1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSummaryIndex.h" 31 #include "llvm/IRReader/IRReader.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 namespace llvm { 178 extern cl::opt<bool> EnableMemProfContextDisambiguation; 179 } 180 181 // Load lazily a module from \p FileName in \p Context. 182 static std::unique_ptr<Module> loadFile(const std::string &FileName, 183 LLVMContext &Context) { 184 SMDiagnostic Err; 185 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 186 // Metadata isn't loaded until functions are imported, to minimize 187 // the memory overhead. 188 std::unique_ptr<Module> Result = 189 getLazyIRFileModule(FileName, Err, Context, 190 /* ShouldLazyLoadMetadata = */ true); 191 if (!Result) { 192 Err.print("function-import", errs()); 193 report_fatal_error("Abort"); 194 } 195 196 return Result; 197 } 198 199 /// Given a list of possible callee implementation for a call site, qualify the 200 /// legality of importing each. The return is a range of pairs. Each pair 201 /// corresponds to a candidate. The first value is the ImportFailureReason for 202 /// that candidate, the second is the candidate. 203 static auto qualifyCalleeCandidates( 204 const ModuleSummaryIndex &Index, 205 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 206 StringRef CallerModulePath) { 207 return llvm::map_range( 208 CalleeSummaryList, 209 [&Index, CalleeSummaryList, 210 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 211 -> std::pair<FunctionImporter::ImportFailureReason, 212 const GlobalValueSummary *> { 213 auto *GVSummary = SummaryPtr.get(); 214 if (!Index.isGlobalValueLive(GVSummary)) 215 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 216 217 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 218 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 219 GVSummary}; 220 221 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 222 223 // Ignore any callees that aren't actually functions. This could happen 224 // in the case of GUID hash collisions. It could also happen in theory 225 // for SamplePGO profiles collected on old versions of the code after 226 // renaming, since we synthesize edges to any inlined callees appearing 227 // in the profile. 228 if (!Summary) 229 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 230 231 // If this is a local function, make sure we import the copy 232 // in the caller's module. The only time a local function can 233 // share an entry in the index is if there is a local with the same name 234 // in another module that had the same source file name (in a different 235 // directory), where each was compiled in their own directory so there 236 // was not distinguishing path. 237 // However, do the import from another module if there is only one 238 // entry in the list - in that case this must be a reference due 239 // to indirect call profile data, since a function pointer can point to 240 // a local in another module. 241 if (GlobalValue::isLocalLinkage(Summary->linkage()) && 242 CalleeSummaryList.size() > 1 && 243 Summary->modulePath() != CallerModulePath) 244 return { 245 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 246 GVSummary}; 247 248 // Skip if it isn't legal to import (e.g. may reference unpromotable 249 // locals). 250 if (Summary->notEligibleToImport()) 251 return {FunctionImporter::ImportFailureReason::NotEligible, 252 GVSummary}; 253 254 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 255 }); 256 } 257 258 /// Given a list of possible callee implementation for a call site, select one 259 /// that fits the \p Threshold for function definition import. If none are 260 /// found, the Reason will give the last reason for the failure (last, in the 261 /// order of CalleeSummaryList entries). While looking for a callee definition, 262 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 263 /// candidate; other modules may want to know the function summary or 264 /// declaration even if a definition is not needed. 265 /// 266 /// FIXME: select "best" instead of first that fits. But what is "best"? 267 /// - The smallest: more likely to be inlined. 268 /// - The one with the least outgoing edges (already well optimized). 269 /// - One from a module already being imported from in order to reduce the 270 /// number of source modules parsed/linked. 271 /// - One that has PGO data attached. 272 /// - [insert you fancy metric here] 273 static const GlobalValueSummary * 274 selectCallee(const ModuleSummaryIndex &Index, 275 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 276 unsigned Threshold, StringRef CallerModulePath, 277 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 278 FunctionImporter::ImportFailureReason &Reason) { 279 // Records the last summary with reason noinline or too-large. 280 TooLargeOrNoInlineSummary = nullptr; 281 auto QualifiedCandidates = 282 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 283 for (auto QualifiedValue : QualifiedCandidates) { 284 Reason = QualifiedValue.first; 285 // Skip a summary if its import is not (proved to be) legal. 286 if (Reason != FunctionImporter::ImportFailureReason::None) 287 continue; 288 auto *Summary = 289 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 290 291 // Don't bother importing the definition if the chance of inlining it is 292 // not high enough (except under `--force-import-all`). 293 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 294 !ForceImportAll) { 295 TooLargeOrNoInlineSummary = Summary; 296 Reason = FunctionImporter::ImportFailureReason::TooLarge; 297 continue; 298 } 299 300 // Don't bother importing the definition if we can't inline it anyway. 301 if (Summary->fflags().NoInline && !ForceImportAll) { 302 TooLargeOrNoInlineSummary = Summary; 303 Reason = FunctionImporter::ImportFailureReason::NoInline; 304 continue; 305 } 306 307 return Summary; 308 } 309 return nullptr; 310 } 311 312 namespace { 313 314 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 315 316 } // anonymous namespace 317 318 /// Import globals referenced by a function or other globals that are being 319 /// imported, if importing such global is possible. 320 class GlobalsImporter final { 321 const ModuleSummaryIndex &Index; 322 const GVSummaryMapTy &DefinedGVSummaries; 323 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 324 IsPrevailing; 325 FunctionImporter::ImportMapTy &ImportList; 326 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 327 328 bool shouldImportGlobal(const ValueInfo &VI) { 329 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 330 if (GVS == DefinedGVSummaries.end()) 331 return true; 332 // We should not skip import if the module contains a non-prevailing 333 // definition with interposable linkage type. This is required for 334 // correctness in the situation where there is a prevailing def available 335 // for import and marked read-only. In this case, the non-prevailing def 336 // will be converted to a declaration, while the prevailing one becomes 337 // internal, thus no definitions will be available for linking. In order to 338 // prevent undefined symbol link error, the prevailing definition must be 339 // imported. 340 // FIXME: Consider adding a check that the suitable prevailing definition 341 // exists and marked read-only. 342 if (VI.getSummaryList().size() > 1 && 343 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 344 !IsPrevailing(VI.getGUID(), GVS->second)) 345 return true; 346 347 return false; 348 } 349 350 void 351 onImportingSummaryImpl(const GlobalValueSummary &Summary, 352 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 353 for (const auto &VI : Summary.refs()) { 354 if (!shouldImportGlobal(VI)) { 355 LLVM_DEBUG( 356 dbgs() << "Ref ignored! Target already in destination module.\n"); 357 continue; 358 } 359 360 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 361 362 // If this is a local variable, make sure we import the copy 363 // in the caller's module. The only time a local variable can 364 // share an entry in the index is if there is a local with the same name 365 // in another module that had the same source file name (in a different 366 // directory), where each was compiled in their own directory so there 367 // was not distinguishing path. 368 auto LocalNotInModule = 369 [&](const GlobalValueSummary *RefSummary) -> bool { 370 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 371 RefSummary->modulePath() != Summary.modulePath(); 372 }; 373 374 for (const auto &RefSummary : VI.getSummaryList()) { 375 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 376 // Functions could be referenced by global vars - e.g. a vtable; but we 377 // don't currently imagine a reason those would be imported here, rather 378 // than as part of the logic deciding which functions to import (i.e. 379 // based on profile information). Should we decide to handle them here, 380 // we can refactor accordingly at that time. 381 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 382 LocalNotInModule(GVS)) 383 continue; 384 385 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 386 // Otherwise, definition should take precedence over declaration. 