xref: /llvm-project/llvm/lib/Target/X86/X86FixupInstTuning.cpp (revision c3f01f13b10d708b9b7ff45a6ccc2f0c3462b3af)
1 //===-- X86FixupInstTunings.cpp - replace instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file does a tuning pass replacing slower machine instructions
10 // with faster ones. We do this here, as opposed to during normal ISel, as
11 // attempting to get the "right" instruction can break patterns. This pass
12 // is not meant search for special cases where an instruction can be transformed
13 // to another, it is only meant to do transformations where the old instruction
14 // is always replacable with the new instructions. For example:
15 //
16 //      `vpermq ymm` -> `vshufd ymm`
17 //          -- BAD, not always valid (lane cross/non-repeated mask)
18 //
19 //      `vpermilps ymm` -> `vshufd ymm`
20 //          -- GOOD, always replaceable
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "X86.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "x86-fixup-inst-tuning"
35 
36 STATISTIC(NumInstChanges, "Number of instructions changes");
37 
38 namespace {
39 class X86FixupInstTuningPass : public MachineFunctionPass {
40 public:
41   static char ID;
42 
43   X86FixupInstTuningPass() : MachineFunctionPass(ID) {}
44 
45   StringRef getPassName() const override { return "X86 Fixup Inst Tuning"; }
46 
47   bool runOnMachineFunction(MachineFunction &MF) override;
48   bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
49                           MachineBasicBlock::iterator &I);
50 
51   // This pass runs after regalloc and doesn't support VReg operands.
52   MachineFunctionProperties getRequiredProperties() const override {
53     return MachineFunctionProperties().set(
54         MachineFunctionProperties::Property::NoVRegs);
55   }
56 
57 private:
58   const X86InstrInfo *TII = nullptr;
59   const X86Subtarget *ST = nullptr;
60   const MCSchedModel *SM = nullptr;
61 };
62 } // end anonymous namespace
63 
64 char X86FixupInstTuningPass::ID = 0;
65 
66 INITIALIZE_PASS(X86FixupInstTuningPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
67 
68 FunctionPass *llvm::createX86FixupInstTuning() {
69   return new X86FixupInstTuningPass();
70 }
71 
72 template <typename T>
73 static std::optional<bool> CmpOptionals(T NewVal, T CurVal) {
74   if (NewVal.has_value() && CurVal.has_value() && *NewVal != *CurVal)
75     return *NewVal < *CurVal;
76 
77   return std::nullopt;
78 }
79 
80 bool X86FixupInstTuningPass::processInstruction(
81     MachineFunction &MF, MachineBasicBlock &MBB,
82     MachineBasicBlock::iterator &I) {
83   MachineInstr &MI = *I;
84   unsigned Opc = MI.getOpcode();
85   unsigned NumOperands = MI.getDesc().getNumOperands();
86 
87   auto GetInstTput = [&](unsigned Opcode) -> std::optional<double> {
88     // We already checked that SchedModel exists in `NewOpcPreferable`.
89     return MCSchedModel::getReciprocalThroughput(
90         *ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
91   };
92 
93   auto GetInstLat = [&](unsigned Opcode) -> std::optional<double> {
94     // We already checked that SchedModel exists in `NewOpcPreferable`.
95     return MCSchedModel::computeInstrLatency(
96         *ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
97   };
98 
99   auto GetInstSize = [&](unsigned Opcode) -> std::optional<unsigned> {
100     if (unsigned Size = TII->get(Opcode).getSize())
101       return Size;
102     // Zero size means we where unable to compute it.
103     return std::nullopt;
104   };
105 
106   auto NewOpcPreferable = [&](unsigned NewOpc,
107                               bool ReplaceInTie = true) -> bool {
108     std::optional<bool> Res;
109     if (SM->hasInstrSchedModel()) {
110       // Compare tput -> lat -> code size.
111       Res = CmpOptionals(GetInstTput(NewOpc), GetInstTput(Opc));
112       if (Res.has_value())
113         return *Res;
114 
115       Res = CmpOptionals(GetInstLat(NewOpc), GetInstLat(Opc));
116       if (Res.has_value())
117         return *Res;
118     }
119 
120     Res = CmpOptionals(GetInstSize(Opc), GetInstSize(NewOpc));
121     if (Res.has_value())
122       return *Res;
123 
124     // We either have either were unable to get tput/lat/codesize or all values
125     // were equal. Return specified option for a tie.
