which needs to be filtered out. 1292 return SummaryPtr->getSummaryKind() == 1293 GlobalValueSummary::GlobalVarKind; 1294 })) 1295 continue; 1296 EI.first = VI; 1297 } 1298 } 1299 1300 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1301 for (const auto &Entry : Index) { 1302 for (const auto &S : Entry.second.SummaryList) { 1303 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1304 updateValueInfoForIndirectCalls(Index, FS); 1305 } 1306 } 1307 } 1308 1309 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1310 ModuleSummaryIndex &Index, 1311 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1312 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1313 assert(!Index.withGlobalValueDeadStripping()); 1314 if (!ComputeDead || 1315 // Don't do anything when nothing is live, this is friendly with tests. 1316 GUIDPreservedSymbols.empty()) { 1317 // Still need to update indirect calls. 1318 updateIndirectCalls(Index); 1319 return; 1320 } 1321 unsigned LiveSymbols = 0; 1322 SmallVector<ValueInfo, 128> Worklist; 1323 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1324 for (auto GUID : GUIDPreservedSymbols) { 1325 ValueInfo VI = Index.getValueInfo(GUID); 1326 if (!VI) 1327 continue; 1328 for (const auto &S : VI.getSummaryList()) 1329 S->setLive(true); 1330 } 1331 1332 // Add values flagged in the index as live roots to the worklist. 1333 for (const auto &Entry : Index) { 1334 auto VI = Index.getValueInfo(Entry); 1335 for (const auto &S : Entry.second.SummaryList) { 1336 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1337 updateValueInfoForIndirectCalls(Index, FS); 1338 if (S->isLive()) { 1339 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1340 Worklist.push_back(VI); 1341 ++LiveSymbols; 1342 break; 1343 } 1344 } 1345 } 1346 1347 // Make value live and add it to the worklist if it was not live before. 1348 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1349 // FIXME: If we knew which edges were created for indirect call profiles, 1350 // we could skip them here. Any that are live should be reached via 1351 // other edges, e.g. reference edges. Otherwise, using a profile collected 1352 // on a slightly different binary might provoke preserving, importing 1353 // and ultimately promoting calls to functions not linked into this 1354 // binary, which increases the binary size unnecessarily. Note that 1355 // if this code changes, the importer needs to change so that edges 1356 // to functions marked dead are skipped. 1357 1358 if (llvm::any_of(VI.getSummaryList(), 1359 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1360 return S->isLive(); 1361 })) 1362 return; 1363 1364 // We only keep live symbols that are known to be non-prevailing if any are 1365 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1366 // later in the EliminateAvailableExternally pass and setting them to 1367 // not-live could break downstreams users of liveness information (PR36483) 1368 // or limit optimization opportunities. 1369 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1370 bool KeepAliveLinkage = false; 1371 bool Interposable = false; 1372 for (const auto &S : VI.getSummaryList()) { 1373 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1374 S->linkage() == GlobalValue::WeakODRLinkage || 1375 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1376 KeepAliveLinkage = true; 1377 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1378 Interposable = true; 1379 } 1380 1381 if (!IsAliasee) { 1382 if (!KeepAliveLinkage) 1383 return; 1384 1385 if (Interposable) 1386 report_fatal_error( 1387 "Interposable and available_externally/linkonce_odr/weak_odr " 1388 "symbol"); 1389 } 1390 } 1391 1392 for (const auto &S : VI.getSummaryList()) 1393 S->setLive(true); 1394 ++LiveSymbols; 1395 Worklist.push_back(VI); 1396 }; 1397 1398 while (!Worklist.empty()) { 1399 auto VI = Worklist.pop_back_val(); 1400 for (const auto &Summary : VI.getSummaryList()) { 1401 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1402 // If this is an alias, visit the aliasee VI to ensure that all copies 1403 // are marked live and it is added to the worklist for further 1404 // processing of its references. 1405 visit(AS->getAliaseeVI(), true); 1406 continue; 1407 } 1408 for (auto Ref : Summary->refs()) 1409 visit(Ref, false); 1410 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1411 for (auto Call : FS->calls()) 1412 visit(Call.first, false); 1413 } 1414 } 1415 Index.setWithGlobalValueDeadStripping(); 1416 1417 unsigned DeadSymbols = Index.size() - LiveSymbols; 1418 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1419 << " symbols Dead \n"); 1420 NumDeadSymbols += DeadSymbols; 1421 NumLiveSymbols += LiveSymbols; 1422 } 1423 1424 // Compute dead symbols and propagate constants in combined index. 