387 auto [Iter, Inserted] = 388 ImportList[RefSummary->modulePath()].try_emplace( 389 VI.getGUID(), GlobalValueSummary::Definition); 390 // Only update stat and exports if we haven't already imported this 391 // variable. 392 if (!Inserted) { 393 // Set the value to 'std::min(existing-value, new-value)' to make 394 // sure a definition takes precedence over a declaration. 395 Iter->second = std::min(GlobalValueSummary::Definition, Iter->second); 396 break; 397 } 398 NumImportedGlobalVarsThinLink++; 399 // Any references made by this variable will be marked exported 400 // later, in ComputeCrossModuleImport, after import decisions are 401 // complete, which is more efficient than adding them here. 402 if (ExportLists) 403 (*ExportLists)[RefSummary->modulePath()][VI] = 404 GlobalValueSummary::Definition; 405 406 // If variable is not writeonly we attempt to recursively analyze 407 // its references in order to import referenced constants. 408 if (!Index.isWriteOnly(GVS)) 409 Worklist.emplace_back(GVS); 410 break; 411 } 412 } 413 } 414 415 public: 416 GlobalsImporter( 417 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 418 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 419 IsPrevailing, 420 FunctionImporter::ImportMapTy &ImportList, 421 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 422 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 423 IsPrevailing(IsPrevailing), ImportList(ImportList), 424 ExportLists(ExportLists) {} 425 426 void onImportingSummary(const GlobalValueSummary &Summary) { 427 SmallVector<const GlobalVarSummary *, 128> Worklist; 428 onImportingSummaryImpl(Summary, Worklist); 429 while (!Worklist.empty()) 430 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 431 } 432 }; 433 434 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 435 436 /// Determine the list of imports and exports for each module. 437 class ModuleImportsManager { 438 protected: 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing; 441 const ModuleSummaryIndex &Index; 442 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 443 444 ModuleImportsManager( 445 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 446 IsPrevailing, 447 const ModuleSummaryIndex &Index, 448 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 449 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 450 451 public: 452 virtual ~ModuleImportsManager() = default; 453 454 /// Given the list of globals defined in a module, compute the list of imports 455 /// as well as the list of "exports", i.e. the list of symbols referenced from 456 /// another module (that may require promotion). 457 virtual void 458 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 459 StringRef ModName, 460 FunctionImporter::ImportMapTy &ImportList); 461 462 static std::unique_ptr<ModuleImportsManager> 463 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 464 IsPrevailing, 465 const ModuleSummaryIndex &Index, 466 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 467 nullptr); 468 }; 469 470 /// A ModuleImportsManager that operates based on a workload definition (see 471 /// -thinlto-workload-def). For modules that do not define workload roots, it 472 /// applies the base ModuleImportsManager import policy. 473 class WorkloadImportsManager : public ModuleImportsManager { 474 // Keep a module name -> value infos to import association. We use it to 475 // determine if a module's import list should be done by the base 476 // ModuleImportsManager or by us. 477 StringMap<DenseSet<ValueInfo>> Workloads; 478 479 void 480 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 481 StringRef ModName, 482 FunctionImporter::ImportMapTy &ImportList) override { 483 auto SetIter = Workloads.find(ModName); 484 if (SetIter == Workloads.end()) { 485 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 486 << " does not contain the root of any context.\n"); 487 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 488 ModName, ImportList); 489 } 490 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 491 << " contains the root(s) of context(s).\n"); 492 493 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 494 ExportLists); 495 auto &ValueInfos = SetIter->second; 496 SmallVector<EdgeInfo, 128> GlobWorklist; 497 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 498 auto It = DefinedGVSummaries.find(VI.getGUID()); 499 if (It != DefinedGVSummaries.end() && 500 IsPrevailing(VI.getGUID(), It->second)) { 501 LLVM_DEBUG( 502 dbgs() << "[Workload] " << VI.name() 503 << " has the prevailing variant already in the module " 504 << ModName << ". No need to import\n"); 505 continue; 506 } 507 auto Candidates = 508 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 509 510 const GlobalValueSummary *GVS = nullptr; 511 auto PotentialCandidates = llvm::map_range( 512 llvm::make_filter_range( 513 Candidates, 514 [&](const auto &Candidate) { 515 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 516 << " from " << Candidate.second->modulePath() 517 << " ImportFailureReason: " 518 << getFailureName(Candidate.first) << "\n"); 519 return Candidate.first == 520 FunctionImporter::ImportFailureReason::None; 521 }), 522 [](const auto &Candidate) { return Candidate.second; }); 523 if (PotentialCandidates.empty()) { 524 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 525 << " because can't find eligible Callee. Guid is: " 526 << Function::getGUID(VI.name()) << "\n"); 527 continue; 528 } 529 /// We will prefer importing the prevailing candidate, if not, we'll 530 /// still pick the first available candidate. The reason we want to make 531 /// sure we do import the prevailing candidate is because the goal of 532 /// workload-awareness is to enable optimizations specializing the call 533 /// graph of that workload. Suppose a function is already defined in the 534 /// module, but it's not the prevailing variant. Suppose also we do not 535 /// inline it (in fact, if it were interposable, we can't inline it), 536 /// but we could specialize it to the workload in other ways. However, 537 /// the linker would drop it in the favor of the prevailing copy. 538 /// Instead, by importing the prevailing variant (assuming also the use 539 /// of `-avail-extern-to-local`), we keep the specialization. We could 540 /// alteranatively make the non-prevailing variant local, but the 541 /// prevailing one is also the one for which we would have previously 542 /// collected profiles, making it preferrable. 543 auto PrevailingCandidates = llvm::make_filter_range( 544 PotentialCandidates, [&](const auto *Candidate) { 545 return IsPrevailing(VI.getGUID(), Candidate); 546 }); 547 if (PrevailingCandidates.empty()) { 548 GVS = *PotentialCandidates.begin(); 549 if (!llvm::hasSingleElement(PotentialCandidates) && 550 GlobalValue::isLocalLinkage(GVS->linkage())) 551 LLVM_DEBUG( 552 dbgs() 553 << "[Workload] Found multiple non-prevailing candidates for " 554 << VI.name() 555 << ". This is unexpected. Are module paths passed to the " 556 "compiler unique for the modules passed to the linker?"); 557 // We could in theory have multiple (interposable) copies of a symbol 558 // when there is no prevailing candidate, if say the prevailing copy was 559 // in a native object being linked in. However, we should in theory be 560 // marking all of these non-prevailing IR copies dead in that case, in 561 // which case they won't be candidates. 562 assert(GVS->isLive()); 563 } else { 564 assert(llvm::hasSingleElement(PrevailingCandidates)); 565 GVS = *PrevailingCandidates.begin(); 566 } 567 568 auto ExportingModule = GVS->modulePath(); 569 // We checked that for the prevailing case, but if we happen to have for 570 // example an internal that's defined in this module, it'd have no 571 // PrevailingCandidates. 572 if (ExportingModule == ModName) { 573 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 574 << " because its defining module is the same as the " 575 "current module\n"); 576 continue; 577 } 578 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 579 << ExportingModule << " : " 580 << Function::getGUID(VI.name()) << "\n"); 581 ImportList[ExportingModule][VI.getGUID()] = 582 GlobalValueSummary::Definition; 583 GVI.onImportingSummary(*GVS); 584 if (ExportLists) 585 (*ExportLists)[ExportingModule][VI] = GlobalValueSummary::Definition; 586 } 587 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 588 } 589 590 public: 591 WorkloadImportsManager( 592 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 593 IsPrevailing, 594 const ModuleSummaryIndex &Index, 595 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 596 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 597 // Since the workload def uses names, we need a quick lookup 598 // name->ValueInfo. 