1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IRReader/IRReader.h" 31 #include "llvm/Linker/IRMover.h" 32 #include "llvm/ProfileData/PGOCtxProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 extern cl::opt<std::string> UseCtxProfile; 178 179 namespace llvm { 180 extern cl::opt<bool> EnableMemProfContextDisambiguation; 181 } 182 183 // Load lazily a module from \p FileName in \p Context. 184 static std::unique_ptr<Module> loadFile(const std::string &FileName, 185 LLVMContext &Context) { 186 SMDiagnostic Err; 187 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 188 // Metadata isn't loaded until functions are imported, to minimize 189 // the memory overhead. 190 std::unique_ptr<Module> Result = 191 getLazyIRFileModule(FileName, Err, Context, 192 /* ShouldLazyLoadMetadata = */ true); 193 if (!Result) { 194 Err.print("function-import", errs()); 195 report_fatal_error("Abort"); 196 } 197 198 return Result; 199 } 200 201 static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary, 202 size_t NumDefs, 203 StringRef ImporterModule) { 204 // We can import a local when there is one definition. 205 if (NumDefs == 1) 206 return false; 207 // In other cases, make sure we import the copy in the caller's module if the 208 // referenced value has local linkage. The only time a local variable can 209 // share an entry in the index is if there is a local with the same name in 210 // another module that had the same source file name (in a different 211 // directory), where each was compiled in their own directory so there was not 212 // distinguishing path. 213 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 214 RefSummary->modulePath() != ImporterModule; 215 } 216 217 /// Given a list of possible callee implementation for a call site, qualify the 218 /// legality of importing each. The return is a range of pairs. Each pair 219 /// corresponds to a candidate. The first value is the ImportFailureReason for 220 /// that candidate, the second is the candidate. 221 static auto qualifyCalleeCandidates( 222 const ModuleSummaryIndex &Index, 223 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 224 StringRef CallerModulePath) { 225 return llvm::map_range( 226 CalleeSummaryList, 227 [&Index, CalleeSummaryList, 228 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 229 -> std::pair<FunctionImporter::ImportFailureReason, 230 const GlobalValueSummary *> { 231 auto *GVSummary = SummaryPtr.get(); 232 if (!Index.isGlobalValueLive(GVSummary)) 233 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 234 235 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 236 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 237 GVSummary}; 238 239 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 240 241 // Ignore any callees that aren't actually functions. This could happen 242 // in the case of GUID hash collisions. It could also happen in theory 243 // for SamplePGO profiles collected on old versions of the code after 244 // renaming, since we synthesize edges to any inlined callees appearing 245 // in the profile. 246 if (!Summary) 247 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 248 249 // If this is a local function, make sure we import the copy in the 250 // caller's module. The only time a local function can share an entry in 251 // the index is if there is a local with the same name in another module 252 // that had the same source file name (in a different directory), where 253 // each was compiled in their own directory so there was not 254 // distinguishing path. 255 // If the local function is from another module, it must be a reference 256 // due to indirect call profile data since a function pointer can point 257 // to a local in another module. Do the import from another module if 258 // there is only one entry in the list or when all files in the program 259 // are compiled with full path - in both cases the local function has 260 // unique PGO name and GUID. 261 if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(), 262 CallerModulePath)) 263 return { 264 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 265 GVSummary}; 266 267 // Skip if it isn't legal to import (e.g. may reference unpromotable 268 // locals). 269 if (Summary->notEligibleToImport()) 270 return {FunctionImporter::ImportFailureReason::NotEligible, 271 GVSummary}; 272 273 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 274 }); 275 } 276 277 /// Given a list of possible callee implementation for a call site, select one 278 /// that fits the \p Threshold for function definition import. If none are 279 /// found, the Reason will give the last reason for the failure (last, in the 280 /// order of CalleeSummaryList entries). While looking for a callee definition, 281 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 282 /// candidate; other modules may want to know the function summary or 283 /// declaration even if a definition is not needed. 284 /// 285 /// FIXME: select "best" instead of first that fits. But what is "best"? 286 /// - The smallest: more likely to be inlined. 287 /// - The one with the least outgoing edges (already well optimized). 288 /// - One from a module already being imported from in order to reduce the 289 /// number of source modules parsed/linked. 290 /// - One that has PGO data attached. 291 /// - [insert you fancy metric here] 292 static const GlobalValueSummary * 293 selectCallee(const ModuleSummaryIndex &Index, 294 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 295 unsigned Threshold, StringRef CallerModulePath, 296 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 297 FunctionImporter::ImportFailureReason &Reason) { 298 // Records the last summary with reason noinline or too-large. 299 TooLargeOrNoInlineSummary = nullptr; 300 auto QualifiedCandidates = 301 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 302 for (auto QualifiedValue : QualifiedCandidates) { 303 Reason = QualifiedValue.first; 304 // Skip a summary if its import is not (proved to be) legal. 305 if (Reason != FunctionImporter::ImportFailureReason::None) 306 continue; 307 auto *Summary = 308 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 309 310 // Don't bother importing the definition if the chance of inlining it is 311 // not high enough (except under `--force-import-all`). 312 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 313 !ForceImportAll) { 314 TooLargeOrNoInlineSummary = Summary; 315 Reason = FunctionImporter::ImportFailureReason::TooLarge; 316 continue; 317 } 318 319 // Don't bother importing the definition if we can't inline it anyway. 320 if (Summary->fflags().NoInline && !ForceImportAll) { 321 TooLargeOrNoInlineSummary = Summary; 322 Reason = FunctionImporter::ImportFailureReason::NoInline; 323 continue; 324 } 325 326 return Summary; 327 } 328 return nullptr; 329 } 330 331 namespace { 332 333 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 334 335 } // anonymous namespace 336 337 /// Import globals referenced by a function or other globals that are being 338 /// imported, if importing such global is possible. 339 class GlobalsImporter final { 340 const ModuleSummaryIndex &Index; 341 const GVSummaryMapTy &DefinedGVSummaries; 342 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 343 IsPrevailing; 344 FunctionImporter::ImportMapTy &ImportList; 345 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 346 347 bool shouldImportGlobal(const ValueInfo &VI) { 348 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 349 if (GVS == DefinedGVSummaries.end()) 350 return true; 351 // We should not skip import if the module contains a non-prevailing 352 // definition with interposable linkage type. This is required for 353 // correctness in the situation where there is a prevailing def available 354 // for import and marked read-only. In this case, the non-prevailing def 355 // will be converted to a declaration, while the prevailing one becomes 356 // internal, thus no definitions will be available for linking. In order to 357 // prevent undefined symbol link error, the prevailing definition must be 358 // imported. 359 // FIXME: Consider adding a check that the suitable prevailing definition 360 // exists and marked read-only. 361 if (VI.getSummaryList().size() > 1 && 362 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 363 !IsPrevailing(VI.getGUID(), GVS->second)) 364 return true; 365 366 return false; 367 } 368 369 void 370 onImportingSummaryImpl(const GlobalValueSummary &Summary, 371 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 372 for (const auto &VI : Summary.refs()) { 373 if (!shouldImportGlobal(VI)) { 374 LLVM_DEBUG( 375 dbgs() << "Ref ignored! Target already in destination module.\n"); 376 continue; 377 } 378 379 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 380 381 for (const auto &RefSummary : VI.getSummaryList()) { 382 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 383 // Functions could be referenced by global vars - e.g. a vtable; but we 384 // don't currently imagine a reason those would be imported here, rather 385 // than as part of the logic deciding which functions to import (i.e. 386 // based on profile information). Should we decide to handle them here, 387 // we can refactor accordingly at that time. 388 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 389 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 390 Summary.modulePath())) 391 continue; 392 393 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 394 // Otherwise, definition should take precedence over declaration. 