xref: /llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp (revision 33f9d839eff79707ae8879a497f7ae9fab6b83ac)
10b91de5eSSimon Pilgrim //===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
20b91de5eSSimon Pilgrim //
30b91de5eSSimon Pilgrim // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b91de5eSSimon Pilgrim // See https://llvm.org/LICENSE.txt for license information.
50b91de5eSSimon Pilgrim // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b91de5eSSimon Pilgrim //
70b91de5eSSimon Pilgrim //===----------------------------------------------------------------------===//
80b91de5eSSimon Pilgrim //
90b91de5eSSimon Pilgrim // This file examines all full size vector constant pool loads and attempts to
100b91de5eSSimon Pilgrim // replace them with smaller constant pool entries, including:
1150d38cf9SSimon Pilgrim // * Converting AVX512 memory-fold instructions to their broadcast-fold form.
1250d38cf9SSimon Pilgrim // * Using vzload scalar loads.
136155fa69SSimon Pilgrim // * Broadcasting of full width loads.
1450d38cf9SSimon Pilgrim // * Sign/Zero extension of full width loads.
150b91de5eSSimon Pilgrim //
160b91de5eSSimon Pilgrim //===----------------------------------------------------------------------===//
170b91de5eSSimon Pilgrim 
180b91de5eSSimon Pilgrim #include "X86.h"
190b91de5eSSimon Pilgrim #include "X86InstrFoldTables.h"
200b91de5eSSimon Pilgrim #include "X86InstrInfo.h"
210b91de5eSSimon Pilgrim #include "X86Subtarget.h"
220b91de5eSSimon Pilgrim #include "llvm/ADT/Statistic.h"
230b91de5eSSimon Pilgrim #include "llvm/CodeGen/MachineConstantPool.h"
240b91de5eSSimon Pilgrim 
250b91de5eSSimon Pilgrim using namespace llvm;
260b91de5eSSimon Pilgrim 
270b91de5eSSimon Pilgrim #define DEBUG_TYPE "x86-fixup-vector-constants"
280b91de5eSSimon Pilgrim 
290b91de5eSSimon Pilgrim STATISTIC(NumInstChanges, "Number of instructions changes");
300b91de5eSSimon Pilgrim 
310b91de5eSSimon Pilgrim namespace {
320b91de5eSSimon Pilgrim class X86FixupVectorConstantsPass : public MachineFunctionPass {
330b91de5eSSimon Pilgrim public:
340b91de5eSSimon Pilgrim   static char ID;
350b91de5eSSimon Pilgrim 
360b91de5eSSimon Pilgrim   X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
370b91de5eSSimon Pilgrim 
380b91de5eSSimon Pilgrim   StringRef getPassName() const override {
390b91de5eSSimon Pilgrim     return "X86 Fixup Vector Constants";
400b91de5eSSimon Pilgrim   }
410b91de5eSSimon Pilgrim 
420b91de5eSSimon Pilgrim   bool runOnMachineFunction(MachineFunction &MF) override;
430b91de5eSSimon Pilgrim   bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
440b91de5eSSimon Pilgrim                           MachineInstr &MI);
450b91de5eSSimon Pilgrim 
460b91de5eSSimon Pilgrim   // This pass runs after regalloc and doesn't support VReg operands.
470b91de5eSSimon Pilgrim   MachineFunctionProperties getRequiredProperties() const override {
480b91de5eSSimon Pilgrim     return MachineFunctionProperties().set(
490b91de5eSSimon Pilgrim         MachineFunctionProperties::Property::NoVRegs);
500b91de5eSSimon Pilgrim   }
510b91de5eSSimon Pilgrim 
520b91de5eSSimon Pilgrim private:
530b91de5eSSimon Pilgrim   const X86InstrInfo *TII = nullptr;
540b91de5eSSimon Pilgrim   const X86Subtarget *ST = nullptr;
550b91de5eSSimon Pilgrim   const MCSchedModel *SM = nullptr;
560b91de5eSSimon Pilgrim };
570b91de5eSSimon Pilgrim } // end anonymous namespace
580b91de5eSSimon Pilgrim 
590b91de5eSSimon Pilgrim char X86FixupVectorConstantsPass::ID = 0;
600b91de5eSSimon Pilgrim 
610b91de5eSSimon Pilgrim INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
620b91de5eSSimon Pilgrim 
630b91de5eSSimon Pilgrim FunctionPass *llvm::createX86FixupVectorConstants() {
640b91de5eSSimon Pilgrim   return new X86FixupVectorConstantsPass();
650b91de5eSSimon Pilgrim }
660b91de5eSSimon Pilgrim 
671baa3850SNikita Popov /// Normally, we only allow poison in vector splats. However, as this is part
681baa3850SNikita Popov /// of the backend, and working with the DAG representation, which currently
691baa3850SNikita Popov /// only natively represents undef values, we need to accept undefs here.
701baa3850SNikita Popov static Constant *getSplatValueAllowUndef(const ConstantVector *C) {
711baa3850SNikita Popov   Constant *Res = nullptr;
721baa3850SNikita Popov   for (Value *Op : C->operands()) {
731baa3850SNikita Popov     Constant *OpC = cast<Constant>(Op);
741baa3850SNikita Popov     if (isa<UndefValue>(OpC))
751baa3850SNikita Popov       continue;
761baa3850SNikita Popov     if (!Res)
771baa3850SNikita Popov       Res = OpC;
781baa3850SNikita Popov     else if (Res != OpC)
791baa3850SNikita Popov       return nullptr;
801baa3850SNikita Popov   }
811baa3850SNikita Popov   return Res;
821baa3850SNikita Popov }
831baa3850SNikita Popov 
840b91de5eSSimon Pilgrim // Attempt to extract the full width of bits data from the constant.
