10b91de5eSSimon Pilgrim //===-- X86FixupVectorConstants.cpp - optimize constant generation -------===// 20b91de5eSSimon Pilgrim // 30b91de5eSSimon Pilgrim // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b91de5eSSimon Pilgrim // See https://llvm.org/LICENSE.txt for license information. 50b91de5eSSimon Pilgrim // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b91de5eSSimon Pilgrim // 70b91de5eSSimon Pilgrim //===----------------------------------------------------------------------===// 80b91de5eSSimon Pilgrim // 90b91de5eSSimon Pilgrim // This file examines all full size vector constant pool loads and attempts to 100b91de5eSSimon Pilgrim // replace them with smaller constant pool entries, including: 1150d38cf9SSimon Pilgrim // * Converting AVX512 memory-fold instructions to their broadcast-fold form. 1250d38cf9SSimon Pilgrim // * Using vzload scalar loads. 136155fa69SSimon Pilgrim // * Broadcasting of full width loads. 1450d38cf9SSimon Pilgrim // * Sign/Zero extension of full width loads. 150b91de5eSSimon Pilgrim // 160b91de5eSSimon Pilgrim //===----------------------------------------------------------------------===// 170b91de5eSSimon Pilgrim 180b91de5eSSimon Pilgrim #include "X86.h" 190b91de5eSSimon Pilgrim #include "X86InstrFoldTables.h" 200b91de5eSSimon Pilgrim #include "X86InstrInfo.h" 210b91de5eSSimon Pilgrim #include "X86Subtarget.h" 220b91de5eSSimon Pilgrim #include "llvm/ADT/Statistic.h" 230b91de5eSSimon Pilgrim #include "llvm/CodeGen/MachineConstantPool.h" 240b91de5eSSimon Pilgrim 250b91de5eSSimon Pilgrim using namespace llvm; 260b91de5eSSimon Pilgrim 270b91de5eSSimon Pilgrim #define DEBUG_TYPE "x86-fixup-vector-constants" 280b91de5eSSimon Pilgrim 290b91de5eSSimon Pilgrim STATISTIC(NumInstChanges, "Number of instructions changes"); 300b91de5eSSimon Pilgrim 310b91de5eSSimon Pilgrim namespace { 320b91de5eSSimon Pilgrim class X86FixupVectorConstantsPass : public MachineFunctionPass { 330b91de5eSSimon Pilgrim public: 340b91de5eSSimon Pilgrim static char ID; 350b91de5eSSimon Pilgrim 360b91de5eSSimon Pilgrim X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {} 370b91de5eSSimon Pilgrim 380b91de5eSSimon Pilgrim StringRef getPassName() const override { 390b91de5eSSimon Pilgrim return "X86 Fixup Vector Constants"; 400b91de5eSSimon Pilgrim } 410b91de5eSSimon Pilgrim 420b91de5eSSimon Pilgrim bool runOnMachineFunction(MachineFunction &MF) override; 430b91de5eSSimon Pilgrim bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, 440b91de5eSSimon Pilgrim MachineInstr &MI); 450b91de5eSSimon Pilgrim 460b91de5eSSimon Pilgrim // This pass runs after regalloc and doesn't support VReg operands. 470b91de5eSSimon Pilgrim MachineFunctionProperties getRequiredProperties() const override { 480b91de5eSSimon Pilgrim return MachineFunctionProperties().set( 490b91de5eSSimon Pilgrim MachineFunctionProperties::Property::NoVRegs); 500b91de5eSSimon Pilgrim } 510b91de5eSSimon Pilgrim 520b91de5eSSimon Pilgrim private: 530b91de5eSSimon Pilgrim const X86InstrInfo *TII = nullptr; 540b91de5eSSimon Pilgrim const X86Subtarget *ST = nullptr; 550b91de5eSSimon Pilgrim const MCSchedModel *SM = nullptr; 560b91de5eSSimon Pilgrim }; 570b91de5eSSimon Pilgrim } // end anonymous namespace 580b91de5eSSimon Pilgrim 590b91de5eSSimon Pilgrim char X86FixupVectorConstantsPass::ID = 0; 600b91de5eSSimon Pilgrim 610b91de5eSSimon Pilgrim INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false) 620b91de5eSSimon Pilgrim 630b91de5eSSimon Pilgrim FunctionPass *llvm::createX86FixupVectorConstants() { 640b91de5eSSimon Pilgrim return new X86FixupVectorConstantsPass(); 650b91de5eSSimon Pilgrim } 660b91de5eSSimon Pilgrim 671baa3850SNikita Popov /// Normally, we only allow poison in vector splats. However, as this is part 681baa3850SNikita Popov /// of the backend, and working with the DAG representation, which currently 691baa3850SNikita Popov /// only natively represents undef values, we need to accept undefs here. 701baa3850SNikita Popov static Constant *getSplatValueAllowUndef(const ConstantVector *C) { 711baa3850SNikita Popov Constant *Res = nullptr; 721baa3850SNikita Popov for (Value *Op : C->operands()) { 731baa3850SNikita Popov Constant *OpC = cast<Constant>(Op); 741baa3850SNikita Popov if (isa<UndefValue>(OpC)) 751baa3850SNikita Popov continue; 761baa3850SNikita Popov if (!Res) 771baa3850SNikita Popov Res = OpC; 781baa3850SNikita Popov else if (Res != OpC) 791baa3850SNikita Popov return nullptr; 801baa3850SNikita Popov } 811baa3850SNikita Popov return Res; 821baa3850SNikita Popov } 831baa3850SNikita Popov 840b91de5eSSimon Pilgrim // Attempt to extract the full width of bits data from the constant. 850b91de5eSSimon Pilgrim static std::optional<APInt> extractConstantBits(const Constant *C) { 860b91de5eSSimon Pilgrim unsigned NumBits = C->getType()->getPrimitiveSizeInBits(); 870b91de5eSSimon Pilgrim 88e4375bf4SMikael Holmen if (isa<UndefValue>(C)) 898b43c1beSSimon Pilgrim return APInt::getZero(NumBits); 908b43c1beSSimon Pilgrim 910b91de5eSSimon Pilgrim if (auto *CInt = dyn_cast<ConstantInt>(C)) 920b91de5eSSimon Pilgrim return CInt->getValue(); 930b91de5eSSimon Pilgrim 940b91de5eSSimon Pilgrim if (auto *CFP = dyn_cast<ConstantFP>(C)) 950b91de5eSSimon Pilgrim return CFP->getValue().bitcastToAPInt(); 960b91de5eSSimon Pilgrim 970b91de5eSSimon Pilgrim if (auto *CV = dyn_cast<ConstantVector>(C)) { 981baa3850SNikita Popov if (auto *CVSplat = getSplatValueAllowUndef(CV)) { 990b91de5eSSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) { 1000b91de5eSSimon Pilgrim assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat"); 1010b91de5eSSimon Pilgrim