1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/CodeGen/ExecutionDomainFix.h" 27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 28 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/MIRYamlMapping.h" 36 #include "llvm/CodeGen/MachineScheduler.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCAsmInfo.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/TargetParser/Triple.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include <memory> 54 #include <optional> 55 #include <string> 56 57 using namespace llvm; 58 59 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 60 cl::desc("Enable the machine combiner pass"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 EnableTileRAPass("x86-tile-ra", 65 cl::desc("Enable the tile register allocation pass"), 66 cl::init(true), cl::Hidden); 67 68 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 69 // Register the target. 70 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 71 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 72 73 PassRegistry &PR = *PassRegistry::getPassRegistry(); 74 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 75 initializeX86LowerAMXTypeLegacyPassPass(PR); 76 initializeX86PreTileConfigPass(PR); 77 initializeGlobalISel(PR); 78 initializeWinEHStatePassPass(PR); 79 initializeFixupBWInstPassPass(PR); 80 initializeCompressEVEXPassPass(PR); 81 initializeFixupLEAPassPass(PR); 82 initializeFPSPass(PR); 83 initializeX86FixupSetCCPassPass(PR); 84 initializeX86CallFrameOptimizationPass(PR); 85 initializeX86CmovConverterPassPass(PR); 86 initializeX86TileConfigPass(PR); 87 initializeX86FastPreTileConfigPass(PR); 88 initializeX86FastTileConfigPass(PR); 89 initializeKCFIPass(PR); 90 initializeX86LowerTileCopyPass(PR); 91 initializeX86ExpandPseudoPass(PR); 92 initializeX86ExecutionDomainFixPass(PR); 93 initializeX86DomainReassignmentPass(PR); 94 initializeX86AvoidSFBPassPass(PR); 95 initializeX86AvoidTrailingCallPassPass(PR); 96 initializeX86SpeculativeLoadHardeningPassPass(PR); 97 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 98 initializeX86FlagsCopyLoweringPassPass(PR); 99 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 100 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 101 initializeX86OptimizeLEAPassPass(PR); 102 initializeX86PartialReductionPass(PR); 103 initializePseudoProbeInserterPass(PR); 104 initializeX86ReturnThunksPass(PR); 105 initializeX86DAGToDAGISelLegacyPass(PR); 106 initializeX86ArgumentStackSlotPassPass(PR); 107 initializeX86FixupInstTuningPassPass(PR); 108 initializeX86FixupVectorConstantsPassPass(PR); 109 initializeX86DynAllocaExpanderPass(PR); 110 } 111 112 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 113 if (TT.isOSBinFormatMachO()) { 114 if (TT.getArch() == Triple::x86_64) 115 return std::make_unique<X86_64MachoTargetObjectFile>(); 116 return std::make_unique<TargetLoweringObjectFileMachO>(); 117 } 118 119 if (TT.isOSBinFormatCOFF()) 120 return std::make_unique<TargetLoweringObjectFileCOFF>(); 121 122 if (TT.getArch() == Triple::x86_64) 123 return std::make_unique<X86_64ELFTargetObjectFile>(); 124 return std::make_unique<X86ELFTargetObjectFile>(); 125 } 126 127 static std::string computeDataLayout(const Triple &TT) { 128 // X86 is little endian 129 std::string Ret = "e"; 130 131 Ret += DataLayout::getManglingComponent(TT); 132 // X86 and x32 have 32 bit pointers. 133 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 134 Ret += "-p:32:32"; 135 136 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 137 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 138 139 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 140 // 128 bit integers are not specified in the 32-bit ABIs but are used 141 // internally for lowering f128, so we match the alignment to that. 142 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 143 Ret += "-i64:64-i128:128"; 144 else if (TT.isOSIAMCU()) 145 Ret += "-i64:32-f64:32"; 146 else 147 Ret += "-i128:128-f64:32:64"; 148 149 // Some ABIs align long double to 128 bits, others to 32. 150 if (TT.isOSNaCl() || TT.isOSIAMCU()) 151 ; // No f80 152 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 153 Ret += "-f80:128"; 154 else 155 Ret += "-f80:32"; 156 157 if (TT.isOSIAMCU()) 158 Ret += "-f128:32"; 159 160 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 161 if (TT.isArch64Bit()) 162 Ret += "-n8:16:32:64"; 163 else 164 Ret += "-n8:16:32"; 165 166 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 167 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 168 Ret += "-a:0:32-S32"; 169 else 170 Ret += "-S128"; 171 172 return Ret; 173 } 174 175 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT, 176 std::optional<Reloc::Model> RM) { 177 bool is64Bit = TT.getArch() == Triple::x86_64; 178 if (!RM) { 179 // JIT codegen should use static relocations by default, since it's 180 // typically executed in process and not relocatable. 