395 auto [Iter, Inserted] = 396 ImportList[RefSummary->modulePath()].try_emplace( 397 VI.getGUID(), GlobalValueSummary::Definition); 398 // Only update stat and exports if we haven't already imported this 399 // variable. 400 if (!Inserted) { 401 // Set the value to 'std::min(existing-value, new-value)' to make 402 // sure a definition takes precedence over a declaration. 403 Iter->second = std::min(GlobalValueSummary::Definition, Iter->second); 404 break; 405 } 406 NumImportedGlobalVarsThinLink++; 407 // Any references made by this variable will be marked exported 408 // later, in ComputeCrossModuleImport, after import decisions are 409 // complete, which is more efficient than adding them here. 410 if (ExportLists) 411 (*ExportLists)[RefSummary->modulePath()].insert(VI); 412 413 // If variable is not writeonly we attempt to recursively analyze 414 // its references in order to import referenced constants. 415 if (!Index.isWriteOnly(GVS)) 416 Worklist.emplace_back(GVS); 417 break; 418 } 419 } 420 } 421 422 public: 423 GlobalsImporter( 424 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 425 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 426 IsPrevailing, 427 FunctionImporter::ImportMapTy &ImportList, 428 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 429 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 430 IsPrevailing(IsPrevailing), ImportList(ImportList), 431 ExportLists(ExportLists) {} 432 433 void onImportingSummary(const GlobalValueSummary &Summary) { 434 SmallVector<const GlobalVarSummary *, 128> Worklist; 435 onImportingSummaryImpl(Summary, Worklist); 436 while (!Worklist.empty()) 437 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 438 } 439 }; 440 441 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 442 443 /// Determine the list of imports and exports for each module. 444 class ModuleImportsManager { 445 protected: 446 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 447 IsPrevailing; 448 const ModuleSummaryIndex &Index; 449 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 450 451 ModuleImportsManager( 452 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 453 IsPrevailing, 454 const ModuleSummaryIndex &Index, 455 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 456 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 457 458 public: 459 virtual ~ModuleImportsManager() = default; 460 461 /// Given the list of globals defined in a module, compute the list of imports 462 /// as well as the list of "exports", i.e. the list of symbols referenced from 463 /// another module (that may require promotion). 464 virtual void 465 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 466 StringRef ModName, 467 FunctionImporter::ImportMapTy &ImportList); 468 469 static std::unique_ptr<ModuleImportsManager> 470 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 471 IsPrevailing, 472 const ModuleSummaryIndex &Index, 473 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 474 nullptr); 475 }; 476 477 /// A ModuleImportsManager that operates based on a workload definition (see 478 /// -thinlto-workload-def). For modules that do not define workload roots, it 479 /// applies the base ModuleImportsManager import policy. 480 class WorkloadImportsManager : public ModuleImportsManager { 481 // Keep a module name -> value infos to import association. We use it to 482 // determine if a module's import list should be done by the base 483 // ModuleImportsManager or by us. 484 StringMap<DenseSet<ValueInfo>> Workloads; 485 486 void 487 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 488 StringRef ModName, 489 FunctionImporter::ImportMapTy &ImportList) override { 490 auto SetIter = Workloads.find(ModName); 491 if (SetIter == Workloads.end()) { 492 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 493 << " does not contain the root of any context.\n"); 494 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 495 ModName, ImportList); 496 } 497 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 498 << " contains the root(s) of context(s).\n"); 499 500 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 501 ExportLists); 502 auto &ValueInfos = SetIter->second; 503 SmallVector<EdgeInfo, 128> GlobWorklist; 504 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 505 auto It = DefinedGVSummaries.find(VI.getGUID()); 506 if (It != DefinedGVSummaries.end() && 507 IsPrevailing(VI.getGUID(), It->second)) { 508 LLVM_DEBUG( 509 dbgs() << "[Workload] " << VI.name() 510 << " has the prevailing variant already in the module " 511 << ModName << ". No need to import\n"); 512 continue; 513 } 514 auto Candidates = 515 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 516 517 const GlobalValueSummary *GVS = nullptr; 518 auto PotentialCandidates = llvm::map_range( 519 llvm::make_filter_range( 520 Candidates, 521 [&](const auto &Candidate) { 522 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 523 << " from " << Candidate.second->modulePath() 524 << " ImportFailureReason: " 525 << getFailureName(Candidate.first) << "\n"); 526 return Candidate.first == 527 FunctionImporter::ImportFailureReason::None; 528 }), 529 [](const auto &Candidate) { return Candidate.second; }); 530 if (PotentialCandidates.empty()) { 531 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 532 << " because can't find eligible Callee. Guid is: " 533 << Function::getGUID(VI.name()) << "\n"); 534 continue; 535 } 536 /// We will prefer importing the prevailing candidate, if not, we'll 537 /// still pick the first available candidate. The reason we want to make 538 /// sure we do import the prevailing candidate is because the goal of 539 /// workload-awareness is to enable optimizations specializing the call 540 /// graph of that workload. Suppose a function is already defined in the 541 /// module, but it's not the prevailing variant. Suppose also we do not 542 /// inline it (in fact, if it were interposable, we can't inline it), 543 /// but we could specialize it to the workload in other ways. However, 544 /// the linker would drop it in the favor of the prevailing copy. 545 /// Instead, by importing the prevailing variant (assuming also the use 546 /// of `-avail-extern-to-local`), we keep the specialization. We could 547 /// alteranatively make the non-prevailing variant local, but the 548 /// prevailing one is also the one for which we would have previously 549 /// collected profiles, making it preferrable. 550 auto PrevailingCandidates = llvm::make_filter_range( 551 PotentialCandidates, [&](const auto *Candidate) { 552 return IsPrevailing(VI.getGUID(), Candidate); 553 }); 554 if (PrevailingCandidates.empty()) { 555 GVS = *PotentialCandidates.begin(); 556 if (!llvm::hasSingleElement(PotentialCandidates) && 557 GlobalValue::isLocalLinkage(GVS->linkage())) 558 LLVM_DEBUG( 559 dbgs() 560 << "[Workload] Found multiple non-prevailing candidates for " 561 << VI.name() 562 << ". This is unexpected. Are module paths passed to the " 563 "compiler unique for the modules passed to the linker?"); 564 // We could in theory have multiple (interposable) copies of a symbol 565 // when there is no prevailing candidate, if say the prevailing copy was 566 // in a native object being linked in. However, we should in theory be 567 // marking all of these non-prevailing IR copies dead in that case, in 568 // which case they won't be candidates. 569 assert(GVS->isLive()); 570 } else { 571 assert(llvm::hasSingleElement(PrevailingCandidates)); 572 GVS = *PrevailingCandidates.begin(); 573 } 574 575 auto ExportingModule = GVS->modulePath(); 576 // We checked that for the prevailing case, but if we happen to have for 577 // example an internal that's defined in this module, it'd have no 578 // PrevailingCandidates. 579 if (ExportingModule == ModName) { 580 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 581 << " because its defining module is the same as the " 582 "current module\n"); 583 continue; 584 } 585 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 586 << ExportingModule << " : " 587 << Function::getGUID(VI.name()) << "\n"); 588 ImportList[ExportingModule][VI.getGUID()] = 589 GlobalValueSummary::Definition; 590 GVI.onImportingSummary(*GVS); 591 if (ExportLists) 592 (*ExportLists)[ExportingModule].insert(VI); 593 } 594 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 595 } 596 597 void loadFromJson() { 598 // Since the workload def uses names, we need a quick lookup 599 // name->ValueInfo. 