126     return ReplaceInTie;
127   };
128 
129   // `vpermilps r, i` -> `vshufps r, r, i`
130   // `vpermilps r, i, k` -> `vshufps r, r, i, k`
131   // `vshufps` is always as fast or faster than `vpermilps` and takes
132   // 1 less byte of code size for VEX and SSE encoding.
133   auto ProcessVPERMILPSri = [&](unsigned NewOpc) -> bool {
134     if (!NewOpcPreferable(NewOpc))
135       return false;
136     unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
137     MI.removeOperand(NumOperands - 1);
138     MI.addOperand(MI.getOperand(NumOperands - 2));
139     MI.setDesc(TII->get(NewOpc));
140     MI.addOperand(MachineOperand::CreateImm(MaskImm));
141     return true;
142   };
143 
144   // `vpermilps m, i` -> `vpshufd m, i` iff no domain delay penalty on shuffles.
145   // `vpshufd` is always as fast or faster than `vpermilps` and takes 1 less
146   // byte of code size.
147   auto ProcessVPERMILPSmi = [&](unsigned NewOpc) -> bool {
148     // TODO: Might be work adding bypass delay if -Os/-Oz is enabled as
149     // `vpshufd` saves a byte of code size.
150     if (!ST->hasNoDomainDelayShuffle() ||
151         !NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
152       return false;
153     MI.setDesc(TII->get(NewOpc));
154     return true;
155   };
156 
157   // `vunpcklpd/vmovlhps r, r` -> `vunpcklqdq r, r`/`vshufpd r, r, 0x00`
158   // `vunpckhpd/vmovlhps r, r` -> `vunpckhqdq r, r`/`vshufpd r, r, 0xff`
159   // `vunpcklpd r, r, k` -> `vunpcklqdq r, r, k`/`vshufpd r, r, k, 0x00`
160   // `vunpckhpd r, r, k` -> `vunpckhqdq r, r, k`/`vshufpd r, r, k, 0xff`
161   // `vunpcklpd r, m` -> `vunpcklqdq r, m, k`
162   // `vunpckhpd r, m` -> `vunpckhqdq r, m, k`
163   // `vunpcklpd r, m, k` -> `vunpcklqdq r, m, k`
164   // `vunpckhpd r, m, k` -> `vunpckhqdq r, m, k`
165   // 1) If no bypass delay and `vunpck{l|h}qdq` faster than `vunpck{l|h}pd`
166   //        -> `vunpck{l|h}qdq`
167   // 2) If `vshufpd` faster than `vunpck{l|h}pd`
168   //        -> `vshufpd`
169   auto ProcessUNPCKPD = [&](unsigned NewOpc, unsigned MaskImm) -> bool {
170     if (!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
171       return false;
172 
173     MI.setDesc(TII->get(NewOpc));
174     MI.addOperand(MachineOperand::CreateImm(MaskImm));
175     return true;
176   };
177 
178   auto ProcessUNPCKPDToIntDomain = [&](unsigned NewOpc) -> bool {
179     // TODO it may be worth it to set ReplaceInTie to `true` as there is no real
180     // downside to the integer unpck, but if someone doesn't specify exact
181     // target we won't find it faster.
