xref: /llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp (revision 1f7c3d609b01d0cf2a0b973cc17a9b0bca8e56b5)
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/ExecutionDomainFix.h"
27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
51 #include <memory>
52 #include <optional>
53 #include <string>
54 
55 using namespace llvm;
56 
57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
58                                cl::desc("Enable the machine combiner pass"),
59                                cl::init(true), cl::Hidden);
60 
61 static cl::opt<bool>
62     EnableTileRAPass("x86-tile-ra",
63                      cl::desc("Enable the tile register allocation pass"),
64                      cl::init(true), cl::Hidden);
65 
66 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
67   // Register the target.
68   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
69   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
70 
71   PassRegistry &PR = *PassRegistry::getPassRegistry();
72   initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
73   initializeX86LowerAMXTypeLegacyPassPass(PR);
74   initializeX86PreTileConfigPass(PR);
75   initializeGlobalISel(PR);
76   initializeWinEHStatePassPass(PR);
77   initializeFixupBWInstPassPass(PR);
78   initializeCompressEVEXPassPass(PR);
79   initializeFixupLEAPassPass(PR);
80   initializeFPSPass(PR);
81   initializeX86FixupSetCCPassPass(PR);
82   initializeX86CallFrameOptimizationPass(PR);
83   initializeX86CmovConverterPassPass(PR);
84   initializeX86TileConfigPass(PR);
85   initializeX86FastPreTileConfigPass(PR);
86   initializeX86FastTileConfigPass(PR);
87   initializeKCFIPass(PR);
88   initializeX86LowerTileCopyPass(PR);
89   initializeX86ExpandPseudoPass(PR);
90   initializeX86ExecutionDomainFixPass(PR);
91   initializeX86DomainReassignmentPass(PR);
92   initializeX86AvoidSFBPassPass(PR);
93   initializeX86AvoidTrailingCallPassPass(PR);
94   initializeX86SpeculativeLoadHardeningPassPass(PR);
95   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
96   initializeX86FlagsCopyLoweringPassPass(PR);
97   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
98   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
99   initializeX86OptimizeLEAPassPass(PR);
100   initializeX86PartialReductionPass(PR);
101   initializePseudoProbeInserterPass(PR);
102   initializeX86ReturnThunksPass(PR);
103   initializeX86DAGToDAGISelPass(PR);
104   initializeX86ArgumentStackSlotPassPass(PR);
105   initializeX86FixupInstTuningPassPass(PR);
106   initializeX86FixupVectorConstantsPassPass(PR);
107 }
108 
109 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
110   if (TT.isOSBinFormatMachO()) {
111     if (TT.getArch() == Triple::x86_64)
112       return std::make_unique<X86_64MachoTargetObjectFile>();
113     return std::make_unique<TargetLoweringObjectFileMachO>();
114   }
115 
116   if (TT.isOSBinFormatCOFF())
117     return std::make_unique<TargetLoweringObjectFileCOFF>();
118 
119   if (TT.getArch() == Triple::x86_64)
120     return std::make_unique<X86_64ELFTargetObjectFile>();
121   return std::make_unique<X86ELFTargetObjectFile>();
122 }
123 
124 static std::string computeDataLayout(const Triple &TT) {
125   // X86 is little endian
126   std::string Ret = "e";
127 
128   Ret += DataLayout::getManglingComponent(TT);
129   // X86 and x32 have 32 bit pointers.
130   if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
131     Ret += "-p:32:32";
132 
133   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
134   Ret += "-p270:32:32-p271:32:32-p272:64:64";
135 
136   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
137   // 128 bit integers are not specified in the 32-bit ABIs but are used
138   // internally for lowering f128, so we match the alignment to that.
139   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
140     Ret += "-i64:64-i128:128";
141   else if (TT.isOSIAMCU())
142     Ret += "-i64:32-f64:32";
143   else
144     Ret += "-i128:128-f64:32:64";
145 
146   // Some ABIs align long double to 128 bits, others to 32.