600 StringMap<ValueInfo> NameToValueInfo; 601 StringSet<> AmbiguousNames; 602 for (auto &I : Index) { 603 ValueInfo VI = Index.getValueInfo(I); 604 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 605 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 606 } 607 auto DbgReportIfAmbiguous = [&](StringRef Name) { 608 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 609 dbgs() << "[Workload] Function name " << Name 610 << " present in the workload definition is ambiguous. Consider " 611 "compiling with -funique-internal-linkage-names."; 612 }); 613 }; 614 std::error_code EC; 615 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 616 if (std::error_code EC = BufferOrErr.getError()) { 617 report_fatal_error("Failed to open context file"); 618 return; 619 } 620 auto Buffer = std::move(BufferOrErr.get()); 621 std::map<std::string, std::vector<std::string>> WorkloadDefs; 622 json::Path::Root NullRoot; 623 // The JSON is supposed to contain a dictionary matching the type of 624 // WorkloadDefs. For example: 625 // { 626 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 627 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 628 // } 629 auto Parsed = json::parse(Buffer->getBuffer()); 630 if (!Parsed) 631 report_fatal_error(Parsed.takeError()); 632 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 633 report_fatal_error("Invalid thinlto contextual profile format."); 634 for (const auto &Workload : WorkloadDefs) { 635 const auto &Root = Workload.first; 636 DbgReportIfAmbiguous(Root); 637 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 638 const auto &AllCallees = Workload.second; 639 auto RootIt = NameToValueInfo.find(Root); 640 if (RootIt == NameToValueInfo.end()) { 641 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 642 << " not found in this linkage unit.\n"); 643 continue; 644 } 645 auto RootVI = RootIt->second; 646 if (RootVI.getSummaryList().size() != 1) { 647 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 648 << " should have exactly one summary, but has " 649 << RootVI.getSummaryList().size() << ". Skipping.\n"); 650 continue; 651 } 652 StringRef RootDefiningModule = 653 RootVI.getSummaryList().front()->modulePath(); 654 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 655 << " is : " << RootDefiningModule << "\n"); 656 auto &Set = Workloads[RootDefiningModule]; 657 for (const auto &Callee : AllCallees) { 658 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 659 DbgReportIfAmbiguous(Callee); 660 auto ElemIt = NameToValueInfo.find(Callee); 661 if (ElemIt == NameToValueInfo.end()) { 662 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 663 continue; 664 } 665 Set.insert(ElemIt->second); 666 } 667 } 668 } 669 670 void loadFromCtxProf() { 671 std::error_code EC; 672 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(UseCtxProfile); 673 if (std::error_code EC = BufferOrErr.getError()) { 674 report_fatal_error("Failed to open contextual profile file"); 675 return; 676 } 677 auto Buffer = std::move(BufferOrErr.get()); 678 679 PGOCtxProfileReader Reader(Buffer->getBuffer()); 680 auto Ctx = Reader.loadContexts(); 681 if (!Ctx) { 682 report_fatal_error("Failed to parse contextual profiles"); 683 return; 684 } 685 const auto &CtxMap = *Ctx; 686 DenseSet<GlobalValue::GUID> ContainedGUIDs; 687 for (const auto &[RootGuid, Root] : CtxMap) { 688 // Avoid ContainedGUIDs to get in/out of scope. Reuse its memory for 689 // subsequent roots, but clear its contents. 690 ContainedGUIDs.clear(); 691 692 auto RootVI = Index.getValueInfo(RootGuid); 693 if (!RootVI) { 694 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 695 << " not found in this linkage unit.\n"); 696 continue; 697 } 698 if (RootVI.getSummaryList().size() != 1) { 699 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 700 << " should have exactly one summary, but has " 701 << RootVI.getSummaryList().size() << ". Skipping.\n"); 702 continue; 703 } 704 StringRef RootDefiningModule = 705 RootVI.getSummaryList().front()->modulePath(); 706 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << RootGuid 707 << " is : " << RootDefiningModule << "\n"); 708 auto &Set = Workloads[RootDefiningModule]; 709 Root.getContainedGuids(ContainedGUIDs); 710 for (auto Guid : ContainedGUIDs) 711 if (auto VI = Index.getValueInfo(Guid)) 712 Set.insert(VI); 713 } 714 } 715 716 public: 717 WorkloadImportsManager( 718 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 719 IsPrevailing, 720 const ModuleSummaryIndex &Index, 721 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 722 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 723 if (UseCtxProfile.empty() == WorkloadDefinitions.empty()) { 724 report_fatal_error( 725 "Pass only one of: -thinlto-pgo-ctx-prof or -thinlto-workload-def"); 726 return; 727 } 728 if (!UseCtxProfile.empty()) 729 loadFromCtxProf(); 730 else 731 loadFromJson(); 732 LLVM_DEBUG({ 733 for (const auto &[Root, Set] : Workloads) { 734 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 735 << " distinct callees.\n"; 736 for (const auto &VI : Set) { 737 dbgs() << "[Workload] Root: " << Root 738 << " Would include: " << VI.getGUID() << "\n"; 739 } 740 } 741 }); 742 } 743 }; 744 745 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 746 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 747 IsPrevailing, 748 const ModuleSummaryIndex &Index, 749 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 750 if (WorkloadDefinitions.empty() && UseCtxProfile.empty()) { 751 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 752 return std::unique_ptr<ModuleImportsManager>( 753 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 754 } 755 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 756 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 757 ExportLists); 758 } 759 760 static const char * 761 getFailureName(FunctionImporter::ImportFailureReason Reason) { 762 switch (Reason) { 763 case FunctionImporter::ImportFailureReason::None: 764 return "None"; 765 case FunctionImporter::ImportFailureReason::GlobalVar: 766 return "GlobalVar"; 767 case FunctionImporter::ImportFailureReason::NotLive: 768 return "NotLive"; 769 case FunctionImporter::ImportFailureReason::TooLarge: 770 return "TooLarge"; 771 case FunctionImporter::ImportFailureReason::InterposableLinkage: 772 return "InterposableLinkage"; 773 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 774 return "LocalLinkageNotInModule"; 775 case FunctionImporter::ImportFailureReason::NotEligible: 776 return "NotEligible"; 777 case FunctionImporter::ImportFailureReason::NoInline: 778 return "NoInline"; 779 } 780 llvm_unreachable("invalid reason"); 781 } 782 783 /// Compute the list of functions to import for a given caller. Mark these 784 /// imported functions and the symbols they reference in their source module as 785 /// exported from their source module. 786 static void computeImportForFunction( 787 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 788 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 789 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 790 isPrevailing, 791 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 792 FunctionImporter::ImportMapTy &ImportList, 793 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 794 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 795 GVImporter.onImportingSummary(Summary); 796 static int ImportCount = 0; 797 for (const auto &Edge : Summary.calls()) { 798 ValueInfo VI = Edge.first; 799 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 800 << "\n"); 801 802 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 803 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 804 << " reached.\n"); 805 continue; 806 } 807 808 if (DefinedGVSummaries.count(VI.getGUID())) { 809 // FIXME: Consider not skipping import if the module contains 810 // a non-prevailing def with interposable linkage. The prevailing copy 811 // can safely be imported (see shouldImportGlobal()). 812 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 813 continue; 814 } 815 816 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 817 if (Hotness == CalleeInfo::HotnessType::Hot) 818 return ImportHotMultiplier; 819 if (Hotness == CalleeInfo::HotnessType::Cold) 820 return ImportColdMultiplier; 821 if (Hotness == CalleeInfo::HotnessType::Critical) 822 return ImportCriticalMultiplier; 823 return 1.0; 824 }; 825 826 const auto NewThreshold = 827 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 828 829 auto IT = ImportThresholds.insert(std::make_pair( 830 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 831 bool PreviouslyVisited = !IT.second; 832 auto &ProcessedThreshold = std::get<0>(IT.first->second); 833 auto &CalleeSummary = std::get<1>(IT.first->second); 834 auto &FailureInfo = std::get<2>(IT.first->second); 835 836 bool IsHotCallsite = 837 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 838 bool IsCriticalCallsite = 839 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 840 841 const FunctionSummary *ResolvedCalleeSummary = nullptr; 842 if (CalleeSummary) { 843 assert(PreviouslyVisited); 844 // Since the traversal of the call graph is DFS, we can revisit a function 845 // a second time with a higher threshold. In this case, it is added back 846 // to the worklist with the new threshold (so that its own callee chains 847 // can be considered with the higher threshold). 848 if (NewThreshold <= ProcessedThreshold) { 849 LLVM_DEBUG( 850 dbgs() << "ignored! Target was already imported with Threshold " 851 << ProcessedThreshold << "\n"); 852 continue; 853 } 854 // Update with new larger threshold. 855 ProcessedThreshold = NewThreshold; 856 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 857 } else { 858 // If we already rejected importing a callee at the same or higher 859 // threshold, don't waste time calling selectCallee. 