1 //===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Function import based on summaries. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/IPO/FunctionImport.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ModuleSummaryIndex.h" 30 #include "llvm/IRReader/IRReader.h" 31 #include "llvm/Linker/IRMover.h" 32 #include "llvm/ProfileData/PGOCtxProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/Errc.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/JSON.h" 41 #include "llvm/Support/SourceMgr.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO/Internalize.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 46 #include "llvm/Transforms/Utils/ValueMapper.h" 47 #include <cassert> 48 #include <memory> 49 #include <set> 50 #include <string> 51 #include <system_error> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "function-import" 58 59 STATISTIC(NumImportedFunctionsThinLink, 60 "Number of functions thin link decided to import"); 61 STATISTIC(NumImportedHotFunctionsThinLink, 62 "Number of hot functions thin link decided to import"); 63 STATISTIC(NumImportedCriticalFunctionsThinLink, 64 "Number of critical functions thin link decided to import"); 65 STATISTIC(NumImportedGlobalVarsThinLink, 66 "Number of global variables thin link decided to import"); 67 STATISTIC(NumImportedFunctions, "Number of functions imported in backend"); 68 STATISTIC(NumImportedGlobalVars, 69 "Number of global variables imported in backend"); 70 STATISTIC(NumImportedModules, "Number of modules imported from"); 71 STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index"); 72 STATISTIC(NumLiveSymbols, "Number of live symbols in index"); 73 74 /// Limit on instruction count of imported functions. 75 static cl::opt<unsigned> ImportInstrLimit( 76 "import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"), 77 cl::desc("Only import functions with less than N instructions")); 78 79 static cl::opt<int> ImportCutoff( 80 "import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"), 81 cl::desc("Only import first N functions if N>=0 (default -1)")); 82 83 static cl::opt<bool> 84 ForceImportAll("force-import-all", cl::init(false), cl::Hidden, 85 cl::desc("Import functions with noinline attribute")); 86 87 static cl::opt<float> 88 ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7), 89 cl::Hidden, cl::value_desc("x"), 90 cl::desc("As we import functions, multiply the " 91 "`import-instr-limit` threshold by this factor " 92 "before processing newly imported functions")); 93 94 static cl::opt<float> ImportHotInstrFactor( 95 "import-hot-evolution-factor", cl::init(1.0), cl::Hidden, 96 cl::value_desc("x"), 97 cl::desc("As we import functions called from hot callsite, multiply the " 98 "`import-instr-limit` threshold by this factor " 99 "before processing newly imported functions")); 100 101 static cl::opt<float> ImportHotMultiplier( 102 "import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"), 103 cl::desc("Multiply the `import-instr-limit` threshold for hot callsites")); 104 105 static cl::opt<float> ImportCriticalMultiplier( 106 "import-critical-multiplier", cl::init(100.0), cl::Hidden, 107 cl::value_desc("x"), 108 cl::desc( 109 "Multiply the `import-instr-limit` threshold for critical callsites")); 110 111 // FIXME: This multiplier was not really tuned up. 112 static cl::opt<float> ImportColdMultiplier( 113 "import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"), 114 cl::desc("Multiply the `import-instr-limit` threshold for cold callsites")); 115 116 static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden, 117 cl::desc("Print imported functions")); 118 119 static cl::opt<bool> PrintImportFailures( 120 "print-import-failures", cl::init(false), cl::Hidden, 121 cl::desc("Print information for functions rejected for importing")); 122 123 static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden, 124 cl::desc("Compute dead symbols")); 125 126 static cl::opt<bool> EnableImportMetadata( 127 "enable-import-metadata", cl::init(false), cl::Hidden, 128 cl::desc("Enable import metadata like 'thinlto_src_module' and " 129 "'thinlto_src_file'")); 130 131 /// Summary file to use for function importing when using -function-import from 132 /// the command line. 133 static cl::opt<std::string> 134 SummaryFile("summary-file", 135 cl::desc("The summary file to use for function importing.")); 136 137 /// Used when testing importing from distributed indexes via opt 138 // -function-import. 139 static cl::opt<bool> 140 ImportAllIndex("import-all-index", 141 cl::desc("Import all external functions in index.")); 142 143 /// This is a test-only option. 144 /// If this option is enabled, the ThinLTO indexing step will import each 145 /// function declaration as a fallback. In a real build this may increase ram 146 /// usage of the indexing step unnecessarily. 147 /// TODO: Implement selective import (based on combined summary analysis) to 148 /// ensure the imported function has a use case in the postlink pipeline. 149 static cl::opt<bool> ImportDeclaration( 150 "import-declaration", cl::init(false), cl::Hidden, 151 cl::desc("If true, import function declaration as fallback if the function " 152 "definition is not imported.")); 153 154 /// Pass a workload description file - an example of workload would be the 155 /// functions executed to satisfy a RPC request. A workload is defined by a root 156 /// function and the list of functions that are (frequently) needed to satisfy 157 /// it. The module that defines the root will have all those functions imported. 158 /// The file contains a JSON dictionary. The keys are root functions, the values 159 /// are lists of functions to import in the module defining the root. It is 160 /// assumed -funique-internal-linkage-names was used, thus ensuring function 161 /// names are unique even for local linkage ones. 162 static cl::opt<std::string> WorkloadDefinitions( 163 "thinlto-workload-def", 164 cl::desc("Pass a workload definition. This is a file containing a JSON " 165 "dictionary. The keys are root functions, the values are lists of " 166 "functions to import in the module defining the root. It is " 167 "assumed -funique-internal-linkage-names was used, to ensure " 168 "local linkage functions have unique names. For example: \n" 169 "{\n" 170 " \"rootFunction_1\": [\"function_to_import_1\", " 171 "\"function_to_import_2\"], \n" 172 " \"rootFunction_2\": [\"function_to_import_3\", " 173 "\"function_to_import_4\"] \n" 174 "}"), 175 cl::Hidden); 176 177 extern cl::opt<std::string> UseCtxProfile; 178 179 namespace llvm { 180 extern cl::opt<bool> EnableMemProfContextDisambiguation; 181 } 182 183 // Load lazily a module from \p FileName in \p Context. 184 static std::unique_ptr<Module> loadFile(const std::string &FileName, 185 LLVMContext &Context) { 186 SMDiagnostic Err; 187 LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n"); 188 // Metadata isn't loaded until functions are imported, to minimize 189 // the memory overhead. 190 std::unique_ptr<Module> Result = 191 getLazyIRFileModule(FileName, Err, Context, 192 /* ShouldLazyLoadMetadata = */ true); 193 if (!Result) { 194 Err.print("function-import", errs()); 195 report_fatal_error("Abort"); 196 } 197 198 return Result; 199 } 200 201 static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary, 202 size_t NumDefs, 203 StringRef ImporterModule) { 204 // We can import a local when there is one definition. 205 if (NumDefs == 1) 206 return false; 207 // In other cases, make sure we import the copy in the caller's module if the 208 // referenced value has local linkage. The only time a local variable can 209 // share an entry in the index is if there is a local with the same name in 210 // another module that had the same source file name (in a different 211 // directory), where each was compiled in their own directory so there was not 212 // distinguishing path. 213 return GlobalValue::isLocalLinkage(RefSummary->linkage()) && 214 RefSummary->modulePath() != ImporterModule; 215 } 216 217 /// Given a list of possible callee implementation for a call site, qualify the 218 /// legality of importing each. The return is a range of pairs. Each pair 219 /// corresponds to a candidate. The first value is the ImportFailureReason for 220 /// that candidate, the second is the candidate. 221 static auto qualifyCalleeCandidates( 222 const ModuleSummaryIndex &Index, 223 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 224 StringRef CallerModulePath) { 225 return llvm::map_range( 226 CalleeSummaryList, 227 [&Index, CalleeSummaryList, 228 CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) 229 -> std::pair<FunctionImporter::ImportFailureReason, 230 const GlobalValueSummary *> { 231 auto *GVSummary = SummaryPtr.get(); 232 if (!Index.isGlobalValueLive(GVSummary)) 233 return {FunctionImporter::ImportFailureReason::NotLive, GVSummary}; 234 235 if (GlobalValue::isInterposableLinkage(GVSummary->linkage())) 236 return {FunctionImporter::ImportFailureReason::InterposableLinkage, 237 GVSummary}; 238 239 auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject()); 240 241 // Ignore any callees that aren't actually functions. This could happen 242 // in the case of GUID hash collisions. It could also happen in theory 243 // for SamplePGO profiles collected on old versions of the code after 244 // renaming, since we synthesize edges to any inlined callees appearing 245 // in the profile. 246 if (!Summary) 247 return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary}; 248 249 // If this is a local function, make sure we import the copy in the 250 // caller's module. The only time a local function can share an entry in 251 // the index is if there is a local with the same name in another module 252 // that had the same source file name (in a different directory), where 253 // each was compiled in their own directory so there was not 254 // distinguishing path. 255 // If the local function is from another module, it must be a reference 256 // due to indirect call profile data since a function pointer can point 257 // to a local in another module. Do the import from another module if 258 // there is only one entry in the list or when all files in the program 259 // are compiled with full path - in both cases the local function has 260 // unique PGO name and GUID. 261 if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(), 262 CallerModulePath)) 263 return { 264 FunctionImporter::ImportFailureReason::LocalLinkageNotInModule, 265 GVSummary}; 266 267 // Skip if it isn't legal to import (e.g. may reference unpromotable 268 // locals). 