147   if (TT.isOSNaCl() || TT.isOSIAMCU())
148     ; // No f80
149   else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
150     Ret += "-f80:128";
151   else
152     Ret += "-f80:32";
153 
154   if (TT.isOSIAMCU())
155     Ret += "-f128:32";
156 
157   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
158   if (TT.isArch64Bit())
159     Ret += "-n8:16:32:64";
160   else
161     Ret += "-n8:16:32";
162 
163   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
164   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
165     Ret += "-a:0:32-S32";
166   else
167     Ret += "-S128";
168 
169   return Ret;
170 }
171 
172 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT,
173                                            std::optional<Reloc::Model> RM) {
174   bool is64Bit = TT.getArch() == Triple::x86_64;
175   if (!RM) {
176     // JIT codegen should use static relocations by default, since it's
177     // typically executed in process and not relocatable.
178     if (JIT)
179       return Reloc::Static;
180 
181     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
182     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
183     // use static relocation model by default.
184     if (TT.isOSDarwin()) {
185       if (is64Bit)
186         return Reloc::PIC_;
187       return Reloc::DynamicNoPIC;
188     }
189     if (TT.isOSWindows() && is64Bit)
190       return Reloc::PIC_;
191     return Reloc::Static;
192   }
193 
194   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
195   // is defined as a model for code which may be used in static or dynamic
196   // executables but not necessarily a shared library. On X86-32 we just
197   // compile in -static mode, in x86-64 we use PIC.
198   if (*RM == Reloc::DynamicNoPIC) {
199     if (is64Bit)
200       return Reloc::PIC_;
201     if (!TT.isOSDarwin())
202       return Reloc::Static;
203   }
204 
205   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
206   // the Mach-O file format doesn't support it.
207   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
208     return Reloc::PIC_;
209 
210   return *RM;
211 }
212 
213 static CodeModel::Model
214 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM,
215                          bool JIT) {
216   bool Is64Bit = TT.getArch() == Triple::x86_64;
217   if (CM) {
218     if (*CM == CodeModel::Tiny)
219       report_fatal_error("Target does not support the tiny CodeModel", false);
220     return *CM;
221   }
222   if (JIT)
223     return Is64Bit ? CodeModel::Large : CodeModel::Small;
224   return CodeModel::Small;
225 }
226 
227 /// Create an X86 target.
228 ///
229 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
230                                    StringRef CPU, StringRef FS,
231                                    const TargetOptions &Options,
232                                    std::optional<Reloc::Model> RM,
233                                    std::optional<CodeModel::Model> CM,
234                                    CodeGenOptLevel OL, bool JIT)
235     : LLVMTargetMachine(
236           T, computeDataLayout(TT), TT, CPU, FS, Options,
237           getEffectiveRelocModel(TT, JIT, RM),
238           getEffectiveX86CodeModel(TT, CM, JIT),
239           OL),
240       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
241   // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
242   // the calling function, and TrapUnreachable is an easy way to get that.
243   if (TT.isPS() || TT.isOSBinFormatMachO()) {
244     this->Options.TrapUnreachable = true;
245     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
246   }
247 
248   setMachineOutliner(true);
249 
250   // x86 supports the debug entry values.
251   setSupportsDebugEntryValues(true);
252 
253   initAsmInfo();
254 }
255 
256 X86TargetMachine::~X86TargetMachine() = default;
257 
258 const X86Subtarget *
259 X86TargetMachine::getSubtargetImpl(const Function &F) const {
260   Attribute CPUAttr = F.getFnAttribute("target-cpu");
261   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
262   Attribute FSAttr = F.getFnAttribute("target-features");
263 
264   StringRef CPU =
265       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
266   // "x86-64" is a default target setting for many front ends. In these cases,
267   // they actually request for "generic" tuning unless the "tune-cpu" was
268   // specified.
269   StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
270                       : CPU == "x86-64"  ? "generic"
271                                          : (StringRef)CPU;
272   StringRef FS =
273       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
274 
275   SmallString<512> Key;
276   // The additions here are ordered so that the definitely short strings are
277   // added first so we won't exceed the small size. We append the
278   // much longer FS string at the end so that we only heap allocate at most
279   // one time.
280 
281   // Extract prefer-vector-width attribute.
282   unsigned PreferVectorWidthOverride = 0;
283   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
284   if (PreferVecWidthAttr.isValid()) {
285     StringRef Val = PreferVecWidthAttr.getValueAsString();
286     unsigned Width;
287     if (!Val.getAsInteger(0, Width)) {
288       Key += 'p';
289       Key += Val;
290       PreferVectorWidthOverride = Width;
291     }
292   }
293 
294   // Extract min-legal-vector-width attribute.
