1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSummaryIndex.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 static cl::opt<bool> ImportAssumeUniqueLocal( 178 "import-assume-unique-local", cl::init(false), 179 cl::desc( 180 "By default, a local-linkage global variable won't be imported in the " 181 "edge mod1:func -> mod2:local-var (from value profiles) since compiler " 182 "cannot assume mod2 is compiled with full path which gives local-var a " 183 "program-wide unique GUID. Set this option to true will help cross " 184 "module import of such variables. This is only safe if the compiler " 185 "user specify the full module path."), 186 cl::Hidden); 187 188 namespace llvm { 189 extern cl::opt<bool> EnableMemProfContextDisambiguation; 190 } 191 192 // Load lazily a module from \p FileName in \p Context. 193 static std::unique_ptr<Module> loadFile(const std::string &FileName, 194 LLVMContext &Context) { 195 SMDiagnostic Err; 196 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 197 // Metadata isn't loaded until functions are imported, to minimize 198 // the memory overhead. 199 std::unique_ptr<Module> Result = 200 getLazyIRFileModule(FileName, Err, Context, 201 /* ShouldLazyLoadMetadata = */ true); 202 if (!Result) { 203 Err.print("function-import", errs()); 204 report_fatal_error("Abort"); 205 } 206 207 return Result; 208 } 209 210 static bool shouldSkipLocalInAnotherModule(const GlobalVarSummary *RefSummary, 211 size_t NumDefs, 212 StringRef ImporterModule) { 213 // We can import a local from another module if all inputs are compiled 214 // with full paths or when there is one definition. 215 if (ImportAssumeUniqueLocal || NumDefs == 1) 216 return false; 217 // In other cases, make sure we import the copy in the caller's module if the 218 // referenced value has local linkage. The only time a local variable can 219 // share an entry in the index is if there is a local with the same name in 220 // another module that had the same source file name (in a different 221 // directory), where each was compiled in their own directory so there was not 222 // distinguishing path. 223 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 224 RefSummary->modulePath() != ImporterModule; 225 } 226 227 /// Given a list of possible callee implementation for a call site, qualify the 228 /// legality of importing each. The return is a range of pairs. Each pair 229 /// corresponds to a candidate. The first value is the ImportFailureReason for 230 /// that candidate, the second is the candidate. 231 static auto qualifyCalleeCandidates( 232 const ModuleSummaryIndex &Index, 233 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 234 StringRef CallerModulePath) { 235 return llvm::map_range( 236 CalleeSummaryList, 237 [&Index, CalleeSummaryList, 238 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 239 -> std::pair<FunctionImporter::ImportFailureReason, 240 const GlobalValueSummary *> { 241 auto *GVSummary = SummaryPtr.get(); 242 if (!Index.isGlobalValueLive(GVSummary)) 243 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 244 245 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 246 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 247 GVSummary}; 248 249 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 250 251 // Ignore any callees that aren't actually functions. This could happen 252 // in the case of GUID hash collisions. It could also happen in theory 253 // for SamplePGO profiles collected on old versions of the code after 254 // renaming, since we synthesize edges to any inlined callees appearing 255 // in the profile. 256 if (!Summary) 257 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 258 259 // If this is a local function, make sure we import the copy in the 260 // caller's module. The only time a local function can share an entry in 261 // the index is if there is a local with the same name in another module 262 // that had the same source file name (in a different directory), where 263 // each was compiled in their own directory so there was not 264 // distinguishing path. 265 // If the local function is from another module, it must be a reference 266 // due to indirect call profile data since a function pointer can point 267 // to a local in another module. Do the import from another module if 268 // there is only one entry in the list or when all files in the program 269 // are compiled with full path - in both cases the local function has 270 // unique PGO name and GUID. 271 if (shouldSkipLocalInAnotherModule(dyn_cast<GlobalVarSummary>(Summary), 272 CalleeSummaryList.size(), 273 CallerModulePath)) 274 return { 275 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 276 GVSummary}; 277 278 // Skip if it isn't legal to import (e.g. may reference unpromotable 279 // locals). 280 if (Summary->notEligibleToImport()) 281 return {FunctionImporter::ImportFailureReason::NotEligible, 282 GVSummary}; 283 284 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 285 }); 286 } 287 288 /// Given a list of possible callee implementation for a call site, select one 289 /// that fits the \p Threshold for function definition import. If none are 290 /// found, the Reason will give the last reason for the failure (last, in the 291 /// order of CalleeSummaryList entries). While looking for a callee definition, 292 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 293 /// candidate; other modules may want to know the function summary or 294 /// declaration even if a definition is not needed. 295 /// 296 /// FIXME: select "best" instead of first that fits. But what is "best"? 297 /// - The smallest: more likely to be inlined. 298 /// - The one with the least outgoing edges (already well optimized). 299 /// - One from a module already being imported from in order to reduce the 300 /// number of source modules parsed/linked. 301 /// - One that has PGO data attached. 302 /// - [insert you fancy metric here] 303 static const GlobalValueSummary * 304 selectCallee(const ModuleSummaryIndex &Index, 305 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 306 unsigned Threshold, StringRef CallerModulePath, 307 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 308 FunctionImporter::ImportFailureReason &Reason) { 309 // Records the last summary with reason noinline or too-large. 310 TooLargeOrNoInlineSummary = nullptr; 311 auto QualifiedCandidates = 312 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 313 for (auto QualifiedValue : QualifiedCandidates) { 314 Reason = QualifiedValue.first; 315 // Skip a summary if its import is not (proved to be) legal. 316 if (Reason != FunctionImporter::ImportFailureReason::None) 317 continue; 318 auto *Summary = 319 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 320 321 // Don't bother importing the definition if the chance of inlining it is 322 // not high enough (except under `--force-import-all`). 323 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 324 !ForceImportAll) { 325 TooLargeOrNoInlineSummary = Summary; 326 Reason = FunctionImporter::ImportFailureReason::TooLarge; 327 continue; 328 } 329 330 // Don't bother importing the definition if we can't inline it anyway. 331 if (Summary->fflags().NoInline && !ForceImportAll) { 332 TooLargeOrNoInlineSummary = Summary; 333 Reason = FunctionImporter::ImportFailureReason::NoInline; 334 continue; 335 } 336 337 return Summary; 338 } 339 return nullptr; 340 } 341 342 namespace { 343 344 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 345 346 } // anonymous namespace 347 348 /// Import globals referenced by a function or other globals that are being 349 /// imported, if importing such global is possible. 350 class GlobalsImporter final { 351 const ModuleSummaryIndex &Index; 352 const GVSummaryMapTy &DefinedGVSummaries; 353 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 354 IsPrevailing; 355 FunctionImporter::ImportMapTy &ImportList; 356 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 357 358 bool shouldImportGlobal(const ValueInfo &VI) { 359 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 360 if (GVS == DefinedGVSummaries.end()) 361 return true; 362 // We should not skip import if the module contains a non-prevailing 363 // definition with interposable linkage type. This is required for 364 // correctness in the situation where there is a prevailing def available 365 // for import and marked read-only. In this case, the non-prevailing def 366 // will be converted to a declaration, while the prevailing one becomes 367 // internal, thus no definitions will be available for linking. In order to 368 // prevent undefined symbol link error, the prevailing definition must be 369 // imported. 370 // FIXME: Consider adding a check that the suitable prevailing definition 371 // exists and marked read-only. 372 if (VI.getSummaryList().size() > 1 && 373 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 374 !IsPrevailing(VI.getGUID(), GVS->second)) 375 return true; 376 377 return false; 378 } 379 380 void 381 onImportingSummaryImpl(const GlobalValueSummary &Summary, 382 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 383 for (const auto &VI : Summary.refs()) { 384 if (!shouldImportGlobal(VI)) { 385 LLVM_DEBUG( 386 dbgs() << "Ref ignored! Target already in destination module.