860 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 861 LLVM_DEBUG( 862 dbgs() << "ignored! Target was already rejected with Threshold " 863 << ProcessedThreshold << "\n"); 864 if (PrintImportFailures) { 865 assert(FailureInfo && 866 "Expected FailureInfo for previously rejected candidate"); 867 FailureInfo->Attempts++; 868 } 869 continue; 870 } 871 872 FunctionImporter::ImportFailureReason Reason{}; 873 874 // `SummaryForDeclImport` is an summary eligible for declaration import. 875 const GlobalValueSummary *SummaryForDeclImport = nullptr; 876 CalleeSummary = 877 selectCallee(Index, VI.getSummaryList(), NewThreshold, 878 Summary.modulePath(), SummaryForDeclImport, Reason); 879 if (!CalleeSummary) { 880 // There isn't a callee for definition import but one for declaration 881 // import. 882 if (ImportDeclaration && SummaryForDeclImport) { 883 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 884 885 // Since definition takes precedence over declaration for the same VI, 886 // try emplace <VI, declaration> pair without checking insert result. 887 // If insert doesn't happen, there must be an existing entry keyed by 888 // VI. Note `ExportLists` only keeps track of exports due to imported 889 // definitions. 890 ImportList[DeclSourceModule].try_emplace( 891 VI.getGUID(), GlobalValueSummary::Declaration); 892 } 893 // Update with new larger threshold if this was a retry (otherwise 894 // we would have already inserted with NewThreshold above). Also 895 // update failure info if requested. 896 if (PreviouslyVisited) { 897 ProcessedThreshold = NewThreshold; 898 if (PrintImportFailures) { 899 assert(FailureInfo && 900 "Expected FailureInfo for previously rejected candidate"); 901 FailureInfo->Reason = Reason; 902 FailureInfo->Attempts++; 903 FailureInfo->MaxHotness = 904 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 905 } 906 } else if (PrintImportFailures) { 907 assert(!FailureInfo && 908 "Expected no FailureInfo for newly rejected candidate"); 909 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 910 VI, Edge.second.getHotness(), Reason, 1); 911 } 912 if (ForceImportAll) { 913 std::string Msg = std::string("Failed to import function ") + 914 VI.name().str() + " due to " + 915 getFailureName(Reason); 916 auto Error = make_error<StringError>( 917 Msg, make_error_code(errc::not_supported)); 918 logAllUnhandledErrors(std::move(Error), errs(), 919 "Error importing module: "); 920 break; 921 } else { 922 LLVM_DEBUG(dbgs() 923 << "ignored! No qualifying callee with summary found.\n"); 924 continue; 925 } 926 } 927 928 // "Resolve" the summary 929 CalleeSummary = CalleeSummary->getBaseObject(); 930 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 931 932 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 933 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 934 "selectCallee() didn't honor the threshold"); 935 936 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 937 938 // Try emplace the definition entry, and update stats based on insertion 939 // status. 940 auto [Iter, Inserted] = ImportList[ExportModulePath].try_emplace( 941 VI.getGUID(), GlobalValueSummary::Definition); 942 943 // We previously decided to import this GUID definition if it was already 944 // inserted in the set of imports from the exporting module. 945 if (Inserted || Iter->second == GlobalValueSummary::Declaration) { 946 NumImportedFunctionsThinLink++; 947 if (IsHotCallsite) 948 NumImportedHotFunctionsThinLink++; 949 if (IsCriticalCallsite) 950 NumImportedCriticalFunctionsThinLink++; 951 } 952 953 if (Iter->second == GlobalValueSummary::Declaration) 954 Iter->second = GlobalValueSummary::Definition; 955 956 // Any calls/references made by this function will be marked exported 957 // later, in ComputeCrossModuleImport, after import decisions are 958 // complete, which is more efficient than adding them here. 959 if (ExportLists) 960 (*ExportLists)[ExportModulePath].insert(VI); 961 } 962 963 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 964 // Adjust the threshold for next level of imported functions. 965 // The threshold is different for hot callsites because we can then 966 // inline chains of hot calls. 967 if (IsHotCallsite) 968 return Threshold * ImportHotInstrFactor; 969 return Threshold * ImportInstrFactor; 970 }; 971 972 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 973 974 ImportCount++; 975 976 // Insert the newly imported function to the worklist. 977 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 978 } 979 } 980 981 void ModuleImportsManager::computeImportForModule( 982 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 983 FunctionImporter::ImportMapTy &ImportList) { 984 // Worklist contains the list of function imported in this module, for which 985 // we will analyse the callees and may import further down the callgraph. 986 SmallVector<EdgeInfo, 128> Worklist; 987 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 988 ExportLists); 989 FunctionImporter::ImportThresholdsTy ImportThresholds; 990 991 // Populate the worklist with the import for the functions in the current 992 // module 993 for (const auto &GVSummary : DefinedGVSummaries) { 994 #ifndef NDEBUG 995 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 996 // so this map look up (and possibly others) can be avoided. 997 auto VI = Index.getValueInfo(GVSummary.first); 998 #endif 999 if (!Index.isGlobalValueLive(GVSummary.second)) { 1000 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 1001 continue; 1002 } 1003 auto *FuncSummary = 1004 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 1005 if (!FuncSummary) 1006 // Skip import for global variables 1007 continue; 1008 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 1009 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 1010 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 1011 ImportList, ExportLists, ImportThresholds); 1012 } 1013 1014 // Process the newly imported functions and add callees to the worklist. 1015 while (!Worklist.empty()) { 1016 auto GVInfo = Worklist.pop_back_val(); 1017 auto *Summary = std::get<0>(GVInfo); 1018 auto Threshold = std::get<1>(GVInfo); 1019 1020 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 1021 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 1022 IsPrevailing, Worklist, GVI, ImportList, 1023 ExportLists, ImportThresholds); 1024 } 1025 1026 // Print stats about functions considered but rejected for importing 1027 // when requested. 1028 if (PrintImportFailures) { 1029 dbgs() << "Missed imports into module " << ModName << "\n"; 1030 for (auto &I : ImportThresholds) { 1031 auto &ProcessedThreshold = std::get<0>(I.second); 1032 auto &CalleeSummary = std::get<1>(I.second); 1033 auto &FailureInfo = std::get<2>(I.second); 1034 if (CalleeSummary) 1035 continue; // We are going to import. 1036 assert(FailureInfo); 1037 FunctionSummary *FS = nullptr; 1038 if (!FailureInfo->VI.getSummaryList().empty()) 1039 FS = dyn_cast<FunctionSummary>( 1040 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 1041 dbgs() << FailureInfo->VI 1042 << ": Reason = " << getFailureName(FailureInfo->Reason) 1043 << ", Threshold = " << ProcessedThreshold 1044 << ", Size = " << (FS ? (int)FS->instCount() : -1) 1045 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 1046 << ", Attempts = " << FailureInfo->Attempts << "\n"; 1047 } 1048 } 1049 } 1050 1051 #ifndef NDEBUG 1052 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1053 auto SL = VI.getSummaryList(); 1054 return SL.empty() 1055 ? false 1056 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1057 } 1058 1059 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1060 GlobalValue::GUID G) { 1061 if (const auto &VI = Index.getValueInfo(G)) 1062 return isGlobalVarSummary(Index, VI); 1063 return false; 1064 } 1065 1066 // Return the number of global variable summaries in ExportSet. 1067 static unsigned 1068 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1069 FunctionImporter::ExportSetTy &ExportSet) { 1070 unsigned NumGVS = 0; 1071 for (auto &VI : ExportSet) 1072 if (isGlobalVarSummary(Index, VI.getGUID())) 1073 ++NumGVS; 1074 return NumGVS; 1075 } 1076 1077 // Given ImportMap, return the number of global variable summaries and record 1078 // the number of defined function summaries as output parameter. 1079 static unsigned 1080 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1081 FunctionImporter::FunctionsToImportTy &ImportMap, 1082 unsigned &DefinedFS) { 1083 unsigned NumGVS = 0; 1084 DefinedFS = 0; 1085 for (auto &[GUID, Type] : ImportMap) { 1086 if (isGlobalVarSummary(Index, GUID)) 1087 ++NumGVS; 1088 else if (Type == GlobalValueSummary::Definition) 1089 ++DefinedFS; 1090 } 1091 return NumGVS; 1092 } 1093 #endif 1094 1095 #ifndef NDEBUG 1096 static bool checkVariableImport( 1097 const ModuleSummaryIndex &Index, 1098 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1099 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1100 DenseSet<GlobalValue::GUID> FlattenedImports; 1101 1102 for (auto &ImportPerModule : ImportLists) 1103 for (auto &ExportPerModule : ImportPerModule.second) 1104 for (auto &[GUID, Type] : ExportPerModule.second) 1105 FlattenedImports.insert(GUID); 1106 1107 // Checks that all GUIDs of read/writeonly vars we see in export lists 1108 // are also in the import lists. Otherwise we my face linker undefs, 1109 // because readonly and writeonly vars are internalized in their 1110 // source modules. The exception would be if it has a linkage type indicating 1111 // that there may have been a copy existing in the importing module (e.g. 1112 // linkonce_odr). In that case we cannot accurately do this checking. 