1425 void llvm::computeDeadSymbolsWithConstProp( 1426 ModuleSummaryIndex &Index, 1427 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1428 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1429 bool ImportEnabled) { 1430 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1431 isPrevailing); 1432 if (ImportEnabled) 1433 Index.propagateAttributes(GUIDPreservedSymbols); 1434 } 1435 1436 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1437 /// \p ModulePath. 1438 void llvm::gatherImportedSummariesForModule( 1439 StringRef ModulePath, 1440 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1441 const FunctionImporter::ImportMapTy &ImportList, 1442 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex, 1443 GVSummaryPtrSet &DecSummaries) { 1444 // Include all summaries from the importing module. 1445 ModuleToSummariesForIndex[std::string(ModulePath)] = 1446 ModuleToDefinedGVSummaries.lookup(ModulePath); 1447 // Include summaries for imports. 1448 for (const auto &ILI : ImportList) { 1449 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1450 1451 const auto &DefinedGVSummaries = 1452 ModuleToDefinedGVSummaries.lookup(ILI.first); 1453 for (const auto &[GUID, Type] : ILI.second) { 1454 const auto &DS = DefinedGVSummaries.find(GUID); 1455 assert(DS != DefinedGVSummaries.end() && 1456 "Expected a defined summary for imported global value"); 1457 if (Type == GlobalValueSummary::Declaration) 1458 DecSummaries.insert(DS->second); 1459 1460 SummariesForIndex[GUID] = DS->second; 1461 } 1462 } 1463 } 1464 1465 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1466 std::error_code llvm::EmitImportsFiles( 1467 StringRef ModulePath, StringRef OutputFilename, 1468 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1469 std::error_code EC; 1470 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1471 if (EC) 1472 return EC; 1473 for (const auto &ILI : ModuleToSummariesForIndex) 1474 // The ModuleToSummariesForIndex map includes an entry for the current 1475 // Module (needed for writing out the index files). We don't want to 1476 // include it in the imports file, however, so filter it out. 1477 if (ILI.first != ModulePath) 1478 ImportsOS << ILI.first << "\n"; 1479 return std::error_code(); 1480 } 1481 1482 bool llvm::convertToDeclaration(GlobalValue &GV) { 1483 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1484 << "\n"); 1485 if (Function *F = dyn_cast<Function>(&GV)) { 1486 F->deleteBody(); 1487 F->clearMetadata(); 1488 F->setComdat(nullptr); 1489 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1490 V->setInitializer(nullptr); 1491 V->setLinkage(GlobalValue::ExternalLinkage); 1492 V->clearMetadata(); 1493 V->setComdat(nullptr); 1494 } else { 1495 GlobalValue *NewGV; 1496 if (GV.getValueType()->isFunctionTy()) 1497 NewGV = 1498 Function::Create(cast<FunctionType>(GV.getValueType()), 1499 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1500 "", GV.getParent()); 1501 else 1502 NewGV = 1503 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1504 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1505 /*init*/ nullptr, "", 1506 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1507 GV.getType()->getAddressSpace()); 1508 NewGV->takeName(&GV); 1509 GV.replaceAllUsesWith(NewGV); 1510 return false; 1511 } 1512 if (!GV.isImplicitDSOLocal()) 1513 GV.setDSOLocal(false); 1514 return true; 1515 } 1516 1517 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1518 const GVSummaryMapTy &DefinedGlobals, 1519 bool PropagateAttrs) { 1520 DenseSet<Comdat *> NonPrevailingComdats; 1521 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1522 // See if the global summary analysis computed a new resolved linkage. 1523 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1524 if (GS == DefinedGlobals.end()) 1525 return; 1526 1527 if (Propagate) 1528 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1529 if (Function *F = dyn_cast<Function>(&GV)) { 1530 // TODO: propagate ReadNone and ReadOnly. 