\n"); 387 continue; 388 } 389 390 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 391 392 for (const auto &RefSummary : VI.getSummaryList()) { 393 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 394 // Functions could be referenced by global vars - e.g. a vtable; but we 395 // don't currently imagine a reason those would be imported here, rather 396 // than as part of the logic deciding which functions to import (i.e. 397 // based on profile information). Should we decide to handle them here, 398 // we can refactor accordingly at that time. 399 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 400 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 401 Summary.modulePath())) 402 continue; 403 404 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 405 // Otherwise, definition should take precedence over declaration. 406 auto [Iter, Inserted] = 407 ImportList[RefSummary->modulePath()].try_emplace( 408 VI.getGUID(), GlobalValueSummary::Definition); 409 // Only update stat and exports if we haven't already imported this 410 // variable. 411 if (!Inserted) { 412 // Set the value to 'std::min(existing-value, new-value)' to make 413 // sure a definition takes precedence over a declaration. 414 Iter->second = std::min(GlobalValueSummary::Definition, Iter->second); 415 break; 416 } 417 NumImportedGlobalVarsThinLink++; 418 // Any references made by this variable will be marked exported 419 // later, in ComputeCrossModuleImport, after import decisions are 420 // complete, which is more efficient than adding them here. 421 if (ExportLists) 422 (*ExportLists)[RefSummary->modulePath()].insert(VI); 423 424 // If variable is not writeonly we attempt to recursively analyze 425 // its references in order to import referenced constants. 426 if (!Index.isWriteOnly(GVS)) 427 Worklist.emplace_back(GVS); 428 break; 429 } 430 } 431 } 432 433 public: 434 GlobalsImporter( 435 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 436 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 437 IsPrevailing, 438 FunctionImporter::ImportMapTy &ImportList, 439 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 440 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 441 IsPrevailing(IsPrevailing), ImportList(ImportList), 442 ExportLists(ExportLists) {} 443 444 void onImportingSummary(const GlobalValueSummary &Summary) { 445 SmallVector<const GlobalVarSummary *, 128> Worklist; 446 onImportingSummaryImpl(Summary, Worklist); 447 while (!Worklist.empty()) 448 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 449 } 450 }; 451 452 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 453 454 /// Determine the list of imports and exports for each module. 455 class ModuleImportsManager { 456 protected: 457 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 458 IsPrevailing; 459 const ModuleSummaryIndex &Index; 460 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 461 462 ModuleImportsManager( 463 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 464 IsPrevailing, 465 const ModuleSummaryIndex &Index, 466 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 467 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 468 469 public: 470 virtual ~ModuleImportsManager() = default; 471 472 /// Given the list of globals defined in a module, compute the list of imports 473 /// as well as the list of "exports", i.e. the list of symbols referenced from 474 /// another module (that may require promotion). 475 virtual void 476 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 477 StringRef ModName, 478 FunctionImporter::ImportMapTy &ImportList); 479 480 static std::unique_ptr<ModuleImportsManager> 481 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 482 IsPrevailing, 483 const ModuleSummaryIndex &Index, 484 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 485 nullptr); 486 }; 487 488 /// A ModuleImportsManager that operates based on a workload definition (see 489 /// -thinlto-workload-def). For modules that do not define workload roots, it 490 /// applies the base ModuleImportsManager import policy. 491 class WorkloadImportsManager : public ModuleImportsManager { 492 // Keep a module name -> value infos to import association. We use it to 493 // determine if a module's import list should be done by the base 494 // ModuleImportsManager or by us. 495 StringMap<DenseSet<ValueInfo>> Workloads; 496 497 void 498 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 499 StringRef ModName, 500 FunctionImporter::ImportMapTy &ImportList) override { 501 auto SetIter = Workloads.find(ModName); 502 if (SetIter == Workloads.end()) { 503 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 504 << " does not contain the root of any context.\n"); 505 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 506 ModName, ImportList); 507 } 508 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 509 << " contains the root(s) of context(s).\n"); 510 511 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 512 ExportLists); 513 auto &ValueInfos = SetIter->second; 514 SmallVector<EdgeInfo, 128> GlobWorklist; 515 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 516 auto It = DefinedGVSummaries.find(VI.getGUID()); 517 if (It != DefinedGVSummaries.end() && 518 IsPrevailing(VI.getGUID(), It->second)) { 519 LLVM_DEBUG( 520 dbgs() << "[Workload] " << VI.name() 521 << " has the prevailing variant already in the module " 522 << ModName << ". No need to import\n"); 523 continue; 524 } 525 auto Candidates = 526 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 527 528 const GlobalValueSummary *GVS = nullptr; 529 auto PotentialCandidates = llvm::map_range( 530 llvm::make_filter_range( 531 Candidates, 532 [&](const auto &Candidate) { 533 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 534 << " from " << Candidate.second->modulePath() 535 << " ImportFailureReason: " 536 << getFailureName(Candidate.first) << "\n"); 537 return Candidate.first == 538 FunctionImporter::ImportFailureReason::None; 539 }), 540 [](const auto &Candidate) { return Candidate.second; }); 541 if (PotentialCandidates.empty()) { 542 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 543 << " because can't find eligible Callee. Guid is: " 544 << Function::getGUID(VI.name()) << "\n"); 545 continue; 546 } 547 /// We will prefer importing the prevailing candidate, if not, we'll 548 /// still pick the first available candidate. The reason we want to make 549 /// sure we do import the prevailing candidate is because the goal of 550 /// workload-awareness is to enable optimizations specializing the call 551 /// graph of that workload. Suppose a function is already defined in the 552 /// module, but it's not the prevailing variant. Suppose also we do not 553 /// inline it (in fact, if it were interposable, we can't inline it), 554 /// but we could specialize it to the workload in other ways. However, 555 /// the linker would drop it in the favor of the prevailing copy. 556 /// Instead, by importing the prevailing variant (assuming also the use 557 /// of `-avail-extern-to-local`), we keep the specialization. We could 558 /// alteranatively make the non-prevailing variant local, but the 559 /// prevailing one is also the one for which we would have previously 560 /// collected profiles, making it preferrable. 561 auto PrevailingCandidates = llvm::make_filter_range( 562 PotentialCandidates, [&](const auto *Candidate) { 563 return IsPrevailing(VI.getGUID(), Candidate); 564 }); 565 if (PrevailingCandidates.empty()) { 566 GVS = *PotentialCandidates.begin(); 567 if (!llvm::hasSingleElement(PotentialCandidates) && 568 GlobalValue::isLocalLinkage(GVS->linkage())) 569 LLVM_DEBUG( 570 dbgs() 571 << "[Workload] Found multiple non-prevailing candidates for " 572 << VI.name() 573 << ". This is unexpected. Are module paths passed to the " 574 "compiler unique for the modules passed to the linker?"); 575 // We could in theory have multiple (interposable) copies of a symbol 576 // when there is no prevailing candidate, if say the prevailing copy was 577 // in a native object being linked in. However, we should in theory be 578 // marking all of these non-prevailing IR copies dead in that case, in 579 // which case they won't be candidates. 580 assert(GVS->isLive()); 581 } else { 582 assert(llvm::hasSingleElement(PrevailingCandidates)); 583 GVS = *PrevailingCandidates.begin(); 584 } 585 586 auto ExportingModule = GVS->modulePath(); 587 // We checked that for the prevailing case, but if we happen to have for 588 // example an internal that's defined in this module, it'd have no 589 // PrevailingCandidates. 