850b91de5eSSimon Pilgrim static std::optional<APInt> extractConstantBits(const Constant *C) {
860b91de5eSSimon Pilgrim   unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
870b91de5eSSimon Pilgrim 
88e4375bf4SMikael Holmen   if (isa<UndefValue>(C))
898b43c1beSSimon Pilgrim     return APInt::getZero(NumBits);
908b43c1beSSimon Pilgrim 
910b91de5eSSimon Pilgrim   if (auto *CInt = dyn_cast<ConstantInt>(C))
920b91de5eSSimon Pilgrim     return CInt->getValue();
930b91de5eSSimon Pilgrim 
940b91de5eSSimon Pilgrim   if (auto *CFP = dyn_cast<ConstantFP>(C))
950b91de5eSSimon Pilgrim     return CFP->getValue().bitcastToAPInt();
960b91de5eSSimon Pilgrim 
970b91de5eSSimon Pilgrim   if (auto *CV = dyn_cast<ConstantVector>(C)) {
981baa3850SNikita Popov     if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
990b91de5eSSimon Pilgrim       if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
1000b91de5eSSimon Pilgrim         assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
1010b91de5eSSimon Pilgrim         return APInt::getSplat(NumBits, *Bits);
1020b91de5eSSimon Pilgrim       }
1030b91de5eSSimon Pilgrim     }
1048b43c1beSSimon Pilgrim 
1058b43c1beSSimon Pilgrim     APInt Bits = APInt::getZero(NumBits);
1068b43c1beSSimon Pilgrim     for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
1078b43c1beSSimon Pilgrim       Constant *Elt = CV->getOperand(I);
1088b43c1beSSimon Pilgrim       std::optional<APInt> SubBits = extractConstantBits(Elt);
1098b43c1beSSimon Pilgrim       if (!SubBits)
1108b43c1beSSimon Pilgrim         return std::nullopt;
1118b43c1beSSimon Pilgrim       assert(NumBits == (E * SubBits->getBitWidth()) &&
1128b43c1beSSimon Pilgrim              "Illegal vector element size");
1138b43c1beSSimon Pilgrim       Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
1148b43c1beSSimon Pilgrim     }
1158b43c1beSSimon Pilgrim     return Bits;
1160b91de5eSSimon Pilgrim   }
1170b91de5eSSimon Pilgrim 
1180b91de5eSSimon Pilgrim   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
1190b91de5eSSimon Pilgrim     bool IsInteger = CDS->getElementType()->isIntegerTy();
1200b91de5eSSimon Pilgrim     bool IsFloat = CDS->getElementType()->isHalfTy() ||
1210b91de5eSSimon Pilgrim                    CDS->getElementType()->isBFloatTy() ||
1220b91de5eSSimon Pilgrim                    CDS->getElementType()->isFloatTy() ||
1230b91de5eSSimon Pilgrim                    CDS->getElementType()->isDoubleTy();
1240b91de5eSSimon Pilgrim     if (IsInteger || IsFloat) {
1250b91de5eSSimon Pilgrim       APInt Bits = APInt::getZero(NumBits);
1260b91de5eSSimon Pilgrim       unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
1270b91de5eSSimon Pilgrim       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
1280b91de5eSSimon Pilgrim         if (IsInteger)
1290b91de5eSSimon Pilgrim           Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
1300b91de5eSSimon Pilgrim         else
1310b91de5eSSimon Pilgrim           Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
1320b91de5eSSimon Pilgrim                           I * EltBits);
1330b91de5eSSimon Pilgrim       }
1340b91de5eSSimon Pilgrim       return Bits;
1350b91de5eSSimon Pilgrim     }
1360b91de5eSSimon Pilgrim   }
1370b91de5eSSimon Pilgrim 
1380b91de5eSSimon Pilgrim   return std::nullopt;
1390b91de5eSSimon Pilgrim }
1400b91de5eSSimon Pilgrim 
141b8466138SSimon Pilgrim static std::optional<APInt> extractConstantBits(const Constant *C,
142b8466138SSimon Pilgrim                                                 unsigned NumBits) {
143b8466138SSimon Pilgrim   if (std::optional<APInt> Bits = extractConstantBits(C))
144b8466138SSimon Pilgrim     return Bits->zextOrTrunc(NumBits);
145b8466138SSimon Pilgrim   return std::nullopt;
146b8466138SSimon Pilgrim }
147b8466138SSimon Pilgrim 
1480b91de5eSSimon Pilgrim // Attempt to compute the splat width of bits data by normalizing the splat to
1490b91de5eSSimon Pilgrim // remove undefs.
1500b91de5eSSimon Pilgrim static std::optional<APInt> getSplatableConstant(const Constant *C,
1510b91de5eSSimon Pilgrim                                                  unsigned SplatBitWidth) {
1520b91de5eSSimon Pilgrim   const Type *Ty = C->getType();
1530b91de5eSSimon Pilgrim   assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
1540b91de5eSSimon Pilgrim          "Illegal splat width");
1550b91de5eSSimon Pilgrim 
1560b91de5eSSimon Pilgrim   if (std::optional<APInt> Bits = extractConstantBits(C))
1570b91de5eSSimon Pilgrim     if (Bits->isSplat(SplatBitWidth))
1580b91de5eSSimon Pilgrim       return Bits->trunc(SplatBitWidth);
1590b91de5eSSimon Pilgrim 
1600b91de5eSSimon Pilgrim   // Detect general splats with undefs.
1610b91de5eSSimon Pilgrim   // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
1620b91de5eSSimon Pilgrim   if (auto *CV = dyn_cast<ConstantVector>(C)) {
1630b91de5eSSimon Pilgrim     unsigned NumOps = CV->getNumOperands();
1640b91de5eSSimon Pilgrim     unsigned NumEltsBits = Ty->getScalarSizeInBits();
1650b91de5eSSimon Pilgrim     unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
1660b91de5eSSimon Pilgrim     if ((SplatBitWidth % NumEltsBits) == 0) {
1670b91de5eSSimon Pilgrim       // Collect the elements and ensure that within the repeated splat sequence
1680b91de5eSSimon Pilgrim       // they either match or are undef.