1113 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1114 const ValueInfo &VI) { 1115 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1116 Index.findSummaryInModule(VI, ModulePath)); 1117 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1118 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1119 GVS->linkage() == GlobalValue::WeakODRLinkage || 1120 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1121 }; 1122 1123 for (auto &ExportPerModule : ExportLists) 1124 for (auto &VI : ExportPerModule.second) 1125 if (!FlattenedImports.count(VI.getGUID()) && 1126 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1127 return false; 1128 1129 return true; 1130 } 1131 #endif 1132 1133 /// Compute all the import and export for every module using the Index. 1134 void llvm::ComputeCrossModuleImport( 1135 const ModuleSummaryIndex &Index, 1136 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1137 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1138 isPrevailing, 1139 DenseMap<StringRef, FunctionImporter::ImportMapTy> &ImportLists, 1140 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1141 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1142 // For each module that has function defined, compute the import/export lists. 1143 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1144 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1145 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1146 << DefinedGVSummaries.first << "'\n"); 1147 MIS->computeImportForModule(DefinedGVSummaries.second, 1148 DefinedGVSummaries.first, ImportList); 1149 } 1150 1151 // When computing imports we only added the variables and functions being 1152 // imported to the export list. We also need to mark any references and calls 1153 // they make as exported as well. We do this here, as it is more efficient 1154 // since we may import the same values multiple times into different modules 1155 // during the import computation. 1156 for (auto &ELI : ExportLists) { 1157 // `NewExports` tracks the VI that gets exported because the full definition 1158 // of its user/referencer gets exported. 1159 FunctionImporter::ExportSetTy NewExports; 1160 const auto &DefinedGVSummaries = 1161 ModuleToDefinedGVSummaries.lookup(ELI.first); 1162 for (auto &EI : ELI.second) { 1163 // Find the copy defined in the exporting module so that we can mark the 1164 // values it references in that specific definition as exported. 1165 // Below we will add all references and called values, without regard to 1166 // whether they are also defined in this module. We subsequently prune the 1167 // list to only include those defined in the exporting module, see comment 1168 // there as to why. 1169 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1170 // Anything marked exported during the import computation must have been 1171 // defined in the exporting module. 1172 assert(DS != DefinedGVSummaries.end()); 1173 auto *S = DS->getSecond(); 1174 S = S->getBaseObject(); 1175 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1176 // Export referenced functions and variables. We don't export/promote 1177 // objects referenced by writeonly variable initializer, because 1178 // we convert such variables initializers to "zeroinitializer". 1179 // See processGlobalForThinLTO. 1180 if (!Index.isWriteOnly(GVS)) 1181 for (const auto &VI : GVS->refs()) 1182 NewExports.insert(VI); 1183 } else { 1184 auto *FS = cast<FunctionSummary>(S); 1185 for (const auto &Edge : FS->calls()) 1186 NewExports.insert(Edge.first); 1187 for (const auto &Ref : FS->refs()) 1188 NewExports.insert(Ref); 1189 } 1190 } 1191 // Prune list computed above to only include values defined in the 1192 // exporting module. We do this after the above insertion since we may hit 1193 // the same ref/call target multiple times in above loop, and it is more 1194 // efficient to avoid a set lookup each time. 1195 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1196 if (!DefinedGVSummaries.count(EI->getGUID())) 1197 NewExports.erase(EI++); 1198 else 1199 ++EI; 1200 } 1201 ELI.second.insert(NewExports.begin(), NewExports.end()); 1202 } 1203 1204 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1205 #ifndef NDEBUG 1206 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1207 << " modules:\n"); 1208 for (auto &ModuleImports : ImportLists) { 1209 auto ModName = ModuleImports.first; 1210 auto &Exports = ExportLists[ModName]; 1211 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1212 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1213 << Exports.size() - NumGVS << " functions and " << NumGVS 1214 << " vars. Imports from " << ModuleImports.second.size() 1215 << " modules.\n"); 1216 for (auto &Src : ModuleImports.second) { 1217 auto SrcModName = Src.first; 1218 unsigned DefinedFS = 0; 1219 unsigned NumGVSPerMod = 1220 numGlobalVarSummaries(Index, Src.second, DefinedFS); 1221 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1222 << Src.second.size() - NumGVSPerMod - DefinedFS 1223 << " function declarations imported from " << SrcModName 1224 << "\n"); 1225 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod 1226 << " global vars imported from " << SrcModName << "\n"); 1227 } 1228 } 1229 #endif 1230 } 1231 1232 #ifndef NDEBUG 1233 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1234 StringRef ModulePath, 1235 FunctionImporter::ImportMapTy &ImportList) { 1236 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1237 << ImportList.size() << " modules.\n"); 1238 for (auto &Src : ImportList) { 1239 auto SrcModName = Src.first; 1240 unsigned DefinedFS = 0; 1241 unsigned NumGVSPerMod = numGlobalVarSummaries(Index, Src.second, DefinedFS); 1242 LLVM_DEBUG(dbgs() << " - " << DefinedFS << " function definitions and " 1243 << Src.second.size() - DefinedFS - NumGVSPerMod 1244 << " function declarations imported from " << SrcModName 1245 << "\n"); 1246 LLVM_DEBUG(dbgs() << " - " << NumGVSPerMod << " vars imported from " 1247 << SrcModName << "\n"); 1248 } 1249 } 1250 #endif 1251 1252 /// Compute all the imports for the given module using the Index. 1253 /// 1254 /// \p isPrevailing is a callback that will be called with a global value's GUID 1255 /// and summary and should return whether the module corresponding to the 1256 /// summary contains the linker-prevailing copy of that value. 1257 /// 1258 /// \p ImportList will be populated with a map that can be passed to 1259 /// FunctionImporter::importFunctions() above (see description there). 1260 static void ComputeCrossModuleImportForModuleForTest( 1261 StringRef ModulePath, 1262 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1263 isPrevailing, 1264 const ModuleSummaryIndex &Index, 1265 FunctionImporter::ImportMapTy &ImportList) { 1266 // Collect the list of functions this module defines. 1267 // GUID -> Summary 1268 GVSummaryMapTy FunctionSummaryMap; 1269 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1270 1271 // Compute the import list for this module. 1272 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1273 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1274 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1275 1276 #ifndef NDEBUG 1277 dumpImportListForModule(Index, ModulePath, ImportList); 1278 #endif 1279 } 1280 1281 /// Mark all external summaries in \p Index for import into the given module. 1282 /// Used for testing the case of distributed builds using a distributed index. 1283 /// 1284 /// \p ImportList will be populated with a map that can be passed to 1285 /// FunctionImporter::importFunctions() above (see description there). 1286 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1287 StringRef ModulePath, const ModuleSummaryIndex &Index, 1288 FunctionImporter::ImportMapTy &ImportList) { 1289 for (const auto &GlobalList : Index) { 1290 // Ignore entries for undefined references. 1291 if (GlobalList.second.SummaryList.empty()) 1292 continue; 1293 1294 auto GUID = GlobalList.first; 1295 assert(GlobalList.second.SummaryList.size() == 1 && 1296 "Expected individual combined index to have one summary per GUID"); 1297 auto &Summary = GlobalList.second.SummaryList[0]; 1298 // Skip the summaries for the importing module. These are included to 1299 // e.g. record required linkage changes. 1300 if (Summary->modulePath() == ModulePath) 1301 continue; 1302 // Add an entry to provoke importing by thinBackend. 1303 auto [Iter, Inserted] = ImportList[Summary->modulePath()].try_emplace( 1304 GUID, Summary->importType()); 1305 if (!Inserted) { 1306 // Use 'std::min' to make sure definition (with enum value 0) takes 1307 // precedence over declaration (with enum value 1). 1308 Iter->second = std::min(Iter->second, Summary->importType()); 1309 } 1310 } 1311 #ifndef NDEBUG 1312 dumpImportListForModule(Index, ModulePath, ImportList); 1313 #endif 1314 } 1315 1316 // For SamplePGO, the indirect call targets for local functions will 1317 // have its original name annotated in profile. We try to find the 1318 // corresponding PGOFuncName as the GUID, and fix up the edges 1319 // accordingly. 