1531 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1532 F->setDoesNotAccessMemory(); 1533 1534 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1535 F->setOnlyReadsMemory(); 1536 1537 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1538 F->setDoesNotRecurse(); 1539 1540 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1541 F->setDoesNotThrow(); 1542 } 1543 } 1544 1545 auto NewLinkage = GS->second->linkage(); 1546 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1547 // Don't internalize anything here, because the code below 1548 // lacks necessary correctness checks. Leave this job to 1549 // LLVM 'internalize' pass. 1550 GlobalValue::isLocalLinkage(NewLinkage) || 1551 // In case it was dead and already converted to declaration. 1552 GV.isDeclaration()) 1553 return; 1554 1555 // Set the potentially more constraining visibility computed from summaries. 1556 // The DefaultVisibility condition is because older GlobalValueSummary does 1557 // not record DefaultVisibility and we don't want to change protected/hidden 1558 // to default. 1559 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1560 GV.setVisibility(GS->second->getVisibility()); 1561 1562 if (NewLinkage == GV.getLinkage()) 1563 return; 1564 1565 // Check for a non-prevailing def that has interposable linkage 1566 // (e.g. non-odr weak or linkonce). In that case we can't simply 1567 // convert to available_externally, since it would lose the 1568 // interposable property and possibly get inlined. Simply drop 1569 // the definition in that case. 1570 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1571 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1572 if (!convertToDeclaration(GV)) 1573 // FIXME: Change this to collect replaced GVs and later erase 1574 // them from the parent module once thinLTOResolvePrevailingGUID is 1575 // changed to enable this for aliases. 1576 llvm_unreachable("Expected GV to be converted"); 1577 } else { 1578 // If all copies of the original symbol had global unnamed addr and 1579 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1580 // and are constants, then it should be an auto hide symbol. In that case 1581 // the thin link would have marked it as CanAutoHide. Add hidden 1582 // visibility to the symbol to preserve the property. 1583 if (NewLinkage == GlobalValue::WeakODRLinkage && 1584 GS->second->canAutoHide()) { 1585 assert(GV.canBeOmittedFromSymbolTable()); 1586 GV.setVisibility(GlobalValue::HiddenVisibility); 1587 } 1588 1589 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1590 << "` from " << GV.getLinkage() << " to " << NewLinkage 1591 << "\n"); 1592 GV.setLinkage(NewLinkage); 1593 } 1594 // Remove declarations from comdats, including available_externally 1595 // as this is a declaration for the linker, and will be dropped eventually. 1596 // It is illegal for comdats to contain declarations. 1597 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1598 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1599 if (GO->getComdat()->getName() == GO->getName()) 1600 NonPrevailingComdats.insert(GO->getComdat()); 1601 GO->setComdat(nullptr); 1602 } 1603 }; 1604 1605 // Process functions and global now 1606 for (auto &GV : TheModule) 1607 FinalizeInModule(GV, PropagateAttrs); 1608 for (auto &GV : TheModule.globals()) 1609 FinalizeInModule(GV); 1610 for (auto &GV : TheModule.aliases()) 1611 FinalizeInModule(GV); 1612 1613 // For a non-prevailing comdat, all its members must be available_externally. 1614 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1615 // local linkage GlobalValues. 1616 if (NonPrevailingComdats.empty()) 1617 return; 1618 for (auto &GO : TheModule.global_objects()) { 1619 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1620 GO.setComdat(nullptr); 1621 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1622 } 1623 } 1624 bool Changed; 1625 do { 1626 Changed = false; 1627 // If an alias references a GlobalValue in a non-prevailing comdat, change 1628 // it to available_externally. For simplicity we only handle GlobalValue and 1629 // ConstantExpr with a base object. ConstantExpr without a base object is 1630 // unlikely used in a COMDAT. 1631 for (auto &GA : TheModule.aliases()) { 1632 if (GA.hasAvailableExternallyLinkage()) 1633 continue; 1634 GlobalObject *Obj = GA.getAliaseeObject(); 1635 assert(Obj && "aliasee without an base object is unimplemented"); 1636 if (Obj->hasAvailableExternallyLinkage()) { 1637 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1638 Changed = true; 1639 } 1640 } 1641 } while (Changed); 1642 } 1643 1644 /// Run internalization on \p TheModule based on symmary analysis. 