269 if (Summary->notEligibleToImport()) 270 return {FunctionImporter::ImportFailureReason::NotEligible, 271 GVSummary}; 272 273 return {FunctionImporter::ImportFailureReason::None, GVSummary}; 274 }); 275 } 276 277 /// Given a list of possible callee implementation for a call site, select one 278 /// that fits the \p Threshold for function definition import. If none are 279 /// found, the Reason will give the last reason for the failure (last, in the 280 /// order of CalleeSummaryList entries). While looking for a callee definition, 281 /// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline 282 /// candidate; other modules may want to know the function summary or 283 /// declaration even if a definition is not needed. 284 /// 285 /// FIXME: select "best" instead of first that fits. But what is "best"? 286 /// - The smallest: more likely to be inlined. 287 /// - The one with the least outgoing edges (already well optimized). 288 /// - One from a module already being imported from in order to reduce the 289 /// number of source modules parsed/linked. 290 /// - One that has PGO data attached. 291 /// - [insert you fancy metric here] 292 static const GlobalValueSummary * 293 selectCallee(const ModuleSummaryIndex &Index, 294 ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList, 295 unsigned Threshold, StringRef CallerModulePath, 296 const GlobalValueSummary *&TooLargeOrNoInlineSummary, 297 FunctionImporter::ImportFailureReason &Reason) { 298 // Records the last summary with reason noinline or too-large. 299 TooLargeOrNoInlineSummary = nullptr; 300 auto QualifiedCandidates = 301 qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath); 302 for (auto QualifiedValue : QualifiedCandidates) { 303 Reason = QualifiedValue.first; 304 // Skip a summary if its import is not (proved to be) legal. 305 if (Reason != FunctionImporter::ImportFailureReason::None) 306 continue; 307 auto *Summary = 308 cast<FunctionSummary>(QualifiedValue.second->getBaseObject()); 309 310 // Don't bother importing the definition if the chance of inlining it is 311 // not high enough (except under `--force-import-all`). 312 if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline && 313 !ForceImportAll) { 314 TooLargeOrNoInlineSummary = Summary; 315 Reason = FunctionImporter::ImportFailureReason::TooLarge; 316 continue; 317 } 318 319 // Don't bother importing the definition if we can't inline it anyway. 320 if (Summary->fflags().NoInline && !ForceImportAll) { 321 TooLargeOrNoInlineSummary = Summary; 322 Reason = FunctionImporter::ImportFailureReason::NoInline; 323 continue; 324 } 325 326 return Summary; 327 } 328 return nullptr; 329 } 330 331 namespace { 332 333 using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>; 334 335 } // anonymous namespace 336 337 FunctionImporter::ImportMapTy::AddDefinitionStatus 338 FunctionImporter::ImportMapTy::addDefinition(StringRef FromModule, 339 GlobalValue::GUID GUID) { 340 auto [It, Inserted] = 341 ImportMap[FromModule].try_emplace(GUID, GlobalValueSummary::Definition); 342 if (Inserted) 343 return AddDefinitionStatus::Inserted; 344 if (It->second == GlobalValueSummary::Definition) 345 return AddDefinitionStatus::NoChange; 346 It->second = GlobalValueSummary::Definition; 347 return AddDefinitionStatus::ChangedToDefinition; 348 } 349 350 void FunctionImporter::ImportMapTy::maybeAddDeclaration( 351 StringRef FromModule, GlobalValue::GUID GUID) { 352 ImportMap[FromModule].try_emplace(GUID, GlobalValueSummary::Declaration); 353 } 354 355 SmallVector<StringRef, 0> 356 FunctionImporter::ImportMapTy::getSourceModules() const { 357 SmallVector<StringRef, 0> Modules(make_first_range(ImportMap)); 358 llvm::sort(Modules); 359 return Modules; 360 } 361 362 /// Import globals referenced by a function or other globals that are being 363 /// imported, if importing such global is possible. 364 class GlobalsImporter final { 365 const ModuleSummaryIndex &Index; 366 const GVSummaryMapTy &DefinedGVSummaries; 367 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 368 IsPrevailing; 369 FunctionImporter::ImportMapTy &ImportList; 370 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 371 372 bool shouldImportGlobal(const ValueInfo &VI) { 373 const auto &GVS = DefinedGVSummaries.find(VI.getGUID()); 374 if (GVS == DefinedGVSummaries.end()) 375 return true; 376 // We should not skip import if the module contains a non-prevailing 377 // definition with interposable linkage type. This is required for 378 // correctness in the situation where there is a prevailing def available 379 // for import and marked read-only. In this case, the non-prevailing def 380 // will be converted to a declaration, while the prevailing one becomes 381 // internal, thus no definitions will be available for linking. In order to 382 // prevent undefined symbol link error, the prevailing definition must be 383 // imported. 384 // FIXME: Consider adding a check that the suitable prevailing definition 385 // exists and marked read-only. 386 if (VI.getSummaryList().size() > 1 && 387 GlobalValue::isInterposableLinkage(GVS->second->linkage()) && 388 !IsPrevailing(VI.getGUID(), GVS->second)) 389 return true; 390 391 return false; 392 } 393 394 void 395 onImportingSummaryImpl(const GlobalValueSummary &Summary, 396 SmallVectorImpl<const GlobalVarSummary *> &Worklist) { 397 for (const auto &VI : Summary.refs()) { 398 if (!shouldImportGlobal(VI)) { 399 LLVM_DEBUG( 400 dbgs() << "Ref ignored! Target already in destination module.\n"); 401 continue; 402 } 403 404 LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n"); 405 406 for (const auto &RefSummary : VI.getSummaryList()) { 407 const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get()); 408 // Functions could be referenced by global vars - e.g. a vtable; but we 409 // don't currently imagine a reason those would be imported here, rather 410 // than as part of the logic deciding which functions to import (i.e. 411 // based on profile information). Should we decide to handle them here, 412 // we can refactor accordingly at that time. 413 if (!GVS || !Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true) || 414 shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(), 415 Summary.modulePath())) 416 continue; 417 418 // If there isn't an entry for GUID, insert <GUID, Definition> pair. 419 // Otherwise, definition should take precedence over declaration. 420 if (ImportList.addDefinition(RefSummary->modulePath(), VI.getGUID()) != 421 FunctionImporter::ImportMapTy::AddDefinitionStatus::Inserted) 422 break; 423 424 // Only update stat and exports if we haven't already imported this 425 // variable. 426 NumImportedGlobalVarsThinLink++; 427 // Any references made by this variable will be marked exported 428 // later, in ComputeCrossModuleImport, after import decisions are 429 // complete, which is more efficient than adding them here. 430 if (ExportLists) 431 (*ExportLists)[RefSummary->modulePath()].insert(VI); 432 433 // If variable is not writeonly we attempt to recursively analyze 434 // its references in order to import referenced constants. 435 if (!Index.isWriteOnly(GVS)) 436 Worklist.emplace_back(GVS); 437 break; 438 } 439 } 440 } 441 442 public: 443 GlobalsImporter( 444 const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries, 445 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 446 IsPrevailing, 447 FunctionImporter::ImportMapTy &ImportList, 448 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 449 : Index(Index), DefinedGVSummaries(DefinedGVSummaries), 450 IsPrevailing(IsPrevailing), ImportList(ImportList), 451 ExportLists(ExportLists) {} 452 453 void onImportingSummary(const GlobalValueSummary &Summary) { 454 SmallVector<const GlobalVarSummary *, 128> Worklist; 455 onImportingSummaryImpl(Summary, Worklist); 456 while (!Worklist.empty()) 457 onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist); 458 } 459 }; 460 461 static const char *getFailureName(FunctionImporter::ImportFailureReason Reason); 462 463 /// Determine the list of imports and exports for each module. 464 class ModuleImportsManager { 465 protected: 466 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 467 IsPrevailing; 468 const ModuleSummaryIndex &Index; 469 DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists; 470 471 ModuleImportsManager( 472 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 473 IsPrevailing, 474 const ModuleSummaryIndex &Index, 475 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr) 476 : IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {} 477 478 public: 479 virtual ~ModuleImportsManager() = default; 480 481 /// Given the list of globals defined in a module, compute the list of imports 482 /// as well as the list of "exports", i.e. the list of symbols referenced from 483 /// another module (that may require promotion). 484 virtual void 485 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 486 StringRef ModName, 487 FunctionImporter::ImportMapTy &ImportList); 488 489 static std::unique_ptr<ModuleImportsManager> 490 create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 491 IsPrevailing, 492 const ModuleSummaryIndex &Index, 493 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = 494 nullptr); 495 }; 496 497 /// A ModuleImportsManager that operates based on a workload definition (see 498 /// -thinlto-workload-def). For modules that do not define workload roots, it 499 /// applies the base ModuleImportsManager import policy. 500 class WorkloadImportsManager : public ModuleImportsManager { 501 // Keep a module name -> value infos to import association. We use it to 502 // determine if a module's import list should be done by the base 503 // ModuleImportsManager or by us. 504 StringMap<DenseSet<ValueInfo>> Workloads; 505 506 void 507 computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries, 508 StringRef ModName, 509 FunctionImporter::ImportMapTy &ImportList) override { 510 auto SetIter = Workloads.find(ModName); 511 if (SetIter == Workloads.end()) { 512 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 513 << " does not contain the root of any context.