1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "TargetInfo/X86TargetInfo.h" 79 #include "X86DisassemblerDecoder.h" 80 #include "llvm/MC/MCContext.h" 81 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 82 #include "llvm/MC/MCExpr.h" 83 #include "llvm/MC/MCInst.h" 84 #include "llvm/MC/MCInstrInfo.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/MC/TargetRegistry.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/raw_ostream.h" 90 91 using namespace llvm; 92 using namespace llvm::X86Disassembler; 93 94 #define DEBUG_TYPE "x86-disassembler" 95 96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); 97 98 // Specifies whether a ModR/M byte is needed and (if so) which 99 // instruction each possible value of the ModR/M byte corresponds to. Once 100 // this information is known, we have narrowed down to a single instruction. 101 struct ModRMDecision { 102 uint8_t modrm_type; 103 uint16_t instructionIDs; 104 }; 105 106 // Specifies which set of ModR/M->instruction tables to look at 107 // given a particular opcode. 108 struct OpcodeDecision { 109 ModRMDecision modRMDecisions[256]; 110 }; 111 112 // Specifies which opcode->instruction tables to look at given 113 // a particular context (set of attributes). Since there are many possible 114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context 115 // applies given a specific set of attributes. Hence there are only IC_max 116 // entries in this table, rather than 2^(ATTR_max). 117 struct ContextDecision { 118 OpcodeDecision opcodeDecisions[IC_max]; 119 }; 120 121 #include "X86GenDisassemblerTables.inc" 122 123 static InstrUID decode(OpcodeType type, InstructionContext insnContext, 124 uint8_t opcode, uint8_t modRM) { 125 const struct ModRMDecision *dec; 126 127 switch (type) { 128 case ONEBYTE: 129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 130 break; 131 case TWOBYTE: 132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 133 break; 134 case THREEBYTE_38: 135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 136 break; 137 case THREEBYTE_3A: 138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 139 break; 140 case XOP8_MAP: 141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 142 break; 143 case XOP9_MAP: 144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 145 break; 146 case XOPA_MAP: 147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 148 break; 149 case THREEDNOW_MAP: 150 dec = 151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 152 break; 153 case MAP4: 154 dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 155 break; 156 case MAP5: 157 dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 158 break; 159 case MAP6: 160 dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 161 break; 162 case MAP7: 163 dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 164 break; 165 } 166 167 switch (dec->modrm_type) { 168 default: 169 llvm_unreachable("Corrupt table! Unknown modrm_type"); 170 return 0; 171 case MODRM_ONEENTRY: 172 return modRMTable[dec->instructionIDs]; 173 case MODRM_SPLITRM: 174 if (modFromModRM(modRM) == 0x3) 175 return modRMTable[dec->instructionIDs + 1]; 176 return modRMTable[dec->instructionIDs]; 177 case MODRM_SPLITREG: 178 if (modFromModRM(modRM) == 0x3) 179 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; 180 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 181 case MODRM_SPLITMISC: 182 if (modFromModRM(modRM) == 0x3) 183 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; 184 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 185 case MODRM_FULL: 186 return modRMTable[dec->instructionIDs + modRM]; 187 } 188 } 189 190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) { 191 uint64_t offset = insn->readerCursor - insn->startLocation; 192 if (offset >= insn->bytes.size()) 193 return true; 194 byte = insn->bytes[offset]; 195 return false; 196 } 197 198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { 199 auto r = insn->bytes; 200 uint64_t offset = insn->readerCursor - insn->startLocation; 201 if (offset + sizeof(T) > r.size()) 202 return true; 203 ptr = support::endian::read<T>(&r[offset], llvm::endianness::little); 204 insn->readerCursor += sizeof(T); 205 return false; 206 } 207 208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { 209 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; 210 } 211 212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) { 213 return insn->mode == MODE_64BIT && prefix == 0xd5; 214 } 215 216 // Consumes all of an instruction's prefix bytes, and marks the 217 // instruction as having them. Also sets the instruction's default operand, 218 // address, and other relevant data sizes to report operands correctly. 219 // 220 // insn must not be empty. 221 static int readPrefixes(struct InternalInstruction *insn) { 222 bool isPrefix = true; 223 uint8_t byte = 0; 224 uint8_t nextByte; 225 226 LLVM_DEBUG(dbgs() << "readPrefixes()"); 227 228 while (isPrefix) { 229 // If we fail reading prefixes, just stop here and let the opcode reader 230 // deal with it. 231 if (consume(insn, byte)) 232 break; 233 234 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then 235 // break and let it be disassembled as a normal "instruction". 236 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK 237 break; 238 239 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { 240 // If the byte is 0xf2 or 0xf3, and any of the following conditions are 241 // met: 242 // - it is followed by a LOCK (0xf0) prefix 243 // - it is followed by an xchg instruction 244 // then it should be disassembled as a xacquire/xrelease not repne/rep. 245 if (((nextByte == 0xf0) || 246 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { 247 insn->xAcquireRelease = true; 248 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support 249 break; 250 } 251 // Also if the byte is 0xf3, and the following condition is met: 252 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or 253 // "mov mem, imm" (opcode 0xc6/0xc7) instructions. 254 // then it should be disassembled as an xrelease not rep. 255 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || 256 nextByte == 0xc6 || nextByte == 0xc7)) { 257 insn->xAcquireRelease = true; 258 break; 259 } 260 if (isREX(insn, nextByte)) { 261 uint8_t nnextByte; 262 // Go to REX prefix after the current one 263 if (consume(insn, nnextByte)) 264 return -1; 265 // We should be able to read next byte after REX prefix 266 if (peek(insn, nnextByte)) 267 return -1; 268 --insn->readerCursor; 269 } 270 } 271 272 switch (byte) { 273 case 0xf0: // LOCK 274 insn->hasLockPrefix = true; 275 break; 276 case 0xf2: // REPNE/REPNZ 277 case 0xf3: { // REP or REPE/REPZ 278 uint8_t nextByte; 279 if (peek(insn, nextByte)) 280 break; 281 // TODO: 282 // 1. There could be several 0x66 283 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then 284 // it's not mandatory prefix 285 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need 286 // 0x0f exactly after it to be mandatory prefix 287 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) 288 // The last of 0xf2 /0xf3 is mandatory prefix 289 insn->mandatoryPrefix = byte; 290 insn->repeatPrefix = byte; 291 break; 292 } 293 case 0x2e: // CS segment override -OR- Branch not taken 294 insn->segmentOverride = SEG_OVERRIDE_CS; 295 break; 296 case 0x36: // SS segment override -OR- Branch taken 297 insn->segmentOverride = SEG_OVERRIDE_SS; 298 