1690b91de5eSSimon Pilgrim       SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
1700b91de5eSSimon Pilgrim       for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
1710b91de5eSSimon Pilgrim         if (Constant *Elt = CV->getAggregateElement(Idx)) {
1720b91de5eSSimon Pilgrim           if (isa<UndefValue>(Elt))
1730b91de5eSSimon Pilgrim             continue;
1740b91de5eSSimon Pilgrim           unsigned SplatIdx = Idx % NumScaleOps;
1750b91de5eSSimon Pilgrim           if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
1760b91de5eSSimon Pilgrim             Sequence[SplatIdx] = Elt;
1770b91de5eSSimon Pilgrim             continue;
1780b91de5eSSimon Pilgrim           }
1790b91de5eSSimon Pilgrim         }
1800b91de5eSSimon Pilgrim         return std::nullopt;
1810b91de5eSSimon Pilgrim       }
1820b91de5eSSimon Pilgrim       // Extract the constant bits forming the splat and insert into the bits
1830b91de5eSSimon Pilgrim       // data, leave undef as zero.
1840b91de5eSSimon Pilgrim       APInt SplatBits = APInt::getZero(SplatBitWidth);
1850b91de5eSSimon Pilgrim       for (unsigned I = 0; I != NumScaleOps; ++I) {
1860b91de5eSSimon Pilgrim         if (!Sequence[I])
1870b91de5eSSimon Pilgrim           continue;
1880b91de5eSSimon Pilgrim         if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
1890b91de5eSSimon Pilgrim           SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
1900b91de5eSSimon Pilgrim           continue;
1910b91de5eSSimon Pilgrim         }
1920b91de5eSSimon Pilgrim         return std::nullopt;
1930b91de5eSSimon Pilgrim       }
1940b91de5eSSimon Pilgrim       return SplatBits;
1950b91de5eSSimon Pilgrim     }
1960b91de5eSSimon Pilgrim   }
1970b91de5eSSimon Pilgrim 
1980b91de5eSSimon Pilgrim   return std::nullopt;
1990b91de5eSSimon Pilgrim }
2000b91de5eSSimon Pilgrim 
201c1729c8dSSimon Pilgrim // Split raw bits into a constant vector of elements of a specific bit width.
202c1729c8dSSimon Pilgrim // NOTE: We don't always bother converting to scalars if the vector length is 1.
203c1729c8dSSimon Pilgrim static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,
204c1729c8dSSimon Pilgrim                                  const APInt &Bits, unsigned NumSclBits) {
205c1729c8dSSimon Pilgrim   unsigned BitWidth = Bits.getBitWidth();
206c1729c8dSSimon Pilgrim 
207c1729c8dSSimon Pilgrim   if (NumSclBits == 8) {
208c1729c8dSSimon Pilgrim     SmallVector<uint8_t> RawBits;
209c1729c8dSSimon Pilgrim     for (unsigned I = 0; I != BitWidth; I += 8)
210c1729c8dSSimon Pilgrim       RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
211c1729c8dSSimon Pilgrim     return ConstantDataVector::get(Ctx, RawBits);
212c1729c8dSSimon Pilgrim   }
213c1729c8dSSimon Pilgrim 
214c1729c8dSSimon Pilgrim   if (NumSclBits == 16) {
215c1729c8dSSimon Pilgrim     SmallVector<uint16_t> RawBits;
216c1729c8dSSimon Pilgrim     for (unsigned I = 0; I != BitWidth; I += 16)
217c1729c8dSSimon Pilgrim       RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
218c1729c8dSSimon Pilgrim     if (SclTy->is16bitFPTy())
219c1729c8dSSimon Pilgrim       return ConstantDataVector::getFP(SclTy, RawBits);
220c1729c8dSSimon Pilgrim     return ConstantDataVector::get(Ctx, RawBits);
221c1729c8dSSimon Pilgrim   }
222c1729c8dSSimon Pilgrim 
223c1729c8dSSimon Pilgrim   if (NumSclBits == 32) {
224c1729c8dSSimon Pilgrim     SmallVector<uint32_t> RawBits;
225c1729c8dSSimon Pilgrim     for (unsigned I = 0; I != BitWidth; I += 32)
226c1729c8dSSimon Pilgrim       RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
227c1729c8dSSimon Pilgrim     if (SclTy->isFloatTy())
228c1729c8dSSimon Pilgrim       return ConstantDataVector::getFP(SclTy, RawBits);
229c1729c8dSSimon Pilgrim     return ConstantDataVector::get(Ctx, RawBits);
230c1729c8dSSimon Pilgrim   }
231c1729c8dSSimon Pilgrim 
232c1729c8dSSimon Pilgrim   assert(NumSclBits == 64 && "Unhandled vector element width");
233c1729c8dSSimon Pilgrim 
234c1729c8dSSimon Pilgrim   SmallVector<uint64_t> RawBits;
235c1729c8dSSimon Pilgrim   for (unsigned I = 0; I != BitWidth; I += 64)
236c1729c8dSSimon Pilgrim     RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
237c1729c8dSSimon Pilgrim   if (SclTy->isDoubleTy())
238c1729c8dSSimon Pilgrim     return ConstantDataVector::getFP(SclTy, RawBits);
239c1729c8dSSimon Pilgrim   return ConstantDataVector::get(Ctx, RawBits);
240c1729c8dSSimon Pilgrim }
241c1729c8dSSimon Pilgrim 
2420b91de5eSSimon Pilgrim // Attempt to rebuild a normalized splat vector constant of the requested splat
2430b91de5eSSimon Pilgrim // width, built up of potentially smaller scalar values.