599 StringMap<ValueInfo> NameToValueInfo; 600 StringSet<> AmbiguousNames; 601 for (auto &I : Index) { 602 ValueInfo VI = Index.getValueInfo(I); 603 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 604 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 605 } 606 auto DbgReportIfAmbiguous = [&](StringRef Name) { 607 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 608 dbgs() << "[Workload] Function name " << Name 609 << " present in the workload definition is ambiguous. Consider " 610 "compiling with -funique-internal-linkage-names."; 611 }); 612 }; 613 std::error_code EC; 614 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 615 if (std::error_code EC = BufferOrErr.getError()) { 616 report_fatal_error("Failed to open context file"); 617 return; 618 } 619 auto Buffer = std::move(BufferOrErr.get()); 620 std::map<std::string, std::vector<std::string>> WorkloadDefs; 621 json::Path::Root NullRoot; 622 // The JSON is supposed to contain a dictionary matching the type of 623 // WorkloadDefs. For example: 624 // { 625 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 626 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 627 // } 628 auto Parsed = json::parse(Buffer->getBuffer()); 629 if (!Parsed) 630 report_fatal_error(Parsed.takeError()); 631 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 632 report_fatal_error("Invalid thinlto contextual profile format."); 633 for (const auto &Workload : WorkloadDefs) { 634 const auto &Root = Workload.first; 635 DbgReportIfAmbiguous(Root); 636 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 637 const auto &AllCallees = Workload.second; 638 auto RootIt = NameToValueInfo.find(Root); 639 if (RootIt == NameToValueInfo.end()) { 640 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 641 << " not found in this linkage unit.\n"); 642 continue; 643 } 644 auto RootVI = RootIt->second; 645 if (RootVI.getSummaryList().size() != 1) { 646 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 647 << " should have exactly one summary, but has " 648 << RootVI.getSummaryList().size() << ". Skipping.\n"); 649 continue; 650 } 651 StringRef RootDefiningModule = 652 RootVI.getSummaryList().front()->modulePath(); 653 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 654 << " is : " << RootDefiningModule << "\n"); 655 auto &Set = Workloads[RootDefiningModule]; 656 for (const auto &Callee : AllCallees) { 657 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 658 DbgReportIfAmbiguous(Callee); 659 auto ElemIt = NameToValueInfo.find(Callee); 660 if (ElemIt == NameToValueInfo.end()) { 661 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 662 continue; 663 } 664 Set.insert(ElemIt->second); 665 } 666 LLVM_DEBUG({ 667 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 668 << " distinct callees.\n"; 669 for (const auto &VI : Set) { 670 dbgs() << "[Workload] Root: " << Root 671 << " Would include: " << VI.getGUID() << "\n"; 672 } 673 }); 674 } 675 } 676 }; 677 678 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 679 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 680 IsPrevailing, 681 const ModuleSummaryIndex &Index, 682 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 683 if (WorkloadDefinitions.empty()) { 684 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 685 return std::unique_ptr<ModuleImportsManager>( 686 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 687 } 688 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 689 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 690 ExportLists); 691 } 692 693 static const char * 694 getFailureName(FunctionImporter::ImportFailureReason Reason) { 695 switch (Reason) { 696 case FunctionImporter::ImportFailureReason::None: 697 return "None"; 698 case FunctionImporter::ImportFailureReason::GlobalVar: 699 return "GlobalVar"; 700 case FunctionImporter::ImportFailureReason::NotLive: 701 return "NotLive"; 702 case FunctionImporter::ImportFailureReason::TooLarge: 703 return "TooLarge"; 704 case FunctionImporter::ImportFailureReason::InterposableLinkage: 705 return "InterposableLinkage"; 706 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 707 return "LocalLinkageNotInModule"; 708 case FunctionImporter::ImportFailureReason::NotEligible: 709 return "NotEligible"; 710 case FunctionImporter::ImportFailureReason::NoInline: 711 return "NoInline"; 712 } 713 llvm_unreachable("invalid reason"); 714 } 715 716 /// Compute the list of functions to import for a given caller. Mark these 717 /// imported functions and the symbols they reference in their source module as 718 /// exported from their source module. 719 static void computeImportForFunction( 720 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 721 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 722 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 723 isPrevailing, 724 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 725 FunctionImporter::ImportMapTy &ImportList, 726 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 727 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 728 GVImporter.onImportingSummary(Summary); 729 static int ImportCount = 0; 730 for (const auto &Edge : Summary.calls()) { 731 ValueInfo VI = Edge.first; 732 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 733 << "\n"); 734 735 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 736 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 737 << " reached.\n"); 738 continue; 739 } 740 741 if (DefinedGVSummaries.count(VI.getGUID())) { 742 // FIXME: Consider not skipping import if the module contains 743 // a non-prevailing def with interposable linkage. The prevailing copy 744 // can safely be imported (see shouldImportGlobal()). 745 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 746 continue; 747 } 748 749 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 750 if (Hotness == CalleeInfo::HotnessType::Hot) 751 return ImportHotMultiplier; 752 if (Hotness == CalleeInfo::HotnessType::Cold) 753 return ImportColdMultiplier; 754 if (Hotness == CalleeInfo::HotnessType::Critical) 755 return ImportCriticalMultiplier; 756 return 1.0; 757 }; 758 759 const auto NewThreshold = 760 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 761 762 auto IT = ImportThresholds.insert(std::make_pair( 763 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 764 bool PreviouslyVisited = !IT.second; 765 auto &ProcessedThreshold = std::get<0>(IT.first->second); 766 auto &CalleeSummary = std::get<1>(IT.first->second); 767 auto &FailureInfo = std::get<2>(IT.first->second); 768 769 bool IsHotCallsite = 770 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 771 bool IsCriticalCallsite = 772 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 773 774 const FunctionSummary *ResolvedCalleeSummary = nullptr; 775 if (CalleeSummary) { 776 assert(PreviouslyVisited); 777 // Since the traversal of the call graph is DFS, we can revisit a function 778 // a second time with a higher threshold. In this case, it is added back 779 // to the worklist with the new threshold (so that its own callee chains 780 // can be considered with the higher threshold). 781 if (NewThreshold <= ProcessedThreshold) { 782 LLVM_DEBUG( 783 dbgs() << "ignored! Target was already imported with Threshold " 784 << ProcessedThreshold << "\n"); 785 continue; 786 } 787 // Update with new larger threshold. 788 ProcessedThreshold = NewThreshold; 789 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 790 } else { 791 // If we already rejected importing a callee at the same or higher 792 // threshold, don't waste time calling selectCallee. 793 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 794 LLVM_DEBUG( 795 dbgs() << "ignored! Target was already rejected with Threshold " 796 << ProcessedThreshold << "\n"); 797 if (PrintImportFailures) { 798 assert(FailureInfo && 799 "Expected FailureInfo for previously rejected candidate"); 800 FailureInfo->Attempts++; 801 } 802 continue; 803 } 804 805 FunctionImporter::ImportFailureReason Reason{}; 806 807 // `SummaryForDeclImport` is an summary eligible for declaration import. 808 const GlobalValueSummary *SummaryForDeclImport = nullptr; 809 CalleeSummary = 810 selectCallee(Index, VI.getSummaryList(), NewThreshold, 811 Summary.modulePath(), SummaryForDeclImport, Reason); 812 if (!CalleeSummary) { 813 // There isn't a callee for definition import but one for declaration 814 // import. 815 if (ImportDeclaration && SummaryForDeclImport) { 816 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 817 818 // Since definition takes precedence over declaration for the same VI, 819 // try emplace <VI, declaration> pair without checking insert result. 820 // If insert doesn't happen, there must be an existing entry keyed by 821 // VI. 822 if (ExportLists) 823 (*ExportLists)[DeclSourceModule].try_emplace( 824 VI, GlobalValueSummary::Declaration); 825 ImportList[DeclSourceModule].try_emplace( 826 VI.getGUID(), GlobalValueSummary::Declaration); 827 } 828 // Update with new larger threshold if this was a retry (otherwise 829 // we would have already inserted with NewThreshold above). Also 830 // update failure info if requested. 