return APInt::getSplat(NumBits, *Bits); 1020b91de5eSSimon Pilgrim } 1030b91de5eSSimon Pilgrim } 1048b43c1beSSimon Pilgrim 1058b43c1beSSimon Pilgrim APInt Bits = APInt::getZero(NumBits); 1068b43c1beSSimon Pilgrim for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) { 1078b43c1beSSimon Pilgrim Constant *Elt = CV->getOperand(I); 1088b43c1beSSimon Pilgrim std::optional<APInt> SubBits = extractConstantBits(Elt); 1098b43c1beSSimon Pilgrim if (!SubBits) 1108b43c1beSSimon Pilgrim return std::nullopt; 1118b43c1beSSimon Pilgrim assert(NumBits == (E * SubBits->getBitWidth()) && 1128b43c1beSSimon Pilgrim "Illegal vector element size"); 1138b43c1beSSimon Pilgrim Bits.insertBits(*SubBits, I * SubBits->getBitWidth()); 1148b43c1beSSimon Pilgrim } 1158b43c1beSSimon Pilgrim return Bits; 1160b91de5eSSimon Pilgrim } 1170b91de5eSSimon Pilgrim 1180b91de5eSSimon Pilgrim if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { 1190b91de5eSSimon Pilgrim bool IsInteger = CDS->getElementType()->isIntegerTy(); 1200b91de5eSSimon Pilgrim bool IsFloat = CDS->getElementType()->isHalfTy() || 1210b91de5eSSimon Pilgrim CDS->getElementType()->isBFloatTy() || 1220b91de5eSSimon Pilgrim CDS->getElementType()->isFloatTy() || 1230b91de5eSSimon Pilgrim CDS->getElementType()->isDoubleTy(); 1240b91de5eSSimon Pilgrim if (IsInteger || IsFloat) { 1250b91de5eSSimon Pilgrim APInt Bits = APInt::getZero(NumBits); 1260b91de5eSSimon Pilgrim unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits(); 1270b91de5eSSimon Pilgrim for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 1280b91de5eSSimon Pilgrim if (IsInteger) 1290b91de5eSSimon Pilgrim Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits); 1300b91de5eSSimon Pilgrim else 1310b91de5eSSimon Pilgrim Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(), 1320b91de5eSSimon Pilgrim I * EltBits); 1330b91de5eSSimon Pilgrim } 1340b91de5eSSimon Pilgrim return Bits; 1350b91de5eSSimon Pilgrim } 1360b91de5eSSimon Pilgrim } 1370b91de5eSSimon Pilgrim 1380b91de5eSSimon Pilgrim return std::nullopt; 1390b91de5eSSimon Pilgrim } 1400b91de5eSSimon Pilgrim 141b8466138SSimon Pilgrim static std::optional<APInt> extractConstantBits(const Constant *C, 142b8466138SSimon Pilgrim unsigned NumBits) { 143b8466138SSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(C)) 144b8466138SSimon Pilgrim return Bits->zextOrTrunc(NumBits); 145b8466138SSimon Pilgrim return std::nullopt; 146b8466138SSimon Pilgrim } 147b8466138SSimon Pilgrim 1480b91de5eSSimon Pilgrim // Attempt to compute the splat width of bits data by normalizing the splat to 1490b91de5eSSimon Pilgrim // remove undefs. 1500b91de5eSSimon Pilgrim static std::optional<APInt> getSplatableConstant(const Constant *C, 1510b91de5eSSimon Pilgrim unsigned SplatBitWidth) { 1520b91de5eSSimon Pilgrim const Type *Ty = C->getType(); 1530b91de5eSSimon Pilgrim assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 && 1540b91de5eSSimon Pilgrim "Illegal splat width"); 1550b91de5eSSimon Pilgrim 1560b91de5eSSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(C)) 1570b91de5eSSimon Pilgrim if (Bits->isSplat(SplatBitWidth)) 1580b91de5eSSimon Pilgrim return Bits->trunc(SplatBitWidth); 1590b91de5eSSimon Pilgrim 1600b91de5eSSimon Pilgrim // Detect general splats with undefs. 1610b91de5eSSimon Pilgrim // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting? 1620b91de5eSSimon Pilgrim if (auto *CV = dyn_cast<ConstantVector>(C)) { 1630b91de5eSSimon Pilgrim unsigned NumOps = CV->getNumOperands(); 1640b91de5eSSimon Pilgrim unsigned NumEltsBits = Ty->getScalarSizeInBits(); 1650b91de5eSSimon Pilgrim unsigned NumScaleOps = SplatBitWidth / NumEltsBits; 1660b91de5eSSimon Pilgrim if ((SplatBitWidth % NumEltsBits) == 0) { 1670b91de5eSSimon Pilgrim // Collect the elements and ensure that within the repeated splat sequence 1680b91de5eSSimon Pilgrim // they either match or are undef. 1690b91de5eSSimon Pilgrim SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr); 1700b91de5eSSimon Pilgrim for (unsigned Idx = 0; Idx != NumOps; ++Idx) { 1710b91de5eSSimon Pilgrim if (Constant *Elt = CV->getAggregateElement(Idx)) { 1720b91de5eSSimon Pilgrim if (isa<UndefValue>(Elt)) 1730b91de5eSSimon Pilgrim continue; 1740b91de5eSSimon Pilgrim unsigned SplatIdx = Idx % NumScaleOps; 1750b91de5eSSimon Pilgrim if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) { 1760b91de5eSSimon Pilgrim Sequence[SplatIdx] = Elt; 1770b91de5eSSimon Pilgrim continue; 1780b91de5eSSimon Pilgrim } 1790b91de5eSSimon Pilgrim } 1800b91de5eSSimon Pilgrim return std::nullopt; 1810b91de5eSSimon Pilgrim } 1820b91de5eSSimon Pilgrim // Extract the constant bits forming the splat and insert into the bits 1830b91de5eSSimon Pilgrim // data, leave undef as zero. 1840b91de5eSSimon Pilgrim APInt SplatBits = APInt::getZero(SplatBitWidth); 1850b91de5eSSimon Pilgrim for (unsigned I = 0; I != NumScaleOps; ++I) { 1860b91de5eSSimon Pilgrim if (!Sequence[I]) 1870b91de5eSSimon Pilgrim continue; 1880b91de5eSSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) { 1890b91de5eSSimon Pilgrim SplatBits.insertBits(*Bits, I * Bits->getBitWidth()); 1900b91de5eSSimon Pilgrim continue; 1910b91de5eSSimon Pilgrim } 1920b91de5eSSimon Pilgrim return std::nullopt; 1930b91de5eSSimon Pilgrim } 1940b91de5eSSimon Pilgrim return SplatBits; 1950b91de5eSSimon Pilgrim } 1960b91de5eSSimon Pilgrim } 1970b91de5eSSimon Pilgrim 1980b91de5eSSimon Pilgrim return std::nullopt; 1990b91de5eSSimon Pilgrim } 2000b91de5eSSimon Pilgrim 201c1729c8dSSimon Pilgrim // Split raw bits into a constant vector of elements of a specific bit width. 