\n"); 514 return ModuleImportsManager::computeImportForModule(DefinedGVSummaries, 515 ModName, ImportList); 516 } 517 LLVM_DEBUG(dbgs() << "[Workload] " << ModName 518 << " contains the root(s) of context(s).\n"); 519 520 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 521 ExportLists); 522 auto &ValueInfos = SetIter->second; 523 SmallVector<EdgeInfo, 128> GlobWorklist; 524 for (auto &VI : llvm::make_early_inc_range(ValueInfos)) { 525 auto It = DefinedGVSummaries.find(VI.getGUID()); 526 if (It != DefinedGVSummaries.end() && 527 IsPrevailing(VI.getGUID(), It->second)) { 528 LLVM_DEBUG( 529 dbgs() << "[Workload] " << VI.name() 530 << " has the prevailing variant already in the module " 531 << ModName << ". No need to import\n"); 532 continue; 533 } 534 auto Candidates = 535 qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName); 536 537 const GlobalValueSummary *GVS = nullptr; 538 auto PotentialCandidates = llvm::map_range( 539 llvm::make_filter_range( 540 Candidates, 541 [&](const auto &Candidate) { 542 LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name() 543 << " from " << Candidate.second->modulePath() 544 << " ImportFailureReason: " 545 << getFailureName(Candidate.first) << "\n"); 546 return Candidate.first == 547 FunctionImporter::ImportFailureReason::None; 548 }), 549 [](const auto &Candidate) { return Candidate.second; }); 550 if (PotentialCandidates.empty()) { 551 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 552 << " because can't find eligible Callee. Guid is: " 553 << Function::getGUID(VI.name()) << "\n"); 554 continue; 555 } 556 /// We will prefer importing the prevailing candidate, if not, we'll 557 /// still pick the first available candidate. The reason we want to make 558 /// sure we do import the prevailing candidate is because the goal of 559 /// workload-awareness is to enable optimizations specializing the call 560 /// graph of that workload. Suppose a function is already defined in the 561 /// module, but it's not the prevailing variant. Suppose also we do not 562 /// inline it (in fact, if it were interposable, we can't inline it), 563 /// but we could specialize it to the workload in other ways. However, 564 /// the linker would drop it in the favor of the prevailing copy. 565 /// Instead, by importing the prevailing variant (assuming also the use 566 /// of `-avail-extern-to-local`), we keep the specialization. We could 567 /// alteranatively make the non-prevailing variant local, but the 568 /// prevailing one is also the one for which we would have previously 569 /// collected profiles, making it preferrable. 570 auto PrevailingCandidates = llvm::make_filter_range( 571 PotentialCandidates, [&](const auto *Candidate) { 572 return IsPrevailing(VI.getGUID(), Candidate); 573 }); 574 if (PrevailingCandidates.empty()) { 575 GVS = *PotentialCandidates.begin(); 576 if (!llvm::hasSingleElement(PotentialCandidates) && 577 GlobalValue::isLocalLinkage(GVS->linkage())) 578 LLVM_DEBUG( 579 dbgs() 580 << "[Workload] Found multiple non-prevailing candidates for " 581 << VI.name() 582 << ". This is unexpected. Are module paths passed to the " 583 "compiler unique for the modules passed to the linker?"); 584 // We could in theory have multiple (interposable) copies of a symbol 585 // when there is no prevailing candidate, if say the prevailing copy was 586 // in a native object being linked in. However, we should in theory be 587 // marking all of these non-prevailing IR copies dead in that case, in 588 // which case they won't be candidates. 589 assert(GVS->isLive()); 590 } else { 591 assert(llvm::hasSingleElement(PrevailingCandidates)); 592 GVS = *PrevailingCandidates.begin(); 593 } 594 595 auto ExportingModule = GVS->modulePath(); 596 // We checked that for the prevailing case, but if we happen to have for 597 // example an internal that's defined in this module, it'd have no 598 // PrevailingCandidates. 599 if (ExportingModule == ModName) { 600 LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name() 601 << " because its defining module is the same as the " 602 "current module\n"); 603 continue; 604 } 605 LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from " 606 << ExportingModule << " : " 607 << Function::getGUID(VI.name()) << "\n"); 608 ImportList.addDefinition(ExportingModule, VI.getGUID()); 609 GVI.onImportingSummary(*GVS); 610 if (ExportLists) 611 (*ExportLists)[ExportingModule].insert(VI); 612 } 613 LLVM_DEBUG(dbgs() << "[Workload] Done\n"); 614 } 615 616 void loadFromJson() { 617 // Since the workload def uses names, we need a quick lookup 618 // name->ValueInfo. 619 StringMap<ValueInfo> NameToValueInfo; 620 StringSet<> AmbiguousNames; 621 for (auto &I : Index) { 622 ValueInfo VI = Index.getValueInfo(I); 623 if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second) 624 LLVM_DEBUG(AmbiguousNames.insert(VI.name())); 625 } 626 auto DbgReportIfAmbiguous = [&](StringRef Name) { 627 LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) { 628 dbgs() << "[Workload] Function name " << Name 629 << " present in the workload definition is ambiguous. Consider " 630 "compiling with -funique-internal-linkage-names."; 631 }); 632 }; 633 std::error_code EC; 634 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions); 635 if (std::error_code EC = BufferOrErr.getError()) { 636 report_fatal_error("Failed to open context file"); 637 return; 638 } 639 auto Buffer = std::move(BufferOrErr.get()); 640 std::map<std::string, std::vector<std::string>> WorkloadDefs; 641 json::Path::Root NullRoot; 642 // The JSON is supposed to contain a dictionary matching the type of 643 // WorkloadDefs. For example: 644 // { 645 // "rootFunction_1": ["function_to_import_1", "function_to_import_2"], 646 // "rootFunction_2": ["function_to_import_3", "function_to_import_4"] 647 // } 648 auto Parsed = json::parse(Buffer->getBuffer()); 649 if (!Parsed) 650 report_fatal_error(Parsed.takeError()); 651 if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot)) 652 report_fatal_error("Invalid thinlto contextual profile format."); 653 for (const auto &Workload : WorkloadDefs) { 654 const auto &Root = Workload.first; 655 DbgReportIfAmbiguous(Root); 656 LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n"); 657 const auto &AllCallees = Workload.second; 658 auto RootIt = NameToValueInfo.find(Root); 659 if (RootIt == NameToValueInfo.end()) { 660 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 661 << " not found in this linkage unit.\n"); 662 continue; 663 } 664 auto RootVI = RootIt->second; 665 if (RootVI.getSummaryList().size() != 1) { 666 LLVM_DEBUG(dbgs() << "[Workload] Root " << Root 667 << " should have exactly one summary, but has " 668 << RootVI.getSummaryList().size() << ". Skipping.\n"); 669 continue; 670 } 671 StringRef RootDefiningModule = 672 RootVI.getSummaryList().front()->modulePath(); 673 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root 674 << " is : " << RootDefiningModule << "\n"); 675 auto &Set = Workloads[RootDefiningModule]; 676 for (const auto &Callee : AllCallees) { 677 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n"); 678 DbgReportIfAmbiguous(Callee); 679 auto ElemIt = NameToValueInfo.find(Callee); 680 if (ElemIt == NameToValueInfo.end()) { 681 LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n"); 682 continue; 683 } 684 Set.insert(ElemIt->second); 685 } 686 } 687 } 688 689 void loadFromCtxProf() { 690 std::error_code EC; 691 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(UseCtxProfile); 692 if (std::error_code EC = BufferOrErr.getError()) { 693 report_fatal_error("Failed to open contextual profile file"); 694 return; 695 } 696 auto Buffer = std::move(BufferOrErr.get()); 697 698 PGOCtxProfileReader Reader(Buffer->getBuffer()); 699 auto Ctx = Reader.loadContexts(); 700 if (!Ctx) { 701 report_fatal_error("Failed to parse contextual profiles"); 702 return; 703 } 704 const auto &CtxMap = *Ctx; 705 DenseSet<GlobalValue::GUID> ContainedGUIDs; 706 for (const auto &[RootGuid, Root] : CtxMap) { 707 // Avoid ContainedGUIDs to get in/out of scope. Reuse its memory for 708 // subsequent roots, but clear its contents. 709 ContainedGUIDs.clear(); 710 711 auto RootVI = Index.getValueInfo(RootGuid); 712 if (!RootVI) { 713 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 714 << " not found in this linkage unit.\n"); 715 continue; 716 } 717 if (RootVI.getSummaryList().size() != 1) { 718 LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid 719 << " should have exactly one summary, but has " 720 << RootVI.getSummaryList().size() << ". Skipping.\n"); 721 continue; 722 } 723 StringRef RootDefiningModule = 724 RootVI.getSummaryList().front()->modulePath(); 725 LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << RootGuid 726 << " is : " << RootDefiningModule << "\n"); 727 auto &Set = Workloads[RootDefiningModule]; 728 Root.getContainedGuids(ContainedGUIDs); 729 for (auto Guid : ContainedGUIDs) 730 if (auto VI = Index.getValueInfo(Guid)) 731 Set.insert(VI); 732 } 733 } 734 735 public: 736 WorkloadImportsManager( 737 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 738 IsPrevailing, 739 const ModuleSummaryIndex &Index, 740 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) 741 : ModuleImportsManager(IsPrevailing, Index, ExportLists) { 742 if (UseCtxProfile.empty() == WorkloadDefinitions.empty()) { 743 report_fatal_error( 744 "Pass only one of: -thinlto-pgo-ctx-prof or -thinlto-workload-def"); 745 return; 746 } 747 if (!UseCtxProfile.empty()) 748 loadFromCtxProf(); 749 else 750 loadFromJson(); 751 LLVM_DEBUG({ 752 for (const auto &[Root, Set] : Workloads) { 753 dbgs() << "[Workload] Root: " << Root << " we have " << Set.size() 754 << " distinct callees.