181 if (JIT) 182 return Reloc::Static; 183 184 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 185 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 186 // use static relocation model by default. 187 if (TT.isOSDarwin()) { 188 if (is64Bit) 189 return Reloc::PIC_; 190 return Reloc::DynamicNoPIC; 191 } 192 if (TT.isOSWindows() && is64Bit) 193 return Reloc::PIC_; 194 return Reloc::Static; 195 } 196 197 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 198 // is defined as a model for code which may be used in static or dynamic 199 // executables but not necessarily a shared library. On X86-32 we just 200 // compile in -static mode, in x86-64 we use PIC. 201 if (*RM == Reloc::DynamicNoPIC) { 202 if (is64Bit) 203 return Reloc::PIC_; 204 if (!TT.isOSDarwin()) 205 return Reloc::Static; 206 } 207 208 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 209 // the Mach-O file format doesn't support it. 210 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 211 return Reloc::PIC_; 212 213 return *RM; 214 } 215 216 static CodeModel::Model 217 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM, 218 bool JIT) { 219 bool Is64Bit = TT.getArch() == Triple::x86_64; 220 if (CM) { 221 if (*CM == CodeModel::Tiny) 222 report_fatal_error("Target does not support the tiny CodeModel", false); 223 return *CM; 224 } 225 if (JIT) 226 return Is64Bit ? CodeModel::Large : CodeModel::Small; 227 return CodeModel::Small; 228 } 229 230 /// Create an X86 target. 231 /// 232 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 233 StringRef CPU, StringRef FS, 234 const TargetOptions &Options, 235 std::optional<Reloc::Model> RM, 236 std::optional<CodeModel::Model> CM, 237 CodeGenOptLevel OL, bool JIT) 238 : LLVMTargetMachine( 239 T, computeDataLayout(TT), TT, CPU, FS, Options, 240 getEffectiveRelocModel(TT, JIT, RM), 241 getEffectiveX86CodeModel(TT, CM, JIT), 242 OL), 243 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 244 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 245 // the calling function. Note that this also includes __stack_chk_fail, 246 // so there was some target-specific logic in the instruction selectors 247 // to handle that. That code has since been generalized, so the only thing 248 // needed is to set TrapUnreachable here. 249 if (TT.isPS() || TT.isOSBinFormatMachO()) { 250 this->Options.TrapUnreachable = true; 251 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 252 } 253 254 setMachineOutliner(true); 255 256 // x86 supports the debug entry values. 257 setSupportsDebugEntryValues(true); 258 259 initAsmInfo(); 260 } 261 262 X86TargetMachine::~X86TargetMachine() = default; 263 264 const X86Subtarget * 265 X86TargetMachine::getSubtargetImpl(const Function &F) const { 266 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 267 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 268 Attribute FSAttr = F.getFnAttribute("target-features"); 269 270 StringRef CPU = 271 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 272 // "x86-64" is a default target setting for many front ends. In these cases, 273 // they actually request for "generic" tuning unless the "tune-cpu" was 274 // specified. 275 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() 276 : CPU == "x86-64" ? "generic" 277 : (StringRef)CPU; 278 StringRef FS = 279 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 280 281 SmallString<512> Key; 282 // The additions here are ordered so that the definitely short strings are 283 // added first so we won't exceed the small size. We append the 284 // much longer FS string at the end so that we only heap allocate at most 285 // one time. 286 287 // Extract prefer-vector-width attribute. 288 unsigned PreferVectorWidthOverride = 0; 289 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 290 if (PreferVecWidthAttr.isValid()) { 291 StringRef Val = PreferVecWidthAttr.getValueAsString(); 292 unsigned Width; 293 if (!Val.getAsInteger(0, Width)) { 294 Key += 'p'; 295 Key += Val; 296 PreferVectorWidthOverride = Width; 297 } 298 } 299 300 // Extract min-legal-vector-width attribute. 