244b8466138SSimon Pilgrim static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
245b8466138SSimon Pilgrim                                  unsigned /*NumElts*/, unsigned SplatBitWidth) {
246bef25ae2SSimon Pilgrim   // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
2470b91de5eSSimon Pilgrim   std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
2480b91de5eSSimon Pilgrim   if (!Splat)
2490b91de5eSSimon Pilgrim     return nullptr;
2500b91de5eSSimon Pilgrim 
2510b91de5eSSimon Pilgrim   // Determine scalar size to use for the constant splat vector, clamping as we
2520b91de5eSSimon Pilgrim   // might have found a splat smaller than the original constant data.
253b8466138SSimon Pilgrim   Type *SclTy = C->getType()->getScalarType();
2540b91de5eSSimon Pilgrim   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
2550b91de5eSSimon Pilgrim   NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
2560b91de5eSSimon Pilgrim 
2570b91de5eSSimon Pilgrim   // Fallback to i64 / double.
258c1729c8dSSimon Pilgrim   NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
259c1729c8dSSimon Pilgrim                    ? NumSclBits
260c1729c8dSSimon Pilgrim                    : 64;
261c1729c8dSSimon Pilgrim 
262c1729c8dSSimon Pilgrim   // Extract per-element bits.
263b8466138SSimon Pilgrim   return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
2640b91de5eSSimon Pilgrim }
2650b91de5eSSimon Pilgrim 
266b8466138SSimon Pilgrim static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
267b8466138SSimon Pilgrim                                      unsigned /*NumElts*/,
2688b43c1beSSimon Pilgrim                                      unsigned ScalarBitWidth) {
269b8466138SSimon Pilgrim   Type *SclTy = C->getType()->getScalarType();
2708b43c1beSSimon Pilgrim   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
2718b43c1beSSimon Pilgrim   LLVMContext &Ctx = C->getContext();
2728b43c1beSSimon Pilgrim 
2738b43c1beSSimon Pilgrim   if (NumBits > ScalarBitWidth) {
2748b43c1beSSimon Pilgrim     // Determine if the upper bits are all zero.
275b8466138SSimon Pilgrim     if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
2768b43c1beSSimon Pilgrim       if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
2778b43c1beSSimon Pilgrim         // If the original constant was made of smaller elements, try to retain
2788b43c1beSSimon Pilgrim         // those types.
2798b43c1beSSimon Pilgrim         if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
2808b43c1beSSimon Pilgrim           return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);
2818b43c1beSSimon Pilgrim 
2828b43c1beSSimon Pilgrim         // Fallback to raw integer bits.
2838b43c1beSSimon Pilgrim         APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
2848b43c1beSSimon Pilgrim         return ConstantInt::get(Ctx, RawBits);
2858b43c1beSSimon Pilgrim       }
2868b43c1beSSimon Pilgrim     }
2878b43c1beSSimon Pilgrim   }
2888b43c1beSSimon Pilgrim 
2898b43c1beSSimon Pilgrim   return nullptr;
2908b43c1beSSimon Pilgrim }
2918b43c1beSSimon Pilgrim 
292b8466138SSimon Pilgrim static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
293b8466138SSimon Pilgrim                                unsigned NumBits, unsigned NumElts,
294b5d35feaSSimon Pilgrim                                unsigned SrcEltBitWidth) {
295b5d35feaSSimon Pilgrim   unsigned DstEltBitWidth = NumBits / NumElts;
296b5d35feaSSimon Pilgrim   assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
297b5d35feaSSimon Pilgrim          (DstEltBitWidth % SrcEltBitWidth) == 0 &&
298b5d35feaSSimon Pilgrim          (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
299b5d35feaSSimon Pilgrim 
300b8466138SSimon Pilgrim   if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
301b5d35feaSSimon Pilgrim     assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
302b5d35feaSSimon Pilgrim            (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
303b5d35feaSSimon Pilgrim            "Unexpected constant extension");
304b5d35feaSSimon Pilgrim 
305b5d35feaSSimon Pilgrim     // Ensure every vector element can be represented by the src bitwidth.
306b5d35feaSSimon Pilgrim     APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
307b5d35feaSSimon Pilgrim     for (unsigned I = 0; I != NumElts; ++I) {
308b5d35feaSSimon Pilgrim       APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
309b5d35feaSSimon Pilgrim       if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
310b5d35feaSSimon Pilgrim           (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
311b5d35feaSSimon Pilgrim         return nullptr;
312b5d35feaSSimon Pilgrim       TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
313b5d35feaSSimon Pilgrim     }
314b5d35feaSSimon Pilgrim 
315b8466138SSimon Pilgrim     Type *Ty = C->getType();
316b5d35feaSSimon Pilgrim     return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
317b5d35feaSSimon Pilgrim                            SrcEltBitWidth);
318b5d35feaSSimon Pilgrim   }
319b5d35feaSSimon Pilgrim 
320b5d35feaSSimon Pilgrim   return nullptr;
321b5d35feaSSimon Pilgrim }
322b8466138SSimon Pilgrim static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
323b8466138SSimon Pilgrim                                 unsigned NumElts, unsigned SrcEltBitWidth) {
324b8466138SSimon Pilgrim   return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
325b5d35feaSSimon Pilgrim }
326b8466138SSimon Pilgrim static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
327b8466138SSimon Pilgrim                                 unsigned NumElts, unsigned SrcEltBitWidth) {
328b8466138SSimon Pilgrim   return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
32969ffa7beSSimon Pilgrim }
330b5d35feaSSimon Pilgrim 
3310b91de5eSSimon Pilgrim bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
3320b91de5eSSimon Pilgrim                                                      MachineBasicBlock &MBB,
3330b91de5eSSimon Pilgrim                                                      MachineInstr &MI) {
3340b91de5eSSimon Pilgrim   unsigned Opc = MI.getOpcode();
3350b91de5eSSimon Pilgrim   MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
336b5d35feaSSimon Pilgrim   bool HasSSE41 = ST->hasSSE41();
3376155fa69SSimon Pilgrim   bool HasAVX2 = ST->hasAVX2();
338834cc88cSSimon Pilgrim   bool HasDQI = ST->hasDQI();
339f6ff2cc7SSimon Pilgrim   bool HasBWI = ST->hasBWI();
3401552b911SSimon Pilgrim   bool HasVLX = ST->hasVLX();
341be6c752eSSimon Pilgrim   bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov();
3420b91de5eSSimon Pilgrim 
3436ac4fe8dSSimon Pilgrim   struct FixupEntry {
3446ac4fe8dSSimon Pilgrim     int Op;
3456ac4fe8dSSimon Pilgrim     int NumCstElts;
346f407be32SSimon Pilgrim     int MemBitWidth;
347b8466138SSimon Pilgrim     std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
3486ac4fe8dSSimon Pilgrim         RebuildConstant;
3496ac4fe8dSSimon Pilgrim   };
350bef25ae2SSimon Pilgrim   auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
351bef25ae2SSimon Pilgrim                            unsigned OperandNo) {
3526ac4fe8dSSimon Pilgrim #ifdef EXPENSIVE_CHECKS
3536ac4fe8dSSimon Pilgrim     assert(llvm::is_sorted(Fixups,