831 if (PreviouslyVisited) { 832 ProcessedThreshold = NewThreshold; 833 if (PrintImportFailures) { 834 assert(FailureInfo && 835 "Expected FailureInfo for previously rejected candidate"); 836 FailureInfo->Reason = Reason; 837 FailureInfo->Attempts++; 838 FailureInfo->MaxHotness = 839 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 840 } 841 } else if (PrintImportFailures) { 842 assert(!FailureInfo && 843 "Expected no FailureInfo for newly rejected candidate"); 844 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 845 VI, Edge.second.getHotness(), Reason, 1); 846 } 847 if (ForceImportAll) { 848 std::string Msg = std::string("Failed to import function ") + 849 VI.name().str() + " due to " + 850 getFailureName(Reason); 851 auto Error = make_error<StringError>( 852 Msg, make_error_code(errc::not_supported)); 853 logAllUnhandledErrors(std::move(Error), errs(), 854 "Error importing module: "); 855 break; 856 } else { 857 LLVM_DEBUG(dbgs() 858 << "ignored! No qualifying callee with summary found.\n"); 859 continue; 860 } 861 } 862 863 // "Resolve" the summary 864 CalleeSummary = CalleeSummary->getBaseObject(); 865 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 866 867 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 868 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 869 "selectCallee() didn't honor the threshold"); 870 871 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 872 873 // Try emplace the definition entry, and update stats based on insertion 874 // status. 875 auto [Iter, Inserted] = ImportList[ExportModulePath].try_emplace( 876 VI.getGUID(), GlobalValueSummary::Definition); 877 878 // We previously decided to import this GUID definition if it was already 879 // inserted in the set of imports from the exporting module. 880 if (Inserted || Iter->second == GlobalValueSummary::Declaration) { 881 NumImportedFunctionsThinLink++; 882 if (IsHotCallsite) 883 NumImportedHotFunctionsThinLink++; 884 if (IsCriticalCallsite) 885 NumImportedCriticalFunctionsThinLink++; 886 } 887 888 if (Iter->second == GlobalValueSummary::Declaration) 889 Iter->second = GlobalValueSummary::Definition; 890 891 // Any calls/references made by this function will be marked exported 892 // later, in ComputeCrossModuleImport, after import decisions are 893 // complete, which is more efficient than adding them here. 894 if (ExportLists) 895 (*ExportLists)[ExportModulePath][VI] = GlobalValueSummary::Definition; 896 } 897 898 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 899 // Adjust the threshold for next level of imported functions. 900 // The threshold is different for hot callsites because we can then 901 // inline chains of hot calls. 902 if (IsHotCallsite) 903 return Threshold * ImportHotInstrFactor; 904 return Threshold * ImportInstrFactor; 905 }; 906 907 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 908 909 ImportCount++; 910 911 // Insert the newly imported function to the worklist. 912 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 913 } 914 } 915 916 void ModuleImportsManager::computeImportForModule( 917 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 918 FunctionImporter::ImportMapTy &ImportList) { 919 // Worklist contains the list of function imported in this module, for which 920 // we will analyse the callees and may import further down the callgraph. 921 SmallVector<EdgeInfo, 128> Worklist; 922 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 923 ExportLists); 924 FunctionImporter::ImportThresholdsTy ImportThresholds; 925 926 // Populate the worklist with the import for the functions in the current 927 // module 928 for (const auto &GVSummary : DefinedGVSummaries) { 929 #ifndef NDEBUG 930 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 931 // so this map look up (and possibly others) can be avoided. 932 auto VI = Index.getValueInfo(GVSummary.first); 933 #endif 934 if (!Index.isGlobalValueLive(GVSummary.second)) { 935 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 936 continue; 937 } 938 auto *FuncSummary = 939 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 940 if (!FuncSummary) 941 // Skip import for global variables 942 continue; 943 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 944 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 945 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 946 ImportList, ExportLists, ImportThresholds); 947 } 948 949 // Process the newly imported functions and add callees to the worklist. 950 while (!Worklist.empty()) { 951 auto GVInfo = Worklist.pop_back_val(); 952 auto *Summary = std::get<0>(GVInfo); 953 auto Threshold = std::get<1>(GVInfo); 954 955 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 956 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 957 IsPrevailing, Worklist, GVI, ImportList, 958 ExportLists, ImportThresholds); 959 } 960 961 // Print stats about functions considered but rejected for importing 962 // when requested. 963 if (PrintImportFailures) { 964 dbgs() << "Missed imports into module " << ModName << "\n"; 965 for (auto &I : ImportThresholds) { 966 auto &ProcessedThreshold = std::get<0>(I.second); 967 auto &CalleeSummary = std::get<1>(I.second); 968 auto &FailureInfo = std::get<2>(I.second); 969 if (CalleeSummary) 970 continue; // We are going to import. 971 assert(FailureInfo); 972 FunctionSummary *FS = nullptr; 973 if (!FailureInfo->VI.getSummaryList().empty()) 974 FS = dyn_cast<FunctionSummary>( 975 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 976 dbgs() << FailureInfo->VI 977 << ": Reason = " << getFailureName(FailureInfo->Reason) 978 << ", Threshold = " << ProcessedThreshold 979 << ", Size = " << (FS ? (int)FS->instCount() : -1) 980 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 981 << ", Attempts = " << FailureInfo->Attempts << "\n"; 982 } 983 } 984 } 985 986 #ifndef NDEBUG 987 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 988 auto SL = VI.getSummaryList(); 989 return SL.empty() 990 ? false 991 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 992 } 993 994 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 995 GlobalValue::GUID G) { 996 if (const auto &VI = Index.getValueInfo(G)) 997 return isGlobalVarSummary(Index, VI); 998 return false; 999 } 1000 1001 template <class T> 1002 static unsigned numGlobalVarSummaries(const ModuleSummaryIndex &Index, T &Cont, 1003 unsigned &DefinedGVS, 1004 unsigned &DefinedFS) { 1005 unsigned NumGVS = 0; 1006 DefinedGVS = 0; 1007 DefinedFS = 0; 1008 for (auto &[GUID, Type] : Cont) { 1009 if (isGlobalVarSummary(Index, GUID)) { 1010 if (Type == GlobalValueSummary::Definition) 1011 ++DefinedGVS; 1012 ++NumGVS; 1013 } else if (Type == GlobalValueSummary::Definition) 1014 ++DefinedFS; 1015 } 1016 return NumGVS; 1017 } 1018 #endif 1019 1020 #ifndef NDEBUG 1021 static bool checkVariableImport( 1022 const ModuleSummaryIndex &Index, 1023 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1024 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1025 DenseSet<GlobalValue::GUID> FlattenedImports; 1026 1027 for (auto &ImportPerModule : ImportLists) 1028 for (auto &ExportPerModule : ImportPerModule.second) 1029 for (auto &[GUID, Type] : ExportPerModule.second) 1030 FlattenedImports.insert(GUID); 1031 1032 // Checks that all GUIDs of read/writeonly vars we see in export lists 1033 // are also in the import lists. Otherwise we my face linker undefs, 1034 // because readonly and writeonly vars are internalized in their 1035 // source modules. The exception would be if it has a linkage type indicating 1036 // that there may have been a copy existing in the importing module (e.g. 1037 // linkonce_odr). In that case we cannot accurately do this checking. 1038 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1039 const ValueInfo &VI) { 1040 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1041 Index.findSummaryInModule(VI, ModulePath)); 1042 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1043 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1044 GVS->linkage() == GlobalValue::WeakODRLinkage || 1045 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1046 }; 1047 1048 for (auto &ExportPerModule : ExportLists) 1049 for (auto &[VI, Unused] : ExportPerModule.second) 1050 if (!FlattenedImports.count(VI.getGUID()) && 1051 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1052 return false; 1053 1054 return true; 1055 } 1056 #endif 1057 1058 /// Compute all the import and export for every module using the Index. 1059 void llvm::ComputeCrossModuleImport( 1060 const ModuleSummaryIndex &Index, 1061 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1062 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1063 isPrevailing, 1064 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1065 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1066 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1067 // For each module that has function defined, compute the import/export lists. 1068 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1069 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1070 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1071 << DefinedGVSummaries.first << "'\n"); 1072 MIS->computeImportForModule(DefinedGVSummaries.second, 1073 DefinedGVSummaries.first, ImportList); 1074 } 1075 1076 // When computing imports we only added the variables and functions being 1077 // imported to the export list. We also need to mark any references and calls 1078 // they make as exported as well. We do this here, as it is more efficient 1079 // since we may import the same values multiple times into different modules 1080 // during the import computation. 