xref: /llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision dfe43bd1ca46c59399b7cbbf81b09256232e27f9)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/MIRParser/MIParser.h"
34 #include "llvm/CodeGen/MIRYamlMapping.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
51 #include <memory>
52 #include <optional>
53 #include <string>
54 
55 using namespace llvm;
56 
57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
58                                cl::desc("Enable the machine combiner pass"),
59                                cl::init(true), cl::Hidden);
60 
61 static cl::opt<bool>
62     EnableTileRAPass("x86-tile-ra",
63                      cl::desc("Enable the tile register allocation pass"),
64                      cl::init(true), cl::Hidden);
65 
66 extern "C" LLVM_C_ABI void LLVMInitializeX86Target() {
67   // Register the target.
68   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
69   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
70 
71   PassRegistry &PR = *PassRegistry::getPassRegistry();
72   initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
73   initializeX86LowerAMXTypeLegacyPassPass(PR);
74   initializeX86PreTileConfigPass(PR);
75   initializeGlobalISel(PR);
76   initializeWinEHStatePassPass(PR);
77   initializeFixupBWInstPassPass(PR);
78   initializeCompressEVEXPassPass(PR);
79   initializeFixupLEAPassPass(PR);
80   initializeFPSPass(PR);
81   initializeX86FixupSetCCPassPass(PR);
82   initializeX86CallFrameOptimizationPass(PR);
83   initializeX86CmovConverterPassPass(PR);
84   initializeX86TileConfigPass(PR);
85   initializeX86FastPreTileConfigPass(PR);
86   initializeX86FastTileConfigPass(PR);
87   initializeKCFIPass(PR);
88   initializeX86LowerTileCopyPass(PR);
89   initializeX86ExpandPseudoPass(PR);
90   initializeX86ExecutionDomainFixPass(PR);
91   initializeX86DomainReassignmentPass(PR);
92   initializeX86AvoidSFBPassPass(PR);
93   initializeX86AvoidTrailingCallPassPass(PR);
94   initializeX86SpeculativeLoadHardeningPassPass(PR);
95   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
96   initializeX86FlagsCopyLoweringPassPass(PR);
97   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
98   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
99   initializeX86OptimizeLEAPassPass(PR);
100   initializeX86PartialReductionPass(PR);
101   initializePseudoProbeInserterPass(PR);
102   initializeX86ReturnThunksPass(PR);
103   initializeX86DAGToDAGISelLegacyPass(PR);
104   initializeX86ArgumentStackSlotPassPass(PR);
105   initializeX86FixupInstTuningPassPass(PR);
106   initializeX86FixupVectorConstantsPassPass(PR);
107   initializeX86DynAllocaExpanderPass(PR);
108 }
109 
110 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
111   if (TT.isOSBinFormatMachO()) {
112     if (TT.getArch() == Triple::x86_64)
113       return std::make_unique<X86_64MachoTargetObjectFile>();
114     return std::make_unique<TargetLoweringObjectFileMachO>();
115   }
116 
117   if (TT.isOSBinFormatCOFF())
118     return std::make_unique<TargetLoweringObjectFileCOFF>();
119 
120   if (TT.getArch() == Triple::x86_64)
121     return std::make_unique<X86_64ELFTargetObjectFile>();
122   return std::make_unique<X86ELFTargetObjectFile>();
123 }
124 
125 static std::string computeDataLayout(const Triple &TT) {
126   // X86 is little endian
127   std::string Ret = "e";
128 
129   Ret += DataLayout::getManglingComponent(TT);
130   // X86 and x32 have 32 bit pointers.
131   if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
132     Ret += "-p:32:32";
133 
134   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
135   Ret += "-p270:32:32-p271:32:32-p272:64:64";
136 
137   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
138   // 128 bit integers are not specified in the 32-bit ABIs but are used
139   // internally for lowering f128, so we match the alignment to that.
140   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
141     Ret += "-i64:64-i128:128";
142   else if (TT.isOSIAMCU())
143     Ret += "-i64:32-f64:32";
144   else
145     Ret += "-i128:128-f64:32:64";
146 
147   // Some ABIs align long double to 128 bits, others to 32.
148   if (TT.isOSNaCl() || TT.isOSIAMCU())
149     ; // No f80
150   else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
151     Ret += "-f80:128";
152   else
153     Ret += "-f80:32";
154 
155   if (TT.isOSIAMCU())
156     Ret += "-f128:32";
157 
158   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
159   if (TT.isArch64Bit())
160     Ret += "-n8:16:32:64";
161   else
162     Ret += "-n8:16:32";
163 
164   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
165   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
166     Ret += "-a:0:32-S32";
167   else
168     Ret += "-S128";
169 
170   return Ret;
171 }
172 
173 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT,
174                                            std::optional<Reloc::Model> RM) {
175   bool is64Bit = TT.getArch() == Triple::x86_64;
176   if (!RM) {
177     // JIT codegen should use static relocations by default, since it's
178     // typically executed in process and not relocatable.