590 if (ExportingModule == ModName) { 591 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 592 << " because its defining module is the same as the " 593 "current module\n"); 594 continue; 595 } 596 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 597 << ExportingModule << " : " 598 << Function::getGUID(VI.name()) << "\n"); 599 ImportList[ExportingModule][VI.getGUID()] = 600 GlobalValueSummary::Definition; 601 GVI.onImportingSummary(*GVS); 602 if (ExportLists) 603 (*ExportLists)[ExportingModule].insert(VI); 604 } 605 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 606 } 607 608 public: 609 WorkloadImportsManager( 610 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 611 IsPrevailing, 612 const ModuleSummaryIndex &Index, 613 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 614 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 615 // Since the workload def uses names, we need a quick lookup 616 // name->ValueInfo. 617 StringMap<ValueInfo> NameToValueInfo; 618 StringSet<> AmbiguousNames; 619 for (auto &I : Index) { 620 ValueInfo VI = Index.getValueInfo(I); 621 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 622 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 623 } 624 auto DbgReportIfAmbiguous = [&](StringRef Name) { 625 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 626 dbgs() << "[Workload] Function name " << Name 627 << " present in the workload definition is ambiguous. Consider " 628 "compiling with -funique-internal-linkage-names."; 629 }); 630 }; 631 std::error_code EC; 632 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 633 if (std::error_code EC = BufferOrErr.getError()) { 634 report_fatal_error("Failed to open context file"); 635 return; 636 } 637 auto Buffer = std::move(BufferOrErr.get()); 638 std::map<std::string, std::vector<std::string>> WorkloadDefs; 639 json::Path::Root NullRoot; 640 // The JSON is supposed to contain a dictionary matching the type of 641 // WorkloadDefs. For example: 642 // { 643 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 644 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 645 // } 646 auto Parsed = json::parse(Buffer->getBuffer()); 647 if (!Parsed) 648 report_fatal_error(Parsed.takeError()); 649 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 650 report_fatal_error("Invalid thinlto contextual profile format."); 651 for (const auto &Workload : WorkloadDefs) { 652 const auto &Root = Workload.first; 653 DbgReportIfAmbiguous(Root); 654 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 655 const auto &AllCallees = Workload.second; 656 auto RootIt = NameToValueInfo.find(Root); 657 if (RootIt == NameToValueInfo.end()) { 658 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 659 << " not found in this linkage unit.\n"); 660 continue; 661 } 662 auto RootVI = RootIt->second; 663 if (RootVI.getSummaryList().size() != 1) { 664 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 665 << " should have exactly one summary, but has " 666 << RootVI.getSummaryList().size() << ". Skipping.\n"); 667 continue; 668 } 669 StringRef RootDefiningModule = 670 RootVI.getSummaryList().front()->modulePath(); 671 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 672 << " is : " << RootDefiningModule << "\n"); 673 auto &Set = Workloads[RootDefiningModule]; 674 for (const auto &Callee : AllCallees) { 675 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 676 DbgReportIfAmbiguous(Callee); 677 auto ElemIt = NameToValueInfo.find(Callee); 678 if (ElemIt == NameToValueInfo.end()) { 679 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 680 continue; 681 } 682 Set.insert(ElemIt->second); 683 } 684 LLVM_DEBUG({ 685 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 686 << " distinct callees.\n"; 687 for (const auto &VI : Set) { 688 dbgs() << "[Workload] Root: " << Root 689 << " Would include: " << VI.getGUID() << "\n"; 690 } 691 }); 692 } 693 } 694 }; 695 696 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 697 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 698 IsPrevailing, 699 const ModuleSummaryIndex &Index, 700 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 701 if (WorkloadDefinitions.empty()) { 702 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 703 return std::unique_ptr<ModuleImportsManager>( 704 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 705 } 706 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 707 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 708 ExportLists); 709 } 710 711 static const char * 712 getFailureName(FunctionImporter::ImportFailureReason Reason) { 713 switch (Reason) { 714 case FunctionImporter::ImportFailureReason::None: 715 return "None"; 716 case FunctionImporter::ImportFailureReason::GlobalVar: 717 return "GlobalVar"; 718 case FunctionImporter::ImportFailureReason::NotLive: 719 return "NotLive"; 720 case FunctionImporter::ImportFailureReason::TooLarge: 721 return "TooLarge"; 722 case FunctionImporter::ImportFailureReason::InterposableLinkage: 723 return "InterposableLinkage"; 724 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 725 return "LocalLinkageNotInModule"; 726 case FunctionImporter::ImportFailureReason::NotEligible: 727 return "NotEligible"; 728 case FunctionImporter::ImportFailureReason::NoInline: 729 return "NoInline"; 730 } 731 llvm_unreachable("invalid reason"); 732 } 733 734 /// Compute the list of functions to import for a given caller. Mark these 735 /// imported functions and the symbols they reference in their source module as 736 /// exported from their source module. 737 static void computeImportForFunction( 738 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 739 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 740 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 741 isPrevailing, 742 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 743 FunctionImporter::ImportMapTy &ImportList, 744 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 745 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 746 GVImporter.onImportingSummary(Summary); 747 static int ImportCount = 0; 748 for (const auto &Edge : Summary.calls()) { 749 ValueInfo VI = Edge.first; 750 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 751 << "\n"); 752 753 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 754 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 755 << " reached.\n"); 756 continue; 757 } 758 759 if (DefinedGVSummaries.count(VI.getGUID())) { 760 // FIXME: Consider not skipping import if the module contains 761 // a non-prevailing def with interposable linkage. The prevailing copy 762 // can safely be imported (see shouldImportGlobal()). 763 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 764 continue; 765 } 766 767 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 768 if (Hotness == CalleeInfo::HotnessType::Hot) 769 return ImportHotMultiplier; 770 if (Hotness == CalleeInfo::HotnessType::Cold) 771 return ImportColdMultiplier; 772 if (Hotness == CalleeInfo::HotnessType::Critical) 773 return ImportCriticalMultiplier; 774 return 1.0; 775 }; 776 777 const auto NewThreshold = 778 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 779 780 auto IT = ImportThresholds.insert(std::make_pair( 781 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 782 bool PreviouslyVisited = !IT.second; 783 auto &ProcessedThreshold = std::get<0>(IT.first->second); 784 auto &CalleeSummary = std::get<1>(IT.first->second); 785 auto &FailureInfo = std::get<2>(IT.first->second); 786 787 bool IsHotCallsite = 788 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 789 bool IsCriticalCallsite = 790 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 791 792 const FunctionSummary *ResolvedCalleeSummary = nullptr; 793 if (CalleeSummary) { 794 assert(PreviouslyVisited); 795 // Since the traversal of the call graph is DFS, we can revisit a function 796 // a second time with a higher threshold. In this case, it is added back 797 // to the worklist with the new threshold (so that its own callee chains 798 // can be considered with the higher threshold). 799 if (NewThreshold <= ProcessedThreshold) { 800 LLVM_DEBUG( 801 dbgs() << "ignored! Target was already imported with Threshold " 802 << ProcessedThreshold << "\n"); 803 continue; 804 } 805 // Update with new larger threshold. 806 ProcessedThreshold = NewThreshold; 807 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 808 } else { 809 // If we already rejected importing a callee at the same or higher 810 // threshold, don't waste time calling selectCallee. 811 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 812 LLVM_DEBUG( 813 dbgs() << "ignored! Target was already rejected with Threshold " 814 << ProcessedThreshold << "\n"); 815 if (PrintImportFailures) { 816 assert(FailureInfo && 817 "Expected FailureInfo for previously rejected candidate"); 818 FailureInfo->Attempts++; 819 } 820 continue; 821 } 822 823 FunctionImporter::ImportFailureReason Reason{}; 824 825 // `SummaryForDeclImport` is an summary eligible for declaration import. 826 const GlobalValueSummary *SummaryForDeclImport = nullptr; 827 CalleeSummary = 828 selectCallee(Index, VI.getSummaryList(), NewThreshold, 829 Summary.modulePath(), SummaryForDeclImport, Reason); 830 if (!CalleeSummary) { 831 // There isn't a callee for definition import but one for declaration 832 // import. 833 if (ImportDeclaration && SummaryForDeclImport) { 834 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 835 836 // Since definition takes precedence over declaration for the same VI, 837 // try emplace <VI, declaration> pair without checking insert result. 