301 unsigned RequiredVectorWidth = UINT32_MAX; 302 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 303 if (MinLegalVecWidthAttr.isValid()) { 304 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 305 unsigned Width; 306 if (!Val.getAsInteger(0, Width)) { 307 Key += 'm'; 308 Key += Val; 309 RequiredVectorWidth = Width; 310 } 311 } 312 313 // Add CPU to the Key. 314 Key += CPU; 315 316 // Add tune CPU to the Key. 317 Key += TuneCPU; 318 319 // Keep track of the start of the feature portion of the string. 320 unsigned FSStart = Key.size(); 321 322 // FIXME: This is related to the code below to reset the target options, 323 // we need to know whether or not the soft float flag is set on the 324 // function before we can generate a subtarget. We also need to use 325 // it as a key for the subtarget since that can be the only difference 326 // between two functions. 327 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 328 // If the soft float attribute is set on the function turn on the soft float 329 // subtarget feature. 330 if (SoftFloat) 331 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 332 333 Key += FS; 334 335 // We may have added +soft-float to the features so move the StringRef to 336 // point to the full string in the Key. 337 FS = Key.substr(FSStart); 338 339 auto &I = SubtargetMap[Key]; 340 if (!I) { 341 // This needs to be done before we create a new subtarget since any 342 // creation will depend on the TM and the code generation flags on the 343 // function that reside in TargetOptions. 344 resetTargetOptions(F); 345 I = std::make_unique<X86Subtarget>( 346 TargetTriple, CPU, TuneCPU, FS, *this, 347 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 348 PreferVectorWidthOverride, RequiredVectorWidth); 349 } 350 return I.get(); 351 } 352 353 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const { 354 return new yaml::X86MachineFunctionInfo(); 355 } 356 357 yaml::MachineFunctionInfo * 358 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 359 const auto *MFI = MF.getInfo<X86MachineFunctionInfo>(); 360 return new yaml::X86MachineFunctionInfo(*MFI); 361 } 362 363 bool X86TargetMachine::parseMachineFunctionInfo( 364 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 365 SMDiagnostic &Error, SMRange &SourceRange) const { 366 const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI); 367 PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI); 368 return false; 369 } 370 371 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 372 unsigned DestAS) const { 373 assert(SrcAS != DestAS && "Expected different address spaces!"); 374 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 375 return false; 376 return SrcAS < 256 && DestAS < 256; 377 } 378 379 void X86TargetMachine::reset() { SubtargetMap.clear(); } 380 381 //===----------------------------------------------------------------------===// 382 // X86 TTI query. 383 //===----------------------------------------------------------------------===// 384 385 TargetTransformInfo 386 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 387 return TargetTransformInfo(X86TTIImpl(this, F)); 388 } 389 390 //===----------------------------------------------------------------------===// 391 // Pass Pipeline Configuration 392 //===----------------------------------------------------------------------===// 393 394 namespace { 395 396 /// X86 Code Generator Pass Configuration Options. 397 class X86PassConfig : public TargetPassConfig { 398 public: 399 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 400 : TargetPassConfig(TM, PM) {} 401 402 X86TargetMachine &getX86TargetMachine() const { 403 return getTM<X86TargetMachine>(); 404 } 405 406 ScheduleDAGInstrs * 407 createMachineScheduler(MachineSchedContext *C) const override { 408 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 409 DAG->addMutation(createX86MacroFusionDAGMutation()); 410 return DAG; 411 } 412 413 ScheduleDAGInstrs * 414 createPostMachineScheduler(MachineSchedContext *C) const override { 415 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 416 DAG->addMutation(createX86MacroFusionDAGMutation()); 417 return DAG; 418 } 419 420 void addIRPasses() override; 421 bool addInstSelector() override; 422 bool addIRTranslator() override; 423 bool addLegalizeMachineIR() override; 424 bool addRegBankSelect() override; 425 bool addGlobalInstructionSelect() override; 426 bool addILPOpts() override; 427 bool addPreISel() override; 428 void addMachineSSAOptimization() override; 429 void addPreRegAlloc() override; 430 bool addPostFastRegAllocRewrite() override; 431 void addPostRegAlloc() override; 432 void addPreEmitPass() override; 433 void addPreEmitPass2() override; 434 void addPreSched2() override; 435 bool addRegAssignAndRewriteOptimized() override; 436 437 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 438 }; 439 440 