179     if (JIT)
180       return Reloc::Static;
181 
182     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
183     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
184     // use static relocation model by default.
185     if (TT.isOSDarwin()) {
186       if (is64Bit)
187         return Reloc::PIC_;
188       return Reloc::DynamicNoPIC;
189     }
190     if (TT.isOSWindows() && is64Bit)
191       return Reloc::PIC_;
192     return Reloc::Static;
193   }
194 
195   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
196   // is defined as a model for code which may be used in static or dynamic
197   // executables but not necessarily a shared library. On X86-32 we just
198   // compile in -static mode, in x86-64 we use PIC.
199   if (*RM == Reloc::DynamicNoPIC) {
200     if (is64Bit)
201       return Reloc::PIC_;
202     if (!TT.isOSDarwin())
203       return Reloc::Static;
204   }
205 
206   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
207   // the Mach-O file format doesn't support it.
208   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
209     return Reloc::PIC_;
210 
211   return *RM;
212 }
213 
214 static CodeModel::Model
215 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM,
216                          bool JIT) {
217   bool Is64Bit = TT.getArch() == Triple::x86_64;
218   if (CM) {
219     if (*CM == CodeModel::Tiny)
220       report_fatal_error("Target does not support the tiny CodeModel", false);
221     return *CM;
222   }
223   if (JIT)
224     return Is64Bit ? CodeModel::Large : CodeModel::Small;
225   return CodeModel::Small;
226 }
227 
228 /// Create an X86 target.
229 ///
230 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
231                                    StringRef CPU, StringRef FS,
232                                    const TargetOptions &Options,
233                                    std::optional<Reloc::Model> RM,
234                                    std::optional<CodeModel::Model> CM,
235                                    CodeGenOptLevel OL, bool JIT)
236     : LLVMTargetMachine(
237           T, computeDataLayout(TT), TT, CPU, FS, Options,
238           getEffectiveRelocModel(TT, JIT, RM),
239           getEffectiveX86CodeModel(TT, CM, JIT),
240           OL),
241       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
242   // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
243   // the calling function. Note that this also includes __stack_chk_fail,
244   // so there was some target-specific logic in the instruction selectors
245   // to handle that. That code has since been generalized, so the only thing
246   // needed is to set TrapUnreachable here.
247   if (TT.isPS() || TT.isOSBinFormatMachO()) {
248     this->Options.TrapUnreachable = true;
249     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
250   }
251 
252   setMachineOutliner(true);
253 
254   // x86 supports the debug entry values.
255   setSupportsDebugEntryValues(true);
256 
257   initAsmInfo();
258 }
259 
260 X86TargetMachine::~X86TargetMachine() = default;
261 
262 const X86Subtarget *
263 X86TargetMachine::getSubtargetImpl(const Function &F) const {
264   Attribute CPUAttr = F.getFnAttribute("target-cpu");
265   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
266   Attribute FSAttr = F.getFnAttribute("target-features");
267 
268   StringRef CPU =
269       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
270   // "x86-64" is a default target setting for many front ends. In these cases,
271   // they actually request for "generic" tuning unless the "tune-cpu" was
272   // specified.
273   StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
274                       : CPU == "x86-64"  ? "generic"
275                                          : (StringRef)CPU;
276   StringRef FS =
277       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
278 
279   SmallString<512> Key;
280   // The additions here are ordered so that the definitely short strings are
281   // added first so we won't exceed the small size. We append the
282   // much longer FS string at the end so that we only heap allocate at most
283   // one time.
284 
285   // Extract prefer-vector-width attribute.
286   unsigned PreferVectorWidthOverride = 0;
287   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
288   if (PreferVecWidthAttr.isValid()) {
289     StringRef Val = PreferVecWidthAttr.getValueAsString();
290     unsigned Width;
291     if (!Val.getAsInteger(0, Width)) {
292       Key += 'p';
293       Key += Val;
294       PreferVectorWidthOverride = Width;
295     }
296   }
297 
298   // Extract min-legal-vector-width attribute.