3546ac4fe8dSSimon Pilgrim                            [](const FixupEntry &A, const FixupEntry &B) {
355f407be32SSimon Pilgrim                              return (A.NumCstElts * A.MemBitWidth) <
356f407be32SSimon Pilgrim                                     (B.NumCstElts * B.MemBitWidth);
3576ac4fe8dSSimon Pilgrim                            }) &&
3586ac4fe8dSSimon Pilgrim            "Constant fixup table not sorted in ascending constant size");
3596ac4fe8dSSimon Pilgrim #endif
3600b91de5eSSimon Pilgrim     assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
3610b91de5eSSimon Pilgrim            "Unexpected number of operands!");
3624e64ed97SSimon Pilgrim     if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
363bef25ae2SSimon Pilgrim       RegBitWidth =
364bef25ae2SSimon Pilgrim           RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits();
3656ac4fe8dSSimon Pilgrim       for (const FixupEntry &Fixup : Fixups) {
3666ac4fe8dSSimon Pilgrim         if (Fixup.Op) {
3678b43c1beSSimon Pilgrim           // Construct a suitable constant and adjust the MI to use the new
3688b43c1beSSimon Pilgrim           // constant pool entry.
369b8466138SSimon Pilgrim           if (Constant *NewCst = Fixup.RebuildConstant(
370f407be32SSimon Pilgrim                   C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
3710b91de5eSSimon Pilgrim             unsigned NewCPI =
372f407be32SSimon Pilgrim                 CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
3736ac4fe8dSSimon Pilgrim             MI.setDesc(TII->get(Fixup.Op));
3744e64ed97SSimon Pilgrim             MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
3750b91de5eSSimon Pilgrim             return true;
3760b91de5eSSimon Pilgrim           }
3770b91de5eSSimon Pilgrim         }
3780b91de5eSSimon Pilgrim       }
3790b91de5eSSimon Pilgrim     }
3800b91de5eSSimon Pilgrim     return false;
3810b91de5eSSimon Pilgrim   };
3820b91de5eSSimon Pilgrim 
383b5d35feaSSimon Pilgrim   // Attempt to detect a suitable vzload/broadcast/vextload from increasing
384b5d35feaSSimon Pilgrim   // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
385b5d35feaSSimon Pilgrim   // - vzload shouldn't ever need a shuffle port to zero the upper elements and
386b5d35feaSSimon Pilgrim   // the fp/int domain versions are equally available so we don't introduce a
387b5d35feaSSimon Pilgrim   // domain crossing penalty.
388b5d35feaSSimon Pilgrim   // - broadcast sometimes need a shuffle port (especially for 8/16-bit
389b5d35feaSSimon Pilgrim   // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
390b5d35feaSSimon Pilgrim   // domain equivalents.
391b5d35feaSSimon Pilgrim   // - vextload always needs a shuffle port and is only ever int domain.
392834cc88cSSimon Pilgrim   switch (Opc) {
393834cc88cSSimon Pilgrim   /* FP Loads */
394834cc88cSSimon Pilgrim   case X86::MOVAPDrm:
395834cc88cSSimon Pilgrim   case X86::MOVAPSrm:
396834cc88cSSimon Pilgrim   case X86::MOVUPDrm:
397834cc88cSSimon Pilgrim   case X86::MOVUPSrm:
398834cc88cSSimon Pilgrim     // TODO: SSE3 MOVDDUP Handling
3996ac4fe8dSSimon Pilgrim     return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
4006ac4fe8dSSimon Pilgrim                           {X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}},
401bef25ae2SSimon Pilgrim                          128, 1);
402834cc88cSSimon Pilgrim   case X86::VMOVAPDrm:
403834cc88cSSimon Pilgrim   case X86::VMOVAPSrm:
404834cc88cSSimon Pilgrim   case X86::VMOVUPDrm:
405be6c752eSSimon Pilgrim   case X86::VMOVUPSrm: {
406be6c752eSSimon Pilgrim     FixupEntry Fixups[] = {
407be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
408be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
409be6c752eSSimon Pilgrim         {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
4106ac4fe8dSSimon Pilgrim         {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
411be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
412be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
413be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
414be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
4156ac4fe8dSSimon Pilgrim         {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
416be6c752eSSimon Pilgrim         {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst},
417be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
418be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
419be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
420be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
421be6c752eSSimon Pilgrim     return FixupConstant(Fixups, 128, 1);
422be6c752eSSimon Pilgrim   }
423834cc88cSSimon Pilgrim   case X86::VMOVAPDYrm:
424834cc88cSSimon Pilgrim   case X86::VMOVAPSYrm:
425834cc88cSSimon Pilgrim   case X86::VMOVUPDYrm:
426be6c752eSSimon Pilgrim   case X86::VMOVUPSYrm: {
427be6c752eSSimon Pilgrim     FixupEntry Fixups[] = {
428be6c752eSSimon Pilgrim         {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
429be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
430be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
4316ac4fe8dSSimon Pilgrim         {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
432be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
433be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
434be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
435be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
436be6c752eSSimon Pilgrim         {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst},
437be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
438be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
439be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
440be6c752eSSimon Pilgrim         {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32,
441be6c752eSSimon Pilgrim          rebuildZExtCst}};
442be6c752eSSimon Pilgrim     return FixupConstant(Fixups, 256, 1);
443be6c752eSSimon Pilgrim   }
444834cc88cSSimon Pilgrim   case X86::VMOVAPDZ128rm:
445834cc88cSSimon Pilgrim   case X86::VMOVAPSZ128rm:
446834cc88cSSimon Pilgrim   case X86::VMOVUPDZ128rm:
447be6c752eSSimon Pilgrim   case X86::VMOVUPSZ128rm: {
448be6c752eSSimon Pilgrim     FixupEntry Fixups[] = {
449be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst},
450be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst},
451be6c752eSSimon Pilgrim         {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
4526ac4fe8dSSimon Pilgrim         {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
453be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst},
454be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst},
455be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst},
456be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst},
4576ac4fe8dSSimon Pilgrim         {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
458be6c752eSSimon Pilgrim         {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst},
459be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst},
460be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst},
461be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst},