182     if (!ST->hasNoDomainDelayShuffle() ||
183         !NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
184       return false;
185     MI.setDesc(TII->get(NewOpc));
186     return true;
187   };
188 
189   auto ProcessUNPCKLPDrr = [&](unsigned NewOpcIntDomain,
190                                unsigned NewOpc) -> bool {
191     if (ProcessUNPCKPDToIntDomain(NewOpcIntDomain))
192       return true;
193     return ProcessUNPCKPD(NewOpc, 0x00);
194   };
195   auto ProcessUNPCKHPDrr = [&](unsigned NewOpcIntDomain,
196                                unsigned NewOpc) -> bool {
197     if (ProcessUNPCKPDToIntDomain(NewOpcIntDomain))
198       return true;
199     return ProcessUNPCKPD(NewOpc, 0xff);
200   };
201 
202   auto ProcessUNPCKPDrm = [&](unsigned NewOpcIntDomain) -> bool {
203     return ProcessUNPCKPDToIntDomain(NewOpcIntDomain);
204   };
205 
206   switch (Opc) {
207   case X86::VPERMILPSri:
208     return ProcessVPERMILPSri(X86::VSHUFPSrri);
209   case X86::VPERMILPSYri:
210     return ProcessVPERMILPSri(X86::VSHUFPSYrri);
211   case X86::VPERMILPSZ128ri:
212     return ProcessVPERMILPSri(X86::VSHUFPSZ128rri);
213   case X86::VPERMILPSZ256ri:
214     return ProcessVPERMILPSri(X86::VSHUFPSZ256rri);
215   case X86::VPERMILPSZri:
216     return ProcessVPERMILPSri(X86::VSHUFPSZrri);
217   case X86::VPERMILPSZ128rikz:
218     return ProcessVPERMILPSri(X86::VSHUFPSZ128rrikz);
219   case X86::VPERMILPSZ256rikz:
220     return ProcessVPERMILPSri(X86::VSHUFPSZ256rrikz);
221   case X86::VPERMILPSZrikz:
222     return ProcessVPERMILPSri(X86::VSHUFPSZrrikz);
223   case X86::VPERMILPSZ128rik:
224     return ProcessVPERMILPSri(X86::VSHUFPSZ128rrik);
225   case X86::VPERMILPSZ256rik:
226     return ProcessVPERMILPSri(X86::VSHUFPSZ256rrik);
227   case X86::VPERMILPSZrik:
228     return ProcessVPERMILPSri(X86::VSHUFPSZrrik);
229   case X86::VPERMILPSmi:
230     return ProcessVPERMILPSmi(X86::VPSHUFDmi);
231   case X86::VPERMILPSYmi:
232     // TODO: See if there is a more generic way we can test if the replacement
233     // instruction is supported.
234     return ST->hasAVX2() ? ProcessVPERMILPSmi(X86::VPSHUFDYmi) : false;
235   case X86::VPERMILPSZ128mi:
236     return ProcessVPERMILPSmi(X86::VPSHUFDZ128mi);
237   case X86::VPERMILPSZ256mi:
238     return ProcessVPERMILPSmi(X86::VPSHUFDZ256mi);
239   case X86::VPERMILPSZmi:
240     return ProcessVPERMILPSmi(X86::VPSHUFDZmi);
241   case X86::VPERMILPSZ128mikz:
242     return ProcessVPERMILPSmi(X86::VPSHUFDZ128mikz);
243   case X86::VPERMILPSZ256mikz:
244     return ProcessVPERMILPSmi(X86::VPSHUFDZ256mikz);
245   case X86::VPERMILPSZmikz:
246     return ProcessVPERMILPSmi(X86::VPSHUFDZmikz);
247   case X86::VPERMILPSZ128mik:
248     return ProcessVPERMILPSmi(X86::VPSHUFDZ128mik);
249   case X86::VPERMILPSZ256mik:
250     return ProcessVPERMILPSmi(X86::VPSHUFDZ256mik);
251   case X86::VPERMILPSZmik:
252     return ProcessVPERMILPSmi(X86::VPSHUFDZmik);
253 
254   case X86::MOVLHPSrr:
255   case X86::UNPCKLPDrr:
256     return ProcessUNPCKLPDrr(X86::PUNPCKLQDQrr, X86::SHUFPDrri);
257   case X86::VMOVLHPSrr:
258   case X86::VUNPCKLPDrr:
259     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQrr, X86::VSHUFPDrri);
260   case X86::VUNPCKLPDYrr:
261     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQYrr, X86::VSHUFPDYrri);
262     // VMOVLHPS is always 128 bits.