202c1729c8dSSimon Pilgrim // NOTE: We don't always bother converting to scalars if the vector length is 1. 203c1729c8dSSimon Pilgrim static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy, 204c1729c8dSSimon Pilgrim const APInt &Bits, unsigned NumSclBits) { 205c1729c8dSSimon Pilgrim unsigned BitWidth = Bits.getBitWidth(); 206c1729c8dSSimon Pilgrim 207c1729c8dSSimon Pilgrim if (NumSclBits == 8) { 208c1729c8dSSimon Pilgrim SmallVector<uint8_t> RawBits; 209c1729c8dSSimon Pilgrim for (unsigned I = 0; I != BitWidth; I += 8) 210c1729c8dSSimon Pilgrim RawBits.push_back(Bits.extractBits(8, I).getZExtValue()); 211c1729c8dSSimon Pilgrim return ConstantDataVector::get(Ctx, RawBits); 212c1729c8dSSimon Pilgrim } 213c1729c8dSSimon Pilgrim 214c1729c8dSSimon Pilgrim if (NumSclBits == 16) { 215c1729c8dSSimon Pilgrim SmallVector<uint16_t> RawBits; 216c1729c8dSSimon Pilgrim for (unsigned I = 0; I != BitWidth; I += 16) 217c1729c8dSSimon Pilgrim RawBits.push_back(Bits.extractBits(16, I).getZExtValue()); 218c1729c8dSSimon Pilgrim if (SclTy->is16bitFPTy()) 219c1729c8dSSimon Pilgrim return ConstantDataVector::getFP(SclTy, RawBits); 220c1729c8dSSimon Pilgrim return ConstantDataVector::get(Ctx, RawBits); 221c1729c8dSSimon Pilgrim } 222c1729c8dSSimon Pilgrim 223c1729c8dSSimon Pilgrim if (NumSclBits == 32) { 224c1729c8dSSimon Pilgrim SmallVector<uint32_t> RawBits; 225c1729c8dSSimon Pilgrim for (unsigned I = 0; I != BitWidth; I += 32) 226c1729c8dSSimon Pilgrim RawBits.push_back(Bits.extractBits(32, I).getZExtValue()); 227c1729c8dSSimon Pilgrim if (SclTy->isFloatTy()) 228c1729c8dSSimon Pilgrim return ConstantDataVector::getFP(SclTy, RawBits); 229c1729c8dSSimon Pilgrim return ConstantDataVector::get(Ctx, RawBits); 230c1729c8dSSimon Pilgrim } 231c1729c8dSSimon Pilgrim 232c1729c8dSSimon Pilgrim assert(NumSclBits == 64 && "Unhandled vector element width"); 233c1729c8dSSimon Pilgrim 234c1729c8dSSimon Pilgrim SmallVector<uint64_t> RawBits; 235c1729c8dSSimon Pilgrim for (unsigned I = 0; I != BitWidth; I += 64) 236c1729c8dSSimon Pilgrim RawBits.push_back(Bits.extractBits(64, I).getZExtValue()); 237c1729c8dSSimon Pilgrim if (SclTy->isDoubleTy()) 238c1729c8dSSimon Pilgrim return ConstantDataVector::getFP(SclTy, RawBits); 239c1729c8dSSimon Pilgrim return ConstantDataVector::get(Ctx, RawBits); 240c1729c8dSSimon Pilgrim } 241c1729c8dSSimon Pilgrim 2420b91de5eSSimon Pilgrim // Attempt to rebuild a normalized splat vector constant of the requested splat 2430b91de5eSSimon Pilgrim // width, built up of potentially smaller scalar values. 244b8466138SSimon Pilgrim static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/, 245b8466138SSimon Pilgrim unsigned /*NumElts*/, unsigned SplatBitWidth) { 246bef25ae2SSimon Pilgrim // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this. 2470b91de5eSSimon Pilgrim std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth); 2480b91de5eSSimon Pilgrim if (!Splat) 2490b91de5eSSimon Pilgrim return nullptr; 2500b91de5eSSimon Pilgrim 2510b91de5eSSimon Pilgrim // Determine scalar size to use for the constant splat vector, clamping as we 2520b91de5eSSimon Pilgrim // might have found a splat smaller than the original constant data. 253b8466138SSimon Pilgrim Type *SclTy = C->getType()->getScalarType(); 2540b91de5eSSimon Pilgrim unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); 2550b91de5eSSimon Pilgrim NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth); 2560b91de5eSSimon Pilgrim 2570b91de5eSSimon Pilgrim // Fallback to i64 / double. 258c1729c8dSSimon Pilgrim NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32) 259c1729c8dSSimon Pilgrim ? NumSclBits 260c1729c8dSSimon Pilgrim : 64; 261c1729c8dSSimon Pilgrim 262c1729c8dSSimon Pilgrim // Extract per-element bits. 263b8466138SSimon Pilgrim return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits); 2640b91de5eSSimon Pilgrim } 2650b91de5eSSimon Pilgrim 266b8466138SSimon Pilgrim static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits, 267b8466138SSimon Pilgrim unsigned /*NumElts*/, 2688b43c1beSSimon Pilgrim unsigned ScalarBitWidth) { 269b8466138SSimon Pilgrim Type *SclTy = C->getType()->getScalarType(); 2708b43c1beSSimon Pilgrim unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); 2718b43c1beSSimon Pilgrim LLVMContext &Ctx = C->getContext(); 2728b43c1beSSimon Pilgrim 2738b43c1beSSimon Pilgrim if (NumBits > ScalarBitWidth) { 2748b43c1beSSimon Pilgrim // Determine if the upper bits are all zero. 275b8466138SSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) { 2768b43c1beSSimon Pilgrim if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) { 2778b43c1beSSimon Pilgrim // If the original constant was made of smaller elements, try to retain 2788b43c1beSSimon Pilgrim // those types. 2798b43c1beSSimon Pilgrim if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0) 2808b43c1beSSimon Pilgrim return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits); 2818b43c1beSSimon Pilgrim 2828b43c1beSSimon Pilgrim // Fallback to raw integer bits. 2838b43c1beSSimon Pilgrim APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth); 2848b43c1beSSimon Pilgrim return ConstantInt::get(Ctx, RawBits); 2858b43c1beSSimon Pilgrim } 2868b43c1beSSimon Pilgrim } 2878b43c1beSSimon Pilgrim } 2888b43c1beSSimon Pilgrim 2898b43c1beSSimon Pilgrim return nullptr; 2908b43c1beSSimon Pilgrim } 2918b43c1beSSimon Pilgrim 292b8466138SSimon Pilgrim static Constant *rebuildExtCst(const Constant *C, bool IsSExt, 293b8466138SSimon Pilgrim unsigned NumBits, unsigned NumElts, 294b5d35feaSSimon Pilgrim unsigned SrcEltBitWidth) { 295b5d35feaSSimon Pilgrim unsigned DstEltBitWidth = NumBits / NumElts; 296b5d35feaSSimon Pilgrim assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 && 297b5d35feaSSimon Pilgrim (DstEltBitWidth % SrcEltBitWidth) == 0 && 298b5d35feaSSimon Pilgrim (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width"); 299b5d35feaSSimon Pilgrim 300b8466138SSimon Pilgrim if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) { 301b5d35feaSSimon Pilgrim assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts && 302b5d35feaSSimon Pilgrim (Bits->getBitWidth() % DstEltBitWidth) == 0 && 303b5d35feaSSimon Pilgrim "Unexpected constant extension"); 304b5d35feaSSimon Pilgrim 305b5d35feaSSimon Pilgrim // Ensure every vector element can be represented by the src bitwidth. 