838 // If insert doesn't happen, there must be an existing entry keyed by 839 // VI. Note `ExportLists` only keeps track of exports due to imported 840 // definitions. 841 ImportList[DeclSourceModule].try_emplace( 842 VI.getGUID(), GlobalValueSummary::Declaration); 843 } 844 // Update with new larger threshold if this was a retry (otherwise 845 // we would have already inserted with NewThreshold above). Also 846 // update failure info if requested. 847 if (PreviouslyVisited) { 848 ProcessedThreshold = NewThreshold; 849 if (PrintImportFailures) { 850 assert(FailureInfo && 851 "Expected FailureInfo for previously rejected candidate"); 852 FailureInfo->Reason = Reason; 853 FailureInfo->Attempts++; 854 FailureInfo->MaxHotness = 855 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 856 } 857 } else if (PrintImportFailures) { 858 assert(!FailureInfo && 859 "Expected no FailureInfo for newly rejected candidate"); 860 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 861 VI, Edge.second.getHotness(), Reason, 1); 862 } 863 if (ForceImportAll) { 864 std::string Msg = std::string("Failed to import function ") + 865 VI.name().str() + " due to " + 866 getFailureName(Reason); 867 auto Error = make_error<StringError>( 868 Msg, make_error_code(errc::not_supported)); 869 logAllUnhandledErrors(std::move(Error), errs(), 870 "Error importing module: "); 871 break; 872 } else { 873 LLVM_DEBUG(dbgs() 874 << "ignored! No qualifying callee with summary found.\n"); 875 continue; 876 } 877 } 878 879 // "Resolve" the summary 880 CalleeSummary = CalleeSummary->getBaseObject(); 881 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 882 883 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 884 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 885 "selectCallee() didn't honor the threshold"); 886 887 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 888 889 // Try emplace the definition entry, and update stats based on insertion 890 // status. 891 auto [Iter, Inserted] = ImportList[ExportModulePath].try_emplace( 892 VI.getGUID(), GlobalValueSummary::Definition); 893 894 // We previously decided to import this GUID definition if it was already 895 // inserted in the set of imports from the exporting module. 896 if (Inserted || Iter->second == GlobalValueSummary::Declaration) { 897 NumImportedFunctionsThinLink++; 898 if (IsHotCallsite) 899 NumImportedHotFunctionsThinLink++; 900 if (IsCriticalCallsite) 901 NumImportedCriticalFunctionsThinLink++; 902 } 903 904 if (Iter->second == GlobalValueSummary::Declaration) 905 Iter->second = GlobalValueSummary::Definition; 906 907 // Any calls/references made by this function will be marked exported 908 // later, in ComputeCrossModuleImport, after import decisions are 909 // complete, which is more efficient than adding them here. 910 if (ExportLists) 911 (*ExportLists)[ExportModulePath].insert(VI); 912 } 913 914 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 915 // Adjust the threshold for next level of imported functions. 916 // The threshold is different for hot callsites because we can then 917 // inline chains of hot calls. 918 if (IsHotCallsite) 919 return Threshold * ImportHotInstrFactor; 920 return Threshold * ImportInstrFactor; 921 }; 922 923 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 924 925 ImportCount++; 926 927 // Insert the newly imported function to the worklist. 928 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 929 } 930 } 931 932 void ModuleImportsManager::computeImportForModule( 933 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 934 FunctionImporter::ImportMapTy &ImportList) { 935 // Worklist contains the list of function imported in this module, for which 936 // we will analyse the callees and may import further down the callgraph. 937 SmallVector<EdgeInfo, 128> Worklist; 938 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 939 ExportLists); 940 FunctionImporter::ImportThresholdsTy ImportThresholds; 941 942 // Populate the worklist with the import for the functions in the current 943 // module 944 for (const auto &GVSummary : DefinedGVSummaries) { 945 #ifndef NDEBUG 946 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 947 // so this map look up (and possibly others) can be avoided. 948 auto VI = Index.getValueInfo(GVSummary.first); 949 #endif 950 if (!Index.isGlobalValueLive(GVSummary.second)) { 951 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 952 continue; 953 } 954 auto *FuncSummary = 955 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 956 if (!FuncSummary) 957 // Skip import for global variables 958 continue; 959 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 960 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 961 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 962 ImportList, ExportLists, ImportThresholds); 963 } 964 965 // Process the newly imported functions and add callees to the worklist. 966 while (!Worklist.empty()) { 967 auto GVInfo = Worklist.pop_back_val(); 968 auto *Summary = std::get<0>(GVInfo); 969 auto Threshold = std::get<1>(GVInfo); 970 971 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 972 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 973 IsPrevailing, Worklist, GVI, ImportList, 974 ExportLists, ImportThresholds); 975 } 976 977 // Print stats about functions considered but rejected for importing 978 // when requested. 979 if (PrintImportFailures) { 980 dbgs() << "Missed imports into module " << ModName << "\n"; 981 for (auto &I : ImportThresholds) { 982 auto &ProcessedThreshold = std::get<0>(I.second); 983 auto &CalleeSummary = std::get<1>(I.second); 984 auto &FailureInfo = std::get<2>(I.second); 985 if (CalleeSummary) 986 continue; // We are going to import. 987 assert(FailureInfo); 988 FunctionSummary *FS = nullptr; 989 if (!FailureInfo->VI.getSummaryList().empty()) 990 FS = dyn_cast<FunctionSummary>( 991 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 992 dbgs() << FailureInfo->VI 993 << ": Reason = " << getFailureName(FailureInfo->Reason) 994 << ", Threshold = " << ProcessedThreshold 995 << ", Size = " << (FS ? (int)FS->instCount() : -1) 996 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 997 << ", Attempts = " << FailureInfo->Attempts << "\n"; 998 } 999 } 1000 } 1001 1002 #ifndef NDEBUG 1003 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1004 auto SL = VI.getSummaryList(); 1005 return SL.empty() 1006 ? false 1007 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1008 } 1009 1010 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1011 GlobalValue::GUID G) { 1012 if (const auto &VI = Index.getValueInfo(G)) 1013 return isGlobalVarSummary(Index, VI); 1014 return false; 1015 } 1016 1017 // Return the number of global variable summaries in ExportSet. 1018 static unsigned 1019 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1020 FunctionImporter::ExportSetTy &ExportSet) { 1021 unsigned NumGVS = 0; 1022 for (auto &VI : ExportSet) 1023 if (isGlobalVarSummary(Index, VI.getGUID())) 1024 ++NumGVS; 1025 return NumGVS; 1026 } 1027 1028 // Given ImportMap, return the number of global variable summaries and record 1029 // the number of defined function summaries as output parameter. 1030 static unsigned 1031 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1032 FunctionImporter::FunctionsToImportTy &ImportMap, 1033 unsigned &DefinedFS) { 1034 unsigned NumGVS = 0; 1035 DefinedFS = 0; 1036 for (auto &[GUID, Type] : ImportMap) { 1037 if (isGlobalVarSummary(Index, GUID)) 1038 ++NumGVS; 1039 else if (Type == GlobalValueSummary::Definition) 1040 ++DefinedFS; 1041 } 1042 return NumGVS; 1043 } 1044 #endif 1045 1046 #ifndef NDEBUG 1047 static bool checkVariableImport( 1048 const ModuleSummaryIndex &Index, 1049 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1050 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1051 DenseSet<GlobalValue::GUID> FlattenedImports; 1052 1053 for (auto &ImportPerModule : ImportLists) 1054 for (auto &ExportPerModule : ImportPerModule.second) 1055 for (auto &[GUID, Type] : ExportPerModule.second) 1056 FlattenedImports.insert(GUID); 1057 1058 // Checks that all GUIDs of read/writeonly vars we see in export lists 1059 // are also in the import lists. Otherwise we my face linker undefs, 1060 // because readonly and writeonly vars are internalized in their 1061 // source modules. The exception would be if it has a linkage type indicating 1062 // that there may have been a copy existing in the importing module (e.g. 1063 // linkonce_odr). In that case we cannot accurately do this checking. 1064 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1065 const ValueInfo &VI) { 1066 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1067 Index.findSummaryInModule(VI, ModulePath)); 1068 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1069 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1070 GVS->linkage() == GlobalValue::WeakODRLinkage || 1071 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1072 }; 1073 1074 for (auto &ExportPerModule : ExportLists) 1075 for (auto &VI : ExportPerModule.second) 1076 if (!FlattenedImports.count(VI.getGUID()) && 1077 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1078 return false; 1079 1080 return true; 1081 } 1082 #endif 1083 1084 /// Compute all the import and export for every module using the Index. 