break; 299 case 0x3e: // DS segment override 300 insn->segmentOverride = SEG_OVERRIDE_DS; 301 break; 302 case 0x26: // ES segment override 303 insn->segmentOverride = SEG_OVERRIDE_ES; 304 break; 305 case 0x64: // FS segment override 306 insn->segmentOverride = SEG_OVERRIDE_FS; 307 break; 308 case 0x65: // GS segment override 309 insn->segmentOverride = SEG_OVERRIDE_GS; 310 break; 311 case 0x66: { // Operand-size override { 312 uint8_t nextByte; 313 insn->hasOpSize = true; 314 if (peek(insn, nextByte)) 315 break; 316 // 0x66 can't overwrite existing mandatory prefix and should be ignored 317 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) 318 insn->mandatoryPrefix = byte; 319 break; 320 } 321 case 0x67: // Address-size override 322 insn->hasAdSize = true; 323 break; 324 default: // Not a prefix byte 325 isPrefix = false; 326 break; 327 } 328 329 if (isPrefix) 330 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); 331 } 332 333 insn->vectorExtensionType = TYPE_NO_VEX_XOP; 334 335 if (byte == 0x62) { 336 uint8_t byte1, byte2; 337 if (consume(insn, byte1)) { 338 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); 339 return -1; 340 } 341 342 if (peek(insn, byte2)) { 343 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 344 return -1; 345 } 346 347 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) { 348 insn->vectorExtensionType = TYPE_EVEX; 349 } else { 350 --insn->readerCursor; // unconsume byte1 351 --insn->readerCursor; // unconsume byte 352 } 353 354 if (insn->vectorExtensionType == TYPE_EVEX) { 355 insn->vectorExtensionPrefix[0] = byte; 356 insn->vectorExtensionPrefix[1] = byte1; 357 if (consume(insn, insn->vectorExtensionPrefix[2])) { 358 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 359 return -1; 360 } 361 if (consume(insn, insn->vectorExtensionPrefix[3])) { 362 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); 363 return -1; 364 } 365 366 if (insn->mode == MODE_64BIT) { 367 // We simulate the REX prefix for simplicity's sake 368 insn->rexPrefix = 0x40 | 369 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | 370 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | 371 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | 372 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); 373 374 // We simulate the REX2 prefix for simplicity's sake 375 insn->rex2ExtensionPrefix[1] = 376 (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) | 377 (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) | 378 (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4); 379 } 380 381 LLVM_DEBUG( 382 dbgs() << format( 383 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", 384 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], 385 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); 386 } 387 } else if (byte == 0xc4) { 388 uint8_t byte1; 389 if (peek(insn, byte1)) { 390 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 391 return -1; 392 } 393 394 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 395 insn->vectorExtensionType = TYPE_VEX_3B; 396 else 397 --insn->readerCursor; 398 399 if (insn->vectorExtensionType == TYPE_VEX_3B) { 400 insn->vectorExtensionPrefix[0] = byte; 401 consume(insn, insn->vectorExtensionPrefix[1]); 402 consume(insn, insn->vectorExtensionPrefix[2]); 403 404 // We simulate the REX prefix for simplicity's sake 405 406 if (insn->mode == MODE_64BIT) 407 insn->rexPrefix = 0x40 | 408 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | 409 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | 410 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | 411 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); 412 413 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", 414 insn->vectorExtensionPrefix[0], 415 insn->vectorExtensionPrefix[1], 416 insn->vectorExtensionPrefix[2])); 417 } 418 } else if (byte == 0xc5) { 419 uint8_t byte1; 420 if (peek(insn, byte1)) { 421 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 422 return -1; 423 } 424 425 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 426 insn->vectorExtensionType = TYPE_VEX_2B; 427 else 428 --insn->readerCursor; 429 430 if (insn->vectorExtensionType == TYPE_VEX_2B) { 431 insn->vectorExtensionPrefix[0] = byte; 432 consume(insn, insn->vectorExtensionPrefix[1]); 433 434 if (insn->mode == MODE_64BIT) 435 insn->rexPrefix = 436 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); 437 438 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 439 default: 440 break; 441 case VEX_PREFIX_66: 442 insn->hasOpSize = true; 443 break; 444 } 445 446 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", 447 insn->vectorExtensionPrefix[0], 448 insn->vectorExtensionPrefix[1])); 449 } 450 } else if (byte == 0x8f) { 451 uint8_t byte1; 452 if (peek(insn, byte1)) { 453 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); 454 return -1; 455 } 456 457 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. 458 insn->vectorExtensionType = TYPE_XOP; 459 else 460 --insn->readerCursor; 461 462 if (insn->vectorExtensionType == TYPE_XOP) { 463 insn->vectorExtensionPrefix[0] = byte; 464 consume(insn, insn->vectorExtensionPrefix[1]); 465 consume(insn, insn->vectorExtensionPrefix[2]); 466 467 // We simulate the REX prefix for simplicity's sake 468 469 if (insn->mode == MODE_64BIT) 470 insn->rexPrefix = 0x40 | 471 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | 472 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | 473 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | 474 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); 475 476 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 477 default: 478 break; 479 case VEX_PREFIX_66: 480 insn->hasOpSize = true; 481 break; 482 } 483 484 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", 485 insn->vectorExtensionPrefix[0], 486 insn->vectorExtensionPrefix[1], 487 insn->vectorExtensionPrefix[2])); 488 } 489 } else if (isREX2(insn, byte)) { 490 uint8_t byte1; 491 if (peek(insn, byte1)) { 492 LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2"); 493 return -1; 494 } 495 insn->rex2ExtensionPrefix[0] = byte; 496 consume(insn, insn->rex2ExtensionPrefix[1]); 497 498 // We simulate the REX prefix for simplicity's sake 499 insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) | 500 (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) | 501 (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) | 502 (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0); 503 LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx", 504 insn->rex2ExtensionPrefix[0], 505 insn->rex2ExtensionPrefix[1])); 506 } else if (isREX(insn, byte)) { 507 if (peek(insn, nextByte)) 508 return -1; 509 insn->rexPrefix = byte; 510 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); 511 } else 512 --insn->readerCursor; 513 514 if (insn->mode == MODE_16BIT) { 515 insn->registerSize = (insn->hasOpSize ? 4 : 2); 516 insn->addressSize = (insn->hasAdSize ? 4 : 2); 517 insn->displacementSize = (insn->hasAdSize ? 4 : 2); 518 insn->immediateSize = (insn->hasOpSize ? 4 : 2); 519 } else if (insn->mode == MODE_32BIT) { 520 insn->registerSize = (insn->hasOpSize ? 2 : 4); 521 insn->addressSize = (insn->hasAdSize ? 2 : 4); 522 insn->displacementSize = (insn->hasAdSize ? 2 : 4); 523 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 524 } else if (insn->mode == MODE_64BIT) { 525 insn->displacementSize = 4; 526 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { 527 insn->registerSize = 8; 528 insn->addressSize = (insn->hasAdSize ? 