295   unsigned RequiredVectorWidth = UINT32_MAX;
296   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
297   if (MinLegalVecWidthAttr.isValid()) {
298     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
299     unsigned Width;
300     if (!Val.getAsInteger(0, Width)) {
301       Key += 'm';
302       Key += Val;
303       RequiredVectorWidth = Width;
304     }
305   }
306 
307   // Add CPU to the Key.
308   Key += CPU;
309 
310   // Add tune CPU to the Key.
311   Key += TuneCPU;
312 
313   // Keep track of the start of the feature portion of the string.
314   unsigned FSStart = Key.size();
315 
316   // FIXME: This is related to the code below to reset the target options,
317   // we need to know whether or not the soft float flag is set on the
318   // function before we can generate a subtarget. We also need to use
319   // it as a key for the subtarget since that can be the only difference
320   // between two functions.
321   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
322   // If the soft float attribute is set on the function turn on the soft float
323   // subtarget feature.
324   if (SoftFloat)
325     Key += FS.empty() ? "+soft-float" : "+soft-float,";
326 
327   Key += FS;
328 
329   // We may have added +soft-float to the features so move the StringRef to
330   // point to the full string in the Key.
331   FS = Key.substr(FSStart);
332 
333   auto &I = SubtargetMap[Key];
334   if (!I) {
335     // This needs to be done before we create a new subtarget since any
336     // creation will depend on the TM and the code generation flags on the
337     // function that reside in TargetOptions.
338     resetTargetOptions(F);
339     I = std::make_unique<X86Subtarget>(
340         TargetTriple, CPU, TuneCPU, FS, *this,
341         MaybeAlign(F.getParent()->getOverrideStackAlignment()),
342         PreferVectorWidthOverride, RequiredVectorWidth);
343   }
344   return I.get();
345 }
346 
347 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
348                                            unsigned DestAS) const {
349   assert(SrcAS != DestAS && "Expected different address spaces!");
350   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
351     return false;
352   return SrcAS < 256 && DestAS < 256;
353 }
354 
355 //===----------------------------------------------------------------------===//
356 // X86 TTI query.
357 //===----------------------------------------------------------------------===//
358 
359 TargetTransformInfo
360 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
361   return TargetTransformInfo(X86TTIImpl(this, F));
362 }
363 
364 //===----------------------------------------------------------------------===//
365 // Pass Pipeline Configuration
366 //===----------------------------------------------------------------------===//
367 
368 namespace {
369 
370 /// X86 Code Generator Pass Configuration Options.
371 class X86PassConfig : public TargetPassConfig {
372 public:
373   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
374     : TargetPassConfig(TM, PM) {}
375 
376   X86TargetMachine &getX86TargetMachine() const {
377     return getTM<X86TargetMachine>();
378   }
379 
380   ScheduleDAGInstrs *
381   createMachineScheduler(MachineSchedContext *C) const override {
382     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
383     DAG->addMutation(createX86MacroFusionDAGMutation());
384     return DAG;
385   }
386 
387   ScheduleDAGInstrs *
388   createPostMachineScheduler(MachineSchedContext *C) const override {
389     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
390     DAG->addMutation(createX86MacroFusionDAGMutation());
391     return DAG;
392   }
393 
394   void addIRPasses() override;
395   bool addInstSelector() override;
396   bool addIRTranslator() override;
397   bool addLegalizeMachineIR() override;
398   bool addRegBankSelect() override;
399   bool addGlobalInstructionSelect() override;
400   bool addILPOpts() override;
401   bool addPreISel() override;
402   void addMachineSSAOptimization() override;
403   void addPreRegAlloc() override;
404   bool addPostFastRegAllocRewrite() override;
405   void addPostRegAlloc() override;
406   void addPreEmitPass() override;
407   void addPreEmitPass2() override;
408   void addPreSched2() override;
409   bool addRegAssignAndRewriteOptimized() override;
410 
411   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
412 };
413 
414 class X86ExecutionDomainFix : public ExecutionDomainFix {
415 public:
416   static char ID;
417   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
418   StringRef getPassName() const override {
419     return "X86 Execution Dependency Fix";
420   }
421 };
422 char X86ExecutionDomainFix::ID;
423 
424 } // end anonymous namespace
425 
426 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
427   "X86 Execution Domain Fix", false, false)
428 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
429 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
430   "X86 Execution Domain Fix", false, false)
431 
432 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
433   return new X86PassConfig(*this, PM);
434 }
435 
436 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo(
437     BumpPtrAllocator &Allocator, const Function &F,
438     const TargetSubtargetInfo *STI) const {
439   return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F,
440                                                                 STI);
441 }
442 
443 void X86PassConfig::addIRPasses() {
444   addPass(createAtomicExpandLegacyPass());
445 
446   // We add both pass anyway and when these two passes run, we skip the pass
447   // based on the option level and option attribute.