306b5d35feaSSimon Pilgrim APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth); 307b5d35feaSSimon Pilgrim for (unsigned I = 0; I != NumElts; ++I) { 308b5d35feaSSimon Pilgrim APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth); 309b5d35feaSSimon Pilgrim if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) || 310b5d35feaSSimon Pilgrim (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth)) 311b5d35feaSSimon Pilgrim return nullptr; 312b5d35feaSSimon Pilgrim TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth); 313b5d35feaSSimon Pilgrim } 314b5d35feaSSimon Pilgrim 315b8466138SSimon Pilgrim Type *Ty = C->getType(); 316b5d35feaSSimon Pilgrim return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits, 317b5d35feaSSimon Pilgrim SrcEltBitWidth); 318b5d35feaSSimon Pilgrim } 319b5d35feaSSimon Pilgrim 320b5d35feaSSimon Pilgrim return nullptr; 321b5d35feaSSimon Pilgrim } 322b8466138SSimon Pilgrim static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits, 323b8466138SSimon Pilgrim unsigned NumElts, unsigned SrcEltBitWidth) { 324b8466138SSimon Pilgrim return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth); 325b5d35feaSSimon Pilgrim } 326b8466138SSimon Pilgrim static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits, 327b8466138SSimon Pilgrim unsigned NumElts, unsigned SrcEltBitWidth) { 328b8466138SSimon Pilgrim return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth); 32969ffa7beSSimon Pilgrim } 330b5d35feaSSimon Pilgrim 3310b91de5eSSimon Pilgrim bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF, 3320b91de5eSSimon Pilgrim MachineBasicBlock &MBB, 3330b91de5eSSimon Pilgrim MachineInstr &MI) { 3340b91de5eSSimon Pilgrim unsigned Opc = MI.getOpcode(); 3350b91de5eSSimon Pilgrim MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool(); 336b5d35feaSSimon Pilgrim bool HasSSE41 = ST->hasSSE41(); 3376155fa69SSimon Pilgrim bool HasAVX2 = ST->hasAVX2(); 338834cc88cSSimon Pilgrim bool HasDQI = ST->hasDQI(); 339f6ff2cc7SSimon Pilgrim bool HasBWI = ST->hasBWI(); 3401552b911SSimon Pilgrim bool HasVLX = ST->hasVLX(); 341be6c752eSSimon Pilgrim bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov(); 3420b91de5eSSimon Pilgrim 3436ac4fe8dSSimon Pilgrim struct FixupEntry { 3446ac4fe8dSSimon Pilgrim int Op; 3456ac4fe8dSSimon Pilgrim int NumCstElts; 346f407be32SSimon Pilgrim int MemBitWidth; 347b8466138SSimon Pilgrim std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)> 3486ac4fe8dSSimon Pilgrim RebuildConstant; 3496ac4fe8dSSimon Pilgrim }; 350bef25ae2SSimon Pilgrim auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth, 351bef25ae2SSimon Pilgrim unsigned OperandNo) { 3526ac4fe8dSSimon Pilgrim #ifdef EXPENSIVE_CHECKS 3536ac4fe8dSSimon Pilgrim assert(llvm::is_sorted(Fixups, 3546ac4fe8dSSimon Pilgrim [](const FixupEntry &A, const FixupEntry &B) { 355f407be32SSimon Pilgrim return (A.NumCstElts * A.MemBitWidth) < 356f407be32SSimon Pilgrim (B.NumCstElts * B.MemBitWidth); 3576ac4fe8dSSimon Pilgrim }) && 3586ac4fe8dSSimon Pilgrim "Constant fixup table not sorted in ascending constant size"); 3596ac4fe8dSSimon Pilgrim #endif 3600b91de5eSSimon Pilgrim assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) && 3610b91de5eSSimon Pilgrim "Unexpected number of operands!"); 3624e64ed97SSimon Pilgrim if (auto *C = X86::getConstantFromPool(MI, OperandNo)) { 363bef25ae2SSimon Pilgrim RegBitWidth = 364bef25ae2SSimon Pilgrim RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits(); 3656ac4fe8dSSimon Pilgrim for (const FixupEntry &Fixup : Fixups) { 3666ac4fe8dSSimon Pilgrim if (Fixup.Op) { 3678b43c1beSSimon Pilgrim // Construct a suitable constant and adjust the MI to use the new 3688b43c1beSSimon Pilgrim // constant pool entry. 369b8466138SSimon Pilgrim if (Constant *NewCst = Fixup.RebuildConstant( 370f407be32SSimon Pilgrim C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) { 3710b91de5eSSimon Pilgrim unsigned NewCPI = 372f407be32SSimon Pilgrim CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8)); 3736ac4fe8dSSimon Pilgrim MI.setDesc(TII->get(Fixup.Op)); 3744e64ed97SSimon Pilgrim MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI); 3750b91de5eSSimon Pilgrim return true; 3760b91de5eSSimon Pilgrim } 3770b91de5eSSimon Pilgrim } 3780b91de5eSSimon Pilgrim } 3790b91de5eSSimon Pilgrim } 3800b91de5eSSimon Pilgrim return false; 3810b91de5eSSimon Pilgrim }; 3820b91de5eSSimon Pilgrim 383b5d35feaSSimon Pilgrim // Attempt to detect a suitable vzload/broadcast/vextload from increasing 384b5d35feaSSimon Pilgrim // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth: 385b5d35feaSSimon Pilgrim // - vzload shouldn't ever need a shuffle port to zero the upper elements and 386b5d35feaSSimon Pilgrim // the fp/int domain versions are equally available so we don't introduce a 387b5d35feaSSimon Pilgrim // domain crossing penalty. 