xref: /llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp (revision d12dffacaa838cbdd30454e49214f40d2ec1cc50)
1 //===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file examines all full size vector constant pool loads and attempts to
10 // replace them with smaller constant pool entries, including:
11 // * Converting AVX512 memory-fold instructions to their broadcast-fold form
12 // * Broadcasting of full width loads.
13 // * TODO: Sign/Zero extension of full width loads.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86.h"
18 #include "X86InstrFoldTables.h"
19 #include "X86InstrInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "x86-fixup-vector-constants"
27 
28 STATISTIC(NumInstChanges, "Number of instructions changes");
29 
30 namespace {
31 class X86FixupVectorConstantsPass : public MachineFunctionPass {
32 public:
33   static char ID;
34 
35   X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
36 
37   StringRef getPassName() const override {
38     return "X86 Fixup Vector Constants";
39   }
40 
41   bool runOnMachineFunction(MachineFunction &MF) override;
42   bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
43                           MachineInstr &MI);
44 
45   // This pass runs after regalloc and doesn't support VReg operands.
46   MachineFunctionProperties getRequiredProperties() const override {
47     return MachineFunctionProperties().set(
48         MachineFunctionProperties::Property::NoVRegs);
49   }
50 
51 private:
52   const X86InstrInfo *TII = nullptr;
53   const X86Subtarget *ST = nullptr;
54   const MCSchedModel *SM = nullptr;
55 };
56 } // end anonymous namespace
57 
58 char X86FixupVectorConstantsPass::ID = 0;
59 
60 INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
61 
62 FunctionPass *llvm::createX86FixupVectorConstants() {
63   return new X86FixupVectorConstantsPass();
64 }
65 
66 // Attempt to extract the full width of bits data from the constant.
67 static std::optional<APInt> extractConstantBits(const Constant *C) {
68   unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
69 
70   if (auto *CInt = dyn_cast<ConstantInt>(C))
71     return CInt->getValue();
72 
73   if (auto *CFP = dyn_cast<ConstantFP>(C))
74     return CFP->getValue().bitcastToAPInt();
75 
76   if (auto *CV = dyn_cast<ConstantVector>(C)) {
77     if (auto *CVSplat = CV->getSplatValue(/*AllowUndefs*/ true)) {
78       if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
79         assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
80         return APInt::getSplat(NumBits, *Bits);
81       }
82     }
83   }
84 
85   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
86     bool IsInteger = CDS->getElementType()->isIntegerTy();
87     bool IsFloat = CDS->getElementType()->isHalfTy() ||
88                    CDS->getElementType()->isBFloatTy() ||
89                    CDS->getElementType()->isFloatTy() ||
90                    CDS->getElementType()->isDoubleTy();
91     if (IsInteger || IsFloat) {
92       APInt Bits = APInt::getZero(NumBits);
93       unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
94       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
95         if (IsInteger)
96           Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
97         else
98           Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
99                           I * EltBits);
100       }
101       return Bits;
102     }
103   }
104 
105   return std::nullopt;
106 }
107 
108 // Attempt to compute the splat width of bits data by normalizing the splat to
109 // remove undefs.
110 static std::optional<APInt> getSplatableConstant(const Constant *C,
111                                                  unsigned SplatBitWidth) {
112   const Type *Ty = C->getType();
113   assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
114          "Illegal splat width");
115 
116   if (std::optional<APInt> Bits = extractConstantBits(C))
117     if (Bits->isSplat(SplatBitWidth))
118       return Bits->trunc(SplatBitWidth);
119 
120   // Detect general splats with undefs.
121   // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
122   if (auto *CV = dyn_cast<ConstantVector>(C)) {
123     unsigned NumOps = CV->getNumOperands();
124     unsigned NumEltsBits = Ty->getScalarSizeInBits();
125     unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
126     if ((SplatBitWidth % NumEltsBits) == 0) {
127       // Collect the elements and ensure that within the repeated splat sequence
128       // they either match or are undef.
129       SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
130       for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
131         if (Constant *Elt = CV->getAggregateElement(Idx)) {
132           if (isa<UndefValue>(Elt))
133             continue;
134           unsigned SplatIdx = Idx % NumScaleOps;
135           if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
136             Sequence[SplatIdx] = Elt;
137             continue;
138           }
139         }
140         return std::nullopt;
141       }
142       // Extract the constant bits forming the splat and insert into the bits
143       // data, leave undef as zero.