448   addPass(createX86LowerAMXIntrinsicsPass());
449   addPass(createX86LowerAMXTypePass());
450 
451   TargetPassConfig::addIRPasses();
452 
453   if (TM->getOptLevel() != CodeGenOptLevel::None) {
454     addPass(createInterleavedAccessPass());
455     addPass(createX86PartialReductionPass());
456   }
457 
458   // Add passes that handle indirect branch removal and insertion of a retpoline
459   // thunk. These will be a no-op unless a function subtarget has the retpoline
460   // feature enabled.
461   addPass(createIndirectBrExpandPass());
462 
463   // Add Control Flow Guard checks.
464   const Triple &TT = TM->getTargetTriple();
465   if (TT.isOSWindows()) {
466     if (TT.getArch() == Triple::x86_64) {
467       addPass(createCFGuardDispatchPass());
468     } else {
469       addPass(createCFGuardCheckPass());
470     }
471   }
472 
473   if (TM->Options.JMCInstrument)
474     addPass(createJMCInstrumenterPass());
475 }
476 
477 bool X86PassConfig::addInstSelector() {
478   // Install an instruction selector.
479   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
480 
481   // For ELF, cleanup any local-dynamic TLS accesses.
482   if (TM->getTargetTriple().isOSBinFormatELF() &&
483       getOptLevel() != CodeGenOptLevel::None)
484     addPass(createCleanupLocalDynamicTLSPass());
485 
486   addPass(createX86GlobalBaseRegPass());
487   addPass(createX86ArgumentStackSlotPass());
488   return false;
489 }
490 
491 bool X86PassConfig::addIRTranslator() {
492   addPass(new IRTranslator(getOptLevel()));
493   return false;
494 }
495 
496 bool X86PassConfig::addLegalizeMachineIR() {
497   addPass(new Legalizer());
498   return false;
499 }
500 
501 bool X86PassConfig::addRegBankSelect() {
502   addPass(new RegBankSelect());
503   return false;
504 }
505 
506 bool X86PassConfig::addGlobalInstructionSelect() {
507   addPass(new InstructionSelect(getOptLevel()));
508   return false;
509 }
510 
511 bool X86PassConfig::addILPOpts() {
512   addPass(&EarlyIfConverterID);
513   if (EnableMachineCombinerPass)
514     addPass(&MachineCombinerID);
515   addPass(createX86CmovConverterPass());
516   return true;
517 }
518 
519 bool X86PassConfig::addPreISel() {
520   // Only add this pass for 32-bit x86 Windows.
521   const Triple &TT = TM->getTargetTriple();
522   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
523     addPass(createX86WinEHStatePass());
524   return true;
525 }
526 
527 void X86PassConfig::addPreRegAlloc() {
528   if (getOptLevel() != CodeGenOptLevel::None) {
529     addPass(&LiveRangeShrinkID);
530     addPass(createX86FixupSetCC());
531     addPass(createX86OptimizeLEAs());
532     addPass(createX86CallFrameOptimization());
533     addPass(createX86AvoidStoreForwardingBlocks());
534   }
535 
536   addPass(createX86SpeculativeLoadHardeningPass());
537   addPass(createX86FlagsCopyLoweringPass());
538   addPass(createX86DynAllocaExpander());
539 
540   if (getOptLevel() != CodeGenOptLevel::None)
541     addPass(createX86PreTileConfigPass());
542   else
543     addPass(createX86FastPreTileConfigPass());
544 }
545 
546 void X86PassConfig::addMachineSSAOptimization() {
547   addPass(createX86DomainReassignmentPass());
548   TargetPassConfig::addMachineSSAOptimization();
549 }
550 
551 void X86PassConfig::addPostRegAlloc() {
552   addPass(createX86LowerTileCopyPass());
553   addPass(createX86FloatingPointStackifierPass());
554   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
555   // to using the Speculative Execution Side Effect Suppression pass for
556   // mitigation. This is to prevent slow downs due to
557   // analyses needed by the LVIHardening pass when compiling at -O0.