4 : 8); 529 insn->immediateSize = 4; 530 insn->hasOpSize = false; 531 } else { 532 insn->registerSize = (insn->hasOpSize ? 2 : 4); 533 insn->addressSize = (insn->hasAdSize ? 4 : 8); 534 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 535 } 536 } 537 538 return 0; 539 } 540 541 // Consumes the SIB byte to determine addressing information. 542 static int readSIB(struct InternalInstruction *insn) { 543 SIBBase sibBaseBase = SIB_BASE_NONE; 544 uint8_t index, base; 545 546 LLVM_DEBUG(dbgs() << "readSIB()"); 547 switch (insn->addressSize) { 548 case 2: 549 default: 550 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); 551 case 4: 552 insn->sibIndexBase = SIB_INDEX_EAX; 553 sibBaseBase = SIB_BASE_EAX; 554 break; 555 case 8: 556 insn->sibIndexBase = SIB_INDEX_RAX; 557 sibBaseBase = SIB_BASE_RAX; 558 break; 559 } 560 561 if (consume(insn, insn->sib)) 562 return -1; 563 564 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) | 565 (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 566 567 if (index == 0x4) { 568 insn->sibIndex = SIB_INDEX_NONE; 569 } else { 570 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); 571 } 572 573 insn->sibScale = 1 << scaleFromSIB(insn->sib); 574 575 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) | 576 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 577 578 switch (base) { 579 case 0x5: 580 case 0xd: 581 switch (modFromModRM(insn->modRM)) { 582 case 0x0: 583 insn->eaDisplacement = EA_DISP_32; 584 insn->sibBase = SIB_BASE_NONE; 585 break; 586 case 0x1: 587 insn->eaDisplacement = EA_DISP_8; 588 insn->sibBase = (SIBBase)(sibBaseBase + base); 589 break; 590 case 0x2: 591 insn->eaDisplacement = EA_DISP_32; 592 insn->sibBase = (SIBBase)(sibBaseBase + base); 593 break; 594 default: 595 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); 596 } 597 break; 598 default: 599 insn->sibBase = (SIBBase)(sibBaseBase + base); 600 break; 601 } 602 603 return 0; 604 } 605 606 static int readDisplacement(struct InternalInstruction *insn) { 607 int8_t d8; 608 int16_t d16; 609 int32_t d32; 610 LLVM_DEBUG(dbgs() << "readDisplacement()"); 611 612 insn->displacementOffset = insn->readerCursor - insn->startLocation; 613 switch (insn->eaDisplacement) { 614 case EA_DISP_NONE: 615 break; 616 case EA_DISP_8: 617 if (consume(insn, d8)) 618 return -1; 619 insn->displacement = d8; 620 break; 621 case EA_DISP_16: 622 if (consume(insn, d16)) 623 return -1; 624 insn->displacement = d16; 625 break; 626 case EA_DISP_32: 627 if (consume(insn, d32)) 628 return -1; 629 insn->displacement = d32; 630 break; 631 } 632 633 return 0; 634 } 635 636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. 637 static int readModRM(struct InternalInstruction *insn) { 638 uint8_t mod, rm, reg; 639 LLVM_DEBUG(dbgs() << "readModRM()"); 640 641 if (insn->consumedModRM) 642 return 0; 643 644 if (consume(insn, insn->modRM)) 645 return -1; 646 insn->consumedModRM = true; 647 648 mod = modFromModRM(insn->modRM); 649 rm = rmFromModRM(insn->modRM); 650 reg = regFromModRM(insn->modRM); 651 652 // This goes by insn->registerSize to pick the correct register, which messes 653 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in 654 // fixupReg(). 655 switch (insn->registerSize) { 656 case 2: 657 insn->regBase = MODRM_REG_AX; 658 insn->eaRegBase = EA_REG_AX; 659 break; 660 case 4: 661 insn->regBase = MODRM_REG_EAX; 662 insn->eaRegBase = EA_REG_EAX; 663 break; 664 case 8: 665 insn->regBase = MODRM_REG_RAX; 666 insn->eaRegBase = EA_REG_RAX; 667 break; 668 } 669 670 reg |= (rFromREX(insn->rexPrefix) << 3) | 671 (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 672 rm |= (bFromREX(insn->rexPrefix) << 3) | 673 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 674 675 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) 676 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 677 678 insn->reg = (Reg)(insn->regBase + reg); 679 680 switch (insn->addressSize) { 681 case 2: { 682 EABase eaBaseBase = EA_BASE_BX_SI; 683 684 switch (mod) { 685 case 0x0: 686 if (rm == 0x6) { 687 insn->eaBase = EA_BASE_NONE; 688 insn->eaDisplacement = EA_DISP_16; 689 if (readDisplacement(insn)) 690 return -1; 691 } else { 692 insn->eaBase = (EABase)(eaBaseBase + rm); 693 insn->eaDisplacement = EA_DISP_NONE; 694 } 695 break; 696 case 0x1: 697 insn->eaBase = (EABase)(eaBaseBase + rm); 698 insn->eaDisplacement = EA_DISP_8; 699 insn->displacementSize = 1; 700 if (readDisplacement(insn)) 701 return -1; 702 break; 703 case 0x2: 704 insn->eaBase = (EABase)(eaBaseBase + rm); 705 insn->eaDisplacement = EA_DISP_16; 706 if (readDisplacement(insn)) 707 return -1; 708 break; 709 case 0x3: 710 insn->eaBase = (EABase)(insn->eaRegBase + rm); 711 if (readDisplacement(insn)) 712 return -1; 713 break; 714 } 715 break; 716 } 717 case 4: 718 case 8: { 719 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); 720 721 switch (mod) { 722 case 0x0: 723 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this 724 // In determining whether RIP-relative mode is used (rm=5), 725 // or whether a SIB byte is present (rm=4), 726 // the extension bits (REX.b and EVEX.x) are ignored. 727 switch (rm & 7) { 728 case 0x4: // SIB byte is present 729 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); 730 if (readSIB(insn) || readDisplacement(insn)) 731 return -1; 732 break; 733 case 0x5: // RIP-relative 734 insn->eaBase = EA_BASE_NONE; 735 insn->eaDisplacement = EA_DISP_32; 736 if (readDisplacement(insn)) 737 return -1; 738 break; 739 default: 740 insn->eaBase = (EABase)(eaBaseBase + rm); 741 break; 742 } 743 break; 744 case 0x1: 745 insn->displacementSize = 1; 746 [[fallthrough]]; 747 case 0x2: 748 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); 749 switch (rm & 7) { 750 case 0x4: // SIB byte is present 751 insn->eaBase = EA_BASE_sib; 752 if (readSIB(insn) || readDisplacement(insn)) 753 return -1; 754 break; 755 default: 756 insn->eaBase = (EABase)(eaBaseBase + rm); 757 if (readDisplacement(insn)) 758 return -1; 759 break; 760 } 761 break; 762 case 0x3: 763 insn->eaDisplacement = EA_DISP_NONE; 764 insn->eaBase = (EABase)(insn->eaRegBase + rm); 765 break; 766 } 767 break; 768 } 769 } // switch (insn->addressSize) 770 771 return 0; 772 } 773 774 #define GENERIC_FIXUP_FUNC(name, base, prefix) \ 775 static uint16_t name(struct InternalInstruction *insn, OperandType type, \ 776 uint8_t index, uint8_t *valid) { \ 777 *valid = 1; \ 778 switch (type) { \ 779 default: \ 780 debug("Unhandled register type"); \ 781 *valid = 0; \ 782 return 0; \ 783 case TYPE_Rv: \ 784 return base + index; \ 785 case TYPE_R8: \ 786 if (insn->rexPrefix && index >= 4 && index <= 7) \ 787 return prefix##_SPL + (index - 4); \ 788 else \ 789 return prefix##_AL + index; \ 790 case TYPE_R16: \ 791 return prefix##_AX + index; \ 792 case TYPE_R32: \ 793 return prefix##_EAX + index; \ 794 case TYPE_R64: \ 795 return prefix##_RAX + index; \ 796 case TYPE_ZMM: \ 797 return prefix##_ZMM0 + index; \ 798 case TYPE_YMM: \ 799 return prefix##_YMM0 + index; \ 800 case TYPE_XMM: \ 801 return prefix##_XMM0 + index; \ 802 case TYPE_TMM: \ 803 if (index > 7) \ 804 *valid = 0; \ 805 return prefix##_TMM0 + index; \ 806 case TYPE_VK: \ 807 index &= 0xf; \ 808 if (index > 7) \ 809 *valid = 0; \ 810 return prefix##_K0 + index; \ 811 case TYPE_VK_PAIR: \ 812 if (index > 7) \ 813 *valid = 0; \ 814 return prefix##_K0_K1 + (index / 2); \ 815 case TYPE_MM64: \ 816 return prefix##_MM0 + (index & 0x7); \ 817 case TYPE_SEGMENTREG: \ 818 if ((index & 7) > 5) \ 819 *valid = 0; \ 820 return prefix##_ES + (index & 7); \ 821 case TYPE_DEBUGREG: \ 822 if (index > 15) \ 823 *valid = 0; \ 824 return prefix##_DR0 + index; \ 825 case TYPE_CONTROLREG: \ 826 if (index > 15) \ 827 *valid = 0; \ 828 return prefix##_CR0 + index; \ 829 case TYPE_MVSIBX: \ 830 return prefix##_XMM0 + index; \ 831 case TYPE_MVSIBY: \ 832 return prefix##_YMM0 + index; \ 833 case TYPE_MVSIBZ: \ 834 return prefix##_ZMM0 + index; \ 835 } \ 836 } 837 838 // Consult an operand type to determine the meaning of the reg or R/M field. If 839 // the operand is an XMM operand, for example, an operand would be XMM0 instead 840 // of AX, which readModRM() would otherwise misinterpret it as. 841 // 842 // @param insn - The instruction containing the operand. 