299   unsigned RequiredVectorWidth = UINT32_MAX;
300   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
301   if (MinLegalVecWidthAttr.isValid()) {
302     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
303     unsigned Width;
304     if (!Val.getAsInteger(0, Width)) {
305       Key += 'm';
306       Key += Val;
307       RequiredVectorWidth = Width;
308     }
309   }
310 
311   // Add CPU to the Key.
312   Key += CPU;
313 
314   // Add tune CPU to the Key.
315   Key += TuneCPU;
316 
317   // Keep track of the start of the feature portion of the string.
318   unsigned FSStart = Key.size();
319 
320   // FIXME: This is related to the code below to reset the target options,
321   // we need to know whether or not the soft float flag is set on the
322   // function before we can generate a subtarget. We also need to use
323   // it as a key for the subtarget since that can be the only difference
324   // between two functions.
325   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
326   // If the soft float attribute is set on the function turn on the soft float
327   // subtarget feature.
328   if (SoftFloat)
329     Key += FS.empty() ? "+soft-float" : "+soft-float,";
330 
331   Key += FS;
332 
333   // We may have added +soft-float to the features so move the StringRef to
334   // point to the full string in the Key.
335   FS = Key.substr(FSStart);
336 
337   auto &I = SubtargetMap[Key];
338   if (!I) {
339     // This needs to be done before we create a new subtarget since any
340     // creation will depend on the TM and the code generation flags on the
341     // function that reside in TargetOptions.
342     resetTargetOptions(F);
343     I = std::make_unique<X86Subtarget>(
344         TargetTriple, CPU, TuneCPU, FS, *this,
345         MaybeAlign(F.getParent()->getOverrideStackAlignment()),
346         PreferVectorWidthOverride, RequiredVectorWidth);
347   }
348   return I.get();
349 }
350 
351 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const {
352   return new yaml::X86MachineFunctionInfo();
353 }
354 
355 yaml::MachineFunctionInfo *
356 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
357   const auto *MFI = MF.getInfo<X86MachineFunctionInfo>();
358   return new yaml::X86MachineFunctionInfo(*MFI);
359 }
360 
361 bool X86TargetMachine::parseMachineFunctionInfo(
362     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
363     SMDiagnostic &Error, SMRange &SourceRange) const {
364   const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI);
365   PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
366   return false;
367 }
368 
369 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
370                                            unsigned DestAS) const {
371   assert(SrcAS != DestAS && "Expected different address spaces!");
372   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
373     return false;
374   return SrcAS < 256 && DestAS < 256;
375 }
376 
377 void X86TargetMachine::reset() { SubtargetMap.clear(); }
378 
379 //===----------------------------------------------------------------------===//
380 // X86 TTI query.
381 //===----------------------------------------------------------------------===//
382 
383 TargetTransformInfo
384 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
385   return TargetTransformInfo(X86TTIImpl(this, F));
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // Pass Pipeline Configuration
390 //===----------------------------------------------------------------------===//
391 
392 namespace {
393 
394 /// X86 Code Generator Pass Configuration Options.
395 class X86PassConfig : public TargetPassConfig {
396 public:
397   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
398     : TargetPassConfig(TM, PM) {}
399 
400   X86TargetMachine &getX86TargetMachine() const {
401     return getTM<X86TargetMachine>();
402   }
403 
404   ScheduleDAGInstrs *
405   createMachineScheduler(MachineSchedContext *C) const override {
406     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
407     DAG->addMutation(createX86MacroFusionDAGMutation());
408     return DAG;
409   }
410 
411   ScheduleDAGInstrs *
412   createPostMachineScheduler(MachineSchedContext *C) const override {
413     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
414     DAG->addMutation(createX86MacroFusionDAGMutation());
415     return DAG;
416   }
417 
418   void addIRPasses() override;
419   bool addInstSelector() override;
420   bool addIRTranslator() override;
421   bool addLegalizeMachineIR() override;
422   bool addRegBankSelect() override;
423   bool addGlobalInstructionSelect() override;
424   bool addILPOpts() override;
425   bool addPreISel() override;
426   void addMachineSSAOptimization() override;
427   void addPreRegAlloc() override;
428   bool addPostFastRegAllocRewrite() override;
429   void addPostRegAlloc() override;
430   void addPreEmitPass() override;
431   void addPreEmitPass2() override;
432   void addPreSched2() override;
433   bool addRegAssignAndRewriteOptimized() override;
434 
435   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
436 };
437 
438 class X86ExecutionDomainFix : public ExecutionDomainFix {
439 public:
440   static char ID;
441   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
442   StringRef getPassName() const override {
443     return "X86 Execution Dependency Fix";
444   }
445 };
446 char X86ExecutionDomainFix::ID;
447 
448 } // end anonymous namespace
449 
450 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
451   "X86 Execution Domain Fix", false, false)
452 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
453 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
454   "X86 Execution Domain Fix", false, false)
455 
456 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
457   return new X86PassConfig(*this, PM);
458 }
459 
460 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo(
461     BumpPtrAllocator &Allocator, const Function &F,
462     const TargetSubtargetInfo *STI) const {
463   return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F,
464                                                                 STI);
465 }
466 
467 void X86PassConfig::addIRPasses() {
468   addPass(createAtomicExpandLegacyPass());
469 
470   // We add both pass anyway and when these two passes run, we skip the pass
471   // based on the option level and option attribute.