558   if (getOptLevel() != CodeGenOptLevel::None)
559     addPass(createX86LoadValueInjectionLoadHardeningPass());
560 }
561 
562 void X86PassConfig::addPreSched2() {
563   addPass(createX86ExpandPseudoPass());
564   addPass(createKCFIPass());
565 }
566 
567 void X86PassConfig::addPreEmitPass() {
568   if (getOptLevel() != CodeGenOptLevel::None) {
569     addPass(new X86ExecutionDomainFix());
570     addPass(createBreakFalseDeps());
571   }
572 
573   addPass(createX86IndirectBranchTrackingPass());
574 
575   addPass(createX86IssueVZeroUpperPass());
576 
577   if (getOptLevel() != CodeGenOptLevel::None) {
578     addPass(createX86FixupBWInsts());
579     addPass(createX86PadShortFunctions());
580     addPass(createX86FixupLEAs());
581     addPass(createX86FixupInstTuning());
582     addPass(createX86FixupVectorConstants());
583   }
584   addPass(createX86CompressEVEXPass());
585   addPass(createX86DiscriminateMemOpsPass());
586   addPass(createX86InsertPrefetchPass());
587   addPass(createX86InsertX87waitPass());
588 }
589 
590 void X86PassConfig::addPreEmitPass2() {
591   const Triple &TT = TM->getTargetTriple();
592   const MCAsmInfo *MAI = TM->getMCAsmInfo();
593 
594   // The X86 Speculative Execution Pass must run after all control
595   // flow graph modifying passes. As a result it was listed to run right before
596   // the X86 Retpoline Thunks pass. The reason it must run after control flow
597   // graph modifications is that the model of LFENCE in LLVM has to be updated
598   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
599   // placement of this pass was hand checked to ensure that the subsequent
600   // passes don't move the code around the LFENCEs in a way that will hurt the
601   // correctness of this pass. This placement has been shown to work based on
602   // hand inspection of the codegen output.
603   addPass(createX86SpeculativeExecutionSideEffectSuppression());
604   addPass(createX86IndirectThunksPass());
605   addPass(createX86ReturnThunksPass());
606 
607   // Insert extra int3 instructions after trailing call instructions to avoid
608   // issues in the unwinder.
609   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
610     addPass(createX86AvoidTrailingCallPass());
611 
612   // Verify basic block incoming and outgoing cfa offset and register values and
613   // correct CFA calculation rule where needed by inserting appropriate CFI
614   // instructions.
615   if (!TT.isOSDarwin() &&
616       (!TT.isOSWindows() ||
617        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
618     addPass(createCFIInstrInserter());
619 
620   if (TT.isOSWindows()) {
621     // Identify valid longjmp targets for Windows Control Flow Guard.
622     addPass(createCFGuardLongjmpPass());
623     // Identify valid eh continuation targets for Windows EHCont Guard.
624     addPass(createEHContGuardCatchretPass());
625   }
626   addPass(createX86LoadValueInjectionRetHardeningPass());
627 
628   // Insert pseudo probe annotation for callsite profiling
629   addPass(createPseudoProbeInserter());
630 
631   // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
632   // also CALL_RVMARKER.
633   addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) {
634     // Only run bundle expansion if the module uses kcfi, or there are relevant
635     // ObjC runtime functions present in the module.
636     const Function &F = MF.getFunction();
637     const Module *M = F.getParent();
638     return M->getModuleFlag("kcfi") ||
639            (TT.isOSDarwin() &&
640             (M->getFunction("objc_retainAutoreleasedReturnValue") ||
641              M->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
642   }));
643 }
644 
645 bool X86PassConfig::addPostFastRegAllocRewrite() {
646   addPass(createX86FastTileConfigPass());
647   return true;
648 }
649 
650 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
651   return getStandardCSEConfigForOpt(TM->getOptLevel());
652 }
653 
654 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
655                                       const TargetRegisterClass &RC) {
656   return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC);
657 }
658 
659 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
660   // Don't support tile RA when RA is specified by command line "-regalloc".
661   if (!isCustomizedRegAlloc() && EnableTileRAPass) {
662     // Allocate tile register first.
663     addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
664     addPass(createX86TileConfigPass());
665   }
666   return TargetPassConfig::addRegAssignAndRewriteOptimized();
667 }
668