1085 void llvm::ComputeCrossModuleImport( 1086 const ModuleSummaryIndex &Index, 1087 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1088 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1089 isPrevailing, 1090 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1091 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1092 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1093 // For each module that has function defined, compute the import/export lists. 1094 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1095 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1096 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1097 << DefinedGVSummaries.first << "'\n"); 1098 MIS->computeImportForModule(DefinedGVSummaries.second, 1099 DefinedGVSummaries.first, ImportList); 1100 } 1101 1102 // When computing imports we only added the variables and functions being 1103 // imported to the export list. We also need to mark any references and calls 1104 // they make as exported as well. We do this here, as it is more efficient 1105 // since we may import the same values multiple times into different modules 1106 // during the import computation. 1107 for (auto &ELI : ExportLists) { 1108 // `NewExports` tracks the VI that gets exported because the full definition 1109 // of its user/referencer gets exported. 1110 FunctionImporter::ExportSetTy NewExports; 1111 const auto &DefinedGVSummaries = 1112 ModuleToDefinedGVSummaries.lookup(ELI.first); 1113 for (auto &EI : ELI.second) { 1114 // Find the copy defined in the exporting module so that we can mark the 1115 // values it references in that specific definition as exported. 1116 // Below we will add all references and called values, without regard to 1117 // whether they are also defined in this module. We subsequently prune the 1118 // list to only include those defined in the exporting module, see comment 1119 // there as to why. 1120 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1121 // Anything marked exported during the import computation must have been 1122 // defined in the exporting module. 1123 assert(DS != DefinedGVSummaries.end()); 1124 auto *S = DS->getSecond(); 1125 S = S->getBaseObject(); 1126 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1127 // Export referenced functions and variables. We don't export/promote 1128 // objects referenced by writeonly variable initializer, because 1129 // we convert such variables initializers to "zeroinitializer". 1130 // See processGlobalForThinLTO. 1131 if (!Index.isWriteOnly(GVS)) 1132 for (const auto &VI : GVS->refs()) 1133 NewExports.insert(VI); 1134 } else { 1135 auto *FS = cast<FunctionSummary>(S); 1136 for (const auto &Edge : FS->calls()) 1137 NewExports.insert(Edge.first); 1138 for (const auto &Ref : FS->refs()) 1139 NewExports.insert(Ref); 1140 } 1141 } 1142 // Prune list computed above to only include values defined in the 1143 // exporting module. We do this after the above insertion since we may hit 1144 // the same ref/call target multiple times in above loop, and it is more 1145 // efficient to avoid a set lookup each time. 1146 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1147 if (!DefinedGVSummaries.count(EI->getGUID())) 1148 NewExports.erase(EI++); 1149 else 1150 ++EI; 1151 } 1152 ELI.second.insert(NewExports.begin(), NewExports.end()); 1153 } 1154 1155 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1156 #ifndef NDEBUG 1157 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1158 << " modules:\n"); 1159 for (auto &ModuleImports : ImportLists) { 1160 auto ModName = ModuleImports.first; 1161 auto &Exports = ExportLists[ModName]; 1162 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1163 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1164 << Exports.size() - NumGVS << " functions and " << NumGVS 1165 << " vars. Imports from " << ModuleImports.second.size() 1166 << " modules.\n"); 1167 for (auto &Src : ModuleImports.second) { 1168 auto SrcModName = Src.first; 1169 unsigned DefinedFS = 0; 1170 unsigned NumGVSPerMod = 1171 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1172 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1173 << Src.second.size() - NumGVSPerMod - DefinedFS 1174 << " function declarations imported from " << SrcModName 1175 << "\n"); 1176 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1177 << " global vars imported from " << SrcModName << "\n"); 1178 } 1179 } 1180 #endif 1181 } 1182 1183 #ifndef NDEBUG 1184 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1185 StringRef ModulePath, 1186 FunctionImporter::ImportMapTy &ImportList) { 1187 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1188 << ImportList.size() << " modules.\n"); 1189 for (auto &Src : ImportList) { 1190 auto SrcModName = Src.first; 1191 unsigned DefinedFS = 0; 1192 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1193 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1194 << Src.second.size() - DefinedFS - NumGVSPerMod 1195 << " function declarations imported from " << SrcModName 1196 << "\n"); 1197 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1198 << SrcModName << "\n"); 1199 } 1200 } 1201 #endif 1202 1203 /// Compute all the imports for the given module using the Index. 1204 /// 1205 /// \p isPrevailing is a callback that will be called with a global value's GUID 1206 /// and summary and should return whether the module corresponding to the 1207 /// summary contains the linker-prevailing copy of that value. 1208 /// 1209 /// \p ImportList will be populated with a map that can be passed to 1210 /// FunctionImporter::importFunctions() above (see description there). 1211 static void ComputeCrossModuleImportForModuleForTest( 1212 StringRef ModulePath, 1213 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1214 isPrevailing, 1215 const ModuleSummaryIndex &Index, 1216 FunctionImporter::ImportMapTy &ImportList) { 1217 // Collect the list of functions this module defines. 1218 // GUID -> Summary 1219 GVSummaryMapTy FunctionSummaryMap; 1220 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1221 1222 // Compute the import list for this module. 1223 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1224 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1225 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1226 1227 #ifndef NDEBUG 1228 dumpImportListForModule(Index, ModulePath, ImportList); 1229 #endif 1230 } 1231 1232 /// Mark all external summaries in \p Index for import into the given module. 1233 /// Used for testing the case of distributed builds using a distributed index. 1234 /// 1235 /// \p ImportList will be populated with a map that can be passed to 1236 /// FunctionImporter::importFunctions() above (see description there). 1237 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1238 StringRef ModulePath, const ModuleSummaryIndex &Index, 1239 FunctionImporter::ImportMapTy &ImportList) { 1240 for (const auto &GlobalList : Index) { 1241 // Ignore entries for undefined references. 1242 if (GlobalList.second.SummaryList.empty()) 1243 continue; 1244 1245 auto GUID = GlobalList.first; 1246 assert(GlobalList.second.SummaryList.size() == 1 && 1247 "Expected individual combined index to have one summary per GUID"); 1248 auto &Summary = GlobalList.second.SummaryList[0]; 1249 // Skip the summaries for the importing module. These are included to 1250 // e.g. record required linkage changes. 1251 if (Summary->modulePath() == ModulePath) 1252 continue; 1253 // Add an entry to provoke importing by thinBackend. 1254 auto [Iter, Inserted] = ImportList[Summary->modulePath()].try_emplace( 1255 GUID, Summary->importType()); 1256 if (!Inserted) { 1257 // Use 'std::min' to make sure definition (with enum value 0) takes 1258 // precedence over declaration (with enum value 1). 1259 Iter->second = std::min(Iter->second, Summary->importType()); 1260 } 1261 } 1262 #ifndef NDEBUG 1263 dumpImportListForModule(Index, ModulePath, ImportList); 1264 #endif 1265 } 1266 1267 // For SamplePGO, the indirect call targets for local functions will 1268 // have its original name annotated in profile. We try to find the 1269 // corresponding PGOFuncName as the GUID, and fix up the edges 1270 // accordingly. 1271 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1272 FunctionSummary *FS) { 1273 for (auto &EI : FS->mutableCalls()) { 1274 if (!EI.first.getSummaryList().empty()) 1275 continue; 1276 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1277 if (GUID == 0) 1278 continue; 1279 // Update the edge to point directly to the correct GUID. 1280 auto VI = Index.getValueInfo(GUID); 1281 if (llvm::any_of( 1282 VI.getSummaryList(), 1283 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1284 // The mapping from OriginalId to GUID may return a GUID 1285 // that corresponds to a static variable. Filter it out here. 1286 // This can happen when 1287 // 1) There is a call to a library function which is not defined 1288 // in the index. 