144       APInt SplatBits = APInt::getZero(SplatBitWidth);
145       for (unsigned I = 0; I != NumScaleOps; ++I) {
146         if (!Sequence[I])
147           continue;
148         if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
149           SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
150           continue;
151         }
152         return std::nullopt;
153       }
154       return SplatBits;
155     }
156   }
157 
158   return std::nullopt;
159 }
160 
161 // Attempt to rebuild a normalized splat vector constant of the requested splat
162 // width, built up of potentially smaller scalar values.
163 // NOTE: We don't always bother converting to scalars if the vector length is 1.
164 static Constant *rebuildSplatableConstant(const Constant *C,
165                                           unsigned SplatBitWidth) {
166   std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
167   if (!Splat)
168     return nullptr;
169 
170   // Determine scalar size to use for the constant splat vector, clamping as we
171   // might have found a splat smaller than the original constant data.
172   const Type *OriginalType = C->getType();
173   Type *SclTy = OriginalType->getScalarType();
174   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
175   NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
176   LLVMContext &Ctx = OriginalType->getContext();
177 
178   if (NumSclBits == 8) {
179     SmallVector<uint8_t> RawBits;
180     for (unsigned I = 0; I != SplatBitWidth; I += 8)
181       RawBits.push_back(Splat->extractBits(8, I).getZExtValue());
182     return ConstantDataVector::get(Ctx, RawBits);
183   }
184 
185   if (NumSclBits == 16) {
186     SmallVector<uint16_t> RawBits;
187     for (unsigned I = 0; I != SplatBitWidth; I += 16)
188       RawBits.push_back(Splat->extractBits(16, I).getZExtValue());
189     if (SclTy->is16bitFPTy())
190       return ConstantDataVector::getFP(SclTy, RawBits);
191     return ConstantDataVector::get(Ctx, RawBits);
192   }
193 
194   if (NumSclBits == 32) {
195     SmallVector<uint32_t> RawBits;
196     for (unsigned I = 0; I != SplatBitWidth; I += 32)
197       RawBits.push_back(Splat->extractBits(32, I).getZExtValue());
198     if (SclTy->isFloatTy())
199       return ConstantDataVector::getFP(SclTy, RawBits);
200     return ConstantDataVector::get(Ctx, RawBits);
201   }
202 
203   // Fallback to i64 / double.
204   SmallVector<uint64_t> RawBits;
205   for (unsigned I = 0; I != SplatBitWidth; I += 64)
206     RawBits.push_back(Splat->extractBits(64, I).getZExtValue());
207   if (SclTy->isDoubleTy())
208     return ConstantDataVector::getFP(SclTy, RawBits);
209   return ConstantDataVector::get(Ctx, RawBits);
210 }
211 
212 bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
213                                                      MachineBasicBlock &MBB,
214                                                      MachineInstr &MI) {
215   unsigned Opc = MI.getOpcode();
216   MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
217   bool HasAVX2 = ST->hasAVX2();
218   bool HasDQI = ST->hasDQI();
219   bool HasBWI = ST->hasBWI();
220   bool HasVLX = ST->hasVLX();
221 
222   auto ConvertToBroadcast = [&](unsigned OpBcst256, unsigned OpBcst128,
223                                 unsigned OpBcst64, unsigned OpBcst32,
224                                 unsigned OpBcst16, unsigned OpBcst8,
225                                 unsigned OperandNo) {
226     assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
227            "Unexpected number of operands!");
228 
229     MachineOperand &CstOp = MI.getOperand(OperandNo + X86::AddrDisp);
230     if (auto *C = X86::getConstantFromPool(MI, CstOp)) {
231       // Attempt to detect a suitable splat from increasing splat widths.
232       std::pair<unsigned, unsigned> Broadcasts[] = {
233           {8, OpBcst8},   {16, OpBcst16},   {32, OpBcst32},
234           {64, OpBcst64}, {128, OpBcst128}, {256, OpBcst256},
235       };
236       for (auto [BitWidth, OpBcst] : Broadcasts) {
237         if (OpBcst) {
238           // Construct a suitable splat constant and adjust the MI to
239           // use the new constant pool entry.