843 // @param type - The operand type. 844 // @param index - The existing value of the field as reported by readModRM(). 845 // @param valid - The address of a uint8_t. The target is set to 1 if the 846 // field is valid for the register class; 0 if not. 847 // @return - The proper value. 848 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) 849 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) 850 851 // Consult an operand specifier to determine which of the fixup*Value functions 852 // to use in correcting readModRM()'ss interpretation. 853 // 854 // @param insn - See fixup*Value(). 855 // @param op - The operand specifier. 856 // @return - 0 if fixup was successful; -1 if the register returned was 857 // invalid for its class. 858 static int fixupReg(struct InternalInstruction *insn, 859 const struct OperandSpecifier *op) { 860 uint8_t valid; 861 LLVM_DEBUG(dbgs() << "fixupReg()"); 862 863 switch ((OperandEncoding)op->encoding) { 864 default: 865 debug("Expected a REG or R/M encoding in fixupReg"); 866 return -1; 867 case ENCODING_VVVV: 868 insn->vvvv = 869 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); 870 if (!valid) 871 return -1; 872 break; 873 case ENCODING_REG: 874 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, 875 insn->reg - insn->regBase, &valid); 876 if (!valid) 877 return -1; 878 break; 879 CASE_ENCODING_RM: 880 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 881 modFromModRM(insn->modRM) == 3) { 882 // EVEX_X can extend the register id to 32 for a non-GPR register that is 883 // encoded in RM. 884 // mode : MODE_64_BIT 885 // Only 8 vector registers are available in 32 bit mode 886 // mod : 3 887 // RM encodes a register 888 switch (op->type) { 889 case TYPE_Rv: 890 case TYPE_R8: 891 case TYPE_R16: 892 case TYPE_R32: 893 case TYPE_R64: 894 break; 895 default: 896 insn->eaBase = 897 (EABase)(insn->eaBase + 898 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4)); 899 break; 900 } 901 } 902 [[fallthrough]]; 903 case ENCODING_SIB: 904 if (insn->eaBase >= insn->eaRegBase) { 905 insn->eaBase = (EABase)fixupRMValue( 906 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); 907 if (!valid) 908 return -1; 909 } 910 break; 911 } 912 913 return 0; 914 } 915 916 // Read the opcode (except the ModR/M byte in the case of extended or escape 917 // opcodes). 918 static bool readOpcode(struct InternalInstruction *insn) { 919 uint8_t current; 920 LLVM_DEBUG(dbgs() << "readOpcode()"); 921 922 insn->opcodeType = ONEBYTE; 923 if (insn->vectorExtensionType == TYPE_EVEX) { 924 switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { 925 default: 926 LLVM_DEBUG( 927 dbgs() << format("Unhandled mmm field for instruction (0x%hhx)", 928 mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); 929 return true; 930 case VEX_LOB_0F: 931 insn->opcodeType = TWOBYTE; 932 return consume(insn, insn->opcode); 933 case VEX_LOB_0F38: 934 insn->opcodeType = THREEBYTE_38; 935 return consume(insn, insn->opcode); 936 case VEX_LOB_0F3A: 937 insn->opcodeType = THREEBYTE_3A; 938 return consume(insn, insn->opcode); 939 case VEX_LOB_MAP4: 940 insn->opcodeType = MAP4; 941 return consume(insn, insn->opcode); 942 case VEX_LOB_MAP5: 943 insn->opcodeType = MAP5; 944 return consume(insn, insn->opcode); 945 case VEX_LOB_MAP6: 946 insn->opcodeType = MAP6; 947 return consume(insn, insn->opcode); 948 case VEX_LOB_MAP7: 949 insn->opcodeType = MAP7; 950 return consume(insn, insn->opcode); 951 } 952 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 953 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { 954 default: 955 LLVM_DEBUG( 956 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 957 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 958 return true; 959 case VEX_LOB_0F: 960 insn->opcodeType = TWOBYTE; 961 return consume(insn, insn->opcode); 962 case VEX_LOB_0F38: 963 insn->opcodeType = THREEBYTE_38; 964 return consume(insn, insn->opcode); 965 case VEX_LOB_0F3A: 966 insn->opcodeType = THREEBYTE_3A; 967 return consume(insn, insn->opcode); 968 case VEX_LOB_MAP5: 969 insn->opcodeType = MAP5; 970 return consume(insn, insn->opcode); 971 case VEX_LOB_MAP6: 972 insn->opcodeType = MAP6; 973 return consume(insn, insn->opcode); 974 case VEX_LOB_MAP7: 975 insn->opcodeType = MAP7; 976 return consume(insn, insn->opcode); 977 } 978 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 979 insn->opcodeType = TWOBYTE; 980 return consume(insn, insn->opcode); 981 } else if (insn->vectorExtensionType == TYPE_XOP) { 982 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { 983 default: 984 LLVM_DEBUG( 985 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 986 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 987 return true; 988 case XOP_MAP_SELECT_8: 989 insn->opcodeType = XOP8_MAP; 990 return consume(insn, insn->opcode); 991 case XOP_MAP_SELECT_9: 992 insn->opcodeType = XOP9_MAP; 993 return consume(insn, insn->opcode); 994 case XOP_MAP_SELECT_A: 995 insn->opcodeType = XOPA_MAP; 996 return consume(insn, insn->opcode); 997 } 998 } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) { 999 // m bit indicates opcode map 1 1000 insn->opcodeType = TWOBYTE; 1001 return consume(insn, insn->opcode); 1002 } 1003 1004 if (consume(insn, current)) 1005 return true; 1006 1007 if (current == 0x0f) { 1008 LLVM_DEBUG( 1009 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); 1010 if (consume(insn, current)) 1011 return true; 1012 1013 if (current == 0x38) { 1014 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 1015 current)); 1016 if (consume(insn, current)) 1017 return true; 1018 1019 insn->opcodeType = THREEBYTE_38; 1020 } else if (current == 0x3a) { 1021 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 1022 current)); 1023 if (consume(insn, current)) 1024 return true; 1025 1026 insn->opcodeType = THREEBYTE_3A; 1027 } else if (current == 0x0f) { 1028 LLVM_DEBUG( 1029 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); 1030 1031 // Consume operands before the opcode to comply with the 3DNow encoding 1032 if (readModRM(insn)) 1033 return true; 1034 1035 if (consume(insn, current)) 1036 return true; 1037 1038 insn->opcodeType = THREEDNOW_MAP; 1039 } else { 1040 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); 1041 insn->opcodeType = TWOBYTE; 1042 } 1043 } else if (insn->mandatoryPrefix) 1044 // The opcode with mandatory prefix must start with opcode escape. 