1289 // 2) There is a static variable with the OriginalGUID identical 1290 // to the GUID of the library function in 1); 1291 // When this happens the static variable in 2) will be found, 1292 // which needs to be filtered out. 1293 return SummaryPtr->getSummaryKind() == 1294 GlobalValueSummary::GlobalVarKind; 1295 })) 1296 continue; 1297 EI.first = VI; 1298 } 1299 } 1300 1301 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1302 for (const auto &Entry : Index) { 1303 for (const auto &S : Entry.second.SummaryList) { 1304 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1305 updateValueInfoForIndirectCalls(Index, FS); 1306 } 1307 } 1308 } 1309 1310 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1311 ModuleSummaryIndex &Index, 1312 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1313 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1314 assert(!Index.withGlobalValueDeadStripping()); 1315 if (!ComputeDead || 1316 // Don't do anything when nothing is live, this is friendly with tests. 1317 GUIDPreservedSymbols.empty()) { 1318 // Still need to update indirect calls. 1319 updateIndirectCalls(Index); 1320 return; 1321 } 1322 unsigned LiveSymbols = 0; 1323 SmallVector<ValueInfo, 128> Worklist; 1324 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1325 for (auto GUID : GUIDPreservedSymbols) { 1326 ValueInfo VI = Index.getValueInfo(GUID); 1327 if (!VI) 1328 continue; 1329 for (const auto &S : VI.getSummaryList()) 1330 S->setLive(true); 1331 } 1332 1333 // Add values flagged in the index as live roots to the worklist. 1334 for (const auto &Entry : Index) { 1335 auto VI = Index.getValueInfo(Entry); 1336 for (const auto &S : Entry.second.SummaryList) { 1337 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1338 updateValueInfoForIndirectCalls(Index, FS); 1339 if (S->isLive()) { 1340 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1341 Worklist.push_back(VI); 1342 ++LiveSymbols; 1343 break; 1344 } 1345 } 1346 } 1347 1348 // Make value live and add it to the worklist if it was not live before. 1349 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1350 // FIXME: If we knew which edges were created for indirect call profiles, 1351 // we could skip them here. Any that are live should be reached via 1352 // other edges, e.g. reference edges. Otherwise, using a profile collected 1353 // on a slightly different binary might provoke preserving, importing 1354 // and ultimately promoting calls to functions not linked into this 1355 // binary, which increases the binary size unnecessarily. Note that 1356 // if this code changes, the importer needs to change so that edges 1357 // to functions marked dead are skipped. 1358 1359 if (llvm::any_of(VI.getSummaryList(), 1360 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1361 return S->isLive(); 1362 })) 1363 return; 1364 1365 // We only keep live symbols that are known to be non-prevailing if any are 1366 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1367 // later in the EliminateAvailableExternally pass and setting them to 1368 // not-live could break downstreams users of liveness information (PR36483) 1369 // or limit optimization opportunities. 1370 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1371 bool KeepAliveLinkage = false; 1372 bool Interposable = false; 1373 for (const auto &S : VI.getSummaryList()) { 1374 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1375 S->linkage() == GlobalValue::WeakODRLinkage || 1376 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1377 KeepAliveLinkage = true; 1378 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1379 Interposable = true; 1380 } 1381 1382 if (!IsAliasee) { 1383 if (!KeepAliveLinkage) 1384 return; 1385 1386 if (Interposable) 1387 report_fatal_error( 1388 "Interposable and available_externally/linkonce_odr/weak_odr " 1389 "symbol"); 1390 } 1391 } 1392 1393 for (const auto &S : VI.getSummaryList()) 1394 S->setLive(true); 1395 ++LiveSymbols; 1396 Worklist.push_back(VI); 1397 }; 1398 1399 while (!Worklist.empty()) { 1400 auto VI = Worklist.pop_back_val(); 1401 for (const auto &Summary : VI.getSummaryList()) { 1402 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1403 // If this is an alias, visit the aliasee VI to ensure that all copies 1404 // are marked live and it is added to the worklist for further 1405 // processing of its references. 1406 visit(AS->getAliaseeVI(), true); 1407 continue; 1408 } 1409 for (auto Ref : Summary->refs()) 1410 visit(Ref, false); 1411 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1412 for (auto Call : FS->calls()) 1413 visit(Call.first, false); 1414 } 1415 } 1416 Index.setWithGlobalValueDeadStripping(); 1417 1418 unsigned DeadSymbols = Index.size() - LiveSymbols; 1419 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1420 << " symbols Dead \n"); 1421 NumDeadSymbols += DeadSymbols; 1422 NumLiveSymbols += LiveSymbols; 1423 } 1424 1425 // Compute dead symbols and propagate constants in combined index. 1426 void llvm::computeDeadSymbolsWithConstProp( 1427 ModuleSummaryIndex &Index, 1428 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1429 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1430 bool ImportEnabled) { 1431 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1432 isPrevailing); 1433 if (ImportEnabled) 1434 Index.propagateAttributes(GUIDPreservedSymbols); 1435 } 1436 1437 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1438 /// \p ModulePath. 1439 void llvm::gatherImportedSummariesForModule( 1440 StringRef ModulePath, 1441 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1442 const FunctionImporter::ImportMapTy &ImportList, 1443 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex, 1444 GVSummaryPtrSet &DecSummaries) { 1445 // Include all summaries from the importing module. 1446 ModuleToSummariesForIndex[std::string(ModulePath)] = 1447 ModuleToDefinedGVSummaries.lookup(ModulePath); 1448 // Include summaries for imports. 1449 for (const auto &ILI : ImportList) { 1450 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1451 1452 const auto &DefinedGVSummaries = 1453 ModuleToDefinedGVSummaries.lookup(ILI.first); 1454 for (const auto &[GUID, Type] : ILI.second) { 1455 const auto &DS = DefinedGVSummaries.find(GUID); 1456 assert(DS != DefinedGVSummaries.end() && 1457 "Expected a defined summary for imported global value"); 1458 if (Type == GlobalValueSummary::Declaration) 1459 DecSummaries.insert(DS->second); 1460 1461 SummariesForIndex[GUID] = DS->second; 1462 } 1463 } 1464 } 1465 1466 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1467 std::error_code llvm::EmitImportsFiles( 1468 StringRef ModulePath, StringRef OutputFilename, 1469 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1470 std::error_code EC; 1471 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1472 if (EC) 1473 return EC; 1474 for (const auto &ILI : ModuleToSummariesForIndex) 1475 // The ModuleToSummariesForIndex map includes an entry for the current 1476 // Module (needed for writing out the index files). We don't want to 1477 // include it in the imports file, however, so filter it out. 1478 if (ILI.first != ModulePath) 1479 ImportsOS << ILI.first << "\n"; 1480 return std::error_code(); 1481 } 1482 1483 bool llvm::convertToDeclaration(GlobalValue &GV) { 1484 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1485 << "\n"); 1486 if (Function *F = dyn_cast<Function>(&GV)) { 1487 F->deleteBody(); 1488 F->clearMetadata(); 1489 F->setComdat(nullptr); 1490 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1491 V->setInitializer(nullptr); 1492 V->setLinkage(GlobalValue::ExternalLinkage); 1493 V->clearMetadata(); 1494 V->setComdat(nullptr); 1495 } else { 1496 GlobalValue *NewGV; 1497 if (GV.getValueType()->isFunctionTy()) 1498 NewGV = 1499 Function::Create(cast<FunctionType>(GV.getValueType()), 1500 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1501 "", GV.getParent()); 1502 else 1503 NewGV = 1504 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1505 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1506 /*init*/ nullptr, "", 1507 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1508 GV.getType()->getAddressSpace()); 1509 NewGV->takeName(&GV); 1510 GV.replaceAllUsesWith(NewGV); 1511 return false; 1512 } 1513 if (!GV.isImplicitDSOLocal()) 1514 GV.setDSOLocal(false); 1515 return true; 1516 } 1517 1518 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1519 const GVSummaryMapTy &DefinedGlobals, 1520 bool PropagateAttrs) { 1521 DenseSet<Comdat *> NonPrevailingComdats; 1522 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1523 // See if the global summary analysis computed a new resolved linkage. 1524 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1525 if (GS == DefinedGlobals.end()) 1526 return; 1527 1528 if (Propagate) 1529 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1530 if (Function *F = dyn_cast<Function>(&GV)) { 1531 // TODO: propagate ReadNone and ReadOnly. 