1081 for (auto &ELI : ExportLists) { 1082 FunctionImporter::ExportSetTy NewExports; 1083 const auto &DefinedGVSummaries = 1084 ModuleToDefinedGVSummaries.lookup(ELI.first); 1085 for (auto &[EI, Type] : ELI.second) { 1086 // If a variable is exported as a declaration, its 'refs' and 'calls' are 1087 // not further exported. 1088 if (Type == GlobalValueSummary::Declaration) 1089 continue; 1090 // Find the copy defined in the exporting module so that we can mark the 1091 // values it references in that specific definition as exported. 1092 // Below we will add all references and called values, without regard to 1093 // whether they are also defined in this module. We subsequently prune the 1094 // list to only include those defined in the exporting module, see comment 1095 // there as to why. 1096 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1097 // Anything marked exported during the import computation must have been 1098 // defined in the exporting module. 1099 assert(DS != DefinedGVSummaries.end()); 1100 auto *S = DS->getSecond(); 1101 S = S->getBaseObject(); 1102 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1103 // Export referenced functions and variables. We don't export/promote 1104 // objects referenced by writeonly variable initializer, because 1105 // we convert such variables initializers to "zeroinitializer". 1106 // See processGlobalForThinLTO. 1107 if (!Index.isWriteOnly(GVS)) 1108 for (const auto &VI : GVS->refs()) { 1109 // Try to emplace the declaration entry. If a definition entry 1110 // already exists for key `VI`, this is a no-op. 1111 NewExports.try_emplace(VI, GlobalValueSummary::Declaration); 1112 } 1113 } else { 1114 auto *FS = cast<FunctionSummary>(S); 1115 for (const auto &Edge : FS->calls()) { 1116 // Try to emplace the declaration entry. If a definition entry 1117 // already exists for key `VI`, this is a no-op. 1118 NewExports.try_emplace(Edge.first, GlobalValueSummary::Declaration); 1119 } 1120 for (const auto &Ref : FS->refs()) { 1121 // Try to emplace the declaration entry. If a definition entry 1122 // already exists for key `VI`, this is a no-op. 1123 NewExports.try_emplace(Ref, GlobalValueSummary::Declaration); 1124 } 1125 } 1126 } 1127 // Prune list computed above to only include values defined in the 1128 // exporting module. We do this after the above insertion since we may hit 1129 // the same ref/call target multiple times in above loop, and it is more 1130 // efficient to avoid a set lookup each time. 1131 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1132 if (!DefinedGVSummaries.count(EI->first.getGUID())) 1133 NewExports.erase(EI++); 1134 else 1135 ++EI; 1136 } 1137 ELI.second.insert(NewExports.begin(), NewExports.end()); 1138 } 1139 1140 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1141 #ifndef NDEBUG 1142 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1143 << " modules:\n"); 1144 for (auto &ModuleImports : ImportLists) { 1145 auto ModName = ModuleImports.first; 1146 auto &Exports = ExportLists[ModName]; 1147 unsigned DefinedGVS = 0, DefinedFS = 0; 1148 unsigned NumGVS = 1149 numGlobalVarSummaries(Index, Exports, DefinedGVS, DefinedFS); 1150 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " << DefinedFS 1151 << " function as definitions, " 1152 << Exports.size() - NumGVS - DefinedFS 1153 << " functions as declarations, " << DefinedGVS 1154 << " var definitions and " << NumGVS - DefinedGVS 1155 << " var declarations. Imports from " 1156 << ModuleImports.second.size() << " modules.\n"); 1157 for (auto &Src : ModuleImports.second) { 1158 auto SrcModName = Src.first; 1159 unsigned DefinedGVS = 0, DefinedFS = 0; 1160 unsigned NumGVSPerMod = 1161 numGlobalVarSummaries(Index, Src.second, DefinedGVS, DefinedFS); 1162 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1163 << Src.second.size() - NumGVSPerMod - DefinedFS 1164 << " function declarations imported from " << SrcModName 1165 << "\n"); 1166 LLVM_DEBUG(dbgs() << " - " << DefinedGVS << " global vars definition and " 1167 << NumGVSPerMod - DefinedGVS 1168 << " global vars declaration imported from " 1169 << SrcModName << "\n"); 1170 } 1171 } 1172 #endif 1173 } 1174 1175 #ifndef NDEBUG 1176 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1177 StringRef ModulePath, 1178 FunctionImporter::ImportMapTy &ImportList) { 1179 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1180 << ImportList.size() << " modules.\n"); 1181 for (auto &Src : ImportList) { 1182 auto SrcModName = Src.first; 1183 unsigned DefinedGVS = 0, DefinedFS = 0; 1184 unsigned NumGVSPerMod = 1185 numGlobalVarSummaries(Index, Src.second, DefinedGVS, DefinedFS); 1186 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1187 << Src.second.size() - DefinedFS - NumGVSPerMod 1188 << " function declarations imported from " << SrcModName 1189 << "\n"); 1190 LLVM_DEBUG(dbgs() << " - " << DefinedGVS << " var definitions and " 1191 << NumGVSPerMod - DefinedGVS 1192 << " var declarations imported from " << SrcModName 1193 << "\n"); 1194 } 1195 } 1196 #endif 1197 1198 /// Compute all the imports for the given module using the Index. 1199 /// 1200 /// \p isPrevailing is a callback that will be called with a global value's GUID 1201 /// and summary and should return whether the module corresponding to the 1202 /// summary contains the linker-prevailing copy of that value. 1203 /// 1204 /// \p ImportList will be populated with a map that can be passed to 1205 /// FunctionImporter::importFunctions() above (see description there). 1206 static void ComputeCrossModuleImportForModuleForTest( 1207 StringRef ModulePath, 1208 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1209 isPrevailing, 1210 const ModuleSummaryIndex &Index, 1211 FunctionImporter::ImportMapTy &ImportList) { 1212 // Collect the list of functions this module defines. 1213 // GUID -> Summary 1214 GVSummaryMapTy FunctionSummaryMap; 1215 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1216 1217 // Compute the import list for this module. 1218 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1219 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1220 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1221 1222 #ifndef NDEBUG 1223 dumpImportListForModule(Index, ModulePath, ImportList); 1224 #endif 1225 } 1226 1227 /// Mark all external summaries in \p Index for import into the given module. 1228 /// Used for testing the case of distributed builds using a distributed index. 1229 /// 1230 /// \p ImportList will be populated with a map that can be passed to 1231 /// FunctionImporter::importFunctions() above (see description there). 1232 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1233 StringRef ModulePath, const ModuleSummaryIndex &Index, 1234 FunctionImporter::ImportMapTy &ImportList) { 1235 for (const auto &GlobalList : Index) { 1236 // Ignore entries for undefined references. 1237 if (GlobalList.second.SummaryList.empty()) 1238 continue; 1239 1240 auto GUID = GlobalList.first; 1241 assert(GlobalList.second.SummaryList.size() == 1 && 1242 "Expected individual combined index to have one summary per GUID"); 1243 auto &Summary = GlobalList.second.SummaryList[0]; 1244 // Skip the summaries for the importing module. These are included to 1245 // e.g. record required linkage changes. 1246 if (Summary->modulePath() == ModulePath) 1247 continue; 1248 // Add an entry to provoke importing by thinBackend. 1249 auto [Iter, Inserted] = ImportList[Summary->modulePath()].try_emplace( 1250 GUID, Summary->importType()); 1251 if (!Inserted) { 1252 // Use 'std::min' to make sure definition (with enum value 0) takes 1253 // precedence over declaration (with enum value 1). 1254 Iter->second = std::min(Iter->second, Summary->importType()); 1255 } 1256 } 1257 #ifndef NDEBUG 1258 dumpImportListForModule(Index, ModulePath, ImportList); 1259 #endif 1260 } 1261 1262 // For SamplePGO, the indirect call targets for local functions will 1263 // have its original name annotated in profile. We try to find the 1264 // corresponding PGOFuncName as the GUID, and fix up the edges 1265 // accordingly. 1266 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1267 FunctionSummary *FS) { 1268 for (auto &EI : FS->mutableCalls()) { 1269 if (!EI.first.getSummaryList().empty()) 1270 continue; 1271 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1272 if (GUID == 0) 1273 continue; 1274 // Update the edge to point directly to the correct GUID. 1275 auto VI = Index.getValueInfo(GUID); 1276 if (llvm::any_of( 1277 VI.getSummaryList(), 1278 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1279 // The mapping from OriginalId to GUID may return a GUID 1280 // that corresponds to a static variable. Filter it out here. 1281 // This can happen when 1282 // 1) There is a call to a library function which is not defined 1283 // in the index. 