1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 27 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/MIRYamlMapping.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/TargetRegistry.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include <memory> 52 #include <optional> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> 62 EnableTileRAPass("x86-tile-ra", 63 cl::desc("Enable the tile register allocation pass"), 64 cl::init(true), cl::Hidden); 65 66 extern "C" LLVM_C_ABI void LLVMInitializeX86Target() { 67 // Register the target. 68 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 69 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 70 71 PassRegistry &PR = *PassRegistry::getPassRegistry(); 72 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 73 initializeX86LowerAMXTypeLegacyPassPass(PR); 74 initializeX86PreTileConfigPass(PR); 75 initializeGlobalISel(PR); 76 initializeWinEHStatePassPass(PR); 77 initializeFixupBWInstPassPass(PR); 78 initializeCompressEVEXPassPass(PR); 79 initializeFixupLEAPassPass(PR); 80 initializeFPSPass(PR); 81 initializeX86FixupSetCCPassPass(PR); 82 initializeX86CallFrameOptimizationPass(PR); 83 initializeX86CmovConverterPassPass(PR); 84 initializeX86TileConfigPass(PR); 85 initializeX86FastPreTileConfigPass(PR); 86 initializeX86FastTileConfigPass(PR); 87 initializeKCFIPass(PR); 88 initializeX86LowerTileCopyPass(PR); 89 initializeX86ExpandPseudoPass(PR); 90 initializeX86ExecutionDomainFixPass(PR); 91 initializeX86DomainReassignmentPass(PR); 92 initializeX86AvoidSFBPassPass(PR); 93 initializeX86AvoidTrailingCallPassPass(PR); 94 initializeX86SpeculativeLoadHardeningPassPass(PR); 95 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 96 initializeX86FlagsCopyLoweringPassPass(PR); 97 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 98 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 99 initializeX86OptimizeLEAPassPass(PR); 100 initializeX86PartialReductionPass(PR); 101 initializePseudoProbeInserterPass(PR); 102 initializeX86ReturnThunksPass(PR); 103 initializeX86DAGToDAGISelLegacyPass(PR); 104 initializeX86ArgumentStackSlotPassPass(PR); 105 initializeX86FixupInstTuningPassPass(PR); 106 initializeX86FixupVectorConstantsPassPass(PR); 107 initializeX86DynAllocaExpanderPass(PR); 108 } 109 110 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 111 if (TT.isOSBinFormatMachO()) { 112 if (TT.getArch() == Triple::x86_64) 113 return std::make_unique<X86_64MachoTargetObjectFile>(); 114 return std::make_unique<TargetLoweringObjectFileMachO>(); 115 } 116 117 if (TT.isOSBinFormatCOFF()) 118 return std::make_unique<TargetLoweringObjectFileCOFF>(); 119 120 if (TT.getArch() == Triple::x86_64) 121 return std::make_unique<X86_64ELFTargetObjectFile>(); 122 return std::make_unique<X86ELFTargetObjectFile>(); 123 } 124 125 static std::string computeDataLayout(const Triple &TT) { 126 // X86 is little endian 127 std::string Ret = "e"; 128 129 Ret += DataLayout::getManglingComponent(TT); 130 // X86 and x32 have 32 bit pointers. 131 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 132 Ret += "-p:32:32"; 133 134 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 135 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 136 137 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 138 // 128 bit integers are not specified in the 32-bit ABIs but are used 139 // internally for lowering f128, so we match the alignment to that. 140 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 141 Ret += "-i64:64-i128:128"; 142 else if (TT.isOSIAMCU()) 143 Ret += "-i64:32-f64:32"; 144 else 145 Ret += "-i128:128-f64:32:64"; 146 147 // Some ABIs align long double to 128 bits, others to 32. 148 if (TT.isOSNaCl() || TT.isOSIAMCU()) 149 ; // No f80 150 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 151 Ret += "-f80:128"; 152 else 153 Ret += "-f80:32"; 154 155 if (TT.isOSIAMCU()) 156 Ret += "-f128:32"; 157 158 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 159 if (TT.isArch64Bit()) 160 Ret += "-n8:16:32:64"; 161 else 162 Ret += "-n8:16:32"; 163 164 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 165 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 166 Ret += "-a:0:32-S32"; 167 else 168 Ret += "-S128"; 169 170 return Ret; 171 } 172 173 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT, 174 std::optional<Reloc::Model> RM) { 175 bool is64Bit = TT.getArch() == Triple::x86_64; 176 if (!RM) { 177 // JIT codegen should use static relocations by default, since it's 178 // typically executed in process and not relocatable. 