1320 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1321 FunctionSummary *FS) { 1322 for (auto &EI : FS->mutableCalls()) { 1323 if (!EI.first.getSummaryList().empty()) 1324 continue; 1325 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1326 if (GUID == 0) 1327 continue; 1328 // Update the edge to point directly to the correct GUID. 1329 auto VI = Index.getValueInfo(GUID); 1330 if (llvm::any_of( 1331 VI.getSummaryList(), 1332 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1333 // The mapping from OriginalId to GUID may return a GUID 1334 // that corresponds to a static variable. Filter it out here. 1335 // This can happen when 1336 // 1) There is a call to a library function which is not defined 1337 // in the index. 1338 // 2) There is a static variable with the OriginalGUID identical 1339 // to the GUID of the library function in 1); 1340 // When this happens the static variable in 2) will be found, 1341 // which needs to be filtered out. 1342 return SummaryPtr->getSummaryKind() == 1343 GlobalValueSummary::GlobalVarKind; 1344 })) 1345 continue; 1346 EI.first = VI; 1347 } 1348 } 1349 1350 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1351 for (const auto &Entry : Index) { 1352 for (const auto &S : Entry.second.SummaryList) { 1353 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1354 updateValueInfoForIndirectCalls(Index, FS); 1355 } 1356 } 1357 } 1358 1359 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1360 ModuleSummaryIndex &Index, 1361 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1362 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1363 assert(!Index.withGlobalValueDeadStripping()); 1364 if (!ComputeDead || 1365 // Don't do anything when nothing is live, this is friendly with tests. 1366 GUIDPreservedSymbols.empty()) { 1367 // Still need to update indirect calls. 1368 updateIndirectCalls(Index); 1369 return; 1370 } 1371 unsigned LiveSymbols = 0; 1372 SmallVector<ValueInfo, 128> Worklist; 1373 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1374 for (auto GUID : GUIDPreservedSymbols) { 1375 ValueInfo VI = Index.getValueInfo(GUID); 1376 if (!VI) 1377 continue; 1378 for (const auto &S : VI.getSummaryList()) 1379 S->setLive(true); 1380 } 1381 1382 // Add values flagged in the index as live roots to the worklist. 1383 for (const auto &Entry : Index) { 1384 auto VI = Index.getValueInfo(Entry); 1385 for (const auto &S : Entry.second.SummaryList) { 1386 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1387 updateValueInfoForIndirectCalls(Index, FS); 1388 if (S->isLive()) { 1389 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1390 Worklist.push_back(VI); 1391 ++LiveSymbols; 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Make value live and add it to the worklist if it was not live before. 1398 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1399 // FIXME: If we knew which edges were created for indirect call profiles, 1400 // we could skip them here. Any that are live should be reached via 1401 // other edges, e.g. reference edges. Otherwise, using a profile collected 1402 // on a slightly different binary might provoke preserving, importing 1403 // and ultimately promoting calls to functions not linked into this 1404 // binary, which increases the binary size unnecessarily. Note that 1405 // if this code changes, the importer needs to change so that edges 1406 // to functions marked dead are skipped. 1407 1408 if (llvm::any_of(VI.getSummaryList(), 1409 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1410 return S->isLive(); 1411 })) 1412 return; 1413 1414 // We only keep live symbols that are known to be non-prevailing if any are 1415 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1416 // later in the EliminateAvailableExternally pass and setting them to 1417 // not-live could break downstreams users of liveness information (PR36483) 1418 // or limit optimization opportunities. 1419 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1420 bool KeepAliveLinkage = false; 1421 bool Interposable = false; 1422 for (const auto &S : VI.getSummaryList()) { 1423 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1424 S->linkage() == GlobalValue::WeakODRLinkage || 1425 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1426 KeepAliveLinkage = true; 1427 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1428 Interposable = true; 1429 } 1430 1431 if (!IsAliasee) { 1432 if (!KeepAliveLinkage) 1433 return; 1434 1435 if (Interposable) 1436 report_fatal_error( 1437 "Interposable and available_externally/linkonce_odr/weak_odr " 1438 "symbol"); 1439 } 1440 } 1441 1442 for (const auto &S : VI.getSummaryList()) 1443 S->setLive(true); 1444 ++LiveSymbols; 1445 Worklist.push_back(VI); 1446 }; 1447 1448 while (!Worklist.empty()) { 1449 auto VI = Worklist.pop_back_val(); 1450 for (const auto &Summary : VI.getSummaryList()) { 1451 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1452 // If this is an alias, visit the aliasee VI to ensure that all copies 1453 // are marked live and it is added to the worklist for further 1454 // processing of its references. 1455 visit(AS->getAliaseeVI(), true); 1456 continue; 1457 } 1458 for (auto Ref : Summary->refs()) 1459 visit(Ref, false); 1460 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1461 for (auto Call : FS->calls()) 1462 visit(Call.first, false); 1463 } 1464 } 1465 Index.setWithGlobalValueDeadStripping(); 1466 1467 unsigned DeadSymbols = Index.size() - LiveSymbols; 1468 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1469 << " symbols Dead \n"); 1470 NumDeadSymbols += DeadSymbols; 1471 NumLiveSymbols += LiveSymbols; 1472 } 1473 1474 // Compute dead symbols and propagate constants in combined index. 1475 void llvm::computeDeadSymbolsWithConstProp( 1476 ModuleSummaryIndex &Index, 1477 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1478 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1479 bool ImportEnabled) { 1480 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1481 isPrevailing); 1482 if (ImportEnabled) 1483 Index.propagateAttributes(GUIDPreservedSymbols); 1484 } 1485 1486 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1487 /// \p ModulePath. 1488 void llvm::gatherImportedSummariesForModule( 1489 StringRef ModulePath, 1490 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1491 const FunctionImporter::ImportMapTy &ImportList, 1492 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex, 1493 GVSummaryPtrSet &DecSummaries) { 1494 // Include all summaries from the importing module. 1495 ModuleToSummariesForIndex[std::string(ModulePath)] = 1496 ModuleToDefinedGVSummaries.lookup(ModulePath); 1497 // Include summaries for imports. 1498 for (const auto &ILI : ImportList) { 1499 auto &SummariesForIndex = ModuleToSummariesForIndex[std::string(ILI.first)]; 1500 1501 const auto &DefinedGVSummaries = 1502 ModuleToDefinedGVSummaries.lookup(ILI.first); 1503 for (const auto &[GUID, Type] : ILI.second) { 1504 const auto &DS = DefinedGVSummaries.find(GUID); 1505 assert(DS != DefinedGVSummaries.end() && 1506 "Expected a defined summary for imported global value"); 1507 if (Type == GlobalValueSummary::Declaration) 1508 DecSummaries.insert(DS->second); 1509 1510 SummariesForIndex[GUID] = DS->second; 1511 } 1512 } 1513 } 1514 1515 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1516 std::error_code llvm::EmitImportsFiles( 1517 StringRef ModulePath, StringRef OutputFilename, 1518 const std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 1519 std::error_code EC; 1520 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1521 if (EC) 1522 return EC; 1523 for (const auto &ILI : ModuleToSummariesForIndex) 1524 // The ModuleToSummariesForIndex map includes an entry for the current 1525 // Module (needed for writing out the index files). We don't want to 1526 // include it in the imports file, however, so filter it out. 1527 if (ILI.first != ModulePath) 1528 ImportsOS << ILI.first << "\n"; 1529 return std::error_code(); 1530 } 1531 1532 bool llvm::convertToDeclaration(GlobalValue &GV) { 1533 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1534 << "\n"); 1535 if (Function *F = dyn_cast<Function>(&GV)) { 1536 F->deleteBody(); 1537 F->clearMetadata(); 1538 F->setComdat(nullptr); 1539 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1540 V->setInitializer(nullptr); 1541 V->setLinkage(GlobalValue::ExternalLinkage); 1542 V->clearMetadata(); 1543 V->setComdat(nullptr); 1544 } else { 1545 GlobalValue *NewGV; 1546 if (GV.getValueType()->isFunctionTy()) 1547 NewGV = 1548 Function::Create(cast<FunctionType>(GV.getValueType()), 1549 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1550 "", GV.getParent()); 1551 else 1552 NewGV = 1553 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1554 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1555 /*init*/ nullptr, "", 1556 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1557 GV.getType()->getAddressSpace()); 1558 NewGV->takeName(&GV); 1559 GV.replaceAllUsesWith(NewGV); 1560 return false; 1561 } 1562 if (!GV.isImplicitDSOLocal()) 1563 GV.setDSOLocal(false); 1564 return true; 1565 } 1566 1567 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1568 const GVSummaryMapTy &DefinedGlobals, 1569 bool PropagateAttrs) { 1570 DenseSet<Comdat *> NonPrevailingComdats; 1571 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1572 // See if the global summary analysis computed a new resolved linkage. 