263   case X86::VMOVLHPSZrr:
264   case X86::VUNPCKLPDZ128rr:
265     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rr, X86::VSHUFPDZ128rri);
266   case X86::VUNPCKLPDZ256rr:
267     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rr, X86::VSHUFPDZ256rri);
268   case X86::VUNPCKLPDZrr:
269     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrr, X86::VSHUFPDZrri);
270   case X86::VUNPCKLPDZ128rrk:
271     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrk, X86::VSHUFPDZ128rrik);
272   case X86::VUNPCKLPDZ256rrk:
273     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrk, X86::VSHUFPDZ256rrik);
274   case X86::VUNPCKLPDZrrk:
275     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrk, X86::VSHUFPDZrrik);
276   case X86::VUNPCKLPDZ128rrkz:
277     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
278   case X86::VUNPCKLPDZ256rrkz:
279     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
280   case X86::VUNPCKLPDZrrkz:
281     return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrkz, X86::VSHUFPDZrrikz);
282   case X86::UNPCKHPDrr:
283     return ProcessUNPCKHPDrr(X86::PUNPCKHQDQrr, X86::SHUFPDrri);
284   case X86::VUNPCKHPDrr:
285     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQrr, X86::VSHUFPDrri);
286   case X86::VUNPCKHPDYrr:
287     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQYrr, X86::VSHUFPDYrri);
288   case X86::VUNPCKHPDZ128rr:
289     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rr, X86::VSHUFPDZ128rri);
290   case X86::VUNPCKHPDZ256rr:
291     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rr, X86::VSHUFPDZ256rri);
292   case X86::VUNPCKHPDZrr:
293     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrr, X86::VSHUFPDZrri);
294   case X86::VUNPCKHPDZ128rrk:
295     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrk, X86::VSHUFPDZ128rrik);
296   case X86::VUNPCKHPDZ256rrk:
297     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrk, X86::VSHUFPDZ256rrik);
298   case X86::VUNPCKHPDZrrk:
299     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrk, X86::VSHUFPDZrrik);
300   case X86::VUNPCKHPDZ128rrkz:
301     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
302   case X86::VUNPCKHPDZ256rrkz:
303     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
304   case X86::VUNPCKHPDZrrkz:
305     return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrkz, X86::VSHUFPDZrrikz);
306   case X86::UNPCKLPDrm:
307     return ProcessUNPCKPDrm(X86::PUNPCKLQDQrm);
308   case X86::VUNPCKLPDrm:
309     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQrm);
310   case X86::VUNPCKLPDYrm:
311     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQYrm);
312   case X86::VUNPCKLPDZ128rm:
313     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rm);
314   case X86::VUNPCKLPDZ256rm:
315     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rm);
316   case X86::VUNPCKLPDZrm:
317     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrm);
318   case X86::VUNPCKLPDZ128rmk:
319     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmk);
320   case X86::VUNPCKLPDZ256rmk:
321     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmk);
322   case X86::VUNPCKLPDZrmk:
323     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmk);
324   case X86::VUNPCKLPDZ128rmkz:
325     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmkz);
326   case X86::VUNPCKLPDZ256rmkz:
327     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmkz);
328   case X86::VUNPCKLPDZrmkz:
329     return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmkz);
330   case X86::UNPCKHPDrm:
331     return ProcessUNPCKPDrm(X86::PUNPCKHQDQrm);
332   case X86::VUNPCKHPDrm:
333     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQrm);
334   case X86::VUNPCKHPDYrm:
335     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQYrm);
336   case X86::VUNPCKHPDZ128rm:
337     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rm);
338   case X86::VUNPCKHPDZ256rm:
339     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rm);
340   case X86::VUNPCKHPDZrm:
341     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrm);
342   case X86::VUNPCKHPDZ128rmk:
343     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmk);
344   case X86::VUNPCKHPDZ256rmk:
345     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmk);
346   case X86::VUNPCKHPDZrmk:
347     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmk);
348   case X86::VUNPCKHPDZ128rmkz:
349     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmkz);
350   case X86::VUNPCKHPDZ256rmkz:
351     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmkz);
352   case X86::VUNPCKHPDZrmkz:
353     return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmkz);
354   default:
355     return false;
356   }
357 }
358 
359 bool X86FixupInstTuningPass::runOnMachineFunction(MachineFunction &MF) {
360   LLVM_DEBUG(dbgs() << "Start X86FixupInstTuning\n";);
361   bool Changed = false;
362   ST = &MF.getSubtarget<X86Subtarget>();
363   TII = ST->getInstrInfo();
364   SM = &ST->getSchedModel();
365 
366   for (MachineBasicBlock &MBB : MF) {
367     for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
368       if (processInstruction(MF, MBB, I)) {
369         ++NumInstChanges;
370         Changed = true;
371       }
372     }
373   }
374   LLVM_DEBUG(dbgs() << "End X86FixupInstTuning\n";);
375   return Changed;
376 }
377