462be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}};
463be6c752eSSimon Pilgrim     return FixupConstant(Fixups, 128, 1);
464be6c752eSSimon Pilgrim   }
465834cc88cSSimon Pilgrim   case X86::VMOVAPDZ256rm:
466834cc88cSSimon Pilgrim   case X86::VMOVAPSZ256rm:
467834cc88cSSimon Pilgrim   case X86::VMOVUPDZ256rm:
468be6c752eSSimon Pilgrim   case X86::VMOVUPSZ256rm: {
469be6c752eSSimon Pilgrim     FixupEntry Fixups[] = {
470be6c752eSSimon Pilgrim         {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
471be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst},
472be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst},
4736ac4fe8dSSimon Pilgrim         {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
474be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst},
475be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst},
476be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst},
477be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst},
478be6c752eSSimon Pilgrim         {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst},
479be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst},
480be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst},
481be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst},
482be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}};
483be6c752eSSimon Pilgrim     return FixupConstant(Fixups, 256, 1);
484be6c752eSSimon Pilgrim   }
485834cc88cSSimon Pilgrim   case X86::VMOVAPDZrm:
486834cc88cSSimon Pilgrim   case X86::VMOVAPSZrm:
487834cc88cSSimon Pilgrim   case X86::VMOVUPDZrm:
488be6c752eSSimon Pilgrim   case X86::VMOVUPSZrm: {
489be6c752eSSimon Pilgrim     FixupEntry Fixups[] = {
490be6c752eSSimon Pilgrim         {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
4916ac4fe8dSSimon Pilgrim         {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
492be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst},
493be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst},
494c59ac1a2SSimon Pilgrim         {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst},
495be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst},
496be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst},
497be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst},
498be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst},
499be6c752eSSimon Pilgrim         {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst},
500be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst},
501be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst},
502be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst},
503be6c752eSSimon Pilgrim         {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}};
504be6c752eSSimon Pilgrim     return FixupConstant(Fixups, 512, 1);
505be6c752eSSimon Pilgrim   }
506f6ff2cc7SSimon Pilgrim     /* Integer Loads */
5078b43c1beSSimon Pilgrim   case X86::MOVDQArm:
5086ac4fe8dSSimon Pilgrim   case X86::MOVDQUrm: {
509b5d35feaSSimon Pilgrim     FixupEntry Fixups[] = {
510b5d35feaSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
51169ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
512b5d35feaSSimon Pilgrim         {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
513b5d35feaSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
51469ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
515b5d35feaSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
51669ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
517b5d35feaSSimon Pilgrim         {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
518b5d35feaSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
51969ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
520b5d35feaSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
52169ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
52269ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
52369ffa7beSSimon Pilgrim         {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
524bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 128, 1);
5256ac4fe8dSSimon Pilgrim   }
526f6ff2cc7SSimon Pilgrim   case X86::VMOVDQArm:
5276ac4fe8dSSimon Pilgrim   case X86::VMOVDQUrm: {
5286ac4fe8dSSimon Pilgrim     FixupEntry Fixups[] = {
5296ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
5306ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
531b5d35feaSSimon Pilgrim         {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
53269ffa7beSSimon Pilgrim         {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
5336ac4fe8dSSimon Pilgrim         {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
5346ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
5356ac4fe8dSSimon Pilgrim          rebuildSplatCst},
536b5d35feaSSimon Pilgrim         {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
53769ffa7beSSimon Pilgrim         {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
538b5d35feaSSimon Pilgrim         {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
53969ffa7beSSimon Pilgrim         {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
5406ac4fe8dSSimon Pilgrim         {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
5416ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
5426ac4fe8dSSimon Pilgrim          rebuildSplatCst},
543b5d35feaSSimon Pilgrim         {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
54469ffa7beSSimon Pilgrim         {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
545b5d35feaSSimon Pilgrim         {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
54669ffa7beSSimon Pilgrim         {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
54769ffa7beSSimon Pilgrim         {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
54869ffa7beSSimon Pilgrim         {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
549bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 128, 1);
5506ac4fe8dSSimon Pilgrim   }
551f6ff2cc7SSimon Pilgrim   case X86::VMOVDQAYrm:
5526ac4fe8dSSimon Pilgrim   case X86::VMOVDQUYrm: {
5536ac4fe8dSSimon Pilgrim     FixupEntry Fixups[] = {
5546ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
5556ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
5566ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
5576ac4fe8dSSimon Pilgrim          rebuildSplatCst},
558b5d35feaSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
55969ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
5606ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
5616ac4fe8dSSimon Pilgrim          rebuildSplatCst},
562b5d35feaSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
56369ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
564b5d35feaSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
56569ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
5666ac4fe8dSSimon Pilgrim         {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
567b5d35feaSSimon Pilgrim          rebuildSplatCst},
568b5d35feaSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
56969ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
570b5d35feaSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
57169ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
57269ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