class X86ExecutionDomainFix : public ExecutionDomainFix { 441 public: 442 static char ID; 443 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 444 StringRef getPassName() const override { 445 return "X86 Execution Dependency Fix"; 446 } 447 }; 448 char X86ExecutionDomainFix::ID; 449 450 } // end anonymous namespace 451 452 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 453 "X86 Execution Domain Fix", false, false) 454 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 455 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 456 "X86 Execution Domain Fix", false, false) 457 458 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 459 return new X86PassConfig(*this, PM); 460 } 461 462 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo( 463 BumpPtrAllocator &Allocator, const Function &F, 464 const TargetSubtargetInfo *STI) const { 465 return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F, 466 STI); 467 } 468 469 void X86PassConfig::addIRPasses() { 470 addPass(createAtomicExpandLegacyPass()); 471 472 // We add both pass anyway and when these two passes run, we skip the pass 473 // based on the option level and option attribute. 474 addPass(createX86LowerAMXIntrinsicsPass()); 475 addPass(createX86LowerAMXTypePass()); 476 477 TargetPassConfig::addIRPasses(); 478 479 if (TM->getOptLevel() != CodeGenOptLevel::None) { 480 addPass(createInterleavedAccessPass()); 481 addPass(createX86PartialReductionPass()); 482 } 483 484 // Add passes that handle indirect branch removal and insertion of a retpoline 485 // thunk. These will be a no-op unless a function subtarget has the retpoline 486 // feature enabled. 487 addPass(createIndirectBrExpandPass()); 488 489 // Add Control Flow Guard checks. 490 const Triple &TT = TM->getTargetTriple(); 491 if (TT.isOSWindows()) { 492 if (TT.getArch() == Triple::x86_64) { 493 addPass(createCFGuardDispatchPass()); 494 } else { 495 addPass(createCFGuardCheckPass()); 496 } 497 } 498 499 if (TM->Options.JMCInstrument) 500 addPass(createJMCInstrumenterPass()); 501 } 502 503 bool X86PassConfig::addInstSelector() { 504 // Install an instruction selector. 505 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 506 507 // For ELF, cleanup any local-dynamic TLS accesses. 508 if (TM->getTargetTriple().isOSBinFormatELF() && 509 getOptLevel() != CodeGenOptLevel::None) 510 addPass(createCleanupLocalDynamicTLSPass()); 511 512 addPass(createX86GlobalBaseRegPass()); 513 addPass(createX86ArgumentStackSlotPass()); 514 return false; 515 } 516 517 bool X86PassConfig::addIRTranslator() { 518 addPass(new IRTranslator(getOptLevel())); 519 return false; 520 } 521 522 bool X86PassConfig::addLegalizeMachineIR() { 523 addPass(new Legalizer()); 524 return false; 525 } 526 527 bool X86PassConfig::addRegBankSelect() { 528 addPass(new RegBankSelect()); 529 return false; 530 } 531 532 bool X86PassConfig::addGlobalInstructionSelect() { 533 addPass(new InstructionSelect(getOptLevel())); 534 // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards 535 if (isGlobalISelAbortEnabled()) 536 addPass(createX86GlobalBaseRegPass()); 537 return false; 538 } 539 540 bool X86PassConfig::addILPOpts() { 541 addPass(&EarlyIfConverterLegacyID); 542 if (EnableMachineCombinerPass) 543 addPass(&MachineCombinerID); 544 addPass(createX86CmovConverterPass()); 545 return true; 546 } 547 548 bool X86PassConfig::addPreISel() { 549 // Only add this pass for 32-bit x86 Windows. 550 const Triple &TT = TM->getTargetTriple(); 551 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 552 addPass(createX86WinEHStatePass()); 553 return true; 554 } 555 556 void X86PassConfig::addPreRegAlloc() { 557 if (getOptLevel() != CodeGenOptLevel::None) { 558 addPass(&LiveRangeShrinkID); 559 addPass(createX86WinFixupBufferSecurityCheckPass()); 560 addPass(createX86FixupSetCC()); 561 addPass(createX86OptimizeLEAs()); 562 addPass(createX86CallFrameOptimization()); 563 addPass(createX86AvoidStoreForwardingBlocks()); 564 } 565 566 addPass(createX86SpeculativeLoadHardeningPass()); 567 addPass(createX86FlagsCopyLoweringPass()); 568 addPass(createX86DynAllocaExpander()); 569 570 if (getOptLevel() != CodeGenOptLevel::None) 571 addPass(createX86PreTileConfigPass()); 572 else 573 addPass(createX86FastPreTileConfigPass()); 574 } 575 576 void X86PassConfig::addMachineSSAOptimization() { 577 addPass(createX86DomainReassignmentPass()); 578 TargetPassConfig::addMachineSSAOptimization(); 579 } 580 581 void X86PassConfig::addPostRegAlloc() { 582 addPass(createX86LowerTileCopyPass()); 583 addPass(createX86FloatingPointStackifierPass()); 584 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 585 // to using the Speculative Execution Side Effect Suppression pass for 586 // mitigation. This is to prevent slow downs due to 587 // analyses needed by the LVIHardening pass when compiling at -O0. 