1284 // 2) There is a static variable with the OriginalGUID identical 1285 // to the GUID of the library function in 1); 1286 // When this happens the static variable in 2) will be found, 1287 // which needs to be filtered out. 1288 return SummaryPtr->getSummaryKind() == 1289 GlobalValueSummary::GlobalVarKind; 1290 })) 1291 continue; 1292 EI.first = VI; 1293 } 1294 } 1295 1296 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1297 for (const auto &Entry : Index) { 1298 for (const auto &S : Entry.second.SummaryList) { 1299 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1300 updateValueInfoForIndirectCalls(Index, FS); 1301 } 1302 } 1303 } 1304 1305 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1306 ModuleSummaryIndex &Index, 1307 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1308 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1309 assert(!Index.withGlobalValueDeadStripping()); 1310 if (!ComputeDead || 1311 // Don't do anything when nothing is live, this is friendly with tests. 1312 GUIDPreservedSymbols.empty()) { 1313 // Still need to update indirect calls. 1314 updateIndirectCalls(Index); 1315 return; 1316 } 1317 unsigned LiveSymbols = 0; 1318 SmallVector<ValueInfo, 128> Worklist; 1319 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1320 for (auto GUID : GUIDPreservedSymbols) { 1321 ValueInfo VI = Index.getValueInfo(GUID); 1322 if (!VI) 1323 continue; 1324 for (const auto &S : VI.getSummaryList()) 1325 S->setLive(true); 1326 } 1327 1328 // Add values flagged in the index as live roots to the worklist. 1329 for (const auto &Entry : Index) { 1330 auto VI = Index.getValueInfo(Entry); 1331 for (const auto &S : Entry.second.SummaryList) { 1332 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1333 updateValueInfoForIndirectCalls(Index, FS); 1334 if (S->isLive()) { 1335 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1336 Worklist.push_back(VI); 1337 ++LiveSymbols; 1338 break; 1339 } 1340 } 1341 } 1342 1343 // Make value live and add it to the worklist if it was not live before. 1344 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1345 // FIXME: If we knew which edges were created for indirect call profiles, 1346 // we could skip them here. Any that are live should be reached via 1347 // other edges, e.g. reference edges. Otherwise, using a profile collected 1348 // on a slightly different binary might provoke preserving, importing 1349 // and ultimately promoting calls to functions not linked into this 1350 // binary, which increases the binary size unnecessarily. Note that 1351 // if this code changes, the importer needs to change so that edges 1352 // to functions marked dead are skipped. 1353 1354 if (llvm::any_of(VI.getSummaryList(), 1355 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1356 return S->isLive(); 1357 })) 1358 return; 1359 1360 // We only keep live symbols that are known to be non-prevailing if any are 1361 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1362 // later in the EliminateAvailableExternally pass and setting them to 1363 // not-live could break downstreams users of liveness information (PR36483) 1364 // or limit optimization opportunities. 1365 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1366 bool KeepAliveLinkage = false; 1367 bool Interposable = false; 1368 for (const auto &S : VI.getSummaryList()) { 1369 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1370 S->linkage() == GlobalValue::WeakODRLinkage || 1371 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1372 KeepAliveLinkage = true; 1373 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1374 Interposable = true; 1375 } 1376 1377 if (!IsAliasee) { 1378 if (!KeepAliveLinkage) 1379 return; 1380 1381 if (Interposable) 1382 report_fatal_error( 1383 "Interposable and available_externally/linkonce_odr/weak_odr " 1384 "symbol"); 1385 } 1386 } 1387 1388 for (const auto &S : VI.getSummaryList()) 1389 S->setLive(true); 1390 ++LiveSymbols; 1391 Worklist.push_back(VI); 1392 }; 1393 1394 while (!Worklist.empty()) { 1395 auto VI = Worklist.pop_back_val(); 1396 for (const auto &Summary : VI.getSummaryList()) { 1397 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1398 // If this is an alias, visit the aliasee VI to ensure that all copies 1399 // are marked live and it is added to the worklist for further 1400 // processing of its references. 1401 visit(AS->getAliaseeVI(), true); 1402 continue; 1403 } 1404 for (auto Ref : Summary->refs()) 1405 visit(Ref, false); 1406 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1407 for (auto Call : FS->calls()) 1408 visit(Call.first, false); 1409 } 1410 } 1411 Index.setWithGlobalValueDeadStripping(); 1412 1413 unsigned DeadSymbols = Index.size() - LiveSymbols; 1414 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1415 << " symbols Dead \n"); 1416 NumDeadSymbols += DeadSymbols; 1417 NumLiveSymbols += LiveSymbols; 1418 } 1419 1420 // Compute dead symbols and propagate constants in combined index. 1421 void llvm::computeDeadSymbolsWithConstProp( 1422 ModuleSummaryIndex &Index, 1423 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1424 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1425 bool ImportEnabled) { 1426 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1427 isPrevailing); 1428 if (ImportEnabled) 1429 Index.propagateAttributes(GUIDPreservedSymbols); 1430 } 1431 1432 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1433 /// \p ModulePath. 1434 void llvm::gatherImportedSummariesForModule( 1435 StringRef ModulePath, 1436 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1437 const FunctionImporter::ImportMapTy &ImportList, 1438 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1439 // Include all summaries from the importing module. 1440 ModuleToSummariesForIndex[std::string(ModulePath)] = 1441 ModuleToDefinedGVSummaries.lookup(ModulePath); 1442 // Include summaries for imports. 1443 for (const auto &ILI : ImportList) { 1444 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1445 1446 const auto &DefinedGVSummaries = 1447 ModuleToDefinedGVSummaries.lookup(ILI.first); 1448 for (const auto &[GUID, Type] : ILI.second) { 1449 const auto &DS = DefinedGVSummaries.find(GUID); 1450 assert(DS != DefinedGVSummaries.end() && 1451 "Expected a defined summary for imported global value"); 1452 if (Type == GlobalValueSummary::Declaration) 1453 continue; 1454 1455 SummariesForIndex[GUID] = DS->second; 1456 } 1457 } 1458 } 1459 1460 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1461 std::error_code llvm::EmitImportsFiles( 1462 StringRef ModulePath, StringRef OutputFilename, 1463 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1464 std::error_code EC; 1465 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1466 if (EC) 1467 return EC; 1468 for (const auto &ILI : ModuleToSummariesForIndex) 1469 // The ModuleToSummariesForIndex map includes an entry for the current 1470 // Module (needed for writing out the index files). We don't want to 1471 // include it in the imports file, however, so filter it out. 1472 if (ILI.first != ModulePath) 1473 ImportsOS << ILI.first << "\n"; 1474 return std::error_code(); 1475 } 1476 1477 bool llvm::convertToDeclaration(GlobalValue &GV) { 1478 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1479 << "\n"); 1480 if (Function *F = dyn_cast<Function>(&GV)) { 1481 F->deleteBody(); 1482 F->clearMetadata(); 1483 F->setComdat(nullptr); 1484 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1485 V->setInitializer(nullptr); 1486 V->setLinkage(GlobalValue::ExternalLinkage); 1487 V->clearMetadata(); 1488 V->setComdat(nullptr); 1489 } else { 1490 GlobalValue *NewGV; 1491 if (GV.getValueType()->isFunctionTy()) 1492 NewGV = 1493 Function::Create(cast<FunctionType>(GV.getValueType()), 1494 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1495 "", GV.getParent()); 1496 else 1497 NewGV = 1498 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1499 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1500 /*init*/ nullptr, "", 1501 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1502 GV.getType()->getAddressSpace()); 1503 NewGV->takeName(&GV); 1504 GV.replaceAllUsesWith(NewGV); 1505 return false; 1506 } 1507 if (!GV.isImplicitDSOLocal()) 1508 GV.setDSOLocal(false); 1509 return true; 1510 } 1511 1512 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1513 const GVSummaryMapTy &DefinedGlobals, 1514 bool PropagateAttrs) { 1515 DenseSet<Comdat *> NonPrevailingComdats; 1516 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1517 // See if the global summary analysis computed a new resolved linkage. 1518 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1519 if (GS == DefinedGlobals.end()) 1520 return; 1521 1522 if (Propagate) 1523 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1524 if (Function *F = dyn_cast<Function>(&GV)) { 1525 // TODO: propagate ReadNone and ReadOnly. 