179 if (JIT) 180 return Reloc::Static; 181 182 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 183 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 184 // use static relocation model by default. 185 if (TT.isOSDarwin()) { 186 if (is64Bit) 187 return Reloc::PIC_; 188 return Reloc::DynamicNoPIC; 189 } 190 if (TT.isOSWindows() && is64Bit) 191 return Reloc::PIC_; 192 return Reloc::Static; 193 } 194 195 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 196 // is defined as a model for code which may be used in static or dynamic 197 // executables but not necessarily a shared library. On X86-32 we just 198 // compile in -static mode, in x86-64 we use PIC. 199 if (*RM == Reloc::DynamicNoPIC) { 200 if (is64Bit) 201 return Reloc::PIC_; 202 if (!TT.isOSDarwin()) 203 return Reloc::Static; 204 } 205 206 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 207 // the Mach-O file format doesn't support it. 208 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 209 return Reloc::PIC_; 210 211 return *RM; 212 } 213 214 static CodeModel::Model 215 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM, 216 bool JIT) { 217 bool Is64Bit = TT.getArch() == Triple::x86_64; 218 if (CM) { 219 if (*CM == CodeModel::Tiny) 220 report_fatal_error("Target does not support the tiny CodeModel", false); 221 return *CM; 222 } 223 if (JIT) 224 return Is64Bit ? CodeModel::Large : CodeModel::Small; 225 return CodeModel::Small; 226 } 227 228 /// Create an X86 target. 229 /// 230 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 231 StringRef CPU, StringRef FS, 232 const TargetOptions &Options, 233 std::optional<Reloc::Model> RM, 234 std::optional<CodeModel::Model> CM, 235 CodeGenOptLevel OL, bool JIT) 236 : LLVMTargetMachine( 237 T, computeDataLayout(TT), TT, CPU, FS, Options, 238 getEffectiveRelocModel(TT, JIT, RM), 239 getEffectiveX86CodeModel(TT, CM, JIT), 240 OL), 241 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 242 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 243 // the calling function. Note that this also includes __stack_chk_fail, 244 // so there was some target-specific logic in the instruction selectors 245 // to handle that. That code has since been generalized, so the only thing 246 // needed is to set TrapUnreachable here. 247 if (TT.isPS() || TT.isOSBinFormatMachO()) { 248 this->Options.TrapUnreachable = true; 249 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 250 } 251 252 setMachineOutliner(true); 253 254 // x86 supports the debug entry values. 255 setSupportsDebugEntryValues(true); 256 257 initAsmInfo(); 258 } 259 260 X86TargetMachine::~X86TargetMachine() = default; 261 262 const X86Subtarget * 263 X86TargetMachine::getSubtargetImpl(const Function &F) const { 264 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 265 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 266 Attribute FSAttr = F.getFnAttribute("target-features"); 267 268 StringRef CPU = 269 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 270 // "x86-64" is a default target setting for many front ends. In these cases, 271 // they actually request for "generic" tuning unless the "tune-cpu" was 272 // specified. 273 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() 274 : CPU == "x86-64" ? "generic" 275 : (StringRef)CPU; 276 StringRef FS = 277 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 278 279 SmallString<512> Key; 280 // The additions here are ordered so that the definitely short strings are 281 // added first so we won't exceed the small size. We append the 282 // much longer FS string at the end so that we only heap allocate at most 283 // one time. 284 285 // Extract prefer-vector-width attribute. 286 unsigned PreferVectorWidthOverride = 0; 287 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 288 if (PreferVecWidthAttr.isValid()) { 289 StringRef Val = PreferVecWidthAttr.getValueAsString(); 290 unsigned Width; 291 if (!Val.getAsInteger(0, Width)) { 292 Key += 'p'; 293 Key += Val; 294 PreferVectorWidthOverride = Width; 295 } 296 } 297 298 // Extract min-legal-vector-width attribute. 299 unsigned RequiredVectorWidth = UINT32_MAX; 300 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 301 if (MinLegalVecWidthAttr.isValid()) { 302 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 303 unsigned Width; 304 if (!Val.getAsInteger(0, Width)) { 305 Key += 'm'; 306 Key += Val; 307 RequiredVectorWidth = Width; 308 } 309 } 310 311 // Add CPU to the Key. 312 Key += CPU; 313 314 // Add tune CPU to the Key. 315 Key += TuneCPU; 316 317 // Keep track of the start of the feature portion of the string. 