388b5d35feaSSimon Pilgrim // - broadcast sometimes need a shuffle port (especially for 8/16-bit 389b5d35feaSSimon Pilgrim // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int 390b5d35feaSSimon Pilgrim // domain equivalents. 391b5d35feaSSimon Pilgrim // - vextload always needs a shuffle port and is only ever int domain. 392834cc88cSSimon Pilgrim switch (Opc) { 393834cc88cSSimon Pilgrim /* FP Loads */ 394834cc88cSSimon Pilgrim case X86::MOVAPDrm: 395834cc88cSSimon Pilgrim case X86::MOVAPSrm: 396834cc88cSSimon Pilgrim case X86::MOVUPDrm: 397834cc88cSSimon Pilgrim case X86::MOVUPSrm: 398834cc88cSSimon Pilgrim // TODO: SSE3 MOVDDUP Handling 3996ac4fe8dSSimon Pilgrim return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst}, 4006ac4fe8dSSimon Pilgrim {X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}}, 401bef25ae2SSimon Pilgrim 128, 1); 402834cc88cSSimon Pilgrim case X86::VMOVAPDrm: 403834cc88cSSimon Pilgrim case X86::VMOVAPSrm: 404834cc88cSSimon Pilgrim case X86::VMOVUPDrm: 405be6c752eSSimon Pilgrim case X86::VMOVUPSrm: { 406be6c752eSSimon Pilgrim FixupEntry Fixups[] = { 407be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst}, 408be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst}, 409be6c752eSSimon Pilgrim {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst}, 4106ac4fe8dSSimon Pilgrim {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst}, 411be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst}, 412be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst}, 413be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst}, 414be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst}, 4156ac4fe8dSSimon Pilgrim {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst}, 416be6c752eSSimon Pilgrim {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}, 417be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst}, 418be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst}, 419be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst}, 420be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}}; 421be6c752eSSimon Pilgrim return FixupConstant(Fixups, 128, 1); 422be6c752eSSimon Pilgrim } 423834cc88cSSimon Pilgrim case X86::VMOVAPDYrm: 424834cc88cSSimon Pilgrim case X86::VMOVAPSYrm: 425834cc88cSSimon Pilgrim case X86::VMOVUPDYrm: 426be6c752eSSimon Pilgrim case X86::VMOVUPSYrm: { 427be6c752eSSimon Pilgrim FixupEntry Fixups[] = { 428be6c752eSSimon Pilgrim {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst}, 429be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst}, 430be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst}, 4316ac4fe8dSSimon Pilgrim {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst}, 432be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst}, 433be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst}, 434be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst}, 435be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst}, 436be6c752eSSimon Pilgrim {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}, 437be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst}, 438be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst}, 439be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst}, 440be6c752eSSimon Pilgrim {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32, 441be6c752eSSimon Pilgrim rebuildZExtCst}}; 442be6c752eSSimon Pilgrim return FixupConstant(Fixups, 256, 1); 443be6c752eSSimon Pilgrim } 444834cc88cSSimon Pilgrim case X86::VMOVAPDZ128rm: 445834cc88cSSimon Pilgrim case X86::VMOVAPSZ128rm: 446834cc88cSSimon Pilgrim case X86::VMOVUPDZ128rm: 447be6c752eSSimon Pilgrim case X86::VMOVUPSZ128rm: { 448be6c752eSSimon Pilgrim FixupEntry Fixups[] = { 449be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst}, 450be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst}, 451be6c752eSSimon Pilgrim {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst}, 4526ac4fe8dSSimon Pilgrim {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst}, 453be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst}, 454be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst}, 455be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst}, 456be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst}, 4576ac4fe8dSSimon Pilgrim {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst}, 458be6c752eSSimon Pilgrim {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}, 459be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst}, 460be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst}, 461be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst}, 462be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}}; 463be6c752eSSimon Pilgrim return FixupConstant(Fixups, 128, 1); 464be6c752eSSimon Pilgrim } 465834cc88cSSimon Pilgrim case X86::VMOVAPDZ256rm: 466834cc88cSSimon Pilgrim case X86::VMOVAPSZ256rm: 467834cc88cSSimon Pilgrim case X86::VMOVUPDZ256rm: 468be6c752eSSimon Pilgrim case X86::VMOVUPSZ256rm: { 469be6c752eSSimon Pilgrim FixupEntry Fixups[] = { 470be6c752eSSimon Pilgrim {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst}, 471be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst}, 472be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst}, 4736ac4fe8dSSimon Pilgrim {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst}, 474be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst}, 475be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst}, 476be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst}, 477be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst}, 478be6c752eSSimon Pilgrim {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}, 479be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst}, 