1526 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1527 F->setDoesNotAccessMemory(); 1528 1529 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1530 F->setOnlyReadsMemory(); 1531 1532 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1533 F->setDoesNotRecurse(); 1534 1535 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1536 F->setDoesNotThrow(); 1537 } 1538 } 1539 1540 auto NewLinkage = GS->second->linkage(); 1541 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1542 // Don't internalize anything here, because the code below 1543 // lacks necessary correctness checks. Leave this job to 1544 // LLVM 'internalize' pass. 1545 GlobalValue::isLocalLinkage(NewLinkage) || 1546 // In case it was dead and already converted to declaration. 1547 GV.isDeclaration()) 1548 return; 1549 1550 // Set the potentially more constraining visibility computed from summaries. 1551 // The DefaultVisibility condition is because older GlobalValueSummary does 1552 // not record DefaultVisibility and we don't want to change protected/hidden 1553 // to default. 1554 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1555 GV.setVisibility(GS->second->getVisibility()); 1556 1557 if (NewLinkage == GV.getLinkage()) 1558 return; 1559 1560 // Check for a non-prevailing def that has interposable linkage 1561 // (e.g. non-odr weak or linkonce). In that case we can't simply 1562 // convert to available_externally, since it would lose the 1563 // interposable property and possibly get inlined. Simply drop 1564 // the definition in that case. 1565 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1566 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1567 if (!convertToDeclaration(GV)) 1568 // FIXME: Change this to collect replaced GVs and later erase 1569 // them from the parent module once thinLTOResolvePrevailingGUID is 1570 // changed to enable this for aliases. 1571 llvm_unreachable("Expected GV to be converted"); 1572 } else { 1573 // If all copies of the original symbol had global unnamed addr and 1574 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1575 // and are constants, then it should be an auto hide symbol. In that case 1576 // the thin link would have marked it as CanAutoHide. Add hidden 1577 // visibility to the symbol to preserve the property. 1578 if (NewLinkage == GlobalValue::WeakODRLinkage && 1579 GS->second->canAutoHide()) { 1580 assert(GV.canBeOmittedFromSymbolTable()); 1581 GV.setVisibility(GlobalValue::HiddenVisibility); 1582 } 1583 1584 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1585 << "` from " << GV.getLinkage() << " to " << NewLinkage 1586 << "\n"); 1587 GV.setLinkage(NewLinkage); 1588 } 1589 // Remove declarations from comdats, including available_externally 1590 // as this is a declaration for the linker, and will be dropped eventually. 1591 // It is illegal for comdats to contain declarations. 1592 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1593 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1594 if (GO->getComdat()->getName() == GO->getName()) 1595 NonPrevailingComdats.insert(GO->getComdat()); 1596 GO->setComdat(nullptr); 1597 } 1598 }; 1599 1600 // Process functions and global now 1601 for (auto &GV : TheModule) 1602 FinalizeInModule(GV, PropagateAttrs); 1603 for (auto &GV : TheModule.globals()) 1604 FinalizeInModule(GV); 1605 for (auto &GV : TheModule.aliases()) 1606 FinalizeInModule(GV); 1607 1608 // For a non-prevailing comdat, all its members must be available_externally. 1609 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1610 // local linkage GlobalValues. 1611 if (NonPrevailingComdats.empty()) 1612 return; 1613 for (auto &GO : TheModule.global_objects()) { 1614 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1615 GO.setComdat(nullptr); 1616 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1617 } 1618 } 1619 bool Changed; 1620 do { 1621 Changed = false; 1622 // If an alias references a GlobalValue in a non-prevailing comdat, change 1623 // it to available_externally. For simplicity we only handle GlobalValue and 1624 // ConstantExpr with a base object. ConstantExpr without a base object is 1625 // unlikely used in a COMDAT. 1626 for (auto &GA : TheModule.aliases()) { 1627 if (GA.hasAvailableExternallyLinkage()) 1628 continue; 1629 GlobalObject *Obj = GA.getAliaseeObject(); 1630 assert(Obj && "aliasee without an base object is unimplemented"); 1631 if (Obj->hasAvailableExternallyLinkage()) { 1632 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1633 Changed = true; 1634 } 1635 } 1636 } while (Changed); 1637 } 1638 1639 /// Run internalization on \p TheModule based on symmary analysis. 1640 void llvm::thinLTOInternalizeModule(Module &TheModule, 1641 const GVSummaryMapTy &DefinedGlobals) { 1642 // Declare a callback for the internalize pass that will ask for every 1643 // candidate GlobalValue if it can be internalized or not. 1644 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1645 // It may be the case that GV is on a chain of an ifunc, its alias and 1646 // subsequent aliases. In this case, the summary for the value is not 1647 // available. 1648 if (isa<GlobalIFunc>(&GV) || 1649 (isa<GlobalAlias>(&GV) && 1650 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1651 return true; 1652 1653 // Lookup the linkage recorded in the summaries during global analysis. 1654 auto GS = DefinedGlobals.find(GV.getGUID()); 1655 if (GS == DefinedGlobals.end()) { 1656 // Must have been promoted (possibly conservatively). Find original 1657 // name so that we can access the correct summary and see if it can 1658 // be internalized again. 1659 // FIXME: Eventually we should control promotion instead of promoting 1660 // and internalizing again. 1661 StringRef OrigName = 1662 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1663 std::string OrigId = GlobalValue::getGlobalIdentifier( 1664 OrigName, GlobalValue::InternalLinkage, 1665 TheModule.getSourceFileName()); 1666 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1667 if (GS == DefinedGlobals.end()) { 1668 // Also check the original non-promoted non-globalized name. In some 1669 // cases a preempted weak value is linked in as a local copy because 1670 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1671 // In that case, since it was originally not a local value, it was 1672 // recorded in the index using the original name. 1673 // FIXME: This may not be needed once PR27866 is fixed. 1674 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1675 assert(GS != DefinedGlobals.end()); 1676 } 1677 } 1678 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1679 }; 1680 1681 // FIXME: See if we can just internalize directly here via linkage changes 1682 // based on the index, rather than invoking internalizeModule. 1683 internalizeModule(TheModule, MustPreserveGV); 1684 } 1685 1686 /// Make alias a clone of its aliasee. 1687 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1688 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1689 1690 ValueToValueMapTy VMap; 1691 Function *NewFn = CloneFunction(Fn, VMap); 1692 // Clone should use the original alias's linkage, visibility and name, and we 1693 // ensure all uses of alias instead use the new clone (casted if necessary). 1694 NewFn->setLinkage(GA->getLinkage()); 1695 NewFn->setVisibility(GA->getVisibility()); 1696 GA->replaceAllUsesWith(NewFn); 1697 NewFn->takeName(GA); 1698 return NewFn; 1699 } 1700 1701 // Internalize values that we marked with specific attribute 1702 // in processGlobalForThinLTO. 1703 static void internalizeGVsAfterImport(Module &M) { 1704 for (auto &GV : M.globals()) 1705 // Skip GVs which have been converted to declarations 1706 // by dropDeadSymbols. 1707 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1708 GV.setLinkage(GlobalValue::InternalLinkage); 1709 GV.setVisibility(GlobalValue::DefaultVisibility); 1710 } 1711 } 1712 1713 // Automatically import functions in Module \p DestModule based on the summaries 1714 // index. 1715 Expected<bool> FunctionImporter::importFunctions( 1716 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1717 LLVM_DEBUG(dbgs() << "Starting import for Module " 1718 << DestModule.getModuleIdentifier() << "\n"); 1719 unsigned ImportedCount = 0, ImportedGVCount = 0; 1720 1721 IRMover Mover(DestModule); 1722 // Do the actual import of functions now, one Module at a time 1723 std::set<StringRef> ModuleNameOrderedList; 1724 for (const auto &FunctionsToImportPerModule : ImportList) { 1725 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1726 } 1727 1728 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1729 GlobalValue::GUID GUID) 1730 -> std::optional<GlobalValueSummary::ImportKind> { 1731 auto Iter = GUIDToImportType.find(GUID); 1732 if (Iter == GUIDToImportType.end()) 1733 return std::nullopt; 1734 return Iter->second; 1735 }; 1736 1737 for (const auto &Name : ModuleNameOrderedList) { 1738 // Get the module for the import 1739 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1740 assert(FunctionsToImportPerModule != ImportList.end()); 1741 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1742 if (!SrcModuleOrErr) 1743 return SrcModuleOrErr.takeError(); 1744 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1745 assert(&DestModule.getContext() == &SrcModule->getContext() && 1746 "Context mismatch"); 1747 1748 // If modules were created with lazy metadata loading, materialize it 1749 // now, before linking it (otherwise this will be a noop). 