240           if (Constant *NewCst = rebuildSplatableConstant(C, BitWidth)) {
241             unsigned NewCPI =
242                 CP->getConstantPoolIndex(NewCst, Align(BitWidth / 8));
243             MI.setDesc(TII->get(OpBcst));
244             CstOp.setIndex(NewCPI);
245             return true;
246           }
247         }
248       }
249     }
250     return false;
251   };
252 
253   // Attempt to convert full width vector loads into broadcast loads.
254   switch (Opc) {
255   /* FP Loads */
256   case X86::MOVAPDrm:
257   case X86::MOVAPSrm:
258   case X86::MOVUPDrm:
259   case X86::MOVUPSrm:
260     // TODO: SSE3 MOVDDUP Handling
261     return false;
262   case X86::VMOVAPDrm:
263   case X86::VMOVAPSrm:
264   case X86::VMOVUPDrm:
265   case X86::VMOVUPSrm:
266     return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0,
267                               1);
268   case X86::VMOVAPDYrm:
269   case X86::VMOVAPSYrm:
270   case X86::VMOVUPDYrm:
271   case X86::VMOVUPSYrm:
272     return ConvertToBroadcast(0, X86::VBROADCASTF128rm, X86::VBROADCASTSDYrm,
273                               X86::VBROADCASTSSYrm, 0, 0, 1);
274   case X86::VMOVAPDZ128rm:
275   case X86::VMOVAPSZ128rm:
276   case X86::VMOVUPDZ128rm:
277   case X86::VMOVUPSZ128rm:
278     return ConvertToBroadcast(0, 0, X86::VMOVDDUPZ128rm,
279                               X86::VBROADCASTSSZ128rm, 0, 0, 1);
280   case X86::VMOVAPDZ256rm:
281   case X86::VMOVAPSZ256rm:
282   case X86::VMOVUPDZ256rm:
283   case X86::VMOVUPSZ256rm:
284     return ConvertToBroadcast(0, X86::VBROADCASTF32X4Z256rm,
285                               X86::VBROADCASTSDZ256rm, X86::VBROADCASTSSZ256rm,
286                               0, 0, 1);
287   case X86::VMOVAPDZrm:
288   case X86::VMOVAPSZrm:
289   case X86::VMOVUPDZrm:
290   case X86::VMOVUPSZrm:
291     return ConvertToBroadcast(X86::VBROADCASTF64X4rm, X86::VBROADCASTF32X4rm,
292                               X86::VBROADCASTSDZrm, X86::VBROADCASTSSZrm, 0, 0,
293                               1);
294     /* Integer Loads */
295   case X86::VMOVDQArm:
296   case X86::VMOVDQUrm:
297     return ConvertToBroadcast(
298         0, 0, HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm,
299         HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm,
300         HasAVX2 ? X86::VPBROADCASTWrm : 0, HasAVX2 ? X86::VPBROADCASTBrm : 0,
301         1);
302   case X86::VMOVDQAYrm:
303   case X86::VMOVDQUYrm:
304     return ConvertToBroadcast(
305         0, HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm,
306         HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm,
307         HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm,
308         HasAVX2 ? X86::VPBROADCASTWYrm : 0, HasAVX2 ? X86::VPBROADCASTBYrm : 0,
309         1);
310   case X86::VMOVDQA32Z128rm:
311   case X86::VMOVDQA64Z128rm:
312   case X86::VMOVDQU32Z128rm:
313   case X86::VMOVDQU64Z128rm:
314     return ConvertToBroadcast(0, 0, X86::VPBROADCASTQZ128rm,
315                               X86::VPBROADCASTDZ128rm,
316                               HasBWI ? X86::VPBROADCASTWZ128rm : 0,
317                               HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1);
318   case X86::VMOVDQA32Z256rm:
319   case X86::VMOVDQA64Z256rm:
320   case X86::VMOVDQU32Z256rm:
321   case X86::VMOVDQU64Z256rm:
322     return ConvertToBroadcast(0, X86::VBROADCASTI32X4Z256rm,
323                               X86::VPBROADCASTQZ256rm, X86::VPBROADCASTDZ256rm,
324                               HasBWI ? X86::VPBROADCASTWZ256rm : 0,
325                               HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1);
326   case X86::VMOVDQA32Zrm:
327   case X86::VMOVDQA64Zrm:
328   case X86::VMOVDQU32Zrm:
329   case X86::VMOVDQU64Zrm:
330     return ConvertToBroadcast(X86::VBROADCASTI64X4rm, X86::VBROADCASTI32X4rm,
331                               X86::VPBROADCASTQZrm, X86::VPBROADCASTDZrm,
332                               HasBWI ? X86::VPBROADCASTWZrm : 0,
333                               HasBWI ? X86::VPBROADCASTBZrm : 0, 1);
334   }
335 
336   auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) {
337     unsigned OpBcst32 = 0, OpBcst64 = 0;
338     unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;
339     if (OpSrc32) {
340       if (const X86FoldTableEntry *Mem2Bcst =
341               llvm::lookupBroadcastFoldTable(OpSrc32, 32)) {
342         OpBcst32 = Mem2Bcst->DstOp;
343         OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;
344       }
345     }
346     if (OpSrc64) {
347       if (const X86FoldTableEntry *Mem2Bcst =
348               llvm::lookupBroadcastFoldTable(OpSrc64, 64)) {
349         OpBcst64 = Mem2Bcst->DstOp;
350         OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;
351       }
352     }
353     assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&
354            "OperandNo mismatch");
355 
356     if (OpBcst32 || OpBcst64) {
357       unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;
358       return ConvertToBroadcast(0, 0, OpBcst64, OpBcst32, 0, 0, OpNo);
359     }
360     return false;
361   };
362 
363   // Attempt to find a AVX512 mapping from a full width memory-fold instruction
364   // to a broadcast-fold instruction variant.