\n"; 755 for (const auto &VI : Set) { 756 dbgs() << "[Workload] Root: " << Root 757 << " Would include: " << VI.getGUID() << "\n"; 758 } 759 } 760 }); 761 } 762 }; 763 764 std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create( 765 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 766 IsPrevailing, 767 const ModuleSummaryIndex &Index, 768 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) { 769 if (WorkloadDefinitions.empty() && UseCtxProfile.empty()) { 770 LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n"); 771 return std::unique_ptr<ModuleImportsManager>( 772 new ModuleImportsManager(IsPrevailing, Index, ExportLists)); 773 } 774 LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n"); 775 return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index, 776 ExportLists); 777 } 778 779 static const char * 780 getFailureName(FunctionImporter::ImportFailureReason Reason) { 781 switch (Reason) { 782 case FunctionImporter::ImportFailureReason::None: 783 return "None"; 784 case FunctionImporter::ImportFailureReason::GlobalVar: 785 return "GlobalVar"; 786 case FunctionImporter::ImportFailureReason::NotLive: 787 return "NotLive"; 788 case FunctionImporter::ImportFailureReason::TooLarge: 789 return "TooLarge"; 790 case FunctionImporter::ImportFailureReason::InterposableLinkage: 791 return "InterposableLinkage"; 792 case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule: 793 return "LocalLinkageNotInModule"; 794 case FunctionImporter::ImportFailureReason::NotEligible: 795 return "NotEligible"; 796 case FunctionImporter::ImportFailureReason::NoInline: 797 return "NoInline"; 798 } 799 llvm_unreachable("invalid reason"); 800 } 801 802 /// Compute the list of functions to import for a given caller. Mark these 803 /// imported functions and the symbols they reference in their source module as 804 /// exported from their source module. 805 static void computeImportForFunction( 806 const FunctionSummary &Summary, const ModuleSummaryIndex &Index, 807 const unsigned Threshold, const GVSummaryMapTy &DefinedGVSummaries, 808 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 809 isPrevailing, 810 SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter, 811 FunctionImporter::ImportMapTy &ImportList, 812 DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists, 813 FunctionImporter::ImportThresholdsTy &ImportThresholds) { 814 GVImporter.onImportingSummary(Summary); 815 static int ImportCount = 0; 816 for (const auto &Edge : Summary.calls()) { 817 ValueInfo VI = Edge.first; 818 LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold 819 << "\n"); 820 821 if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) { 822 LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff 823 << " reached.\n"); 824 continue; 825 } 826 827 if (DefinedGVSummaries.count(VI.getGUID())) { 828 // FIXME: Consider not skipping import if the module contains 829 // a non-prevailing def with interposable linkage. The prevailing copy 830 // can safely be imported (see shouldImportGlobal()). 831 LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n"); 832 continue; 833 } 834 835 auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float { 836 if (Hotness == CalleeInfo::HotnessType::Hot) 837 return ImportHotMultiplier; 838 if (Hotness == CalleeInfo::HotnessType::Cold) 839 return ImportColdMultiplier; 840 if (Hotness == CalleeInfo::HotnessType::Critical) 841 return ImportCriticalMultiplier; 842 return 1.0; 843 }; 844 845 const auto NewThreshold = 846 Threshold * GetBonusMultiplier(Edge.second.getHotness()); 847 848 auto IT = ImportThresholds.insert(std::make_pair( 849 VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr))); 850 bool PreviouslyVisited = !IT.second; 851 auto &ProcessedThreshold = std::get<0>(IT.first->second); 852 auto &CalleeSummary = std::get<1>(IT.first->second); 853 auto &FailureInfo = std::get<2>(IT.first->second); 854 855 bool IsHotCallsite = 856 Edge.second.getHotness() == CalleeInfo::HotnessType::Hot; 857 bool IsCriticalCallsite = 858 Edge.second.getHotness() == CalleeInfo::HotnessType::Critical; 859 860 const FunctionSummary *ResolvedCalleeSummary = nullptr; 861 if (CalleeSummary) { 862 assert(PreviouslyVisited); 863 // Since the traversal of the call graph is DFS, we can revisit a function 864 // a second time with a higher threshold. In this case, it is added back 865 // to the worklist with the new threshold (so that its own callee chains 866 // can be considered with the higher threshold). 867 if (NewThreshold <= ProcessedThreshold) { 868 LLVM_DEBUG( 869 dbgs() << "ignored! Target was already imported with Threshold " 870 << ProcessedThreshold << "\n"); 871 continue; 872 } 873 // Update with new larger threshold. 874 ProcessedThreshold = NewThreshold; 875 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 876 } else { 877 // If we already rejected importing a callee at the same or higher 878 // threshold, don't waste time calling selectCallee. 879 if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) { 880 LLVM_DEBUG( 881 dbgs() << "ignored! Target was already rejected with Threshold " 882 << ProcessedThreshold << "\n"); 883 if (PrintImportFailures) { 884 assert(FailureInfo && 885 "Expected FailureInfo for previously rejected candidate"); 886 FailureInfo->Attempts++; 887 } 888 continue; 889 } 890 891 FunctionImporter::ImportFailureReason Reason{}; 892 893 // `SummaryForDeclImport` is an summary eligible for declaration import. 894 const GlobalValueSummary *SummaryForDeclImport = nullptr; 895 CalleeSummary = 896 selectCallee(Index, VI.getSummaryList(), NewThreshold, 897 Summary.modulePath(), SummaryForDeclImport, Reason); 898 if (!CalleeSummary) { 899 // There isn't a callee for definition import but one for declaration 900 // import. 901 if (ImportDeclaration && SummaryForDeclImport) { 902 StringRef DeclSourceModule = SummaryForDeclImport->modulePath(); 903 904 // Note `ExportLists` only keeps track of exports due to imported 905 // definitions. 906 ImportList.maybeAddDeclaration(DeclSourceModule, VI.getGUID()); 907 } 908 // Update with new larger threshold if this was a retry (otherwise 909 // we would have already inserted with NewThreshold above). Also 910 // update failure info if requested. 911 if (PreviouslyVisited) { 912 ProcessedThreshold = NewThreshold; 913 if (PrintImportFailures) { 914 assert(FailureInfo && 915 "Expected FailureInfo for previously rejected candidate"); 916 FailureInfo->Reason = Reason; 917 FailureInfo->Attempts++; 918 FailureInfo->MaxHotness = 919 std::max(FailureInfo->MaxHotness, Edge.second.getHotness()); 920 } 921 } else if (PrintImportFailures) { 922 assert(!FailureInfo && 923 "Expected no FailureInfo for newly rejected candidate"); 924 FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>( 925 VI, Edge.second.getHotness(), Reason, 1); 926 } 927 if (ForceImportAll) { 928 std::string Msg = std::string("Failed to import function ") + 929 VI.name().str() + " due to " + 930 getFailureName(Reason); 931 auto Error = make_error<StringError>( 932 Msg, make_error_code(errc::not_supported)); 933 logAllUnhandledErrors(std::move(Error), errs(), 934 "Error importing module: "); 935 break; 936 } else { 937 LLVM_DEBUG(dbgs() 938 << "ignored! No qualifying callee with summary found.\n"); 939 continue; 940 } 941 } 942 943 // "Resolve" the summary 944 CalleeSummary = CalleeSummary->getBaseObject(); 945 ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary); 946 947 assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll || 948 (ResolvedCalleeSummary->instCount() <= NewThreshold)) && 949 "selectCallee() didn't honor the threshold"); 950 951 auto ExportModulePath = ResolvedCalleeSummary->modulePath(); 952 953 // Try emplace the definition entry, and update stats based on insertion 954 // status. 955 if (ImportList.addDefinition(ExportModulePath, VI.getGUID()) != 956 FunctionImporter::ImportMapTy::AddDefinitionStatus::NoChange) { 957 NumImportedFunctionsThinLink++; 958 if (IsHotCallsite) 959 NumImportedHotFunctionsThinLink++; 960 if (IsCriticalCallsite) 961 NumImportedCriticalFunctionsThinLink++; 962 } 963 964 // Any calls/references made by this function will be marked exported 965 // later, in ComputeCrossModuleImport, after import decisions are 966 // complete, which is more efficient than adding them here. 967 if (ExportLists) 968 (*ExportLists)[ExportModulePath].insert(VI); 969 } 970 971 auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) { 972 // Adjust the threshold for next level of imported functions. 973 // The threshold is different for hot callsites because we can then 974 // inline chains of hot calls. 975 if (IsHotCallsite) 976 return Threshold * ImportHotInstrFactor; 977 return Threshold * ImportInstrFactor; 978 }; 979 980 const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite); 981 982 ImportCount++; 983 984 // Insert the newly imported function to the worklist. 985 Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold); 986 } 987 } 988 989 void ModuleImportsManager::computeImportForModule( 990 const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName, 991 FunctionImporter::ImportMapTy &ImportList) { 992 // Worklist contains the list of function imported in this module, for which 993 // we will analyse the callees and may import further down the callgraph. 994 SmallVector<EdgeInfo, 128> Worklist; 995 GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList, 996 ExportLists); 997 FunctionImporter::ImportThresholdsTy ImportThresholds; 998 999 // Populate the worklist with the import for the functions in the current 1000 // module 1001 for (const auto &GVSummary : DefinedGVSummaries) { 1002 #ifndef NDEBUG 1003 // FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID 1004 // so this map look up (and possibly others) can be avoided. 1005 auto VI = Index.getValueInfo(GVSummary.first); 1006 #endif 1007 if (!Index.isGlobalValueLive(GVSummary.second)) { 1008 LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n"); 1009 continue; 1010 } 1011 auto *FuncSummary = 1012 dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject()); 1013 if (!FuncSummary) 1014 // Skip import for global variables 1015 continue; 1016 LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n"); 1017 computeImportForFunction(*FuncSummary, Index, ImportInstrLimit, 1018 DefinedGVSummaries, IsPrevailing, Worklist, GVI, 1019 ImportList, ExportLists, ImportThresholds); 1020 } 1021 1022 // Process the newly imported functions and add callees to the worklist. 1023 while (!Worklist.empty()) { 1024 auto GVInfo = Worklist.pop_back_val(); 1025 auto *Summary = std::get<0>(GVInfo); 1026 auto Threshold = std::get<1>(GVInfo); 1027 1028 if (auto *FS = dyn_cast<FunctionSummary>(Summary)) 1029 computeImportForFunction(*FS, Index, Threshold, DefinedGVSummaries, 1030 IsPrevailing, Worklist, GVI, ImportList, 1031 ExportLists, ImportThresholds); 1032 } 1033 1034 // Print stats about functions considered but rejected for importing 1035 // when requested. 