472   addPass(createX86LowerAMXIntrinsicsPass());
473   addPass(createX86LowerAMXTypePass());
474 
475   TargetPassConfig::addIRPasses();
476 
477   if (TM->getOptLevel() != CodeGenOptLevel::None) {
478     addPass(createInterleavedAccessPass());
479     addPass(createX86PartialReductionPass());
480   }
481 
482   // Add passes that handle indirect branch removal and insertion of a retpoline
483   // thunk. These will be a no-op unless a function subtarget has the retpoline
484   // feature enabled.
485   addPass(createIndirectBrExpandPass());
486 
487   // Add Control Flow Guard checks.
488   const Triple &TT = TM->getTargetTriple();
489   if (TT.isOSWindows()) {
490     if (TT.getArch() == Triple::x86_64) {
491       addPass(createCFGuardDispatchPass());
492     } else {
493       addPass(createCFGuardCheckPass());
494     }
495   }
496 
497   if (TM->Options.JMCInstrument)
498     addPass(createJMCInstrumenterPass());
499 }
500 
501 bool X86PassConfig::addInstSelector() {
502   // Install an instruction selector.
503   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
504 
505   // For ELF, cleanup any local-dynamic TLS accesses.
506   if (TM->getTargetTriple().isOSBinFormatELF() &&
507       getOptLevel() != CodeGenOptLevel::None)
508     addPass(createCleanupLocalDynamicTLSPass());
509 
510   addPass(createX86GlobalBaseRegPass());
511   addPass(createX86ArgumentStackSlotPass());
512   return false;
513 }
514 
515 bool X86PassConfig::addIRTranslator() {
516   addPass(new IRTranslator(getOptLevel()));
517   return false;
518 }
519 
520 bool X86PassConfig::addLegalizeMachineIR() {
521   addPass(new Legalizer());
522   return false;
523 }
524 
525 bool X86PassConfig::addRegBankSelect() {
526   addPass(new RegBankSelect());
527   return false;
528 }
529 
530 bool X86PassConfig::addGlobalInstructionSelect() {
531   addPass(new InstructionSelect(getOptLevel()));
532   // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards
533   if (isGlobalISelAbortEnabled())
534     addPass(createX86GlobalBaseRegPass());
535   return false;
536 }
537 
538 bool X86PassConfig::addILPOpts() {
539   addPass(&EarlyIfConverterLegacyID);
540   if (EnableMachineCombinerPass)
541     addPass(&MachineCombinerID);
542   addPass(createX86CmovConverterPass());
543   return true;
544 }
545 
546 bool X86PassConfig::addPreISel() {
547   // Only add this pass for 32-bit x86 Windows.
548   const Triple &TT = TM->getTargetTriple();
549   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
550     addPass(createX86WinEHStatePass());
551   return true;
552 }
553 
554 void X86PassConfig::addPreRegAlloc() {
555   if (getOptLevel() != CodeGenOptLevel::None) {
556     addPass(&LiveRangeShrinkID);
557     addPass(createX86WinFixupBufferSecurityCheckPass());
558     addPass(createX86FixupSetCC());
559     addPass(createX86OptimizeLEAs());
560     addPass(createX86CallFrameOptimization());
561     addPass(createX86AvoidStoreForwardingBlocks());
562   }
563 
564   addPass(createX86SpeculativeLoadHardeningPass());
565   addPass(createX86FlagsCopyLoweringPass());
566   addPass(createX86DynAllocaExpander());
567 
568   if (getOptLevel() != CodeGenOptLevel::None)
569     addPass(createX86PreTileConfigPass());
570   else
571     addPass(createX86FastPreTileConfigPass());
572 }
573 
574 void X86PassConfig::addMachineSSAOptimization() {
575   addPass(createX86DomainReassignmentPass());
576   TargetPassConfig::addMachineSSAOptimization();
577 }
578 
579 void X86PassConfig::addPostRegAlloc() {
580   addPass(createX86LowerTileCopyPass());
581   addPass(createX86FloatingPointStackifierPass());
582   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
583   // to using the Speculative Execution Side Effect Suppression pass for
584   // mitigation. This is to prevent slow downs due to
585   // analyses needed by the LVIHardening pass when compiling at -O0.