1045 // If not it's legacy repeat prefix 1046 insn->mandatoryPrefix = 0; 1047 1048 // At this point we have consumed the full opcode. 1049 // Anything we consume from here on must be unconsumed. 1050 insn->opcode = current; 1051 1052 return false; 1053 } 1054 1055 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). 1056 static bool is16BitEquivalent(const char *orig, const char *equiv) { 1057 for (int i = 0;; i++) { 1058 if (orig[i] == '\0' && equiv[i] == '\0') 1059 return true; 1060 if (orig[i] == '\0' || equiv[i] == '\0') 1061 return false; 1062 if (orig[i] != equiv[i]) { 1063 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') 1064 continue; 1065 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') 1066 continue; 1067 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') 1068 continue; 1069 return false; 1070 } 1071 } 1072 } 1073 1074 // Determine whether this instruction is a 64-bit instruction. 1075 static bool is64Bit(const char *name) { 1076 for (int i = 0;; ++i) { 1077 if (name[i] == '\0') 1078 return false; 1079 if (name[i] == '6' && name[i + 1] == '4') 1080 return true; 1081 } 1082 } 1083 1084 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1085 // for extended and escape opcodes, and using a supplied attribute mask. 1086 static int getInstructionIDWithAttrMask(uint16_t *instructionID, 1087 struct InternalInstruction *insn, 1088 uint16_t attrMask) { 1089 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); 1090 const ContextDecision *decision; 1091 switch (insn->opcodeType) { 1092 case ONEBYTE: 1093 decision = &ONEBYTE_SYM; 1094 break; 1095 case TWOBYTE: 1096 decision = &TWOBYTE_SYM; 1097 break; 1098 case THREEBYTE_38: 1099 decision = &THREEBYTE38_SYM; 1100 break; 1101 case THREEBYTE_3A: 1102 decision = &THREEBYTE3A_SYM; 1103 break; 1104 case XOP8_MAP: 1105 decision = &XOP8_MAP_SYM; 1106 break; 1107 case XOP9_MAP: 1108 decision = &XOP9_MAP_SYM; 1109 break; 1110 case XOPA_MAP: 1111 decision = &XOPA_MAP_SYM; 1112 break; 1113 case THREEDNOW_MAP: 1114 decision = &THREEDNOW_MAP_SYM; 1115 break; 1116 case MAP4: 1117 decision = &MAP4_SYM; 1118 break; 1119 case MAP5: 1120 decision = &MAP5_SYM; 1121 break; 1122 case MAP6: 1123 decision = &MAP6_SYM; 1124 break; 1125 case MAP7: 1126 decision = &MAP7_SYM; 1127 break; 1128 } 1129 1130 if (decision->opcodeDecisions[insnCtx] 1131 .modRMDecisions[insn->opcode] 1132 .modrm_type != MODRM_ONEENTRY) { 1133 if (readModRM(insn)) 1134 return -1; 1135 *instructionID = 1136 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); 1137 } else { 1138 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); 1139 } 1140 1141 return 0; 1142 } 1143 1144 static bool isNF(InternalInstruction *insn) { 1145 if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1146 return false; 1147 if (insn->opcodeType == MAP4) 1148 return true; 1149 // Below NF instructions are not in map4. 1150 if (insn->opcodeType == THREEBYTE_38 && 1151 ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) { 1152 switch (insn->opcode) { 1153 case 0xf2: // ANDN 1154 case 0xf3: // BLSI, BLSR, BLSMSK 1155 case 0xf5: // BZHI 1156 case 0xf7: // BEXTR 1157 return true; 1158 default: 1159 break; 1160 } 1161 } 1162 return false; 1163 } 1164 1165 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1166 // for extended and escape opcodes. Determines the attributes and context for 1167 // the instruction before doing so. 1168 static int getInstructionID(struct InternalInstruction *insn, 1169 const MCInstrInfo *mii) { 1170 uint16_t attrMask; 1171 uint16_t instructionID; 1172 1173 LLVM_DEBUG(dbgs() << "getID()"); 1174 1175 attrMask = ATTR_NONE; 1176 1177 if (insn->mode == MODE_64BIT) 1178 attrMask |= ATTR_64BIT; 1179 1180 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1181 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; 1182 1183 if (insn->vectorExtensionType == TYPE_EVEX) { 1184 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { 1185 case VEX_PREFIX_66: 1186 attrMask |= ATTR_OPSIZE; 1187 break; 1188 case VEX_PREFIX_F3: 1189 attrMask |= ATTR_XS; 1190 break; 1191 case VEX_PREFIX_F2: 1192 attrMask |= ATTR_XD; 1193 break; 1194 } 1195 1196 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1197 attrMask |= ATTR_EVEXKZ; 1198 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1199 attrMask |= ATTR_EVEXB; 1200 if (isNF(insn)) // NF bit is the MSB of aaa. 1201 attrMask |= ATTR_EVEXNF; 1202 else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1203 attrMask |= ATTR_EVEXK; 1204 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1205 attrMask |= ATTR_VEXL; 1206 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1207 attrMask |= ATTR_EVEXL2; 1208 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 1209 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { 1210 case VEX_PREFIX_66: 1211 attrMask |= ATTR_OPSIZE; 1212 break; 1213 case VEX_PREFIX_F3: 1214 attrMask |= ATTR_XS; 1215 break; 1216 case VEX_PREFIX_F2: 1217 attrMask |= ATTR_XD; 1218 break; 1219 } 1220 1221 if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) 1222 attrMask |= ATTR_VEXL; 1223 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 1224 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 1225 case VEX_PREFIX_66: 1226 attrMask |= ATTR_OPSIZE; 1227 if (insn->hasAdSize) 1228 attrMask |= ATTR_ADSIZE; 1229 break; 1230 case VEX_PREFIX_F3: 1231 attrMask |= ATTR_XS; 1232 break; 1233 case VEX_PREFIX_F2: 1234 attrMask |= ATTR_XD; 1235 break; 1236 } 1237 1238 if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) 1239 attrMask |= ATTR_VEXL; 1240 } else if (insn->vectorExtensionType == TYPE_XOP) { 1241 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 1242 case VEX_PREFIX_66: 1243 attrMask |= ATTR_OPSIZE; 1244 break; 1245 case VEX_PREFIX_F3: 1246 attrMask |= ATTR_XS; 1247 break; 1248 case VEX_PREFIX_F2: 1249 attrMask |= ATTR_XD; 1250 break; 1251 } 1252 1253 if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) 1254 attrMask |= ATTR_VEXL; 1255 } else { 1256 return -1; 1257 } 1258 } else if (!insn->mandatoryPrefix) { 1259 // If we don't have mandatory prefix we should use legacy prefixes here 1260 if (insn->hasOpSize && (insn->mode != MODE_16BIT)) 1261 attrMask |= ATTR_OPSIZE; 1262 if (insn->hasAdSize) 1263 attrMask |= ATTR_ADSIZE; 1264 if (insn->opcodeType == ONEBYTE) { 1265 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) 1266 // Special support for PAUSE 1267 attrMask |= ATTR_XS; 1268 } else { 1269 if (insn->repeatPrefix == 0xf2) 1270 attrMask |= ATTR_XD; 1271 else if (insn->repeatPrefix == 0xf3) 1272 attrMask |= ATTR_XS; 1273 } 1274 } else { 1275 switch (insn->mandatoryPrefix) { 1276 case 0xf2: 1277 attrMask |= ATTR_XD; 1278 break; 1279 case 0xf3: 1280 attrMask |= ATTR_XS; 1281 break; 1282 case 0x66: 1283 if (insn->mode != MODE_16BIT) 1284 attrMask |= ATTR_OPSIZE; 1285 if (insn->hasAdSize) 1286 attrMask |= ATTR_ADSIZE; 1287 break; 1288 case 0x67: 1289 attrMask |= ATTR_ADSIZE; 1290 break; 1291 } 1292 } 1293 1294 if (insn->rexPrefix & 0x08) { 1295 attrMask |= ATTR_REXW; 1296 attrMask &= ~ATTR_ADSIZE; 1297 } 1298 1299 // Absolute jump and pushp/popp need special handling 1300 if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE && 1301 (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50)) 1302 attrMask |= ATTR_REX2; 1303 1304 if (insn->mode == MODE_16BIT) { 1305 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning 1306 // of the AdSize prefix is inverted w.r.t. 32-bit mode. 1307 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) 1308 attrMask ^= ATTR_ADSIZE; 1309 // If we're in 16-bit mode and this is one of the relative jumps and opsize 1310 // prefix isn't present, we need to force the opsize attribute since the 1311 // prefix is inverted relative to 32-bit mode. 1312 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && 1313 (insn->opcode == 0xE8 || insn->opcode == 0xE9)) 1314 attrMask |= ATTR_OPSIZE; 1315 1316 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && 1317 insn->opcode >= 0x80 && insn->opcode <= 0x8F) 1318 attrMask |= ATTR_OPSIZE; 1319 } 1320 1321 1322 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1323 return -1; 1324 1325 // The following clauses compensate for limitations of the tables. 