57369ffa7beSSimon Pilgrim         {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
574bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 256, 1);
5756ac4fe8dSSimon Pilgrim   }
576f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA32Z128rm:
577f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA64Z128rm:
578f6ff2cc7SSimon Pilgrim   case X86::VMOVDQU32Z128rm:
5796ac4fe8dSSimon Pilgrim   case X86::VMOVDQU64Z128rm: {
5806ac4fe8dSSimon Pilgrim     FixupEntry Fixups[] = {
5816ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
5826ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
583b5d35feaSSimon Pilgrim         {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
58469ffa7beSSimon Pilgrim         {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
5856ac4fe8dSSimon Pilgrim         {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
5866ac4fe8dSSimon Pilgrim         {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
587b5d35feaSSimon Pilgrim         {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
58869ffa7beSSimon Pilgrim         {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
589b5d35feaSSimon Pilgrim         {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
59069ffa7beSSimon Pilgrim         {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
5916ac4fe8dSSimon Pilgrim         {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
592b5d35feaSSimon Pilgrim         {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
593b5d35feaSSimon Pilgrim         {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
59469ffa7beSSimon Pilgrim         {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
595b5d35feaSSimon Pilgrim         {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
59669ffa7beSSimon Pilgrim         {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
59769ffa7beSSimon Pilgrim         {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
59869ffa7beSSimon Pilgrim         {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
599bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 128, 1);
6006ac4fe8dSSimon Pilgrim   }
601f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA32Z256rm:
602f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA64Z256rm:
603f6ff2cc7SSimon Pilgrim   case X86::VMOVDQU32Z256rm:
6046ac4fe8dSSimon Pilgrim   case X86::VMOVDQU64Z256rm: {
6056ac4fe8dSSimon Pilgrim     FixupEntry Fixups[] = {
6066ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
6076ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
6086ac4fe8dSSimon Pilgrim         {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
609b5d35feaSSimon Pilgrim         {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
61069ffa7beSSimon Pilgrim         {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
6116ac4fe8dSSimon Pilgrim         {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
612b5d35feaSSimon Pilgrim         {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
61369ffa7beSSimon Pilgrim         {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
614b5d35feaSSimon Pilgrim         {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
61569ffa7beSSimon Pilgrim         {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
616b5d35feaSSimon Pilgrim         {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
617b5d35feaSSimon Pilgrim         {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
61869ffa7beSSimon Pilgrim         {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
619b5d35feaSSimon Pilgrim         {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
62069ffa7beSSimon Pilgrim         {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
62169ffa7beSSimon Pilgrim         {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
62269ffa7beSSimon Pilgrim         {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
623bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 256, 1);
6246ac4fe8dSSimon Pilgrim   }
625f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA32Zrm:
626f6ff2cc7SSimon Pilgrim   case X86::VMOVDQA64Zrm:
627f6ff2cc7SSimon Pilgrim   case X86::VMOVDQU32Zrm:
6286ac4fe8dSSimon Pilgrim   case X86::VMOVDQU64Zrm: {
6296ac4fe8dSSimon Pilgrim     FixupEntry Fixups[] = {
6306ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
6316ac4fe8dSSimon Pilgrim         {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
6326ac4fe8dSSimon Pilgrim         {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
6336ac4fe8dSSimon Pilgrim         {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
634b5d35feaSSimon Pilgrim         {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
63569ffa7beSSimon Pilgrim         {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
636c59ac1a2SSimon Pilgrim         {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst},
637b5d35feaSSimon Pilgrim         {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
63869ffa7beSSimon Pilgrim         {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
639b5d35feaSSimon Pilgrim         {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
64069ffa7beSSimon Pilgrim         {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
641c59ac1a2SSimon Pilgrim         {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst},
642b5d35feaSSimon Pilgrim         {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
64369ffa7beSSimon Pilgrim         {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
644b5d35feaSSimon Pilgrim         {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
64569ffa7beSSimon Pilgrim         {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
64669ffa7beSSimon Pilgrim         {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
64769ffa7beSSimon Pilgrim         {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
648bef25ae2SSimon Pilgrim     return FixupConstant(Fixups, 512, 1);
6496ac4fe8dSSimon Pilgrim   }
650834cc88cSSimon Pilgrim   }
651834cc88cSSimon Pilgrim 
652*33f9d839SSimon Pilgrim   auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) {
653*33f9d839SSimon Pilgrim     if (OpSrc) {
654bafa51c8SShengchen Kan       if (const X86FoldTableEntry *Mem2Bcst =
655*33f9d839SSimon Pilgrim               llvm::lookupBroadcastFoldTableBySize(OpSrc, BW)) {
656*33f9d839SSimon Pilgrim         unsigned OpBcst = Mem2Bcst->DstOp;
657*33f9d839SSimon Pilgrim         unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK;
658*33f9d839SSimon Pilgrim         FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}};
659bef25ae2SSimon Pilgrim         // TODO: Add support for RegBitWidth, but currently rebuildSplatCst
660bef25ae2SSimon Pilgrim         // doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
661*33f9d839SSimon Pilgrim         return FixupConstant(Fixups, 0, OpNoBcst);
662*33f9d839SSimon Pilgrim       }
6630b91de5eSSimon Pilgrim     }
6641552b911SSimon Pilgrim     return false;
6651552b911SSimon Pilgrim   };
6661552b911SSimon Pilgrim 
6671552b911SSimon Pilgrim   // Attempt to find a AVX512 mapping from a full width memory-fold instruction
6681552b911SSimon Pilgrim   // to a broadcast-fold instruction variant.