365   if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
366     return ConvertToBroadcastAVX512(Opc, Opc);
367 
368   // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
369   // conversion to see if we can convert to a broadcasted (integer) logic op.
370   if (HasVLX && !HasDQI) {
371     unsigned OpSrc32 = 0, OpSrc64 = 0;
372     switch (Opc) {
373     case X86::VANDPDrm:
374     case X86::VANDPSrm:
375     case X86::VPANDrm:
376       OpSrc32 = X86 ::VPANDDZ128rm;
377       OpSrc64 = X86 ::VPANDQZ128rm;
378       break;
379     case X86::VANDPDYrm:
380     case X86::VANDPSYrm:
381     case X86::VPANDYrm:
382       OpSrc32 = X86 ::VPANDDZ256rm;
383       OpSrc64 = X86 ::VPANDQZ256rm;
384       break;
385     case X86::VANDNPDrm:
386     case X86::VANDNPSrm:
387     case X86::VPANDNrm:
388       OpSrc32 = X86 ::VPANDNDZ128rm;
389       OpSrc64 = X86 ::VPANDNQZ128rm;
390       break;
391     case X86::VANDNPDYrm:
392     case X86::VANDNPSYrm:
393     case X86::VPANDNYrm:
394       OpSrc32 = X86 ::VPANDNDZ256rm;
395       OpSrc64 = X86 ::VPANDNQZ256rm;
396       break;
397     case X86::VORPDrm:
398     case X86::VORPSrm:
399     case X86::VPORrm:
400       OpSrc32 = X86 ::VPORDZ128rm;
401       OpSrc64 = X86 ::VPORQZ128rm;
402       break;
403     case X86::VORPDYrm:
404     case X86::VORPSYrm:
405     case X86::VPORYrm:
406       OpSrc32 = X86 ::VPORDZ256rm;
407       OpSrc64 = X86 ::VPORQZ256rm;
408       break;
409     case X86::VXORPDrm:
410     case X86::VXORPSrm:
411     case X86::VPXORrm:
412       OpSrc32 = X86 ::VPXORDZ128rm;
413       OpSrc64 = X86 ::VPXORQZ128rm;
414       break;
415     case X86::VXORPDYrm:
416     case X86::VXORPSYrm:
417     case X86::VPXORYrm:
418       OpSrc32 = X86 ::VPXORDZ256rm;
419       OpSrc64 = X86 ::VPXORQZ256rm;
420       break;
421     }
422     if (OpSrc32 || OpSrc64)
423       return ConvertToBroadcastAVX512(OpSrc32, OpSrc64);
424   }
425 
426   return false;
427 }
428 
429 bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
430   LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
431   bool Changed = false;
432   ST = &MF.getSubtarget<X86Subtarget>();
433   TII = ST->getInstrInfo();
434   SM = &ST->getSchedModel();
435 
436   for (MachineBasicBlock &MBB : MF) {
437     for (MachineInstr &MI : MBB) {
438       if (processInstruction(MF, MBB, MI)) {
439         ++NumInstChanges;
440         Changed = true;
441       }
442     }
443   }
444   LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
445   return Changed;
446 }
447