1326 1327 if (insn->mode != MODE_64BIT && 1328 insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1329 // The tables can't distinquish between cases where the W-bit is used to 1330 // select register size and cases where its a required part of the opcode. 1331 if ((insn->vectorExtensionType == TYPE_EVEX && 1332 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || 1333 (insn->vectorExtensionType == TYPE_VEX_3B && 1334 wFromVEX3of3(insn->vectorExtensionPrefix[2])) || 1335 (insn->vectorExtensionType == TYPE_XOP && 1336 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { 1337 1338 uint16_t instructionIDWithREXW; 1339 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, 1340 attrMask | ATTR_REXW)) { 1341 insn->instructionID = instructionID; 1342 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1343 return 0; 1344 } 1345 1346 auto SpecName = mii->getName(instructionIDWithREXW); 1347 // If not a 64-bit instruction. Switch the opcode. 1348 if (!is64Bit(SpecName.data())) { 1349 insn->instructionID = instructionIDWithREXW; 1350 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; 1351 return 0; 1352 } 1353 } 1354 } 1355 1356 // Absolute moves, umonitor, and movdir64b need special handling. 1357 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are 1358 // inverted w.r.t. 1359 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in 1360 // any position. 1361 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || 1362 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || 1363 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) || 1364 (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) { 1365 // Make sure we observed the prefixes in any position. 1366 if (insn->hasAdSize) 1367 attrMask |= ATTR_ADSIZE; 1368 if (insn->hasOpSize) 1369 attrMask |= ATTR_OPSIZE; 1370 1371 // In 16-bit, invert the attributes. 1372 if (insn->mode == MODE_16BIT) { 1373 attrMask ^= ATTR_ADSIZE; 1374 1375 // The OpSize attribute is only valid with the absolute moves. 1376 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) 1377 attrMask ^= ATTR_OPSIZE; 1378 } 1379 1380 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1381 return -1; 1382 1383 insn->instructionID = instructionID; 1384 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1385 return 0; 1386 } 1387 1388 if ((insn->mode == MODE_16BIT || insn->hasOpSize) && 1389 !(attrMask & ATTR_OPSIZE)) { 1390 // The instruction tables make no distinction between instructions that 1391 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a 1392 // particular spot (i.e., many MMX operations). In general we're 1393 // conservative, but in the specific case where OpSize is present but not in 1394 // the right place we check if there's a 16-bit operation. 1395 const struct InstructionSpecifier *spec; 1396 uint16_t instructionIDWithOpsize; 1397 llvm::StringRef specName, specWithOpSizeName; 1398 1399 spec = &INSTRUCTIONS_SYM[instructionID]; 1400 1401 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, 1402 attrMask | ATTR_OPSIZE)) { 1403 // ModRM required with OpSize but not present. Give up and return the 1404 // version without OpSize set. 1405 insn->instructionID = instructionID; 1406 insn->spec = spec; 1407 return 0; 1408 } 1409 1410 specName = mii->getName(instructionID); 1411 specWithOpSizeName = mii->getName(instructionIDWithOpsize); 1412 1413 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && 1414 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { 1415 insn->instructionID = instructionIDWithOpsize; 1416 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; 1417 } else { 1418 insn->instructionID = instructionID; 1419 insn->spec = spec; 1420 } 1421 return 0; 1422 } 1423 1424 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && 1425 insn->rexPrefix & 0x01) { 1426 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode 1427 // as XCHG %r8, %eax. 1428 const struct InstructionSpecifier *spec; 1429 uint16_t instructionIDWithNewOpcode; 1430 const struct InstructionSpecifier *specWithNewOpcode; 1431 1432 spec = &INSTRUCTIONS_SYM[instructionID]; 1433 1434 // Borrow opcode from one of the other XCHGar opcodes 1435 insn->opcode = 0x91; 1436 1437 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, 1438 attrMask)) { 1439 insn->opcode = 0x90; 1440 1441 insn->instructionID = instructionID; 1442 insn->spec = spec; 1443 return 0; 1444 } 1445 1446 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; 1447 1448 // Change back 1449 insn->opcode = 0x90; 1450 1451 insn->instructionID = instructionIDWithNewOpcode; 1452 insn->spec = specWithNewOpcode; 1453 1454 return 0; 1455 } 1456 1457 insn->instructionID = instructionID; 1458 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; 1459 1460 return 0; 1461 } 1462 1463 // Read an operand from the opcode field of an instruction and interprets it 1464 // appropriately given the operand width. Handles AddRegFrm instructions. 1465 // 1466 // @param insn - the instruction whose opcode field is to be read. 1467 // @param size - The width (in bytes) of the register being specified. 1468 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means 1469 // RAX. 1470 // @return - 0 on success; nonzero otherwise. 1471 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { 1472 LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); 1473 1474 if (size == 0) 1475 size = insn->registerSize; 1476 1477 auto setOpcodeRegister = [&](unsigned base) { 1478 insn->opcodeRegister = 1479 (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) | 1480 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) | 1481 (insn->opcode & 7))); 1482 }; 1483 1484 switch (size) { 1485 case 1: 1486 setOpcodeRegister(MODRM_REG_AL); 1487 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && 1488 insn->opcodeRegister < MODRM_REG_AL + 0x8) { 1489 insn->opcodeRegister = 1490 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); 1491 } 1492 1493 break; 1494 case 2: 1495 setOpcodeRegister(MODRM_REG_AX); 1496 break; 1497 case 4: 1498 setOpcodeRegister(MODRM_REG_EAX); 1499 break; 1500 case 8: 1501 setOpcodeRegister(MODRM_REG_RAX); 1502 break; 1503 } 1504 1505 return 0; 1506 } 1507 1508 // Consume an immediate operand from an instruction, given the desired operand 1509 // size. 1510 // 1511 // @param insn - The instruction whose operand is to be read. 1512 // @param size - The width (in bytes) of the operand. 1513 // @return - 0 if the immediate was successfully consumed; nonzero 1514 // otherwise. 