318 unsigned FSStart = Key.size(); 319 320 // FIXME: This is related to the code below to reset the target options, 321 // we need to know whether or not the soft float flag is set on the 322 // function before we can generate a subtarget. We also need to use 323 // it as a key for the subtarget since that can be the only difference 324 // between two functions. 325 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 326 // If the soft float attribute is set on the function turn on the soft float 327 // subtarget feature. 328 if (SoftFloat) 329 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 330 331 Key += FS; 332 333 // We may have added +soft-float to the features so move the StringRef to 334 // point to the full string in the Key. 335 FS = Key.substr(FSStart); 336 337 auto &I = SubtargetMap[Key]; 338 if (!I) { 339 // This needs to be done before we create a new subtarget since any 340 // creation will depend on the TM and the code generation flags on the 341 // function that reside in TargetOptions. 342 resetTargetOptions(F); 343 I = std::make_unique<X86Subtarget>( 344 TargetTriple, CPU, TuneCPU, FS, *this, 345 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 346 PreferVectorWidthOverride, RequiredVectorWidth); 347 } 348 return I.get(); 349 } 350 351 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const { 352 return new yaml::X86MachineFunctionInfo(); 353 } 354 355 yaml::MachineFunctionInfo * 356 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 357 const auto *MFI = MF.getInfo<X86MachineFunctionInfo>(); 358 return new yaml::X86MachineFunctionInfo(*MFI); 359 } 360 361 bool X86TargetMachine::parseMachineFunctionInfo( 362 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 363 SMDiagnostic &Error, SMRange &SourceRange) const { 364 const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI); 365 PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI); 366 return false; 367 } 368 369 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 370 unsigned DestAS) const { 371 assert(SrcAS != DestAS && "Expected different address spaces!"); 372 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 373 return false; 374 return SrcAS < 256 && DestAS < 256; 375 } 376 377 void X86TargetMachine::reset() { SubtargetMap.clear(); } 378 379 //===----------------------------------------------------------------------===// 380 // X86 TTI query. 381 //===----------------------------------------------------------------------===// 382 383 TargetTransformInfo 384 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 385 return TargetTransformInfo(X86TTIImpl(this, F)); 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Pass Pipeline Configuration 390 //===----------------------------------------------------------------------===// 391 392 namespace { 393 394 /// X86 Code Generator Pass Configuration Options. 395 class X86PassConfig : public TargetPassConfig { 396 public: 397 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 398 : TargetPassConfig(TM, PM) {} 399 400 X86TargetMachine &getX86TargetMachine() const { 401 return getTM<X86TargetMachine>(); 402 } 403 404 ScheduleDAGInstrs * 405 createMachineScheduler(MachineSchedContext *C) const override { 406 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 407 DAG->addMutation(createX86MacroFusionDAGMutation()); 408 return DAG; 409 } 410 411 ScheduleDAGInstrs * 412 createPostMachineScheduler(MachineSchedContext *C) const override { 413 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 414 DAG->addMutation(createX86MacroFusionDAGMutation()); 415 return DAG; 416 } 417 418 void addIRPasses() override; 419 bool addInstSelector() override; 420 bool addIRTranslator() override; 421 bool addLegalizeMachineIR() override; 422 bool addRegBankSelect() override; 423 bool addGlobalInstructionSelect() override; 424 bool addILPOpts() override; 425 bool addPreISel() override; 426 void addMachineSSAOptimization() override; 427 void addPreRegAlloc() override; 428 bool addPostFastRegAllocRewrite() override; 429 void addPostRegAlloc() override; 430 void addPreEmitPass() override; 431 void addPreEmitPass2() override; 432 void addPreSched2() override; 433 bool addRegAssignAndRewriteOptimized() override; 434 435 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 436 }; 437 438 class X86ExecutionDomainFix : public ExecutionDomainFix { 439 public: 440 static char ID; 441 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 442 StringRef