1036 if (PrintImportFailures) { 1037 dbgs() << "Missed imports into module " << ModName << "\n"; 1038 for (auto &I : ImportThresholds) { 1039 auto &ProcessedThreshold = std::get<0>(I.second); 1040 auto &CalleeSummary = std::get<1>(I.second); 1041 auto &FailureInfo = std::get<2>(I.second); 1042 if (CalleeSummary) 1043 continue; // We are going to import. 1044 assert(FailureInfo); 1045 FunctionSummary *FS = nullptr; 1046 if (!FailureInfo->VI.getSummaryList().empty()) 1047 FS = dyn_cast<FunctionSummary>( 1048 FailureInfo->VI.getSummaryList()[0]->getBaseObject()); 1049 dbgs() << FailureInfo->VI 1050 << ": Reason = " << getFailureName(FailureInfo->Reason) 1051 << ", Threshold = " << ProcessedThreshold 1052 << ", Size = " << (FS ? (int)FS->instCount() : -1) 1053 << ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness) 1054 << ", Attempts = " << FailureInfo->Attempts << "\n"; 1055 } 1056 } 1057 } 1058 1059 #ifndef NDEBUG 1060 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) { 1061 auto SL = VI.getSummaryList(); 1062 return SL.empty() 1063 ? false 1064 : SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind; 1065 } 1066 1067 static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, 1068 GlobalValue::GUID G) { 1069 if (const auto &VI = Index.getValueInfo(G)) 1070 return isGlobalVarSummary(Index, VI); 1071 return false; 1072 } 1073 1074 // Return the number of global variable summaries in ExportSet. 1075 static unsigned 1076 numGlobalVarSummaries(const ModuleSummaryIndex &Index, 1077 FunctionImporter::ExportSetTy &ExportSet) { 1078 unsigned NumGVS = 0; 1079 for (auto &VI : ExportSet) 1080 if (isGlobalVarSummary(Index, VI.getGUID())) 1081 ++NumGVS; 1082 return NumGVS; 1083 } 1084 1085 struct ImportStatistics { 1086 unsigned NumGVS = 0; 1087 unsigned DefinedFS = 0; 1088 unsigned Count = 0; 1089 }; 1090 1091 // Compute import statistics for each source module in ImportList. 1092 static DenseMap<StringRef, ImportStatistics> 1093 collectImportStatistics(const ModuleSummaryIndex &Index, 1094 const FunctionImporter::ImportMapTy &ImportList) { 1095 DenseMap<StringRef, ImportStatistics> Histogram; 1096 1097 for (const auto &[FromModule, GUIDs] : ImportList.getImportMap()) { 1098 ImportStatistics &Entry = Histogram[FromModule]; 1099 for (const auto &[GUID, Type] : GUIDs) { 1100 ++Entry.Count; 1101 if (isGlobalVarSummary(Index, GUID)) 1102 ++Entry.NumGVS; 1103 else if (Type == GlobalValueSummary::Definition) 1104 ++Entry.DefinedFS; 1105 } 1106 } 1107 return Histogram; 1108 } 1109 #endif 1110 1111 #ifndef NDEBUG 1112 static bool checkVariableImport( 1113 const ModuleSummaryIndex &Index, 1114 FunctionImporter::ImportListsTy &ImportLists, 1115 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1116 DenseSet<GlobalValue::GUID> FlattenedImports; 1117 1118 for (const auto &ImportPerModule : ImportLists) 1119 for (const auto &ExportPerModule : ImportPerModule.second.getImportMap()) 1120 for (const auto &[GUID, Type] : ExportPerModule.second) 1121 FlattenedImports.insert(GUID); 1122 1123 // Checks that all GUIDs of read/writeonly vars we see in export lists 1124 // are also in the import lists. Otherwise we my face linker undefs, 1125 // because readonly and writeonly vars are internalized in their 1126 // source modules. The exception would be if it has a linkage type indicating 1127 // that there may have been a copy existing in the importing module (e.g. 1128 // linkonce_odr). In that case we cannot accurately do this checking. 1129 auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath, 1130 const ValueInfo &VI) { 1131 auto *GVS = dyn_cast_or_null<GlobalVarSummary>( 1132 Index.findSummaryInModule(VI, ModulePath)); 1133 return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) && 1134 !(GVS->linkage() == GlobalValue::AvailableExternallyLinkage || 1135 GVS->linkage() == GlobalValue::WeakODRLinkage || 1136 GVS->linkage() == GlobalValue::LinkOnceODRLinkage); 1137 }; 1138 1139 for (auto &ExportPerModule : ExportLists) 1140 for (auto &VI : ExportPerModule.second) 1141 if (!FlattenedImports.count(VI.getGUID()) && 1142 IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI)) 1143 return false; 1144 1145 return true; 1146 } 1147 #endif 1148 1149 /// Compute all the import and export for every module using the Index. 1150 void llvm::ComputeCrossModuleImport( 1151 const ModuleSummaryIndex &Index, 1152 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1153 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1154 isPrevailing, 1155 FunctionImporter::ImportListsTy &ImportLists, 1156 DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) { 1157 auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists); 1158 // For each module that has function defined, compute the import/export lists. 1159 for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 1160 auto &ImportList = ImportLists[DefinedGVSummaries.first]; 1161 LLVM_DEBUG(dbgs() << "Computing import for Module '" 1162 << DefinedGVSummaries.first << "'\n"); 1163 MIS->computeImportForModule(DefinedGVSummaries.second, 1164 DefinedGVSummaries.first, ImportList); 1165 } 1166 1167 // When computing imports we only added the variables and functions being 1168 // imported to the export list. We also need to mark any references and calls 1169 // they make as exported as well. We do this here, as it is more efficient 1170 // since we may import the same values multiple times into different modules 1171 // during the import computation. 1172 for (auto &ELI : ExportLists) { 1173 // `NewExports` tracks the VI that gets exported because the full definition 1174 // of its user/referencer gets exported. 1175 FunctionImporter::ExportSetTy NewExports; 1176 const auto &DefinedGVSummaries = 1177 ModuleToDefinedGVSummaries.lookup(ELI.first); 1178 for (auto &EI : ELI.second) { 1179 // Find the copy defined in the exporting module so that we can mark the 1180 // values it references in that specific definition as exported. 1181 // Below we will add all references and called values, without regard to 1182 // whether they are also defined in this module. We subsequently prune the 1183 // list to only include those defined in the exporting module, see comment 1184 // there as to why. 1185 auto DS = DefinedGVSummaries.find(EI.getGUID()); 1186 // Anything marked exported during the import computation must have been 1187 // defined in the exporting module. 1188 assert(DS != DefinedGVSummaries.end()); 1189 auto *S = DS->getSecond(); 1190 S = S->getBaseObject(); 1191 if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) { 1192 // Export referenced functions and variables. We don't export/promote 1193 // objects referenced by writeonly variable initializer, because 1194 // we convert such variables initializers to "zeroinitializer". 1195 // See processGlobalForThinLTO. 1196 if (!Index.isWriteOnly(GVS)) 1197 for (const auto &VI : GVS->refs()) 1198 NewExports.insert(VI); 1199 } else { 1200 auto *FS = cast<FunctionSummary>(S); 1201 for (const auto &Edge : FS->calls()) 1202 NewExports.insert(Edge.first); 1203 for (const auto &Ref : FS->refs()) 1204 NewExports.insert(Ref); 1205 } 1206 } 1207 // Prune list computed above to only include values defined in the 1208 // exporting module. We do this after the above insertion since we may hit 1209 // the same ref/call target multiple times in above loop, and it is more 1210 // efficient to avoid a set lookup each time. 1211 for (auto EI = NewExports.begin(); EI != NewExports.end();) { 1212 if (!DefinedGVSummaries.count(EI->getGUID())) 1213 NewExports.erase(EI++); 1214 else 1215 ++EI; 1216 } 1217 ELI.second.insert(NewExports.begin(), NewExports.end()); 1218 } 1219 1220 assert(checkVariableImport(Index, ImportLists, ExportLists)); 1221 #ifndef NDEBUG 1222 LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size() 1223 << " modules:\n"); 1224 for (auto &ModuleImports : ImportLists) { 1225 auto ModName = ModuleImports.first; 1226 auto &Exports = ExportLists[ModName]; 1227 unsigned NumGVS = numGlobalVarSummaries(Index, Exports); 1228 DenseMap<StringRef, ImportStatistics> Histogram = 1229 collectImportStatistics(Index, ModuleImports.second); 1230 LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports " 1231 << Exports.size() - NumGVS << " functions and " << NumGVS 1232 << " vars. Imports from " << Histogram.size() 1233 << " modules.\n"); 1234 for (const auto &[SrcModName, Stats] : Histogram) { 1235 LLVM_DEBUG(dbgs() << " - " << Stats.DefinedFS 1236 << " function definitions and " 1237 << Stats.Count - Stats.NumGVS - Stats.DefinedFS 1238 << " function declarations imported from " << SrcModName 1239 << "\n"); 1240 LLVM_DEBUG(dbgs() << " - " << Stats.NumGVS 1241 << " global vars imported from " << SrcModName << "\n"); 1242 } 1243 } 1244 #endif 1245 } 1246 1247 #ifndef NDEBUG 1248 static void dumpImportListForModule(const ModuleSummaryIndex &Index, 1249 StringRef ModulePath, 1250 FunctionImporter::ImportMapTy &ImportList) { 1251 DenseMap<StringRef, ImportStatistics> Histogram = 1252 collectImportStatistics(Index, ImportList); 1253 LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from " 1254 << Histogram.size() << " modules.\n"); 1255 for (const auto &[SrcModName, Stats] : Histogram) { 1256 LLVM_DEBUG(dbgs() << " - " << Stats.DefinedFS 1257 << " function definitions and " 1258 << Stats.Count - Stats.DefinedFS - Stats.NumGVS 1259 << " function declarations imported from " << SrcModName 1260 << "\n"); 1261 LLVM_DEBUG(dbgs() << " - " << Stats.NumGVS << " vars imported from " 1262 << SrcModName << "\n"); 1263 } 1264 } 1265 #endif 1266 1267 /// Compute all the imports for the given module using the Index. 1268 /// 1269 /// \p isPrevailing is a callback that will be called with a global value's GUID 1270 /// and summary and should return whether the module corresponding to the 1271 /// summary contains the linker-prevailing copy of that value. 1272 /// 1273 /// \p ImportList will be populated with a map that can be passed to 1274 /// FunctionImporter::importFunctions() above (see description there). 1275 static void ComputeCrossModuleImportForModuleForTest( 1276 StringRef ModulePath, 1277 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1278 isPrevailing, 1279 const ModuleSummaryIndex &Index, 1280 FunctionImporter::ImportMapTy &ImportList) { 1281 // Collect the list of functions this module defines. 