1515 static int readImmediate(struct InternalInstruction *insn, uint8_t size) { 1516 uint8_t imm8; 1517 uint16_t imm16; 1518 uint32_t imm32; 1519 uint64_t imm64; 1520 1521 LLVM_DEBUG(dbgs() << "readImmediate()"); 1522 1523 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); 1524 1525 insn->immediateSize = size; 1526 insn->immediateOffset = insn->readerCursor - insn->startLocation; 1527 1528 switch (size) { 1529 case 1: 1530 if (consume(insn, imm8)) 1531 return -1; 1532 insn->immediates[insn->numImmediatesConsumed] = imm8; 1533 break; 1534 case 2: 1535 if (consume(insn, imm16)) 1536 return -1; 1537 insn->immediates[insn->numImmediatesConsumed] = imm16; 1538 break; 1539 case 4: 1540 if (consume(insn, imm32)) 1541 return -1; 1542 insn->immediates[insn->numImmediatesConsumed] = imm32; 1543 break; 1544 case 8: 1545 if (consume(insn, imm64)) 1546 return -1; 1547 insn->immediates[insn->numImmediatesConsumed] = imm64; 1548 break; 1549 default: 1550 llvm_unreachable("invalid size"); 1551 } 1552 1553 insn->numImmediatesConsumed++; 1554 1555 return 0; 1556 } 1557 1558 // Consume vvvv from an instruction if it has a VEX prefix. 1559 static int readVVVV(struct InternalInstruction *insn) { 1560 LLVM_DEBUG(dbgs() << "readVVVV()"); 1561 1562 int vvvv; 1563 if (insn->vectorExtensionType == TYPE_EVEX) 1564 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | 1565 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); 1566 else if (insn->vectorExtensionType == TYPE_VEX_3B) 1567 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); 1568 else if (insn->vectorExtensionType == TYPE_VEX_2B) 1569 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); 1570 else if (insn->vectorExtensionType == TYPE_XOP) 1571 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); 1572 else 1573 return -1; 1574 1575 if (insn->mode != MODE_64BIT) 1576 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. 1577 1578 insn->vvvv = static_cast<Reg>(vvvv); 1579 return 0; 1580 } 1581 1582 // Read an mask register from the opcode field of an instruction. 1583 // 1584 // @param insn - The instruction whose opcode field is to be read. 1585 // @return - 0 on success; nonzero otherwise. 1586 static int readMaskRegister(struct InternalInstruction *insn) { 1587 LLVM_DEBUG(dbgs() << "readMaskRegister()"); 1588 1589 if (insn->vectorExtensionType != TYPE_EVEX) 1590 return -1; 1591 1592 insn->writemask = 1593 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); 1594 return 0; 1595 } 1596 1597 // Consults the specifier for an instruction and consumes all 1598 // operands for that instruction, interpreting them as it goes. 1599 static int readOperands(struct InternalInstruction *insn) { 1600 int hasVVVV, needVVVV; 1601 int sawRegImm = 0; 1602 1603 LLVM_DEBUG(dbgs() << "readOperands()"); 1604 1605 // If non-zero vvvv specified, make sure one of the operands uses it. 1606 hasVVVV = !readVVVV(insn); 1607 needVVVV = hasVVVV && (insn->vvvv != 0); 1608 1609 for (const auto &Op : x86OperandSets[insn->spec->operands]) { 1610 switch (Op.encoding) { 1611 case ENCODING_NONE: 1612 case ENCODING_SI: 1613 case ENCODING_DI: 1614 break; 1615 CASE_ENCODING_VSIB: 1616 // VSIB can use the V2 bit so check only the other bits. 1617 if (needVVVV) 1618 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); 1619 if (readModRM(insn)) 1620 return -1; 1621 1622 // Reject if SIB wasn't used. 1623 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1624 return -1; 1625 1626 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. 1627 if (insn->sibIndex == SIB_INDEX_NONE) 1628 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); 1629 1630 // If EVEX.v2 is set this is one of the 16-31 registers. 1631 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 1632 v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1633 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); 1634 1635 // Adjust the index register to the correct size. 1636 switch ((OperandType)Op.type) { 1637 default: 1638 debug("Unhandled VSIB index type"); 1639 return -1; 1640 case TYPE_MVSIBX: 1641 insn->sibIndex = 1642 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); 1643 break; 1644 case TYPE_MVSIBY: 1645 insn->sibIndex = 1646 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); 1647 break; 1648 case TYPE_MVSIBZ: 1649 insn->sibIndex = 1650 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); 1651 break; 1652 } 1653 1654 // Apply the AVX512 compressed displacement scaling factor. 1655 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1656 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); 1657 break; 1658 case ENCODING_SIB: 1659 // Reject if SIB wasn't used. 1660 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1661 return -1; 1662 if (readModRM(insn)) 1663 return -1; 1664 if (fixupReg(insn, &Op)) 1665 return -1; 1666 break; 1667 case ENCODING_REG: 1668 CASE_ENCODING_RM: 1669 if (readModRM(insn)) 1670 return -1; 1671 if (fixupReg(insn, &Op)) 1672 return -1; 1673 // Apply the AVX512 compressed displacement scaling factor. 1674 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1675 insn->displacement *= 1 << (Op.encoding - ENCODING_RM); 1676 break; 1677 case ENCODING_IB: 1678 if (sawRegImm) { 1679 // Saw a register immediate so don't read again and instead split the 1680 // previous immediate. FIXME: This is a hack. 1681 insn->immediates[insn->numImmediatesConsumed] = 1682 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; 1683 ++insn->numImmediatesConsumed; 1684 break; 1685 } 1686 if (readImmediate(insn, 1)) 1687 return -1; 1688 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) 1689 sawRegImm = 1; 1690 break; 1691 case ENCODING_IW: 1692 if (readImmediate(insn, 2)) 1693 return -1; 1694 break; 1695 case ENCODING_ID: 1696 if (readImmediate(insn, 4)) 1697 return -1; 1698 break; 1699 case ENCODING_IO: 1700 if (readImmediate(insn, 8)) 1701 return -1; 1702 break; 1703 case ENCODING_Iv: 1704 if (readImmediate(insn, insn->immediateSize)) 1705 return -1; 1706 break; 1707 case ENCODING_Ia: 1708 if (readImmediate(insn, insn->addressSize)) 1709 return -1; 1710 break; 1711 case ENCODING_IRC: 1712 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | 1713 lFromEVEX4of4(insn->vectorExtensionPrefix[3]); 1714 break; 1715 case ENCODING_RB: 1716 if (readOpcodeRegister(insn, 1)) 1717 return -1; 1718 break; 1719 case ENCODING_RW: 1720 if (readOpcodeRegister(insn, 2)) 1721 return -1; 1722 break; 1723 case ENCODING_RD: 1724 if (readOpcodeRegister(insn, 4)) 1725 return -1; 1726 break; 1727 case ENCODING_RO: 1728 if (readOpcodeRegister(insn, 8)) 1729 return -1; 1730 break; 1731 case ENCODING_Rv: 1732 if (readOpcodeRegister(insn, 0)) 1733 return -1; 1734 break; 1735 case ENCODING_CC: 1736 insn->immediates[1] = insn->opcode & 0xf; 1737 break; 1738 case ENCODING_FP: 1739 break; 1740 case ENCODING_VVVV: 1741 needVVVV = 0; // Mark that we have found a VVVV operand. 