1645 void llvm::thinLTOInternalizeModule(Module &TheModule, 1646 const GVSummaryMapTy &DefinedGlobals) { 1647 // Declare a callback for the internalize pass that will ask for every 1648 // candidate GlobalValue if it can be internalized or not. 1649 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1650 // It may be the case that GV is on a chain of an ifunc, its alias and 1651 // subsequent aliases. In this case, the summary for the value is not 1652 // available. 1653 if (isa<GlobalIFunc>(&GV) || 1654 (isa<GlobalAlias>(&GV) && 1655 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1656 return true; 1657 1658 // Lookup the linkage recorded in the summaries during global analysis. 1659 auto GS = DefinedGlobals.find(GV.getGUID()); 1660 if (GS == DefinedGlobals.end()) { 1661 // Must have been promoted (possibly conservatively). Find original 1662 // name so that we can access the correct summary and see if it can 1663 // be internalized again. 1664 // FIXME: Eventually we should control promotion instead of promoting 1665 // and internalizing again. 1666 StringRef OrigName = 1667 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1668 std::string OrigId = GlobalValue::getGlobalIdentifier( 1669 OrigName, GlobalValue::InternalLinkage, 1670 TheModule.getSourceFileName()); 1671 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1672 if (GS == DefinedGlobals.end()) { 1673 // Also check the original non-promoted non-globalized name. In some 1674 // cases a preempted weak value is linked in as a local copy because 1675 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1676 // In that case, since it was originally not a local value, it was 1677 // recorded in the index using the original name. 1678 // FIXME: This may not be needed once PR27866 is fixed. 1679 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1680 assert(GS != DefinedGlobals.end()); 1681 } 1682 } 1683 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1684 }; 1685 1686 // FIXME: See if we can just internalize directly here via linkage changes 1687 // based on the index, rather than invoking internalizeModule. 1688 internalizeModule(TheModule, MustPreserveGV); 1689 } 1690 1691 /// Make alias a clone of its aliasee. 1692 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1693 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1694 1695 ValueToValueMapTy VMap; 1696 Function *NewFn = CloneFunction(Fn, VMap); 1697 // Clone should use the original alias's linkage, visibility and name, and we 1698 // ensure all uses of alias instead use the new clone (casted if necessary). 1699 NewFn->setLinkage(GA->getLinkage()); 1700 NewFn->setVisibility(GA->getVisibility()); 1701 GA->replaceAllUsesWith(NewFn); 1702 NewFn->takeName(GA); 1703 return NewFn; 1704 } 1705 1706 // Internalize values that we marked with specific attribute 1707 // in processGlobalForThinLTO. 1708 static void internalizeGVsAfterImport(Module &M) { 1709 for (auto &GV : M.globals()) 1710 // Skip GVs which have been converted to declarations 1711 // by dropDeadSymbols. 1712 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1713 GV.setLinkage(GlobalValue::InternalLinkage); 1714 GV.setVisibility(GlobalValue::DefaultVisibility); 1715 } 1716 } 1717 1718 // Automatically import functions in Module \p DestModule based on the summaries 1719 // index. 1720 Expected<bool> FunctionImporter::importFunctions( 1721 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1722 LLVM_DEBUG(dbgs() << "Starting import for Module " 1723 << DestModule.getModuleIdentifier() << "\n"); 1724 unsigned ImportedCount = 0, ImportedGVCount = 0; 1725 1726 IRMover Mover(DestModule); 1727 // Do the actual import of functions now, one Module at a time 1728 std::set<StringRef> ModuleNameOrderedList; 1729 for (const auto &FunctionsToImportPerModule : ImportList) { 1730 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1731 } 1732 1733 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1734 GlobalValue::GUID GUID) 1735 -> std::optional<GlobalValueSummary::ImportKind> { 1736 auto Iter = GUIDToImportType.find(GUID); 1737 if (Iter == GUIDToImportType.end()) 1738 return std::nullopt; 1739 return Iter->second; 1740 }; 1741 1742 for (const auto &Name : ModuleNameOrderedList) { 1743 // Get the module for the import 1744 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1745 assert(FunctionsToImportPerModule != ImportList.end()); 1746 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1747 if (!SrcModuleOrErr) 1748 return SrcModuleOrErr.takeError(); 1749 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1750 assert(&DestModule.getContext() == &SrcModule->getContext() && 1751 "Context mismatch"); 1752 1753 // If modules were created with lazy metadata loading, materialize it 1754 // now, before linking it (otherwise this will be a noop). 