588 if (getOptLevel() != CodeGenOptLevel::None) 589 addPass(createX86LoadValueInjectionLoadHardeningPass()); 590 } 591 592 void X86PassConfig::addPreSched2() { 593 addPass(createX86ExpandPseudoPass()); 594 addPass(createKCFIPass()); 595 } 596 597 void X86PassConfig::addPreEmitPass() { 598 if (getOptLevel() != CodeGenOptLevel::None) { 599 addPass(new X86ExecutionDomainFix()); 600 addPass(createBreakFalseDeps()); 601 } 602 603 addPass(createX86IndirectBranchTrackingPass()); 604 605 addPass(createX86IssueVZeroUpperPass()); 606 607 if (getOptLevel() != CodeGenOptLevel::None) { 608 addPass(createX86FixupBWInsts()); 609 addPass(createX86PadShortFunctions()); 610 addPass(createX86FixupLEAs()); 611 addPass(createX86FixupInstTuning()); 612 addPass(createX86FixupVectorConstants()); 613 } 614 addPass(createX86CompressEVEXPass()); 615 addPass(createX86DiscriminateMemOpsPass()); 616 addPass(createX86InsertPrefetchPass()); 617 addPass(createX86InsertX87waitPass()); 618 } 619 620 void X86PassConfig::addPreEmitPass2() { 621 const Triple &TT = TM->getTargetTriple(); 622 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 623 624 // The X86 Speculative Execution Pass must run after all control 625 // flow graph modifying passes. As a result it was listed to run right before 626 // the X86 Retpoline Thunks pass. The reason it must run after control flow 627 // graph modifications is that the model of LFENCE in LLVM has to be updated 628 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 629 // placement of this pass was hand checked to ensure that the subsequent 630 // passes don't move the code around the LFENCEs in a way that will hurt the 631 // correctness of this pass. This placement has been shown to work based on 632 // hand inspection of the codegen output. 633 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 634 addPass(createX86IndirectThunksPass()); 635 addPass(createX86ReturnThunksPass()); 636 637 // Insert extra int3 instructions after trailing call instructions to avoid 638 // issues in the unwinder. 639 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 640 addPass(createX86AvoidTrailingCallPass()); 641 642 // Verify basic block incoming and outgoing cfa offset and register values and 643 // correct CFA calculation rule where needed by inserting appropriate CFI 644 // instructions. 645 if (!TT.isOSDarwin() && 646 (!TT.isOSWindows() || 647 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 648 addPass(createCFIInstrInserter()); 649 650 if (TT.isOSWindows()) { 651 // Identify valid longjmp targets for Windows Control Flow Guard. 652 addPass(createCFGuardLongjmpPass()); 653 // Identify valid eh continuation targets for Windows EHCont Guard. 654 addPass(createEHContGuardCatchretPass()); 655 } 656 addPass(createX86LoadValueInjectionRetHardeningPass()); 657 658 // Insert pseudo probe annotation for callsite profiling 659 addPass(createPseudoProbeInserter()); 660 661 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms, 662 // also CALL_RVMARKER. 663 addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) { 664 // Only run bundle expansion if the module uses kcfi, or there are relevant 665 // ObjC runtime functions present in the module. 666 const Function &F = MF.getFunction(); 667 const Module *M = F.getParent(); 668 return M->getModuleFlag("kcfi") || 669 (TT.isOSDarwin() && 670 (M->getFunction("objc_retainAutoreleasedReturnValue") || 671 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"))); 672 })); 673 } 674 675 bool X86PassConfig::addPostFastRegAllocRewrite() { 676 addPass(createX86FastTileConfigPass()); 677 return true; 678 } 679 680 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 681 return getStandardCSEConfigForOpt(TM->getOptLevel()); 682 } 683 684 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 685 const MachineRegisterInfo &MRI, 686 const Register Reg) { 687 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 688 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC); 689 } 690 691 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 692 // Don't support tile RA when RA is specified by command line "-regalloc". 693 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 694 // Allocate tile register first. 695 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 696 addPass(createX86TileConfigPass()); 697 } 698 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 699 } 700