480be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst}, 481be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst}, 482be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}}; 483be6c752eSSimon Pilgrim return FixupConstant(Fixups, 256, 1); 484be6c752eSSimon Pilgrim } 485834cc88cSSimon Pilgrim case X86::VMOVAPDZrm: 486834cc88cSSimon Pilgrim case X86::VMOVAPSZrm: 487834cc88cSSimon Pilgrim case X86::VMOVUPDZrm: 488be6c752eSSimon Pilgrim case X86::VMOVUPSZrm: { 489be6c752eSSimon Pilgrim FixupEntry Fixups[] = { 490be6c752eSSimon Pilgrim {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst}, 4916ac4fe8dSSimon Pilgrim {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst}, 492be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst}, 493be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst}, 494c59ac1a2SSimon Pilgrim {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst}, 495be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst}, 496be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst}, 497be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst}, 498be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst}, 499be6c752eSSimon Pilgrim {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst}, 500be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst}, 501be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst}, 502be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst}, 503be6c752eSSimon Pilgrim {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}}; 504be6c752eSSimon Pilgrim return FixupConstant(Fixups, 512, 1); 505be6c752eSSimon Pilgrim } 506f6ff2cc7SSimon Pilgrim /* Integer Loads */ 5078b43c1beSSimon Pilgrim case X86::MOVDQArm: 5086ac4fe8dSSimon Pilgrim case X86::MOVDQUrm: { 509b5d35feaSSimon Pilgrim FixupEntry Fixups[] = { 510b5d35feaSSimon Pilgrim {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst}, 51169ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst}, 512b5d35feaSSimon Pilgrim {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, 513b5d35feaSSimon Pilgrim {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst}, 51469ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst}, 515b5d35feaSSimon Pilgrim {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst}, 51669ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst}, 517b5d35feaSSimon Pilgrim {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, 518b5d35feaSSimon Pilgrim {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst}, 51969ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst}, 520b5d35feaSSimon Pilgrim {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst}, 52169ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst}, 52269ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst}, 52369ffa7beSSimon Pilgrim {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}}; 524bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 128, 1); 5256ac4fe8dSSimon Pilgrim } 526f6ff2cc7SSimon Pilgrim case X86::VMOVDQArm: 5276ac4fe8dSSimon Pilgrim case X86::VMOVDQUrm: { 5286ac4fe8dSSimon Pilgrim FixupEntry Fixups[] = { 5296ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst}, 5306ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst}, 531b5d35feaSSimon Pilgrim {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst}, 53269ffa7beSSimon Pilgrim {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst}, 5336ac4fe8dSSimon Pilgrim {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, 5346ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32, 5356ac4fe8dSSimon Pilgrim rebuildSplatCst}, 536b5d35feaSSimon Pilgrim {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst}, 53769ffa7beSSimon Pilgrim {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst}, 538b5d35feaSSimon Pilgrim {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst}, 53969ffa7beSSimon Pilgrim {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst}, 5406ac4fe8dSSimon Pilgrim {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, 5416ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64, 5426ac4fe8dSSimon Pilgrim rebuildSplatCst}, 543b5d35feaSSimon Pilgrim {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst}, 54469ffa7beSSimon Pilgrim {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst}, 545b5d35feaSSimon Pilgrim {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst}, 54669ffa7beSSimon Pilgrim {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst}, 54769ffa7beSSimon Pilgrim {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst}, 54869ffa7beSSimon Pilgrim {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}}; 549bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 128, 1); 5506ac4fe8dSSimon Pilgrim } 551f6ff2cc7SSimon Pilgrim case X86::VMOVDQAYrm: 5526ac4fe8dSSimon Pilgrim case X86::VMOVDQUYrm: { 5536ac4fe8dSSimon Pilgrim FixupEntry Fixups[] = { 5546ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst}, 5556ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst}, 5566ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32, 5576ac4fe8dSSimon Pilgrim rebuildSplatCst}, 558b5d35feaSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst}, 55969ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst}, 5606ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64, 5616ac4fe8dSSimon Pilgrim rebuildSplatCst}, 562b5d35feaSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst}, 56369ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst}, 564b5d35feaSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst}, 56569ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst}, 5666ac4fe8dSSimon Pilgrim {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128, 567b5d35feaSSimon Pilgrim rebuildSplatCst}, 568b5d35feaSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst}, 56969ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst}, 570b5d35feaSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst}, 57169ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst}, 57269ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst}, 57369ffa7beSSimon Pilgrim {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}}; 574bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 256, 1); 5756ac4fe8dSSimon Pilgrim } 576f6ff2cc7SSimon Pilgrim case X86::VMOVDQA32Z128rm: 577f6ff2cc7SSimon Pilgrim case X86::VMOVDQA64Z128rm: 578f6ff2cc7SSimon Pilgrim case X86::VMOVDQU32Z128rm: 5796ac4fe8dSSimon Pilgrim case X86::VMOVDQU64Z128rm: { 5806ac4fe8dSSimon Pilgrim FixupEntry Fixups[] = { 5816ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst}, 5826ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst}, 583b5d35feaSSimon Pilgrim {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst}, 58469ffa7beSSimon Pilgrim {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst}, 5856ac4fe8dSSimon Pilgrim {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst}, 5866ac4fe8dSSimon Pilgrim {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst}, 587b5d35feaSSimon Pilgrim {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst}, 58869ffa7beSSimon Pilgrim {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst}, 589b5d35feaSSimon Pilgrim {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst}, 59069ffa7beSSimon Pilgrim {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst}, 5916ac4fe8dSSimon Pilgrim {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst}, 592b5d35feaSSimon Pilgrim {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst}, 593b5d35feaSSimon Pilgrim {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst}, 59469ffa7beSSimon Pilgrim {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst}, 595b5d35feaSSimon Pilgrim {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst}, 59669ffa7beSSimon Pilgrim {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst}, 59769ffa7beSSimon Pilgrim {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst}, 59869ffa7beSSimon Pilgrim {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}}; 599bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 128, 1); 6006ac4fe8dSSimon Pilgrim } 601f6ff2cc7SSimon Pilgrim case X86::VMOVDQA32Z256rm: 602f6ff2cc7SSimon Pilgrim case X86::VMOVDQA64Z256rm: 603f6ff2cc7SSimon Pilgrim case X86::VMOVDQU32Z256rm: 6046ac4fe8dSSimon Pilgrim case X86::VMOVDQU64Z256rm: { 6056ac4fe8dSSimon Pilgrim FixupEntry Fixups[] = { 6066ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst}, 6076ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst}, 6086ac4fe8dSSimon Pilgrim {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst}, 609b5d35feaSSimon Pilgrim {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst}, 61069ffa7beSSimon Pilgrim {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst}, 6116ac4fe8dSSimon Pilgrim {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst}, 612b5d35feaSSimon Pilgrim {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst}, 61369ffa7beSSimon Pilgrim {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst}, 614b5d35feaSSimon Pilgrim {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst}, 61569ffa7beSSimon Pilgrim {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst}, 616b5d35feaSSimon Pilgrim {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst}, 617b5d35feaSSimon Pilgrim {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst}, 61869ffa7beSSimon Pilgrim {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst}, 619b5d35feaSSimon Pilgrim {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst}, 62069ffa7beSSimon Pilgrim {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst}, 62169ffa7beSSimon Pilgrim {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst}, 62269ffa7beSSimon Pilgrim {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}}; 623bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 256, 1); 6246ac4fe8dSSimon Pilgrim } 625f6ff2cc7SSimon Pilgrim case X86::VMOVDQA32Zrm: 626f6ff2cc7SSimon Pilgrim case X86::VMOVDQA64Zrm: 627f6ff2cc7SSimon Pilgrim case X86::VMOVDQU32Zrm: 6286ac4fe8dSSimon Pilgrim case X86::VMOVDQU64Zrm: { 6296ac4fe8dSSimon Pilgrim FixupEntry Fixups[] = { 6306ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst}, 6316ac4fe8dSSimon Pilgrim {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst}, 6326ac4fe8dSSimon Pilgrim {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst}, 6336ac4fe8dSSimon Pilgrim {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst}, 634b5d35feaSSimon Pilgrim {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst}, 63569ffa7beSSimon Pilgrim {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst}, 636c59ac1a2SSimon Pilgrim {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst}, 637b5d35feaSSimon Pilgrim {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst}, 63869ffa7beSSimon Pilgrim {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst}, 639b5d35feaSSimon Pilgrim {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst}, 64069ffa7beSSimon Pilgrim {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst}, 641c59ac1a2SSimon Pilgrim {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst}, 642b5d35feaSSimon Pilgrim {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst}, 64369ffa7beSSimon Pilgrim {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst}, 