1755 if (Error Err = SrcModule->materializeMetadata()) 1756 return std::move(Err); 1757 1758 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1759 1760 // Find the globals to import 1761 SetVector<GlobalValue *> GlobalsToImport; 1762 for (Function &F : *SrcModule) { 1763 if (!F.hasName()) 1764 continue; 1765 auto GUID = F.getGUID(); 1766 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1767 1768 bool ImportDefinition = 1769 (MaybeImportType && 1770 (*MaybeImportType == GlobalValueSummary::Definition)); 1771 1772 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1773 << " importing function" 1774 << (ImportDefinition 1775 ? " definition " 1776 : (MaybeImportType ? " declaration " : " ")) 1777 << GUID << " " << F.getName() << " from " 1778 << SrcModule->getSourceFileName() << "\n"); 1779 if (ImportDefinition) { 1780 if (Error Err = F.materialize()) 1781 return std::move(Err); 1782 // MemProf should match function's definition and summary, 1783 // 'thinlto_src_module' is needed. 1784 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1785 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1786 // statistics and debugging. 1787 F.setMetadata( 1788 "thinlto_src_module", 1789 MDNode::get(DestModule.getContext(), 1790 {MDString::get(DestModule.getContext(), 1791 SrcModule->getModuleIdentifier())})); 1792 F.setMetadata( 1793 "thinlto_src_file", 1794 MDNode::get(DestModule.getContext(), 1795 {MDString::get(DestModule.getContext(), 1796 SrcModule->getSourceFileName())})); 1797 } 1798 GlobalsToImport.insert(&F); 1799 } 1800 } 1801 for (GlobalVariable &GV : SrcModule->globals()) { 1802 if (!GV.hasName()) 1803 continue; 1804 auto GUID = GV.getGUID(); 1805 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1806 1807 bool ImportDefinition = 1808 (MaybeImportType && 1809 (*MaybeImportType == GlobalValueSummary::Definition)); 1810 1811 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1812 << " importing global" 1813 << (ImportDefinition 1814 ? " definition " 1815 : (MaybeImportType ? " declaration " : " ")) 1816 << GUID << " " << GV.getName() << " from " 1817 << SrcModule->getSourceFileName() << "\n"); 1818 if (ImportDefinition) { 1819 if (Error Err = GV.materialize()) 1820 return std::move(Err); 1821 ImportedGVCount += GlobalsToImport.insert(&GV); 1822 } 1823 } 1824 for (GlobalAlias &GA : SrcModule->aliases()) { 1825 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1826 continue; 1827 auto GUID = GA.getGUID(); 1828 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1829 1830 bool ImportDefinition = 1831 (MaybeImportType && 1832 (*MaybeImportType == GlobalValueSummary::Definition)); 1833 1834 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1835 << " importing alias" 1836 << (ImportDefinition 1837 ? " definition " 1838 : (MaybeImportType ? " declaration " : " ")) 1839 << GUID << " " << GA.getName() << " from " 1840 << SrcModule->getSourceFileName() << "\n"); 1841 if (ImportDefinition) { 1842 if (Error Err = GA.materialize()) 1843 return std::move(Err); 1844 // Import alias as a copy of its aliasee. 1845 GlobalObject *GO = GA.getAliaseeObject(); 1846 if (Error Err = GO->materialize()) 1847 return std::move(Err); 1848 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1849 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1850 << GO->getName() << " from " 1851 << SrcModule->getSourceFileName() << "\n"); 1852 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1853 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1854 // statistics and debugging. 1855 Fn->setMetadata( 1856 "thinlto_src_module", 1857 MDNode::get(DestModule.getContext(), 1858 {MDString::get(DestModule.getContext(), 1859 SrcModule->getModuleIdentifier())})); 1860 Fn->setMetadata( 1861 "thinlto_src_file", 1862 MDNode::get(DestModule.getContext(), 1863 {MDString::get(DestModule.getContext(), 1864 SrcModule->getSourceFileName())})); 1865 } 1866 GlobalsToImport.insert(Fn); 1867 } 1868 } 1869 1870 // Upgrade debug info after we're done materializing all the globals and we 1871 // have loaded all the required metadata! 1872 UpgradeDebugInfo(*SrcModule); 1873 1874 // Set the partial sample profile ratio in the profile summary module flag 1875 // of the imported source module, if applicable, so that the profile summary 1876 // module flag will match with that of the destination module when it's 1877 // imported. 