1282 // GUID -> Summary 1283 GVSummaryMapTy FunctionSummaryMap; 1284 Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap); 1285 1286 // Compute the import list for this module. 1287 LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n"); 1288 auto MIS = ModuleImportsManager::create(isPrevailing, Index); 1289 MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList); 1290 1291 #ifndef NDEBUG 1292 dumpImportListForModule(Index, ModulePath, ImportList); 1293 #endif 1294 } 1295 1296 /// Mark all external summaries in \p Index for import into the given module. 1297 /// Used for testing the case of distributed builds using a distributed index. 1298 /// 1299 /// \p ImportList will be populated with a map that can be passed to 1300 /// FunctionImporter::importFunctions() above (see description there). 1301 static void ComputeCrossModuleImportForModuleFromIndexForTest( 1302 StringRef ModulePath, const ModuleSummaryIndex &Index, 1303 FunctionImporter::ImportMapTy &ImportList) { 1304 for (const auto &GlobalList : Index) { 1305 // Ignore entries for undefined references. 1306 if (GlobalList.second.SummaryList.empty()) 1307 continue; 1308 1309 auto GUID = GlobalList.first; 1310 assert(GlobalList.second.SummaryList.size() == 1 && 1311 "Expected individual combined index to have one summary per GUID"); 1312 auto &Summary = GlobalList.second.SummaryList[0]; 1313 // Skip the summaries for the importing module. These are included to 1314 // e.g. record required linkage changes. 1315 if (Summary->modulePath() == ModulePath) 1316 continue; 1317 // Add an entry to provoke importing by thinBackend. 1318 ImportList.addGUID(Summary->modulePath(), GUID, Summary->importType()); 1319 } 1320 #ifndef NDEBUG 1321 dumpImportListForModule(Index, ModulePath, ImportList); 1322 #endif 1323 } 1324 1325 // For SamplePGO, the indirect call targets for local functions will 1326 // have its original name annotated in profile. We try to find the 1327 // corresponding PGOFuncName as the GUID, and fix up the edges 1328 // accordingly. 1329 void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index, 1330 FunctionSummary *FS) { 1331 for (auto &EI : FS->mutableCalls()) { 1332 if (!EI.first.getSummaryList().empty()) 1333 continue; 1334 auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID()); 1335 if (GUID == 0) 1336 continue; 1337 // Update the edge to point directly to the correct GUID. 1338 auto VI = Index.getValueInfo(GUID); 1339 if (llvm::any_of( 1340 VI.getSummaryList(), 1341 [&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) { 1342 // The mapping from OriginalId to GUID may return a GUID 1343 // that corresponds to a static variable. Filter it out here. 1344 // This can happen when 1345 // 1) There is a call to a library function which is not defined 1346 // in the index. 1347 // 2) There is a static variable with the OriginalGUID identical 1348 // to the GUID of the library function in 1); 1349 // When this happens the static variable in 2) will be found, 1350 // which needs to be filtered out. 1351 return SummaryPtr->getSummaryKind() == 1352 GlobalValueSummary::GlobalVarKind; 1353 })) 1354 continue; 1355 EI.first = VI; 1356 } 1357 } 1358 1359 void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) { 1360 for (const auto &Entry : Index) { 1361 for (const auto &S : Entry.second.SummaryList) { 1362 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1363 updateValueInfoForIndirectCalls(Index, FS); 1364 } 1365 } 1366 } 1367 1368 void llvm::computeDeadSymbolsAndUpdateIndirectCalls( 1369 ModuleSummaryIndex &Index, 1370 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1371 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) { 1372 assert(!Index.withGlobalValueDeadStripping()); 1373 if (!ComputeDead || 1374 // Don't do anything when nothing is live, this is friendly with tests. 1375 GUIDPreservedSymbols.empty()) { 1376 // Still need to update indirect calls. 1377 updateIndirectCalls(Index); 1378 return; 1379 } 1380 unsigned LiveSymbols = 0; 1381 SmallVector<ValueInfo, 128> Worklist; 1382 Worklist.reserve(GUIDPreservedSymbols.size() * 2); 1383 for (auto GUID : GUIDPreservedSymbols) { 1384 ValueInfo VI = Index.getValueInfo(GUID); 1385 if (!VI) 1386 continue; 1387 for (const auto &S : VI.getSummaryList()) 1388 S->setLive(true); 1389 } 1390 1391 // Add values flagged in the index as live roots to the worklist. 1392 for (const auto &Entry : Index) { 1393 auto VI = Index.getValueInfo(Entry); 1394 for (const auto &S : Entry.second.SummaryList) { 1395 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) 1396 updateValueInfoForIndirectCalls(Index, FS); 1397 if (S->isLive()) { 1398 LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n"); 1399 Worklist.push_back(VI); 1400 ++LiveSymbols; 1401 break; 1402 } 1403 } 1404 } 1405 1406 // Make value live and add it to the worklist if it was not live before. 1407 auto visit = [&](ValueInfo VI, bool IsAliasee) { 1408 // FIXME: If we knew which edges were created for indirect call profiles, 1409 // we could skip them here. Any that are live should be reached via 1410 // other edges, e.g. reference edges. Otherwise, using a profile collected 1411 // on a slightly different binary might provoke preserving, importing 1412 // and ultimately promoting calls to functions not linked into this 1413 // binary, which increases the binary size unnecessarily. Note that 1414 // if this code changes, the importer needs to change so that edges 1415 // to functions marked dead are skipped. 1416 1417 if (llvm::any_of(VI.getSummaryList(), 1418 [](const std::unique_ptr<llvm::GlobalValueSummary> &S) { 1419 return S->isLive(); 1420 })) 1421 return; 1422 1423 // We only keep live symbols that are known to be non-prevailing if any are 1424 // available_externally, linkonceodr, weakodr. Those symbols are discarded 1425 // later in the EliminateAvailableExternally pass and setting them to 1426 // not-live could break downstreams users of liveness information (PR36483) 1427 // or limit optimization opportunities. 1428 if (isPrevailing(VI.getGUID()) == PrevailingType::No) { 1429 bool KeepAliveLinkage = false; 1430 bool Interposable = false; 1431 for (const auto &S : VI.getSummaryList()) { 1432 if (S->linkage() == GlobalValue::AvailableExternallyLinkage || 1433 S->linkage() == GlobalValue::WeakODRLinkage || 1434 S->linkage() == GlobalValue::LinkOnceODRLinkage) 1435 KeepAliveLinkage = true; 1436 else if (GlobalValue::isInterposableLinkage(S->linkage())) 1437 Interposable = true; 1438 } 1439 1440 if (!IsAliasee) { 1441 if (!KeepAliveLinkage) 1442 return; 1443 1444 if (Interposable) 1445 report_fatal_error( 1446 "Interposable and available_externally/linkonce_odr/weak_odr " 1447 "symbol"); 1448 } 1449 } 1450 1451 for (const auto &S : VI.getSummaryList()) 1452 S->setLive(true); 1453 ++LiveSymbols; 1454 Worklist.push_back(VI); 1455 }; 1456 1457 while (!Worklist.empty()) { 1458 auto VI = Worklist.pop_back_val(); 1459 for (const auto &Summary : VI.getSummaryList()) { 1460 if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) { 1461 // If this is an alias, visit the aliasee VI to ensure that all copies 1462 // are marked live and it is added to the worklist for further 1463 // processing of its references. 1464 visit(AS->getAliaseeVI(), true); 1465 continue; 1466 } 1467 for (auto Ref : Summary->refs()) 1468 visit(Ref, false); 1469 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) 1470 for (auto Call : FS->calls()) 1471 visit(Call.first, false); 1472 } 1473 } 1474 Index.setWithGlobalValueDeadStripping(); 1475 1476 unsigned DeadSymbols = Index.size() - LiveSymbols; 1477 LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols 1478 << " symbols Dead \n"); 1479 NumDeadSymbols += DeadSymbols; 1480 NumLiveSymbols += LiveSymbols; 1481 } 1482 1483 // Compute dead symbols and propagate constants in combined index. 1484 void llvm::computeDeadSymbolsWithConstProp( 1485 ModuleSummaryIndex &Index, 1486 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 1487 function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing, 1488 bool ImportEnabled) { 1489 computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols, 1490 isPrevailing); 1491 if (ImportEnabled) 1492 Index.propagateAttributes(GUIDPreservedSymbols); 1493 } 1494 1495 /// Compute the set of summaries needed for a ThinLTO backend compilation of 1496 /// \p ModulePath. 1497 void llvm::gatherImportedSummariesForModule( 1498 StringRef ModulePath, 1499 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1500 const FunctionImporter::ImportMapTy &ImportList, 1501 ModuleToSummariesForIndexTy &ModuleToSummariesForIndex, 1502 GVSummaryPtrSet &DecSummaries) { 1503 // Include all summaries from the importing module. 1504 ModuleToSummariesForIndex[std::string(ModulePath)] = 1505 ModuleToDefinedGVSummaries.lookup(ModulePath); 1506 1507 // Forward port the heterogeneous std::map::operator[]() from C++26, which 1508 // lets us look up the map without allocating an instance of std::string when 1509 // the key-value pair exists in the map. 1510 // TODO: Remove this in favor of the heterogenous std::map::operator[]() from 1511 // C++26 when it becomes available for our codebase. 1512 auto LookupOrCreate = [](ModuleToSummariesForIndexTy &Map, 1513 StringRef Key) -> GVSummaryMapTy & { 1514 auto It = Map.find(Key); 1515 if (It == Map.end()) 1516 std::tie(It, std::ignore) = 1517 Map.try_emplace(std::string(Key), GVSummaryMapTy()); 1518 return It->second; 1519 }; 1520 1521 // Include summaries for imports. 1522 for (const auto &ILI : ImportList.getImportMap()) { 1523 auto &SummariesForIndex = 1524 LookupOrCreate(ModuleToSummariesForIndex, ILI.first); 1525 1526 const auto &DefinedGVSummaries = 1527 ModuleToDefinedGVSummaries.lookup(ILI.first); 1528 for (const auto &[GUID, Type] : ILI.second) { 1529 const auto &DS = DefinedGVSummaries.find(GUID); 1530 assert(DS != DefinedGVSummaries.end() && 1531 "Expected a defined summary for imported global value"); 1532 if (Type == GlobalValueSummary::Declaration) 1533 DecSummaries.insert(DS->second); 1534 1535 SummariesForIndex[GUID] = DS->second; 1536 } 1537 } 1538 } 1539 1540 /// Emit the files \p ModulePath will import from into \p OutputFilename. 