6691552b911SSimon Pilgrim   if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
670*33f9d839SSimon Pilgrim     return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64);
6711552b911SSimon Pilgrim 
6721552b911SSimon Pilgrim   // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
6731552b911SSimon Pilgrim   // conversion to see if we can convert to a broadcasted (integer) logic op.
6741552b911SSimon Pilgrim   if (HasVLX && !HasDQI) {
6751552b911SSimon Pilgrim     unsigned OpSrc32 = 0, OpSrc64 = 0;
6761552b911SSimon Pilgrim     switch (Opc) {
6771552b911SSimon Pilgrim     case X86::VANDPDrm:
6781552b911SSimon Pilgrim     case X86::VANDPSrm:
6791552b911SSimon Pilgrim     case X86::VPANDrm:
6801552b911SSimon Pilgrim       OpSrc32 = X86 ::VPANDDZ128rm;
6811552b911SSimon Pilgrim       OpSrc64 = X86 ::VPANDQZ128rm;
6821552b911SSimon Pilgrim       break;
6831552b911SSimon Pilgrim     case X86::VANDPDYrm:
6841552b911SSimon Pilgrim     case X86::VANDPSYrm:
6851552b911SSimon Pilgrim     case X86::VPANDYrm:
6861552b911SSimon Pilgrim       OpSrc32 = X86 ::VPANDDZ256rm;
6871552b911SSimon Pilgrim       OpSrc64 = X86 ::VPANDQZ256rm;
6881552b911SSimon Pilgrim       break;
6891552b911SSimon Pilgrim     case X86::VANDNPDrm:
6901552b911SSimon Pilgrim     case X86::VANDNPSrm:
6911552b911SSimon Pilgrim     case X86::VPANDNrm:
6921552b911SSimon Pilgrim       OpSrc32 = X86 ::VPANDNDZ128rm;
6931552b911SSimon Pilgrim       OpSrc64 = X86 ::VPANDNQZ128rm;
6941552b911SSimon Pilgrim       break;
6951552b911SSimon Pilgrim     case X86::VANDNPDYrm:
6961552b911SSimon Pilgrim     case X86::VANDNPSYrm:
6971552b911SSimon Pilgrim     case X86::VPANDNYrm:
6981552b911SSimon Pilgrim       OpSrc32 = X86 ::VPANDNDZ256rm;
6991552b911SSimon Pilgrim       OpSrc64 = X86 ::VPANDNQZ256rm;
7001552b911SSimon Pilgrim       break;
7011552b911SSimon Pilgrim     case X86::VORPDrm:
7021552b911SSimon Pilgrim     case X86::VORPSrm:
7031552b911SSimon Pilgrim     case X86::VPORrm:
7041552b911SSimon Pilgrim       OpSrc32 = X86 ::VPORDZ128rm;
7051552b911SSimon Pilgrim       OpSrc64 = X86 ::VPORQZ128rm;
7061552b911SSimon Pilgrim       break;
7071552b911SSimon Pilgrim     case X86::VORPDYrm:
7081552b911SSimon Pilgrim     case X86::VORPSYrm:
7091552b911SSimon Pilgrim     case X86::VPORYrm:
7101552b911SSimon Pilgrim       OpSrc32 = X86 ::VPORDZ256rm;
7111552b911SSimon Pilgrim       OpSrc64 = X86 ::VPORQZ256rm;
7121552b911SSimon Pilgrim       break;
7131552b911SSimon Pilgrim     case X86::VXORPDrm:
7141552b911SSimon Pilgrim     case X86::VXORPSrm:
7151552b911SSimon Pilgrim     case X86::VPXORrm:
7161552b911SSimon Pilgrim       OpSrc32 = X86 ::VPXORDZ128rm;
7171552b911SSimon Pilgrim       OpSrc64 = X86 ::VPXORQZ128rm;
7181552b911SSimon Pilgrim       break;
7191552b911SSimon Pilgrim     case X86::VXORPDYrm:
7201552b911SSimon Pilgrim     case X86::VXORPSYrm:
7211552b911SSimon Pilgrim     case X86::VPXORYrm:
7221552b911SSimon Pilgrim       OpSrc32 = X86 ::VPXORDZ256rm;
7231552b911SSimon Pilgrim       OpSrc64 = X86 ::VPXORQZ256rm;
7241552b911SSimon Pilgrim       break;
7251552b911SSimon Pilgrim     }
7261552b911SSimon Pilgrim     if (OpSrc32 || OpSrc64)
727*33f9d839SSimon Pilgrim       return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64);
7280b91de5eSSimon Pilgrim   }
7290b91de5eSSimon Pilgrim 
7300b91de5eSSimon Pilgrim   return false;
7310b91de5eSSimon Pilgrim }
7320b91de5eSSimon Pilgrim 
7330b91de5eSSimon Pilgrim bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
7340b91de5eSSimon Pilgrim   LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
7350b91de5eSSimon Pilgrim   bool Changed = false;
7360b91de5eSSimon Pilgrim   ST = &MF.getSubtarget<X86Subtarget>();
7370b91de5eSSimon Pilgrim   TII = ST->getInstrInfo();
7380b91de5eSSimon Pilgrim   SM = &ST->getSchedModel();
7390b91de5eSSimon Pilgrim 
7400b91de5eSSimon Pilgrim   for (MachineBasicBlock &MBB : MF) {
7410b91de5eSSimon Pilgrim     for (MachineInstr &MI : MBB) {
7420b91de5eSSimon Pilgrim       if (processInstruction(MF, MBB, MI)) {
7430b91de5eSSimon Pilgrim         ++NumInstChanges;
7440b91de5eSSimon Pilgrim         Changed = true;
7450b91de5eSSimon Pilgrim       }
7460b91de5eSSimon Pilgrim     }
7470b91de5eSSimon Pilgrim   }
7480b91de5eSSimon Pilgrim   LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
7490b91de5eSSimon Pilgrim   return Changed;
7500b91de5eSSimon Pilgrim }
751