1878 SrcModule->setPartialSampleProfileRatio(Index); 1879 1880 // Link in the specified functions. 1881 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1882 &GlobalsToImport)) 1883 return true; 1884 1885 if (PrintImports) { 1886 for (const auto *GV : GlobalsToImport) 1887 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1888 << " from " << SrcModule->getSourceFileName() << "\n"; 1889 } 1890 1891 if (Error Err = Mover.move(std::move(SrcModule), 1892 GlobalsToImport.getArrayRef(), nullptr, 1893 /*IsPerformingImport=*/true)) 1894 return createStringError(errc::invalid_argument, 1895 Twine("Function Import: link error: ") + 1896 toString(std::move(Err))); 1897 1898 ImportedCount += GlobalsToImport.size(); 1899 NumImportedModules++; 1900 } 1901 1902 internalizeGVsAfterImport(DestModule); 1903 1904 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1905 NumImportedGlobalVars += ImportedGVCount; 1906 1907 // TODO: Print counters for definitions and declarations in the debugging log. 1908 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1909 << " functions for Module " 1910 << DestModule.getModuleIdentifier() << "\n"); 1911 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1912 << " global variables for Module " 1913 << DestModule.getModuleIdentifier() << "\n"); 1914 return ImportedCount; 1915 } 1916 1917 static bool doImportingForModuleForTest( 1918 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1919 isPrevailing) { 1920 if (SummaryFile.empty()) 1921 report_fatal_error("error: -function-import requires -summary-file\n"); 1922 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1923 getModuleSummaryIndexForFile(SummaryFile); 1924 if (!IndexPtrOrErr) { 1925 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1926 "Error loading file '" + SummaryFile + "': "); 1927 return false; 1928 } 1929 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1930 1931 // First step is collecting the import list. 1932 FunctionImporter::ImportMapTy ImportList; 1933 // If requested, simply import all functions in the index. This is used 1934 // when testing distributed backend handling via the opt tool, when 1935 // we have distributed indexes containing exactly the summaries to import. 1936 if (ImportAllIndex) 1937 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1938 *Index, ImportList); 1939 else 1940 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1941 isPrevailing, *Index, ImportList); 1942 1943 // Conservatively mark all internal values as promoted. This interface is 1944 // only used when doing importing via the function importing pass. The pass 1945 // is only enabled when testing importing via the 'opt' tool, which does 1946 // not do the ThinLink that would normally determine what values to promote. 1947 for (auto &I : *Index) { 1948 for (auto &S : I.second.SummaryList) { 1949 if (GlobalValue::isLocalLinkage(S->linkage())) 1950 S->setLinkage(GlobalValue::ExternalLinkage); 1951 } 1952 } 1953 1954 // Next we need to promote to global scope and rename any local values that 1955 // are potentially exported to other modules. 1956 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1957 /*GlobalsToImport=*/nullptr)) { 1958 errs() << "Error renaming module\n"; 1959 return true; 1960 } 1961 1962 // Perform the import now. 1963 auto ModuleLoader = [&M](StringRef Identifier) { 1964 return loadFile(std::string(Identifier), M.getContext()); 1965 }; 1966 FunctionImporter Importer(*Index, ModuleLoader, 1967 /*ClearDSOLocalOnDeclarations=*/false); 1968 Expected<bool> Result = Importer.importFunctions(M, ImportList); 1969 1970 // FIXME: Probably need to propagate Errors through the pass manager. 1971 if (!Result) { 1972 logAllUnhandledErrors(Result.takeError(), errs(), 1973 "Error importing module: "); 1974 return true; 1975 } 1976 1977 return true; 1978 } 1979 1980 PreservedAnalyses FunctionImportPass::run(Module &M, 1981 ModuleAnalysisManager &AM) { 1982 // This is only used for testing the function import pass via opt, where we 1983 // don't have prevailing information from the LTO context available, so just 1984 // conservatively assume everything is prevailing (which is fine for the very 1985 // limited use of prevailing checking in this pass). 1986 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 1987 return true; 1988 }; 1989 if (!doImportingForModuleForTest(M, isPrevailing)) 1990 return PreservedAnalyses::all(); 1991 1992 return PreservedAnalyses::none(); 1993 } 1994