1541 std::error_code llvm::EmitImportsFiles( 1542 StringRef ModulePath, StringRef OutputFilename, 1543 const ModuleToSummariesForIndexTy &ModuleToSummariesForIndex) { 1544 std::error_code EC; 1545 raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text); 1546 if (EC) 1547 return EC; 1548 for (const auto &ILI : ModuleToSummariesForIndex) 1549 // The ModuleToSummariesForIndex map includes an entry for the current 1550 // Module (needed for writing out the index files). We don't want to 1551 // include it in the imports file, however, so filter it out. 1552 if (ILI.first != ModulePath) 1553 ImportsOS << ILI.first << "\n"; 1554 return std::error_code(); 1555 } 1556 1557 bool llvm::convertToDeclaration(GlobalValue &GV) { 1558 LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName() 1559 << "\n"); 1560 if (Function *F = dyn_cast<Function>(&GV)) { 1561 F->deleteBody(); 1562 F->clearMetadata(); 1563 F->setComdat(nullptr); 1564 } else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) { 1565 V->setInitializer(nullptr); 1566 V->setLinkage(GlobalValue::ExternalLinkage); 1567 V->clearMetadata(); 1568 V->setComdat(nullptr); 1569 } else { 1570 GlobalValue *NewGV; 1571 if (GV.getValueType()->isFunctionTy()) 1572 NewGV = 1573 Function::Create(cast<FunctionType>(GV.getValueType()), 1574 GlobalValue::ExternalLinkage, GV.getAddressSpace(), 1575 "", GV.getParent()); 1576 else 1577 NewGV = 1578 new GlobalVariable(*GV.getParent(), GV.getValueType(), 1579 /*isConstant*/ false, GlobalValue::ExternalLinkage, 1580 /*init*/ nullptr, "", 1581 /*insertbefore*/ nullptr, GV.getThreadLocalMode(), 1582 GV.getType()->getAddressSpace()); 1583 NewGV->takeName(&GV); 1584 GV.replaceAllUsesWith(NewGV); 1585 return false; 1586 } 1587 if (!GV.isImplicitDSOLocal()) 1588 GV.setDSOLocal(false); 1589 return true; 1590 } 1591 1592 void llvm::thinLTOFinalizeInModule(Module &TheModule, 1593 const GVSummaryMapTy &DefinedGlobals, 1594 bool PropagateAttrs) { 1595 DenseSet<Comdat *> NonPrevailingComdats; 1596 auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) { 1597 // See if the global summary analysis computed a new resolved linkage. 1598 const auto &GS = DefinedGlobals.find(GV.getGUID()); 1599 if (GS == DefinedGlobals.end()) 1600 return; 1601 1602 if (Propagate) 1603 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) { 1604 if (Function *F = dyn_cast<Function>(&GV)) { 1605 // TODO: propagate ReadNone and ReadOnly. 1606 if (FS->fflags().ReadNone && !F->doesNotAccessMemory()) 1607 F->setDoesNotAccessMemory(); 1608 1609 if (FS->fflags().ReadOnly && !F->onlyReadsMemory()) 1610 F->setOnlyReadsMemory(); 1611 1612 if (FS->fflags().NoRecurse && !F->doesNotRecurse()) 1613 F->setDoesNotRecurse(); 1614 1615 if (FS->fflags().NoUnwind && !F->doesNotThrow()) 1616 F->setDoesNotThrow(); 1617 } 1618 } 1619 1620 auto NewLinkage = GS->second->linkage(); 1621 if (GlobalValue::isLocalLinkage(GV.getLinkage()) || 1622 // Don't internalize anything here, because the code below 1623 // lacks necessary correctness checks. Leave this job to 1624 // LLVM 'internalize' pass. 1625 GlobalValue::isLocalLinkage(NewLinkage) || 1626 // In case it was dead and already converted to declaration. 1627 GV.isDeclaration()) 1628 return; 1629 1630 // Set the potentially more constraining visibility computed from summaries. 1631 // The DefaultVisibility condition is because older GlobalValueSummary does 1632 // not record DefaultVisibility and we don't want to change protected/hidden 1633 // to default. 1634 if (GS->second->getVisibility() != GlobalValue::DefaultVisibility) 1635 GV.setVisibility(GS->second->getVisibility()); 1636 1637 if (NewLinkage == GV.getLinkage()) 1638 return; 1639 1640 // Check for a non-prevailing def that has interposable linkage 1641 // (e.g. non-odr weak or linkonce). In that case we can't simply 1642 // convert to available_externally, since it would lose the 1643 // interposable property and possibly get inlined. Simply drop 1644 // the definition in that case. 1645 if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) && 1646 GlobalValue::isInterposableLinkage(GV.getLinkage())) { 1647 if (!convertToDeclaration(GV)) 1648 // FIXME: Change this to collect replaced GVs and later erase 1649 // them from the parent module once thinLTOResolvePrevailingGUID is 1650 // changed to enable this for aliases. 1651 llvm_unreachable("Expected GV to be converted"); 1652 } else { 1653 // If all copies of the original symbol had global unnamed addr and 1654 // linkonce_odr linkage, or if all of them had local unnamed addr linkage 1655 // and are constants, then it should be an auto hide symbol. In that case 1656 // the thin link would have marked it as CanAutoHide. Add hidden 1657 // visibility to the symbol to preserve the property. 1658 if (NewLinkage == GlobalValue::WeakODRLinkage && 1659 GS->second->canAutoHide()) { 1660 assert(GV.canBeOmittedFromSymbolTable()); 1661 GV.setVisibility(GlobalValue::HiddenVisibility); 1662 } 1663 1664 LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName() 1665 << "` from " << GV.getLinkage() << " to " << NewLinkage 1666 << "\n"); 1667 GV.setLinkage(NewLinkage); 1668 } 1669 // Remove declarations from comdats, including available_externally 1670 // as this is a declaration for the linker, and will be dropped eventually. 1671 // It is illegal for comdats to contain declarations. 1672 auto *GO = dyn_cast_or_null<GlobalObject>(&GV); 1673 if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) { 1674 if (GO->getComdat()->getName() == GO->getName()) 1675 NonPrevailingComdats.insert(GO->getComdat()); 1676 GO->setComdat(nullptr); 1677 } 1678 }; 1679 1680 // Process functions and global now 1681 for (auto &GV : TheModule) 1682 FinalizeInModule(GV, PropagateAttrs); 1683 for (auto &GV : TheModule.globals()) 1684 FinalizeInModule(GV); 1685 for (auto &GV : TheModule.aliases()) 1686 FinalizeInModule(GV); 1687 1688 // For a non-prevailing comdat, all its members must be available_externally. 1689 // FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle 1690 // local linkage GlobalValues. 1691 if (NonPrevailingComdats.empty()) 1692 return; 1693 for (auto &GO : TheModule.global_objects()) { 1694 if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) { 1695 GO.setComdat(nullptr); 1696 GO.setLinkage(GlobalValue::AvailableExternallyLinkage); 1697 } 1698 } 1699 bool Changed; 1700 do { 1701 Changed = false; 1702 // If an alias references a GlobalValue in a non-prevailing comdat, change 1703 // it to available_externally. For simplicity we only handle GlobalValue and 1704 // ConstantExpr with a base object. ConstantExpr without a base object is 1705 // unlikely used in a COMDAT. 1706 for (auto &GA : TheModule.aliases()) { 1707 if (GA.hasAvailableExternallyLinkage()) 1708 continue; 1709 GlobalObject *Obj = GA.getAliaseeObject(); 1710 assert(Obj && "aliasee without an base object is unimplemented"); 1711 if (Obj->hasAvailableExternallyLinkage()) { 1712 GA.setLinkage(GlobalValue::AvailableExternallyLinkage); 1713 Changed = true; 1714 } 1715 } 1716 } while (Changed); 1717 } 1718 1719 /// Run internalization on \p TheModule based on symmary analysis. 1720 void llvm::thinLTOInternalizeModule(Module &TheModule, 1721 const GVSummaryMapTy &DefinedGlobals) { 1722 // Declare a callback for the internalize pass that will ask for every 1723 // candidate GlobalValue if it can be internalized or not. 1724 auto MustPreserveGV = [&](const GlobalValue &GV) -> bool { 1725 // It may be the case that GV is on a chain of an ifunc, its alias and 1726 // subsequent aliases. In this case, the summary for the value is not 1727 // available. 1728 if (isa<GlobalIFunc>(&GV) || 1729 (isa<GlobalAlias>(&GV) && 1730 isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject()))) 1731 return true; 1732 1733 // Lookup the linkage recorded in the summaries during global analysis. 1734 auto GS = DefinedGlobals.find(GV.getGUID()); 1735 if (GS == DefinedGlobals.end()) { 1736 // Must have been promoted (possibly conservatively). Find original 1737 // name so that we can access the correct summary and see if it can 1738 // be internalized again. 1739 // FIXME: Eventually we should control promotion instead of promoting 1740 // and internalizing again. 1741 StringRef OrigName = 1742 ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName()); 1743 std::string OrigId = GlobalValue::getGlobalIdentifier( 1744 OrigName, GlobalValue::InternalLinkage, 1745 TheModule.getSourceFileName()); 1746 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId)); 1747 if (GS == DefinedGlobals.end()) { 1748 // Also check the original non-promoted non-globalized name. In some 1749 // cases a preempted weak value is linked in as a local copy because 1750 // it is referenced by an alias (IRLinker::linkGlobalValueProto). 1751 // In that case, since it was originally not a local value, it was 1752 // recorded in the index using the original name. 1753 // FIXME: This may not be needed once PR27866 is fixed. 1754 GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName)); 1755 assert(GS != DefinedGlobals.end()); 1756 } 1757 } 1758 return !GlobalValue::isLocalLinkage(GS->second->linkage()); 1759 }; 1760 1761 // FIXME: See if we can just internalize directly here via linkage changes 1762 // based on the index, rather than invoking internalizeModule. 1763 internalizeModule(TheModule, MustPreserveGV); 1764 } 1765 1766 /// Make alias a clone of its aliasee. 1767 static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) { 1768 Function *Fn = cast<Function>(GA->getAliaseeObject()); 1769 1770 ValueToValueMapTy VMap; 1771 Function *NewFn = CloneFunction(Fn, VMap); 1772 // Clone should use the original alias's linkage, visibility and name, and we 1773 // ensure all uses of alias instead use the new clone (casted if necessary). 1774 NewFn->setLinkage(GA->getLinkage()); 1775 NewFn->setVisibility(GA->getVisibility()); 1776 GA->replaceAllUsesWith(NewFn); 1777 NewFn->takeName(GA); 1778 return NewFn; 1779 } 1780 1781 // Internalize values that we marked with specific attribute 1782 // in processGlobalForThinLTO. 1783 static void internalizeGVsAfterImport(Module &M) { 1784 for (auto &GV : M.globals()) 1785 // Skip GVs which have been converted to declarations 1786 // by dropDeadSymbols. 1787 if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) { 1788 GV.setLinkage(GlobalValue::InternalLinkage); 1789 GV.setVisibility(GlobalValue::DefaultVisibility); 1790 } 1791 } 1792 1793 // Automatically import functions in Module \p DestModule based on the summaries 1794 // index. 