1532 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1533 F->setDoesNotAccessMemory(); 1534 1535 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1536 F->setOnlyReadsMemory(); 1537 1538 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1539 F->setDoesNotRecurse(); 1540 1541 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1542 F->setDoesNotThrow(); 1543 } 1544 } 1545 1546 auto NewLinkage = GS->second->linkage(); 1547 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1548 // Don't internalize anything here, because the code below 1549 // lacks necessary correctness checks. Leave this job to 1550 // LLVM 'internalize' pass. 1551 GlobalValue::isLocalLinkage(NewLinkage) || 1552 // In case it was dead and already converted to declaration. 1553 GV.isDeclaration()) 1554 return; 1555 1556 // Set the potentially more constraining visibility computed from summaries. 1557 // The DefaultVisibility condition is because older GlobalValueSummary does 1558 // not record DefaultVisibility and we don't want to change protected/hidden 1559 // to default. 1560 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1561 GV.setVisibility(GS->second->getVisibility()); 1562 1563 if (NewLinkage == GV.getLinkage()) 1564 return; 1565 1566 // Check for a non-prevailing def that has interposable linkage 1567 // (e.g. non-odr weak or linkonce). In that case we can't simply 1568 // convert to available_externally, since it would lose the 1569 // interposable property and possibly get inlined. Simply drop 1570 // the definition in that case. 1571 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1572 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1573 if (!convertToDeclaration(GV)) 1574 // FIXME: Change this to collect replaced GVs and later erase 1575 // them from the parent module once thinLTOResolvePrevailingGUID is 1576 // changed to enable this for aliases. 1577 llvm_unreachable("Expected GV to be converted"); 1578 } else { 1579 // If all copies of the original symbol had global unnamed addr and 1580 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1581 // and are constants, then it should be an auto hide symbol. In that case 1582 // the thin link would have marked it as CanAutoHide. Add hidden 1583 // visibility to the symbol to preserve the property. 1584 if (NewLinkage == GlobalValue::WeakODRLinkage && 1585 GS->second->canAutoHide()) { 1586 assert(GV.canBeOmittedFromSymbolTable()); 1587 GV.setVisibility(GlobalValue::HiddenVisibility); 1588 } 1589 1590 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1591 << "` from " << GV.getLinkage() << " to " << NewLinkage 1592 << "\n"); 1593 GV.setLinkage(NewLinkage); 1594 } 1595 // Remove declarations from comdats, including available_externally 1596 // as this is a declaration for the linker, and will be dropped eventually. 1597 // It is illegal for comdats to contain declarations. 1598 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1599 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1600 if (GO->getComdat()->getName() == GO->getName()) 1601 NonPrevailingComdats.insert(GO->getComdat()); 1602 GO->setComdat(nullptr); 1603 } 1604 }; 1605 1606 // Process functions and global now 1607 for (auto &GV : TheModule) 1608 FinalizeInModule(GV, PropagateAttrs); 1609 for (auto &GV : TheModule.globals()) 1610 FinalizeInModule(GV); 1611 for (auto &GV : TheModule.aliases()) 1612 FinalizeInModule(GV); 1613 1614 // For a non-prevailing comdat, all its members must be available_externally. 1615 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1616 // local linkage GlobalValues. 1617 if (NonPrevailingComdats.empty()) 1618 return; 1619 for (auto &GO : TheModule.global_objects()) { 1620 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1621 GO.setComdat(nullptr); 1622 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1623 } 1624 } 1625 bool Changed; 1626 do { 1627 Changed = false; 1628 // If an alias references a GlobalValue in a non-prevailing comdat, change 1629 // it to available_externally. For simplicity we only handle GlobalValue and 1630 // ConstantExpr with a base object. ConstantExpr without a base object is 1631 // unlikely used in a COMDAT. 1632 for (auto &GA : TheModule.aliases()) { 1633 if (GA.hasAvailableExternallyLinkage()) 1634 continue; 1635 GlobalObject *Obj = GA.getAliaseeObject(); 1636 assert(Obj && "aliasee without an base object is unimplemented"); 1637 if (Obj->hasAvailableExternallyLinkage()) { 1638 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1639 Changed = true; 1640 } 1641 } 1642 } while (Changed); 1643 } 1644 1645 /// Run internalization on \p TheModule based on symmary analysis. 1646 void llvm::thinLTOInternalizeModule(Module &TheModule, 1647 const GVSummaryMapTy &DefinedGlobals) { 1648 // Declare a callback for the internalize pass that will ask for every 1649 // candidate GlobalValue if it can be internalized or not. 1650 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1651 // It may be the case that GV is on a chain of an ifunc, its alias and 1652 // subsequent aliases. In this case, the summary for the value is not 1653 // available. 1654 if (isa<GlobalIFunc>(&GV) || 1655 (isa<GlobalAlias>(&GV) && 1656 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1657 return true; 1658 1659 // Lookup the linkage recorded in the summaries during global analysis. 1660 auto GS = DefinedGlobals.find(GV.getGUID()); 1661 if (GS == DefinedGlobals.end()) { 1662 // Must have been promoted (possibly conservatively). Find original 1663 // name so that we can access the correct summary and see if it can 1664 // be internalized again. 1665 // FIXME: Eventually we should control promotion instead of promoting 1666 // and internalizing again. 1667 StringRef OrigName = 1668 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1669 std::string OrigId = GlobalValue::getGlobalIdentifier( 1670 OrigName, GlobalValue::InternalLinkage, 1671 TheModule.getSourceFileName()); 1672 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1673 if (GS == DefinedGlobals.end()) { 1674 // Also check the original non-promoted non-globalized name. In some 1675 // cases a preempted weak value is linked in as a local copy because 1676 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1677 // In that case, since it was originally not a local value, it was 1678 // recorded in the index using the original name. 1679 // FIXME: This may not be needed once PR27866 is fixed. 1680 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1681 assert(GS != DefinedGlobals.end()); 1682 } 1683 } 1684 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1685 }; 1686 1687 // FIXME: See if we can just internalize directly here via linkage changes 1688 // based on the index, rather than invoking internalizeModule. 1689 internalizeModule(TheModule, MustPreserveGV); 1690 } 1691 1692 /// Make alias a clone of its aliasee. 1693 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1694 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1695 1696 ValueToValueMapTy VMap; 1697 Function *NewFn = CloneFunction(Fn, VMap); 1698 // Clone should use the original alias's linkage, visibility and name, and we 1699 // ensure all uses of alias instead use the new clone (casted if necessary). 1700 NewFn->setLinkage(GA->getLinkage()); 1701 NewFn->setVisibility(GA->getVisibility()); 1702 GA->replaceAllUsesWith(NewFn); 1703 NewFn->takeName(GA); 1704 return NewFn; 1705 } 1706 1707 // Internalize values that we marked with specific attribute 1708 // in processGlobalForThinLTO. 1709 static void internalizeGVsAfterImport(Module &M) { 1710 for (auto &GV : M.globals()) 1711 // Skip GVs which have been converted to declarations 1712 // by dropDeadSymbols. 1713 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1714 GV.setLinkage(GlobalValue::InternalLinkage); 1715 GV.setVisibility(GlobalValue::DefaultVisibility); 1716 } 1717 } 1718 1719 // Automatically import functions in Module \p DestModule based on the summaries 1720 // index. 1721 Expected<bool> FunctionImporter::importFunctions( 1722 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1723 LLVM_DEBUG(dbgs() << "Starting import for Module " 1724 << DestModule.getModuleIdentifier() << "\n"); 1725 unsigned ImportedCount = 0, ImportedGVCount = 0; 1726 1727 IRMover Mover(DestModule); 1728 // Do the actual import of functions now, one Module at a time 1729 std::set<StringRef> ModuleNameOrderedList; 1730 for (const auto &FunctionsToImportPerModule : ImportList) { 1731 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1732 } 1733 1734 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1735 GlobalValue::GUID GUID) 1736 -> std::optional<GlobalValueSummary::ImportKind> { 1737 auto Iter = GUIDToImportType.find(GUID); 1738 if (Iter == GUIDToImportType.end()) 1739 return std::nullopt; 1740 return Iter->second; 1741 }; 1742 1743 for (const auto &Name : ModuleNameOrderedList) { 1744 // Get the module for the import 1745 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1746 assert(FunctionsToImportPerModule != ImportList.end()); 1747 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1748 if (!SrcModuleOrErr) 1749 return SrcModuleOrErr.takeError(); 1750 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1751 assert(&DestModule.getContext() == &SrcModule->getContext() && 1752 "Context mismatch"); 1753 1754 // If modules were created with lazy metadata loading, materialize it 1755 // now, before linking it (otherwise this will be a noop). 