1750 if (Error Err = SrcModule->materializeMetadata()) 1751 return std::move(Err); 1752 1753 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1754 1755 // Find the globals to import 1756 SetVector<GlobalValue *> GlobalsToImport; 1757 for (Function &F : *SrcModule) { 1758 if (!F.hasName()) 1759 continue; 1760 auto GUID = F.getGUID(); 1761 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1762 1763 bool ImportDefinition = 1764 (MaybeImportType && 1765 (*MaybeImportType == GlobalValueSummary::Definition)); 1766 1767 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1768 << " importing function" 1769 << (ImportDefinition 1770 ? " definition " 1771 : (MaybeImportType ? " declaration " : " ")) 1772 << GUID << " " << F.getName() << " from " 1773 << SrcModule->getSourceFileName() << "\n"); 1774 if (ImportDefinition) { 1775 if (Error Err = F.materialize()) 1776 return std::move(Err); 1777 // MemProf should match function's definition and summary, 1778 // 'thinlto_src_module' is needed. 1779 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1780 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1781 // statistics and debugging. 1782 F.setMetadata( 1783 "thinlto_src_module", 1784 MDNode::get(DestModule.getContext(), 1785 {MDString::get(DestModule.getContext(), 1786 SrcModule->getModuleIdentifier())})); 1787 F.setMetadata( 1788 "thinlto_src_file", 1789 MDNode::get(DestModule.getContext(), 1790 {MDString::get(DestModule.getContext(), 1791 SrcModule->getSourceFileName())})); 1792 } 1793 GlobalsToImport.insert(&F); 1794 } 1795 } 1796 for (GlobalVariable &GV : SrcModule->globals()) { 1797 if (!GV.hasName()) 1798 continue; 1799 auto GUID = GV.getGUID(); 1800 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1801 1802 bool ImportDefinition = 1803 (MaybeImportType && 1804 (*MaybeImportType == GlobalValueSummary::Definition)); 1805 1806 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1807 << " importing global" 1808 << (ImportDefinition 1809 ? " definition " 1810 : (MaybeImportType ? " declaration " : " ")) 1811 << GUID << " " << GV.getName() << " from " 1812 << SrcModule->getSourceFileName() << "\n"); 1813 if (ImportDefinition) { 1814 if (Error Err = GV.materialize()) 1815 return std::move(Err); 1816 ImportedGVCount += GlobalsToImport.insert(&GV); 1817 } 1818 } 1819 for (GlobalAlias &GA : SrcModule->aliases()) { 1820 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1821 continue; 1822 auto GUID = GA.getGUID(); 1823 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1824 1825 bool ImportDefinition = 1826 (MaybeImportType && 1827 (*MaybeImportType == GlobalValueSummary::Definition)); 1828 1829 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1830 << " importing alias" 1831 << (ImportDefinition 1832 ? " definition " 1833 : (MaybeImportType ? " declaration " : " ")) 1834 << GUID << " " << GA.getName() << " from " 1835 << SrcModule->getSourceFileName() << "\n"); 1836 if (ImportDefinition) { 1837 if (Error Err = GA.materialize()) 1838 return std::move(Err); 1839 // Import alias as a copy of its aliasee. 1840 GlobalObject *GO = GA.getAliaseeObject(); 1841 if (Error Err = GO->materialize()) 1842 return std::move(Err); 1843 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1844 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1845 << GO->getName() << " from " 1846 << SrcModule->getSourceFileName() << "\n"); 1847 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1848 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1849 // statistics and debugging. 1850 Fn->setMetadata( 1851 "thinlto_src_module", 1852 MDNode::get(DestModule.getContext(), 1853 {MDString::get(DestModule.getContext(), 1854 SrcModule->getModuleIdentifier())})); 1855 Fn->setMetadata( 1856 "thinlto_src_file", 1857 MDNode::get(DestModule.getContext(), 1858 {MDString::get(DestModule.getContext(), 1859 SrcModule->getSourceFileName())})); 1860 } 1861 GlobalsToImport.insert(Fn); 1862 } 1863 } 1864 1865 // Upgrade debug info after we're done materializing all the globals and we 1866 // have loaded all the required metadata! 1867 UpgradeDebugInfo(*SrcModule); 1868 1869 // Set the partial sample profile ratio in the profile summary module flag 1870 // of the imported source module, if applicable, so that the profile summary 1871 // module flag will match with that of the destination module when it's 1872 // imported. 1873 SrcModule->setPartialSampleProfileRatio(Index); 1874 1875 // Link in the specified functions. 1876 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1877 &GlobalsToImport)) 1878 return true; 1879 1880 if (PrintImports) { 1881 for (const auto *GV : GlobalsToImport) 1882 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1883 << " from " << SrcModule->getSourceFileName() << "\n"; 1884 } 1885 1886 if (Error Err = Mover.move(std::move(SrcModule), 1887 GlobalsToImport.getArrayRef(), nullptr, 1888 /*IsPerformingImport=*/true)) 1889 return createStringError(errc::invalid_argument, 1890 Twine("Function Import: link error: ") + 1891 toString(std::move(Err))); 1892 1893 ImportedCount += GlobalsToImport.size(); 1894 NumImportedModules++; 1895 } 1896 1897 internalizeGVsAfterImport(DestModule); 1898 1899 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1900 NumImportedGlobalVars += ImportedGVCount; 1901 1902 // TODO: Print counters for definitions and declarations in the debugging log. 1903 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1904 << " functions for Module " 1905 << DestModule.getModuleIdentifier() << "\n"); 1906 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1907 << " global variables for Module " 1908 << DestModule.getModuleIdentifier() << "\n"); 1909 return ImportedCount; 1910 } 1911 1912 static bool doImportingForModuleForTest( 1913 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1914 isPrevailing) { 1915 if (SummaryFile.empty()) 1916 report_fatal_error("error: -function-import requires -summary-file\n"); 1917 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1918 getModuleSummaryIndexForFile(SummaryFile); 1919 if (!IndexPtrOrErr) { 1920 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1921 "Error loading file '" + SummaryFile + "': "); 1922 return false; 1923 } 1924 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1925 1926 // First step is collecting the import list. 1927 FunctionImporter::ImportMapTy ImportList; 1928 // If requested, simply import all functions in the index. This is used 1929 // when testing distributed backend handling via the opt tool, when 1930 // we have distributed indexes containing exactly the summaries to import. 1931 if (ImportAllIndex) 1932 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1933 *Index, ImportList); 1934 else 1935 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1936 isPrevailing, *Index, ImportList); 1937 1938 // Conservatively mark all internal values as promoted. This interface is 1939 // only used when doing importing via the function importing pass. The pass 1940 // is only enabled when testing importing via the 'opt' tool, which does 1941 // not do the ThinLink that would normally determine what values to promote. 1942 for (auto &I : *Index) { 1943 for (auto &S : I.second.SummaryList) { 1944 if (GlobalValue::isLocalLinkage(S->linkage())) 1945 S->setLinkage(GlobalValue::ExternalLinkage); 1946 } 1947 } 1948 1949 // Next we need to promote to global scope and rename any local values that 1950 // are potentially exported to other modules. 1951 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 1952 /*GlobalsToImport=*/nullptr)) { 1953 errs() << "Error renaming module\n"; 1954 return true; 1955 } 1956 1957 // Perform the import now. 1958 auto ModuleLoader = [&M](StringRef Identifier) { 1959 return loadFile(std::string(Identifier), M.getContext()); 1960 }; 1961 FunctionImporter Importer(*Index, ModuleLoader, 1962 /*ClearDSOLocalOnDeclarations=*/false); 1963 Expected<bool> Result = Importer.importFunctions(M, ImportList); 1964 1965 // FIXME: Probably need to propagate Errors through the pass manager. 1966 if (!Result) { 1967 logAllUnhandledErrors(Result.takeError(), errs(), 1968 "Error importing module: "); 1969 return true; 1970 } 1971 1972 return true; 1973 } 1974 1975 PreservedAnalyses FunctionImportPass::run(Module &M, 1976 ModuleAnalysisManager &AM) { 1977 // This is only used for testing the function import pass via opt, where we 1978 // don't have prevailing information from the LTO context available, so just 1979 // conservatively assume everything is prevailing (which is fine for the very 1980 // limited use of prevailing checking in this pass). 1981 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 1982 return true; 1983 }; 1984 if (!doImportingForModuleForTest(M, isPrevailing)) 1985 return PreservedAnalyses::all(); 1986 1987 return PreservedAnalyses::none(); 1988 } 1989