1573 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1574 if (GS == DefinedGlobals.end()) 1575 return; 1576 1577 if (Propagate) 1578 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1579 if (Function *F = dyn_cast<Function>(&GV)) { 1580 // TODO: propagate ReadNone and ReadOnly. 1581 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1582 F->setDoesNotAccessMemory(); 1583 1584 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1585 F->setOnlyReadsMemory(); 1586 1587 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1588 F->setDoesNotRecurse(); 1589 1590 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1591 F->setDoesNotThrow(); 1592 } 1593 } 1594 1595 auto NewLinkage = GS->second->linkage(); 1596 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1597 // Don't internalize anything here, because the code below 1598 // lacks necessary correctness checks. Leave this job to 1599 // LLVM 'internalize' pass. 1600 GlobalValue::isLocalLinkage(NewLinkage) || 1601 // In case it was dead and already converted to declaration. 1602 GV.isDeclaration()) 1603 return; 1604 1605 // Set the potentially more constraining visibility computed from summaries. 1606 // The DefaultVisibility condition is because older GlobalValueSummary does 1607 // not record DefaultVisibility and we don't want to change protected/hidden 1608 // to default. 1609 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1610 GV.setVisibility(GS->second->getVisibility()); 1611 1612 if (NewLinkage == GV.getLinkage()) 1613 return; 1614 1615 // Check for a non-prevailing def that has interposable linkage 1616 // (e.g. non-odr weak or linkonce). In that case we can't simply 1617 // convert to available_externally, since it would lose the 1618 // interposable property and possibly get inlined. Simply drop 1619 // the definition in that case. 1620 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1621 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1622 if (!convertToDeclaration(GV)) 1623 // FIXME: Change this to collect replaced GVs and later erase 1624 // them from the parent module once thinLTOResolvePrevailingGUID is 1625 // changed to enable this for aliases. 1626 llvm_unreachable("Expected GV to be converted"); 1627 } else { 1628 // If all copies of the original symbol had global unnamed addr and 1629 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1630 // and are constants, then it should be an auto hide symbol. In that case 1631 // the thin link would have marked it as CanAutoHide. Add hidden 1632 // visibility to the symbol to preserve the property. 1633 if (NewLinkage == GlobalValue::WeakODRLinkage && 1634 GS->second->canAutoHide()) { 1635 assert(GV.canBeOmittedFromSymbolTable()); 1636 GV.setVisibility(GlobalValue::HiddenVisibility); 1637 } 1638 1639 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1640 << "` from " << GV.getLinkage() << " to " << NewLinkage 1641 << "\n"); 1642 GV.setLinkage(NewLinkage); 1643 } 1644 // Remove declarations from comdats, including available_externally 1645 // as this is a declaration for the linker, and will be dropped eventually. 1646 // It is illegal for comdats to contain declarations. 1647 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1648 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1649 if (GO->getComdat()->getName() == GO->getName()) 1650 NonPrevailingComdats.insert(GO->getComdat()); 1651 GO->setComdat(nullptr); 1652 } 1653 }; 1654 1655 // Process functions and global now 1656 for (auto &GV : TheModule) 1657 FinalizeInModule(GV, PropagateAttrs); 1658 for (auto &GV : TheModule.globals()) 1659 FinalizeInModule(GV); 1660 for (auto &GV : TheModule.aliases()) 1661 FinalizeInModule(GV); 1662 1663 // For a non-prevailing comdat, all its members must be available_externally. 1664 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1665 // local linkage GlobalValues. 1666 if (NonPrevailingComdats.empty()) 1667 return; 1668 for (auto &GO : TheModule.global_objects()) { 1669 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1670 GO.setComdat(nullptr); 1671 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1672 } 1673 } 1674 bool Changed; 1675 do { 1676 Changed = false; 1677 // If an alias references a GlobalValue in a non-prevailing comdat, change 1678 // it to available_externally. For simplicity we only handle GlobalValue and 1679 // ConstantExpr with a base object. ConstantExpr without a base object is 1680 // unlikely used in a COMDAT. 1681 for (auto &GA : TheModule.aliases()) { 1682 if (GA.hasAvailableExternallyLinkage()) 1683 continue; 1684 GlobalObject *Obj = GA.getAliaseeObject(); 1685 assert(Obj && "aliasee without an base object is unimplemented"); 1686 if (Obj->hasAvailableExternallyLinkage()) { 1687 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1688 Changed = true; 1689 } 1690 } 1691 } while (Changed); 1692 } 1693 1694 /// Run internalization on \p TheModule based on symmary analysis. 1695 void llvm::thinLTOInternalizeModule(Module &TheModule, 1696 const GVSummaryMapTy &DefinedGlobals) { 1697 // Declare a callback for the internalize pass that will ask for every 1698 // candidate GlobalValue if it can be internalized or not. 1699 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1700 // It may be the case that GV is on a chain of an ifunc, its alias and 1701 // subsequent aliases. In this case, the summary for the value is not 1702 // available. 1703 if (isa<GlobalIFunc>(&GV) || 1704 (isa<GlobalAlias>(&GV) && 1705 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1706 return true; 1707 1708 // Lookup the linkage recorded in the summaries during global analysis. 1709 auto GS = DefinedGlobals.find(GV.getGUID()); 1710 if (GS == DefinedGlobals.end()) { 1711 // Must have been promoted (possibly conservatively). Find original 1712 // name so that we can access the correct summary and see if it can 1713 // be internalized again. 1714 // FIXME: Eventually we should control promotion instead of promoting 1715 // and internalizing again. 1716 StringRef OrigName = 1717 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1718 std::string OrigId = GlobalValue::getGlobalIdentifier( 1719 OrigName, GlobalValue::InternalLinkage, 1720 TheModule.getSourceFileName()); 1721 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1722 if (GS == DefinedGlobals.end()) { 1723 // Also check the original non-promoted non-globalized name. In some 1724 // cases a preempted weak value is linked in as a local copy because 1725 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1726 // In that case, since it was originally not a local value, it was 1727 // recorded in the index using the original name. 1728 // FIXME: This may not be needed once PR27866 is fixed. 1729 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1730 assert(GS != DefinedGlobals.end()); 1731 } 1732 } 1733 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1734 }; 1735 1736 // FIXME: See if we can just internalize directly here via linkage changes 1737 // based on the index, rather than invoking internalizeModule. 1738 internalizeModule(TheModule, MustPreserveGV); 1739 } 1740 1741 /// Make alias a clone of its aliasee. 1742 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1743 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1744 1745 ValueToValueMapTy VMap; 1746 Function *NewFn = CloneFunction(Fn, VMap); 1747 // Clone should use the original alias's linkage, visibility and name, and we 1748 // ensure all uses of alias instead use the new clone (casted if necessary). 1749 NewFn->setLinkage(GA->getLinkage()); 1750 NewFn->setVisibility(GA->getVisibility()); 1751 GA->replaceAllUsesWith(NewFn); 1752 NewFn->takeName(GA); 1753 return NewFn; 1754 } 1755 1756 // Internalize values that we marked with specific attribute 1757 // in processGlobalForThinLTO. 1758 static void internalizeGVsAfterImport(Module &M) { 1759 for (auto &GV : M.globals()) 1760 // Skip GVs which have been converted to declarations 1761 // by dropDeadSymbols. 1762 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1763 GV.setLinkage(GlobalValue::InternalLinkage); 1764 GV.setVisibility(GlobalValue::DefaultVisibility); 1765 } 1766 } 1767 1768 // Automatically import functions in Module \p DestModule based on the summaries 1769 // index. 1770 Expected<bool> FunctionImporter::importFunctions( 1771 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1772 LLVM_DEBUG(dbgs() << "Starting import for Module " 1773 << DestModule.getModuleIdentifier() << "\n"); 1774 unsigned ImportedCount = 0, ImportedGVCount = 0; 1775 1776 IRMover Mover(DestModule); 1777 // Do the actual import of functions now, one Module at a time 1778 std::set<StringRef> ModuleNameOrderedList; 1779 for (const auto &FunctionsToImportPerModule : ImportList) { 1780 ModuleNameOrderedList.insert(FunctionsToImportPerModule.first); 1781 } 1782 1783 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1784 GlobalValue::GUID GUID) 1785 -> std::optional<GlobalValueSummary::ImportKind> { 1786 auto Iter = GUIDToImportType.find(GUID); 1787 if (Iter == GUIDToImportType.end()) 1788 return std::nullopt; 1789 return Iter->second; 1790 }; 1791 1792 for (const auto &Name : ModuleNameOrderedList) { 1793 // Get the module for the import 1794 const auto &FunctionsToImportPerModule = ImportList.find(Name); 1795 assert(FunctionsToImportPerModule != ImportList.end()); 1796 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1797 if (!SrcModuleOrErr) 1798 return SrcModuleOrErr.takeError(); 1799 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1800 assert(&DestModule.getContext() == &SrcModule->getContext() && 1801 "Context mismatch"); 1802 1803 // If modules were created with lazy metadata loading, materialize it 1804 // now, before linking it (otherwise this will be a noop). 