1756 if (Error Err = SrcModule->materializeMetadata()) 1757 return std::move(Err); 1758 1759 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1760 1761 // Find the globals to import 1762 SetVector<GlobalValue *> GlobalsToImport; 1763 for (Function &F : *SrcModule) { 1764 if (!F.hasName()) 1765 continue; 1766 auto GUID = F.getGUID(); 1767 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1768 1769 bool ImportDefinition = 1770 (MaybeImportType && 1771 (*MaybeImportType == GlobalValueSummary::Definition)); 1772 1773 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1774 << " importing function" 1775 << (ImportDefinition 1776 ? " definition " 1777 : (MaybeImportType ? " declaration " : " ")) 1778 << GUID << " " << F.getName() << " from " 1779 << SrcModule->getSourceFileName() << "\n"); 1780 if (ImportDefinition) { 1781 if (Error Err = F.materialize()) 1782 return std::move(Err); 1783 // MemProf should match function's definition and summary, 1784 // 'thinlto_src_module' is needed. 1785 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1786 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1787 // statistics and debugging. 1788 F.setMetadata( 1789 "thinlto_src_module", 1790 MDNode::get(DestModule.getContext(), 1791 {MDString::get(DestModule.getContext(), 1792 SrcModule->getModuleIdentifier())})); 1793 F.setMetadata( 1794 "thinlto_src_file", 1795 MDNode::get(DestModule.getContext(), 1796 {MDString::get(DestModule.getContext(), 1797 SrcModule->getSourceFileName())})); 1798 } 1799 GlobalsToImport.insert(&F); 1800 } 1801 } 1802 for (GlobalVariable &GV : SrcModule->globals()) { 1803 if (!GV.hasName()) 1804 continue; 1805 auto GUID = GV.getGUID(); 1806 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1807 1808 bool ImportDefinition = 1809 (MaybeImportType && 1810 (*MaybeImportType == GlobalValueSummary::Definition)); 1811 1812 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1813 << " importing global" 1814 << (ImportDefinition 1815 ? " definition " 1816 : (MaybeImportType ? " declaration " : " ")) 1817 << GUID << " " << GV.getName() << " from " 1818 << SrcModule->getSourceFileName() << "\n"); 1819 if (ImportDefinition) { 1820 if (Error Err = GV.materialize()) 1821 return std::move(Err); 1822 ImportedGVCount += GlobalsToImport.insert(&GV); 1823 } 1824 } 1825 for (GlobalAlias &GA : SrcModule->aliases()) { 1826 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1827 continue; 1828 auto GUID = GA.getGUID(); 1829 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1830 1831 bool ImportDefinition = 1832 (MaybeImportType && 1833 (*MaybeImportType == GlobalValueSummary::Definition)); 1834 1835 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1836 << " importing alias" 1837 << (ImportDefinition 1838 ? " definition " 1839 : (MaybeImportType ? " declaration " : " ")) 1840 << GUID << " " << GA.getName() << " from " 1841 << SrcModule->getSourceFileName() << "\n"); 1842 if (ImportDefinition) { 1843 if (Error Err = GA.materialize()) 1844 return std::move(Err); 1845 // Import alias as a copy of its aliasee. 1846 GlobalObject *GO = GA.getAliaseeObject(); 1847 if (Error Err = GO->materialize()) 1848 return std::move(Err); 1849 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1850 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1851 << GO->getName() << " from " 1852 << SrcModule->getSourceFileName() << "\n"); 1853 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1854 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1855 // statistics and debugging. 1856 Fn->setMetadata( 1857 "thinlto_src_module", 1858 MDNode::get(DestModule.getContext(), 1859 {MDString::get(DestModule.getContext(), 1860 SrcModule->getModuleIdentifier())})); 1861 Fn->setMetadata( 1862 "thinlto_src_file", 1863 MDNode::get(DestModule.getContext(), 1864 {MDString::get(DestModule.getContext(), 1865 SrcModule->getSourceFileName())})); 1866 } 1867 GlobalsToImport.insert(Fn); 1868 } 1869 } 1870 1871 // Upgrade debug info after we're done materializing all the globals and we 1872 // have loaded all the required metadata! 1873 UpgradeDebugInfo(*SrcModule); 1874 1875 // Set the partial sample profile ratio in the profile summary module flag 1876 // of the imported source module, if applicable, so that the profile summary 1877 // module flag will match with that of the destination module when it's 1878 // imported. 1879 SrcModule->setPartialSampleProfileRatio(Index); 1880 1881 // Link in the specified functions. 1882 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1883 &GlobalsToImport)) 1884 return true; 1885 1886 if (PrintImports) { 1887 for (const auto *GV : GlobalsToImport) 1888 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1889 << " from " << SrcModule->getSourceFileName() << "\n"; 1890 } 1891 1892 if (Error Err = Mover.move(std::move(SrcModule), 1893 GlobalsToImport.getArrayRef(), nullptr, 1894 /*IsPerformingImport=*/true)) 1895 return createStringError(errc::invalid_argument, 1896 Twine("Function Import: link error: ") + 1897 toString(std::move(Err))); 1898 1899 ImportedCount += GlobalsToImport.size(); 1900 NumImportedModules++; 1901 } 1902 1903 internalizeGVsAfterImport(DestModule); 1904 1905 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1906 NumImportedGlobalVars += ImportedGVCount; 1907 1908 // TODO: Print counters for definitions and declarations in the debugging log. 1909 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1910 << " functions for Module " 1911 << DestModule.getModuleIdentifier() << "\n"); 1912 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1913 << " global variables for Module " 1914 << DestModule.getModuleIdentifier() << "\n"); 1915 return ImportedCount; 1916 } 1917 1918 static bool doImportingForModuleForTest( 1919 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1920 isPrevailing) { 1921 if (SummaryFile.empty()) 1922 report_fatal_error("error: -function-import requires -summary-file\n"); 1923 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1924 getModuleSummaryIndexForFile(SummaryFile); 1925 if (!IndexPtrOrErr) { 1926 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1927 "Error loading file '" + SummaryFile + "': "); 1928 return false; 1929 } 1930 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1931 1932 // First step is collecting the import list. 1933 FunctionImporter::ImportMapTy ImportList; 1934 // If requested, simply import all functions in the index. This is used 1935 // when testing distributed backend handling via the opt tool, when 1936 // we have distributed indexes containing exactly the summaries to import. 1937 if (ImportAllIndex) 1938 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1939 *Index, ImportList); 1940 else 1941 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1942 isPrevailing, *Index, ImportList); 1943 1944 // Conservatively mark all internal values as promoted. This interface is 1945 // only used when doing importing via the function importing pass. The pass 1946 // is only enabled when testing importing via the 'opt' tool, which does 1947 // not do the ThinLink that would normally determine what values to promote. 1948 for (auto &I : *Index) { 1949 for (auto &S : I.second.SummaryList) { 1950 if (GlobalValue::isLocalLinkage(S->linkage())) 1951 S->setLinkage(GlobalValue::ExternalLinkage); 1952 } 1953 } 1954 1955 // Next we need to promote to global scope and rename any local values that 1956 // are potentially exported to other modules. 1957 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1958 /*GlobalsToImport=*/nullptr)) { 1959 errs() << "Error renaming module\n"; 1960 return true; 1961 } 1962 1963 // Perform the import now. 1964 auto ModuleLoader = [&M](StringRef Identifier) { 1965 return loadFile(std::string(Identifier), M.getContext()); 1966 }; 1967 FunctionImporter Importer(*Index, ModuleLoader, 1968 /*ClearDSOLocalOnDeclarations=*/false); 1969 Expected<bool> Result = Importer.importFunctions(M, ImportList); 1970 1971 // FIXME: Probably need to propagate Errors through the pass manager. 1972 if (!Result) { 1973 logAllUnhandledErrors(Result.takeError(), errs(), 1974 "Error importing module: "); 1975 return true; 1976 } 1977 1978 return true; 1979 } 1980 1981 PreservedAnalyses FunctionImportPass::run(Module &M, 1982 ModuleAnalysisManager &AM) { 1983 // This is only used for testing the function import pass via opt, where we 1984 // don't have prevailing information from the LTO context available, so just 1985 // conservatively assume everything is prevailing (which is fine for the very 1986 // limited use of prevailing checking in this pass). 1987 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 1988 return true; 1989 }; 1990 if (!doImportingForModuleForTest(M, isPrevailing)) 1991 return PreservedAnalyses::all(); 1992 1993 return PreservedAnalyses::none(); 1994 } 1995