586   if (getOptLevel() != CodeGenOptLevel::None)
587     addPass(createX86LoadValueInjectionLoadHardeningPass());
588 }
589 
590 void X86PassConfig::addPreSched2() {
591   addPass(createX86ExpandPseudoPass());
592   addPass(createKCFIPass());
593 }
594 
595 void X86PassConfig::addPreEmitPass() {
596   if (getOptLevel() != CodeGenOptLevel::None) {
597     addPass(new X86ExecutionDomainFix());
598     addPass(createBreakFalseDeps());
599   }
600 
601   addPass(createX86IndirectBranchTrackingPass());
602 
603   addPass(createX86IssueVZeroUpperPass());
604 
605   if (getOptLevel() != CodeGenOptLevel::None) {
606     addPass(createX86FixupBWInsts());
607     addPass(createX86PadShortFunctions());
608     addPass(createX86FixupLEAs());
609     addPass(createX86FixupInstTuning());
610     addPass(createX86FixupVectorConstants());
611   }
612   addPass(createX86CompressEVEXPass());
613   addPass(createX86DiscriminateMemOpsPass());
614   addPass(createX86InsertPrefetchPass());
615   addPass(createX86InsertX87waitPass());
616 }
617 
618 void X86PassConfig::addPreEmitPass2() {
619   const Triple &TT = TM->getTargetTriple();
620   const MCAsmInfo *MAI = TM->getMCAsmInfo();
621 
622   // The X86 Speculative Execution Pass must run after all control
623   // flow graph modifying passes. As a result it was listed to run right before
624   // the X86 Retpoline Thunks pass. The reason it must run after control flow
625   // graph modifications is that the model of LFENCE in LLVM has to be updated
626   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
627   // placement of this pass was hand checked to ensure that the subsequent
628   // passes don't move the code around the LFENCEs in a way that will hurt the
629   // correctness of this pass. This placement has been shown to work based on
630   // hand inspection of the codegen output.
631   addPass(createX86SpeculativeExecutionSideEffectSuppression());
632   addPass(createX86IndirectThunksPass());
633   addPass(createX86ReturnThunksPass());
634 
635   // Insert extra int3 instructions after trailing call instructions to avoid
636   // issues in the unwinder.
637   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
638     addPass(createX86AvoidTrailingCallPass());
639 
640   // Verify basic block incoming and outgoing cfa offset and register values and
641   // correct CFA calculation rule where needed by inserting appropriate CFI
642   // instructions.
643   if (!TT.isOSDarwin() &&
644       (!TT.isOSWindows() ||
645        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
646     addPass(createCFIInstrInserter());
647 
648   if (TT.isOSWindows()) {
649     // Identify valid longjmp targets for Windows Control Flow Guard.
650     addPass(createCFGuardLongjmpPass());
651     // Identify valid eh continuation targets for Windows EHCont Guard.
652     addPass(createEHContGuardCatchretPass());
653   }
654   addPass(createX86LoadValueInjectionRetHardeningPass());
655 
656   // Insert pseudo probe annotation for callsite profiling
657   addPass(createPseudoProbeInserter());
658 
659   // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
660   // also CALL_RVMARKER.
661   addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) {
662     // Only run bundle expansion if the module uses kcfi, or there are relevant
663     // ObjC runtime functions present in the module.
664     const Function &F = MF.getFunction();
665     const Module *M = F.getParent();
666     return M->getModuleFlag("kcfi") ||
667            (TT.isOSDarwin() &&
668             (M->getFunction("objc_retainAutoreleasedReturnValue") ||
669              M->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
670   }));
671 }
672 
673 bool X86PassConfig::addPostFastRegAllocRewrite() {
674   addPass(createX86FastTileConfigPass());
675   return true;
676 }
677 
678 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
679   return getStandardCSEConfigForOpt(TM->getOptLevel());
680 }
681 
682 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
683                                       const MachineRegisterInfo &MRI,
684                                       const Register Reg) {
685   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
686   return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC);
687 }
688 
689 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
690   // Don't support tile RA when RA is specified by command line "-regalloc".
691   if (!isCustomizedRegAlloc() && EnableTileRAPass) {
692     // Allocate tile register first.
693     addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
694     addPass(createX86TileConfigPass());
695   }
696   return TargetPassConfig::addRegAssignAndRewriteOptimized();
697 }
698