getPassName() const override { 443 return "X86 Execution Dependency Fix"; 444 } 445 }; 446 char X86ExecutionDomainFix::ID; 447 448 } // end anonymous namespace 449 450 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 451 "X86 Execution Domain Fix", false, false) 452 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 453 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 454 "X86 Execution Domain Fix", false, false) 455 456 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 457 return new X86PassConfig(*this, PM); 458 } 459 460 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo( 461 BumpPtrAllocator &Allocator, const Function &F, 462 const TargetSubtargetInfo *STI) const { 463 return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F, 464 STI); 465 } 466 467 void X86PassConfig::addIRPasses() { 468 addPass(createAtomicExpandLegacyPass()); 469 470 // We add both pass anyway and when these two passes run, we skip the pass 471 // based on the option level and option attribute. 472 addPass(createX86LowerAMXIntrinsicsPass()); 473 addPass(createX86LowerAMXTypePass()); 474 475 TargetPassConfig::addIRPasses(); 476 477 if (TM->getOptLevel() != CodeGenOptLevel::None) { 478 addPass(createInterleavedAccessPass()); 479 addPass(createX86PartialReductionPass()); 480 } 481 482 // Add passes that handle indirect branch removal and insertion of a retpoline 483 // thunk. These will be a no-op unless a function subtarget has the retpoline 484 // feature enabled. 485 addPass(createIndirectBrExpandPass()); 486 487 // Add Control Flow Guard checks. 488 const Triple &TT = TM->getTargetTriple(); 489 if (TT.isOSWindows()) { 490 if (TT.getArch() == Triple::x86_64) { 491 addPass(createCFGuardDispatchPass()); 492 } else { 493 addPass(createCFGuardCheckPass()); 494 } 495 } 496 497 if (TM->Options.JMCInstrument) 498 addPass(createJMCInstrumenterPass()); 499 } 500 501 bool X86PassConfig::addInstSelector() { 502 // Install an instruction selector. 503 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 504 505 // For ELF, cleanup any local-dynamic TLS accesses. 506 if (TM->getTargetTriple().isOSBinFormatELF() && 507 getOptLevel() != CodeGenOptLevel::None) 508 addPass(createCleanupLocalDynamicTLSPass()); 509 510 addPass(createX86GlobalBaseRegPass()); 511 addPass(createX86ArgumentStackSlotPass()); 512 return false; 513 } 514 515 bool X86PassConfig::addIRTranslator() { 516 addPass(new IRTranslator(getOptLevel())); 517 return false; 518 } 519 520 bool X86PassConfig::addLegalizeMachineIR() { 521 addPass(new Legalizer()); 522 return false; 523 } 524 525 bool X86PassConfig::addRegBankSelect() { 526 addPass(new RegBankSelect()); 527 return false; 528 } 529 530 bool X86PassConfig::addGlobalInstructionSelect() { 531 addPass(new InstructionSelect(getOptLevel())); 532 // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards 533 if (isGlobalISelAbortEnabled()) 534 addPass(createX86GlobalBaseRegPass()); 535 return false; 536 } 537 538 bool X86PassConfig::addILPOpts() { 539 addPass(&EarlyIfConverterLegacyID); 540 if (EnableMachineCombinerPass) 541 addPass(&MachineCombinerID); 542 addPass(createX86CmovConverterPass()); 543 return true; 544 } 545 546 bool X86PassConfig::addPreISel() { 547 // Only add this pass for 32-bit x86 Windows. 548 const Triple &TT = TM->getTargetTriple(); 549 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 550 addPass(createX86WinEHStatePass()); 551 return true; 552 } 553 554 void X86PassConfig::addPreRegAlloc() { 555 if (getOptLevel() != CodeGenOptLevel::None) { 556 addPass(&LiveRangeShrinkID); 557 addPass(createX86WinFixupBufferSecurityCheckPass()); 558 addPass(createX86FixupSetCC()); 559 addPass(createX86OptimizeLEAs()); 560 addPass(createX86CallFrameOptimization()); 561 addPass(createX86AvoidStoreForwardingBlocks()); 562 } 563 564 addPass(createX86SpeculativeLoadHardeningPass()); 565 addPass(createX86FlagsCopyLoweringPass()); 566 addPass(createX86DynAllocaExpander()); 567 568 if (getOptLevel() != CodeGenOptLevel::None) 569 addPass(createX86PreTileConfigPass()); 570 else 571 addPass(createX86FastPreTileConfigPass()); 572 } 573 574 void X86PassConfig::addMachineSSAOptimization() { 575 addPass(createX86DomainReassignmentPass()); 576 TargetPassConfig::addMachineSSAOptimization(); 577 } 578 579 void X86PassConfig::addPostRegAlloc() { 580 addPass(createX86LowerTileCopyPass()); 581 addPass(createX86FloatingPointStackifierPass()); 582 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 583 // to using the Speculative Execution Side Effect Suppression pass for 584 // mitigation. This is to prevent slow downs due to 585 // analyses needed by the LVIHardening pass when compiling at -O0. 