1805 if (Error Err = SrcModule->materializeMetadata()) 1806 return std::move(Err); 1807 1808 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1809 1810 // Find the globals to import 1811 SetVector<GlobalValue *> GlobalsToImport; 1812 for (Function &F : *SrcModule) { 1813 if (!F.hasName()) 1814 continue; 1815 auto GUID = F.getGUID(); 1816 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1817 1818 bool ImportDefinition = 1819 (MaybeImportType && 1820 (*MaybeImportType == GlobalValueSummary::Definition)); 1821 1822 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1823 << " importing function" 1824 << (ImportDefinition 1825 ? " definition " 1826 : (MaybeImportType ? " declaration " : " ")) 1827 << GUID << " " << F.getName() << " from " 1828 << SrcModule->getSourceFileName() << "\n"); 1829 if (ImportDefinition) { 1830 if (Error Err = F.materialize()) 1831 return std::move(Err); 1832 // MemProf should match function's definition and summary, 1833 // 'thinlto_src_module' is needed. 1834 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1835 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1836 // statistics and debugging. 1837 F.setMetadata( 1838 "thinlto_src_module", 1839 MDNode::get(DestModule.getContext(), 1840 {MDString::get(DestModule.getContext(), 1841 SrcModule->getModuleIdentifier())})); 1842 F.setMetadata( 1843 "thinlto_src_file", 1844 MDNode::get(DestModule.getContext(), 1845 {MDString::get(DestModule.getContext(), 1846 SrcModule->getSourceFileName())})); 1847 } 1848 GlobalsToImport.insert(&F); 1849 } 1850 } 1851 for (GlobalVariable &GV : SrcModule->globals()) { 1852 if (!GV.hasName()) 1853 continue; 1854 auto GUID = GV.getGUID(); 1855 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1856 1857 bool ImportDefinition = 1858 (MaybeImportType && 1859 (*MaybeImportType == GlobalValueSummary::Definition)); 1860 1861 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1862 << " importing global" 1863 << (ImportDefinition 1864 ? " definition " 1865 : (MaybeImportType ? " declaration " : " ")) 1866 << GUID << " " << GV.getName() << " from " 1867 << SrcModule->getSourceFileName() << "\n"); 1868 if (ImportDefinition) { 1869 if (Error Err = GV.materialize()) 1870 return std::move(Err); 1871 ImportedGVCount += GlobalsToImport.insert(&GV); 1872 } 1873 } 1874 for (GlobalAlias &GA : SrcModule->aliases()) { 1875 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1876 continue; 1877 auto GUID = GA.getGUID(); 1878 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1879 1880 bool ImportDefinition = 1881 (MaybeImportType && 1882 (*MaybeImportType == GlobalValueSummary::Definition)); 1883 1884 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1885 << " importing alias" 1886 << (ImportDefinition 1887 ? " definition " 1888 : (MaybeImportType ? " declaration " : " ")) 1889 << GUID << " " << GA.getName() << " from " 1890 << SrcModule->getSourceFileName() << "\n"); 1891 if (ImportDefinition) { 1892 if (Error Err = GA.materialize()) 1893 return std::move(Err); 1894 // Import alias as a copy of its aliasee. 1895 GlobalObject *GO = GA.getAliaseeObject(); 1896 if (Error Err = GO->materialize()) 1897 return std::move(Err); 1898 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1899 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1900 << GO->getName() << " from " 1901 << SrcModule->getSourceFileName() << "\n"); 1902 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1903 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1904 // statistics and debugging. 1905 Fn->setMetadata( 1906 "thinlto_src_module", 1907 MDNode::get(DestModule.getContext(), 1908 {MDString::get(DestModule.getContext(), 1909 SrcModule->getModuleIdentifier())})); 1910 Fn->setMetadata( 1911 "thinlto_src_file", 1912 MDNode::get(DestModule.getContext(), 1913 {MDString::get(DestModule.getContext(), 1914 SrcModule->getSourceFileName())})); 1915 } 1916 GlobalsToImport.insert(Fn); 1917 } 1918 } 1919 1920 // Upgrade debug info after we're done materializing all the globals and we 1921 // have loaded all the required metadata! 1922 UpgradeDebugInfo(*SrcModule); 1923 1924 // Set the partial sample profile ratio in the profile summary module flag 1925 // of the imported source module, if applicable, so that the profile summary 1926 // module flag will match with that of the destination module when it's 1927 // imported. 1928 SrcModule->setPartialSampleProfileRatio(Index); 1929 1930 // Link in the specified functions. 1931 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1932 &GlobalsToImport)) 1933 return true; 1934 1935 if (PrintImports) { 1936 for (const auto *GV : GlobalsToImport) 1937 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1938 << " from " << SrcModule->getSourceFileName() << "\n"; 1939 } 1940 1941 if (Error Err = Mover.move(std::move(SrcModule), 1942 GlobalsToImport.getArrayRef(), nullptr, 1943 /*IsPerformingImport=*/true)) 1944 return createStringError(errc::invalid_argument, 1945 Twine("Function Import: link error: ") + 1946 toString(std::move(Err))); 1947 1948 ImportedCount += GlobalsToImport.size(); 1949 NumImportedModules++; 1950 } 1951 1952 internalizeGVsAfterImport(DestModule); 1953 1954 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1955 NumImportedGlobalVars += ImportedGVCount; 1956 1957 // TODO: Print counters for definitions and declarations in the debugging log. 1958 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1959 << " functions for Module " 1960 << DestModule.getModuleIdentifier() << "\n"); 1961 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1962 << " global variables for Module " 1963 << DestModule.getModuleIdentifier() << "\n"); 1964 return ImportedCount; 1965 } 1966 1967 static bool doImportingForModuleForTest( 1968 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1969 isPrevailing) { 1970 if (SummaryFile.empty()) 1971 report_fatal_error("error: -function-import requires -summary-file\n"); 1972 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1973 getModuleSummaryIndexForFile(SummaryFile); 1974 if (!IndexPtrOrErr) { 1975 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1976 "Error loading file '" + SummaryFile + "': "); 1977 return false; 1978 } 1979 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1980 1981 // First step is collecting the import list. 1982 FunctionImporter::ImportMapTy ImportList; 1983 // If requested, simply import all functions in the index. This is used 1984 // when testing distributed backend handling via the opt tool, when 1985 // we have distributed indexes containing exactly the summaries to import. 1986 if (ImportAllIndex) 1987 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 1988 *Index, ImportList); 1989 else 1990 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 1991 isPrevailing, *Index, ImportList); 1992 1993 // Conservatively mark all internal values as promoted. This interface is 1994 // only used when doing importing via the function importing pass. The pass 1995 // is only enabled when testing importing via the 'opt' tool, which does 1996 // not do the ThinLink that would normally determine what values to promote. 1997 for (auto &I : *Index) { 1998 for (auto &S : I.second.SummaryList) { 1999 if (GlobalValue::isLocalLinkage(S->linkage())) 2000 S->setLinkage(GlobalValue::ExternalLinkage); 2001 } 2002 } 2003 2004 // Next we need to promote to global scope and rename any local values that 2005 // are potentially exported to other modules. 2006 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 2007 /*GlobalsToImport=*/nullptr)) { 2008 errs() << "Error renaming module\n"; 2009 return true; 2010 } 2011 2012 // Perform the import now. 2013 auto ModuleLoader = [&M](StringRef Identifier) { 2014 return loadFile(std::string(Identifier), M.getContext()); 2015 }; 2016 FunctionImporter Importer(*Index, ModuleLoader, 2017 /*ClearDSOLocalOnDeclarations=*/false); 2018 Expected<bool> Result = Importer.importFunctions(M, ImportList); 2019 2020 // FIXME: Probably need to propagate Errors through the pass manager. 2021 if (!Result) { 2022 logAllUnhandledErrors(Result.takeError(), errs(), 2023 "Error importing module: "); 2024 return true; 2025 } 2026 2027 return true; 2028 } 2029 2030 PreservedAnalyses FunctionImportPass::run(Module &M, 2031 ModuleAnalysisManager &AM) { 2032 // This is only used for testing the function import pass via opt, where we 2033 // don't have prevailing information from the LTO context available, so just 2034 // conservatively assume everything is prevailing (which is fine for the very 2035 // limited use of prevailing checking in this pass). 2036 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 2037 return true; 2038 }; 2039 if (!doImportingForModuleForTest(M, isPrevailing)) 2040 return PreservedAnalyses::all(); 2041 2042 return PreservedAnalyses::none(); 2043 } 2044