644b5d35feaSSimon Pilgrim {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst}, 64569ffa7beSSimon Pilgrim {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst}, 64669ffa7beSSimon Pilgrim {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst}, 64769ffa7beSSimon Pilgrim {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}}; 648bef25ae2SSimon Pilgrim return FixupConstant(Fixups, 512, 1); 6496ac4fe8dSSimon Pilgrim } 650834cc88cSSimon Pilgrim } 651834cc88cSSimon Pilgrim 652*33f9d839SSimon Pilgrim auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) { 653*33f9d839SSimon Pilgrim if (OpSrc) { 654bafa51c8SShengchen Kan if (const X86FoldTableEntry *Mem2Bcst = 655*33f9d839SSimon Pilgrim llvm::lookupBroadcastFoldTableBySize(OpSrc, BW)) { 656*33f9d839SSimon Pilgrim unsigned OpBcst = Mem2Bcst->DstOp; 657*33f9d839SSimon Pilgrim unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK; 658*33f9d839SSimon Pilgrim FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}}; 659bef25ae2SSimon Pilgrim // TODO: Add support for RegBitWidth, but currently rebuildSplatCst 660bef25ae2SSimon Pilgrim // doesn't require it (defaults to Constant::getPrimitiveSizeInBits). 661*33f9d839SSimon Pilgrim return FixupConstant(Fixups, 0, OpNoBcst); 662*33f9d839SSimon Pilgrim } 6630b91de5eSSimon Pilgrim } 6641552b911SSimon Pilgrim return false; 6651552b911SSimon Pilgrim }; 6661552b911SSimon Pilgrim 6671552b911SSimon Pilgrim // Attempt to find a AVX512 mapping from a full width memory-fold instruction 6681552b911SSimon Pilgrim // to a broadcast-fold instruction variant. 6691552b911SSimon Pilgrim if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) 670*33f9d839SSimon Pilgrim return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64); 6711552b911SSimon Pilgrim 6721552b911SSimon Pilgrim // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic 6731552b911SSimon Pilgrim // conversion to see if we can convert to a broadcasted (integer) logic op. 6741552b911SSimon Pilgrim if (HasVLX && !HasDQI) { 6751552b911SSimon Pilgrim unsigned OpSrc32 = 0, OpSrc64 = 0; 6761552b911SSimon Pilgrim switch (Opc) { 6771552b911SSimon Pilgrim case X86::VANDPDrm: 6781552b911SSimon Pilgrim case X86::VANDPSrm: 6791552b911SSimon Pilgrim case X86::VPANDrm: 6801552b911SSimon Pilgrim OpSrc32 = X86 ::VPANDDZ128rm; 6811552b911SSimon Pilgrim OpSrc64 = X86 ::VPANDQZ128rm; 6821552b911SSimon Pilgrim break; 6831552b911SSimon Pilgrim case X86::VANDPDYrm: 6841552b911SSimon Pilgrim case X86::VANDPSYrm: 6851552b911SSimon Pilgrim case X86::VPANDYrm: 6861552b911SSimon Pilgrim OpSrc32 = X86 ::VPANDDZ256rm; 6871552b911SSimon Pilgrim OpSrc64 = X86 ::VPANDQZ256rm; 6881552b911SSimon Pilgrim break; 6891552b911SSimon Pilgrim case X86::VANDNPDrm: 6901552b911SSimon Pilgrim case X86::VANDNPSrm: 6911552b911SSimon Pilgrim case X86::VPANDNrm: 6921552b911SSimon Pilgrim OpSrc32 = X86 ::VPANDNDZ128rm; 6931552b911SSimon Pilgrim OpSrc64 = X86 ::VPANDNQZ128rm; 6941552b911SSimon Pilgrim break; 6951552b911SSimon Pilgrim case X86::VANDNPDYrm: 6961552b911SSimon Pilgrim case X86::VANDNPSYrm: 6971552b911SSimon Pilgrim case X86::VPANDNYrm: 6981552b911SSimon Pilgrim OpSrc32 = X86 ::VPANDNDZ256rm; 6991552b911SSimon Pilgrim OpSrc64 = X86 ::VPANDNQZ256rm; 7001552b911SSimon Pilgrim break; 7011552b911SSimon Pilgrim case X86::VORPDrm: 7021552b911SSimon Pilgrim case X86::VORPSrm: 7031552b911SSimon Pilgrim case X86::VPORrm: 7041552b911SSimon Pilgrim OpSrc32 = X86 ::VPORDZ128rm; 7051552b911SSimon Pilgrim OpSrc64 = X86 ::VPORQZ128rm; 7061552b911SSimon Pilgrim break; 7071552b911SSimon Pilgrim case X86::VORPDYrm: 7081552b911SSimon Pilgrim case X86::VORPSYrm: 7091552b911SSimon Pilgrim case X86::VPORYrm: 7101552b911SSimon Pilgrim OpSrc32 = X86 ::VPORDZ256rm; 7111552b911SSimon Pilgrim OpSrc64 = X86 ::VPORQZ256rm; 7121552b911SSimon Pilgrim break; 7131552b911SSimon Pilgrim case X86::VXORPDrm: 7141552b911SSimon Pilgrim case X86::VXORPSrm: 7151552b911SSimon Pilgrim case X86::VPXORrm: 7161552b911SSimon Pilgrim OpSrc32 = X86 ::VPXORDZ128rm; 7171552b911SSimon Pilgrim OpSrc64 = X86 ::VPXORQZ128rm; 7181552b911SSimon Pilgrim break; 7191552b911SSimon Pilgrim case X86::VXORPDYrm: 7201552b911SSimon Pilgrim case X86::VXORPSYrm: 7211552b911SSimon Pilgrim case X86::VPXORYrm: 7221552b911SSimon Pilgrim OpSrc32 = X86 ::VPXORDZ256rm; 7231552b911SSimon Pilgrim OpSrc64 = X86 ::VPXORQZ256rm; 7241552b911SSimon Pilgrim break; 7251552b911SSimon Pilgrim } 7261552b911SSimon Pilgrim if (OpSrc32 || OpSrc64) 727*33f9d839SSimon Pilgrim return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64); 7280b91de5eSSimon Pilgrim } 7290b91de5eSSimon Pilgrim 7300b91de5eSSimon Pilgrim return false; 7310b91de5eSSimon Pilgrim } 7320b91de5eSSimon Pilgrim 7330b91de5eSSimon Pilgrim bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) { 7340b91de5eSSimon Pilgrim LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";); 7350b91de5eSSimon Pilgrim bool Changed = false; 7360b91de5eSSimon Pilgrim ST = &MF.getSubtarget<X86Subtarget>(); 7370b91de5eSSimon Pilgrim TII = ST->getInstrInfo(); 7380b91de5eSSimon Pilgrim SM = &ST->getSchedModel(); 7390b91de5eSSimon Pilgrim 7400b91de5eSSimon Pilgrim for (MachineBasicBlock &MBB : MF) { 7410b91de5eSSimon Pilgrim for (MachineInstr &MI : MBB) { 7420b91de5eSSimon Pilgrim if (processInstruction(MF, MBB, MI)) { 7430b91de5eSSimon Pilgrim ++NumInstChanges; 7440b91de5eSSimon Pilgrim Changed = true; 7450b91de5eSSimon Pilgrim } 7460b91de5eSSimon Pilgrim } 7470b91de5eSSimon Pilgrim } 7480b91de5eSSimon Pilgrim LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";); 7490b91de5eSSimon Pilgrim return Changed; 7500b91de5eSSimon Pilgrim } 751