586 if (getOptLevel() != CodeGenOptLevel::None) 587 addPass(createX86LoadValueInjectionLoadHardeningPass()); 588 } 589 590 void X86PassConfig::addPreSched2() { 591 addPass(createX86ExpandPseudoPass()); 592 addPass(createKCFIPass()); 593 } 594 595 void X86PassConfig::addPreEmitPass() { 596 if (getOptLevel() != CodeGenOptLevel::None) { 597 addPass(new X86ExecutionDomainFix()); 598 addPass(createBreakFalseDeps()); 599 } 600 601 addPass(createX86IndirectBranchTrackingPass()); 602 603 addPass(createX86IssueVZeroUpperPass()); 604 605 if (getOptLevel() != CodeGenOptLevel::None) { 606 addPass(createX86FixupBWInsts()); 607 addPass(createX86PadShortFunctions()); 608 addPass(createX86FixupLEAs()); 609 addPass(createX86FixupInstTuning()); 610 addPass(createX86FixupVectorConstants()); 611 } 612 addPass(createX86CompressEVEXPass()); 613 addPass(createX86DiscriminateMemOpsPass()); 614 addPass(createX86InsertPrefetchPass()); 615 addPass(createX86InsertX87waitPass()); 616 } 617 618 void X86PassConfig::addPreEmitPass2() { 619 const Triple &TT = TM->getTargetTriple(); 620 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 621 622 // The X86 Speculative Execution Pass must run after all control 623 // flow graph modifying passes. As a result it was listed to run right before 624 // the X86 Retpoline Thunks pass. The reason it must run after control flow 625 // graph modifications is that the model of LFENCE in LLVM has to be updated 626 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 627 // placement of this pass was hand checked to ensure that the subsequent 628 // passes don't move the code around the LFENCEs in a way that will hurt the 629 // correctness of this pass. This placement has been shown to work based on 630 // hand inspection of the codegen output. 631 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 632 addPass(createX86IndirectThunksPass()); 633 addPass(createX86ReturnThunksPass()); 634 635 // Insert extra int3 instructions after trailing call instructions to avoid 636 // issues in the unwinder. 637 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 638 addPass(createX86AvoidTrailingCallPass()); 639 640 // Verify basic block incoming and outgoing cfa offset and register values and 641 // correct CFA calculation rule where needed by inserting appropriate CFI 642 // instructions. 643 if (!TT.isOSDarwin() && 644 (!TT.isOSWindows() || 645 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 646 addPass(createCFIInstrInserter()); 647 648 if (TT.isOSWindows()) { 649 // Identify valid longjmp targets for Windows Control Flow Guard. 650 addPass(createCFGuardLongjmpPass()); 651 // Identify valid eh continuation targets for Windows EHCont Guard. 652 addPass(createEHContGuardCatchretPass()); 653 } 654 addPass(createX86LoadValueInjectionRetHardeningPass()); 655 656 // Insert pseudo probe annotation for callsite profiling 657 addPass(createPseudoProbeInserter()); 658 659 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms, 660 // also CALL_RVMARKER. 661 addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) { 662 // Only run bundle expansion if the module uses kcfi, or there are relevant 663 // ObjC runtime functions present in the module. 664 const Function &F = MF.getFunction(); 665 const Module *M = F.getParent(); 666 return M->getModuleFlag("kcfi") || 667 (TT.isOSDarwin() && 668 (M->getFunction("objc_retainAutoreleasedReturnValue") || 669 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"))); 670 })); 671 } 672 673 bool X86PassConfig::addPostFastRegAllocRewrite() { 674 addPass(createX86FastTileConfigPass()); 675 return true; 676 } 677 678 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 679 return getStandardCSEConfigForOpt(TM->getOptLevel()); 680 } 681 682 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 683 const MachineRegisterInfo &MRI, 684 const Register Reg) { 685 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 686 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC); 687 } 688 689 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 690 // Don't support tile RA when RA is specified by command line "-regalloc". 691 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 692 // Allocate tile register first. 693 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 694 addPass(createX86TileConfigPass()); 695 } 696 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 697 } 698