1795 Expected<bool> FunctionImporter::importFunctions( 1796 Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) { 1797 LLVM_DEBUG(dbgs() << "Starting import for Module " 1798 << DestModule.getModuleIdentifier() << "\n"); 1799 unsigned ImportedCount = 0, ImportedGVCount = 0; 1800 1801 IRMover Mover(DestModule); 1802 1803 auto getImportType = [&](const FunctionsToImportTy &GUIDToImportType, 1804 GlobalValue::GUID GUID) 1805 -> std::optional<GlobalValueSummary::ImportKind> { 1806 auto Iter = GUIDToImportType.find(GUID); 1807 if (Iter == GUIDToImportType.end()) 1808 return std::nullopt; 1809 return Iter->second; 1810 }; 1811 1812 // Do the actual import of functions now, one Module at a time 1813 for (const auto &Name : ImportList.getSourceModules()) { 1814 // Get the module for the import 1815 const auto &FunctionsToImportPerModule = 1816 ImportList.getImportMap().find(Name); 1817 assert(FunctionsToImportPerModule != ImportList.getImportMap().end()); 1818 Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(Name); 1819 if (!SrcModuleOrErr) 1820 return SrcModuleOrErr.takeError(); 1821 std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr); 1822 assert(&DestModule.getContext() == &SrcModule->getContext() && 1823 "Context mismatch"); 1824 1825 // If modules were created with lazy metadata loading, materialize it 1826 // now, before linking it (otherwise this will be a noop). 1827 if (Error Err = SrcModule->materializeMetadata()) 1828 return std::move(Err); 1829 1830 auto &ImportGUIDs = FunctionsToImportPerModule->second; 1831 1832 // Find the globals to import 1833 SetVector<GlobalValue *> GlobalsToImport; 1834 for (Function &F : *SrcModule) { 1835 if (!F.hasName()) 1836 continue; 1837 auto GUID = F.getGUID(); 1838 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1839 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1840 1841 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1842 << " importing function" 1843 << (ImportDefinition 1844 ? " definition " 1845 : (MaybeImportType ? " declaration " : " ")) 1846 << GUID << " " << F.getName() << " from " 1847 << SrcModule->getSourceFileName() << "\n"); 1848 if (ImportDefinition) { 1849 if (Error Err = F.materialize()) 1850 return std::move(Err); 1851 // MemProf should match function's definition and summary, 1852 // 'thinlto_src_module' is needed. 1853 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1854 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1855 // statistics and debugging. 1856 F.setMetadata( 1857 "thinlto_src_module", 1858 MDNode::get(DestModule.getContext(), 1859 {MDString::get(DestModule.getContext(), 1860 SrcModule->getModuleIdentifier())})); 1861 F.setMetadata( 1862 "thinlto_src_file", 1863 MDNode::get(DestModule.getContext(), 1864 {MDString::get(DestModule.getContext(), 1865 SrcModule->getSourceFileName())})); 1866 } 1867 GlobalsToImport.insert(&F); 1868 } 1869 } 1870 for (GlobalVariable &GV : SrcModule->globals()) { 1871 if (!GV.hasName()) 1872 continue; 1873 auto GUID = GV.getGUID(); 1874 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1875 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1876 1877 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1878 << " importing global" 1879 << (ImportDefinition 1880 ? " definition " 1881 : (MaybeImportType ? " declaration " : " ")) 1882 << GUID << " " << GV.getName() << " from " 1883 << SrcModule->getSourceFileName() << "\n"); 1884 if (ImportDefinition) { 1885 if (Error Err = GV.materialize()) 1886 return std::move(Err); 1887 ImportedGVCount += GlobalsToImport.insert(&GV); 1888 } 1889 } 1890 for (GlobalAlias &GA : SrcModule->aliases()) { 1891 if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject())) 1892 continue; 1893 auto GUID = GA.getGUID(); 1894 auto MaybeImportType = getImportType(ImportGUIDs, GUID); 1895 bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition; 1896 1897 LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not") 1898 << " importing alias" 1899 << (ImportDefinition 1900 ? " definition " 1901 : (MaybeImportType ? " declaration " : " ")) 1902 << GUID << " " << GA.getName() << " from " 1903 << SrcModule->getSourceFileName() << "\n"); 1904 if (ImportDefinition) { 1905 if (Error Err = GA.materialize()) 1906 return std::move(Err); 1907 // Import alias as a copy of its aliasee. 1908 GlobalObject *GO = GA.getAliaseeObject(); 1909 if (Error Err = GO->materialize()) 1910 return std::move(Err); 1911 auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA); 1912 LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " " 1913 << GO->getName() << " from " 1914 << SrcModule->getSourceFileName() << "\n"); 1915 if (EnableImportMetadata || EnableMemProfContextDisambiguation) { 1916 // Add 'thinlto_src_module' and 'thinlto_src_file' metadata for 1917 // statistics and debugging. 1918 Fn->setMetadata( 1919 "thinlto_src_module", 1920 MDNode::get(DestModule.getContext(), 1921 {MDString::get(DestModule.getContext(), 1922 SrcModule->getModuleIdentifier())})); 1923 Fn->setMetadata( 1924 "thinlto_src_file", 1925 MDNode::get(DestModule.getContext(), 1926 {MDString::get(DestModule.getContext(), 1927 SrcModule->getSourceFileName())})); 1928 } 1929 GlobalsToImport.insert(Fn); 1930 } 1931 } 1932 1933 // Upgrade debug info after we're done materializing all the globals and we 1934 // have loaded all the required metadata! 1935 UpgradeDebugInfo(*SrcModule); 1936 1937 // Set the partial sample profile ratio in the profile summary module flag 1938 // of the imported source module, if applicable, so that the profile summary 1939 // module flag will match with that of the destination module when it's 1940 // imported. 1941 SrcModule->setPartialSampleProfileRatio(Index); 1942 1943 // Link in the specified functions. 1944 if (renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations, 1945 &GlobalsToImport)) 1946 return true; 1947 1948 if (PrintImports) { 1949 for (const auto *GV : GlobalsToImport) 1950 dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName() 1951 << " from " << SrcModule->getSourceFileName() << "\n"; 1952 } 1953 1954 if (Error Err = Mover.move(std::move(SrcModule), 1955 GlobalsToImport.getArrayRef(), nullptr, 1956 /*IsPerformingImport=*/true)) 1957 return createStringError(errc::invalid_argument, 1958 Twine("Function Import: link error: ") + 1959 toString(std::move(Err))); 1960 1961 ImportedCount += GlobalsToImport.size(); 1962 NumImportedModules++; 1963 } 1964 1965 internalizeGVsAfterImport(DestModule); 1966 1967 NumImportedFunctions += (ImportedCount - ImportedGVCount); 1968 NumImportedGlobalVars += ImportedGVCount; 1969 1970 // TODO: Print counters for definitions and declarations in the debugging log. 1971 LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount 1972 << " functions for Module " 1973 << DestModule.getModuleIdentifier() << "\n"); 1974 LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount 1975 << " global variables for Module " 1976 << DestModule.getModuleIdentifier() << "\n"); 1977 return ImportedCount; 1978 } 1979 1980 static bool doImportingForModuleForTest( 1981 Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 1982 isPrevailing) { 1983 if (SummaryFile.empty()) 1984 report_fatal_error("error: -function-import requires -summary-file\n"); 1985 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr = 1986 getModuleSummaryIndexForFile(SummaryFile); 1987 if (!IndexPtrOrErr) { 1988 logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(), 1989 "Error loading file '" + SummaryFile + "': "); 1990 return false; 1991 } 1992 std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr); 1993 1994 // First step is collecting the import list. 1995 FunctionImporter::ImportMapTy ImportList; 1996 // If requested, simply import all functions in the index. This is used 1997 // when testing distributed backend handling via the opt tool, when 1998 // we have distributed indexes containing exactly the summaries to import. 1999 if (ImportAllIndex) 2000 ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(), 2001 *Index, ImportList); 2002 else 2003 ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(), 2004 isPrevailing, *Index, ImportList); 2005 2006 // Conservatively mark all internal values as promoted. This interface is 2007 // only used when doing importing via the function importing pass. The pass 2008 // is only enabled when testing importing via the 'opt' tool, which does 2009 // not do the ThinLink that would normally determine what values to promote. 2010 for (auto &I : *Index) { 2011 for (auto &S : I.second.SummaryList) { 2012 if (GlobalValue::isLocalLinkage(S->linkage())) 2013 S->setLinkage(GlobalValue::ExternalLinkage); 2014 } 2015 } 2016 2017 // Next we need to promote to global scope and rename any local values that 2018 // are potentially exported to other modules. 2019 if (renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false, 2020 /*GlobalsToImport=*/nullptr)) { 2021 errs() << "Error renaming module\n"; 2022 return true; 2023 } 2024 2025 // Perform the import now. 2026 auto ModuleLoader = [&M](StringRef Identifier) { 2027 return loadFile(std::string(Identifier), M.getContext()); 2028 }; 2029 FunctionImporter Importer(*Index, ModuleLoader, 2030 /*ClearDSOLocalOnDeclarations=*/false); 2031 Expected<bool> Result = Importer.importFunctions(M, ImportList); 2032 2033 // FIXME: Probably need to propagate Errors through the pass manager. 2034 if (!Result) { 2035 logAllUnhandledErrors(Result.takeError(), errs(), 2036 "Error importing module: "); 2037 return true; 2038 } 2039 2040 return true; 2041 } 2042 2043 PreservedAnalyses FunctionImportPass::run(Module &M, 2044 ModuleAnalysisManager &AM) { 2045 // This is only used for testing the function import pass via opt, where we 2046 // don't have prevailing information from the LTO context available, so just 2047 // conservatively assume everything is prevailing (which is fine for the very 2048 // limited use of prevailing checking in this pass). 2049 auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) { 2050 return true; 2051 }; 2052 if (!doImportingForModuleForTest(M, isPrevailing)) 2053 return PreservedAnalyses::all(); 2054 2055 return PreservedAnalyses::none(); 2056 } 2057