1742 if (!hasVVVV) 1743 return -1; 1744 if (insn->mode != MODE_64BIT) 1745 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); 1746 if (fixupReg(insn, &Op)) 1747 return -1; 1748 break; 1749 case ENCODING_WRITEMASK: 1750 if (readMaskRegister(insn)) 1751 return -1; 1752 break; 1753 case ENCODING_DUP: 1754 break; 1755 default: 1756 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); 1757 return -1; 1758 } 1759 } 1760 1761 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail 1762 if (needVVVV) 1763 return -1; 1764 1765 return 0; 1766 } 1767 1768 namespace llvm { 1769 1770 // Fill-ins to make the compiler happy. These constants are never actually 1771 // assigned; they are just filler to make an automatically-generated switch 1772 // statement work. 1773 namespace X86 { 1774 enum { 1775 BX_SI = 500, 1776 BX_DI = 501, 1777 BP_SI = 502, 1778 BP_DI = 503, 1779 sib = 504, 1780 sib64 = 505 1781 }; 1782 } // namespace X86 1783 1784 } // namespace llvm 1785 1786 static bool translateInstruction(MCInst &target, 1787 InternalInstruction &source, 1788 const MCDisassembler *Dis); 1789 1790 namespace { 1791 1792 /// Generic disassembler for all X86 platforms. All each platform class should 1793 /// have to do is subclass the constructor, and provide a different 1794 /// disassemblerMode value. 1795 class X86GenericDisassembler : public MCDisassembler { 1796 std::unique_ptr<const MCInstrInfo> MII; 1797 public: 1798 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 1799 std::unique_ptr<const MCInstrInfo> MII); 1800 public: 1801 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 1802 ArrayRef<uint8_t> Bytes, uint64_t Address, 1803 raw_ostream &cStream) const override; 1804 1805 private: 1806 DisassemblerMode fMode; 1807 }; 1808 1809 } // namespace 1810 1811 X86GenericDisassembler::X86GenericDisassembler( 1812 const MCSubtargetInfo &STI, 1813 MCContext &Ctx, 1814 std::unique_ptr<const MCInstrInfo> MII) 1815 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 1816 const FeatureBitset &FB = STI.getFeatureBits(); 1817 if (FB[X86::Is16Bit]) { 1818 fMode = MODE_16BIT; 1819 return; 1820 } else if (FB[X86::Is32Bit]) { 1821 fMode = MODE_32BIT; 1822 return; 1823 } else if (FB[X86::Is64Bit]) { 1824 fMode = MODE_64BIT; 1825 return; 1826 } 1827 1828 llvm_unreachable("Invalid CPU mode"); 1829 } 1830 1831 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 1832 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 1833 raw_ostream &CStream) const { 1834 CommentStream = &CStream; 1835 1836 InternalInstruction Insn; 1837 memset(&Insn, 0, sizeof(InternalInstruction)); 1838 Insn.bytes = Bytes; 1839 Insn.startLocation = Address; 1840 Insn.readerCursor = Address; 1841 Insn.mode = fMode; 1842 1843 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || 1844 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || 1845 readOperands(&Insn)) { 1846 Size = Insn.readerCursor - Address; 1847 return Fail; 1848 } 1849 1850 Insn.operands = x86OperandSets[Insn.spec->operands]; 1851 Insn.length = Insn.readerCursor - Insn.startLocation; 1852 Size = Insn.length; 1853 if (Size > 15) 1854 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); 1855 1856 bool Ret = translateInstruction(Instr, Insn, this); 1857 if (!Ret) { 1858 unsigned Flags = X86::IP_NO_PREFIX; 1859 if (Insn.hasAdSize) 1860 Flags |= X86::IP_HAS_AD_SIZE; 1861 if (!Insn.mandatoryPrefix) { 1862 if (Insn.hasOpSize) 1863 Flags |= X86::IP_HAS_OP_SIZE; 1864 if (Insn.repeatPrefix == 0xf2) 1865 Flags |= X86::IP_HAS_REPEAT_NE; 1866 else if (Insn.repeatPrefix == 0xf3 && 1867 // It should not be 'pause' f3 90 1868 Insn.opcode != 0x90) 1869 Flags |= X86::IP_HAS_REPEAT; 1870 if (Insn.hasLockPrefix) 1871 Flags |= X86::IP_HAS_LOCK; 1872 } 1873 Instr.setFlags(Flags); 1874 } 1875 return (!Ret) ? Success : Fail; 1876 } 1877 1878 // 1879 // Private code that translates from struct InternalInstructions to MCInsts. 1880 // 1881 1882 /// translateRegister - Translates an internal register to the appropriate LLVM 1883 /// register, and appends it as an operand to an MCInst. 1884 /// 1885 /// @param mcInst - The MCInst to append to. 1886 /// @param reg - The Reg to append. 1887 static void translateRegister(MCInst &mcInst, Reg reg) { 1888 #define ENTRY(x) X86::x, 1889 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 1890 #undef ENTRY 1891 1892 MCPhysReg llvmRegnum = llvmRegnums[reg]; 1893 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 1894 } 1895 1896 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 1897 0, // SEG_OVERRIDE_NONE 1898 X86::CS, 1899 X86::SS, 1900 X86::DS, 1901 X86::ES, 1902 X86::FS, 1903 X86::GS 1904 }; 1905 1906 /// translateSrcIndex - Appends a source index operand to an MCInst. 1907 /// 1908 /// @param mcInst - The MCInst to append to. 1909 /// @param insn - The internal instruction. 1910 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 1911 unsigned baseRegNo; 1912 1913 if (insn.mode == MODE_64BIT) 1914 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 1915 else if (insn.mode == MODE_32BIT) 1916 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 1917 else { 1918 assert(insn.mode == MODE_16BIT); 1919 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 1920 } 1921 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1922 mcInst.addOperand(baseReg); 1923 1924 MCOperand segmentReg; 1925 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1926 mcInst.addOperand(segmentReg); 1927 return false; 1928 } 1929 1930 /// translateDstIndex - Appends a destination index operand to an MCInst. 1931 /// 1932 /// @param mcInst - The MCInst to append to. 1933 /// @param insn - The internal instruction. 1934 1935 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 1936 unsigned baseRegNo; 1937 1938 if (insn.mode == MODE_64BIT) 1939 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 1940 else if (insn.mode == MODE_32BIT) 1941 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 1942 else { 1943 assert(insn.mode == MODE_16BIT); 1944 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 1945 } 1946 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1947 mcInst.addOperand(baseReg); 1948 return false; 1949 } 1950 1951 /// translateImmediate - Appends an immediate operand to an MCInst. 1952 /// 1953 /// @param mcInst - The MCInst to append to. 1954 /// @param immediate - The immediate value to append. 1955 /// @param operand - The operand, as stored in the descriptor table. 1956 /// @param insn - The internal instruction. 1957 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 1958 const OperandSpecifier &operand, 1959 InternalInstruction &insn, 1960 const MCDisassembler *Dis) { 1961 // Sign-extend the immediate if necessary. 1962 1963 OperandType type = (OperandType)operand.type; 1964 1965 bool isBranch = false; 1966 uint64_t pcrel = 0; 1967 if (type == TYPE_REL) { 1968 isBranch = true; 1969 pcrel = insn.startLocation + insn.length; 1970 switch (operand.encoding) { 1971 default: 1972 break; 1973 case ENCODING_Iv: 1974 switch (insn.displacementSize) { 1975 default: 1976 break; 1977 case 1: 1978 if(immediate & 0x80) 1979 immediate |= ~(0xffull); 1980 break; 1981 case 2: 1982 if(immediate & 0x8000) 1983 immediate |= ~(0xffffull); 1984 break; 1985 case 4: 1986 if(immediate & 0x80000000) 1987 immediate |= ~(0xffffffffull); 1988 break; 1989 case 8: 1990 break; 1991 } 1992 break; 1993 case ENCODING_IB: 1994 if(immediate & 0x80) 1995 immediate |= ~(0xffull); 1996 break; 1997 case ENCODING_IW: 1998 if(immediate & 0x8000) 1999 immediate |= ~(0xffffull); 2000 break; 2001 case ENCODING_ID: 2002 if(immediate & 0x80000000) 2003 immediate |= ~(0xffffffffull); 2004 break; 2005 } 2006 } 2007 // By default sign-extend all X86 immediates based on their encoding. 2008 else if (type == TYPE_IMM) { 2009 switch (operand.encoding) { 2010 default: 2011 break; 2012 case ENCODING_IB: 2013 if(immediate & 0x80) 2014 immediate |= ~(0xffull); 2015 break; 2016 case ENCODING_IW: 2017 if(immediate & 0x8000) 2018 immediate |= ~(0xffffull); 2019 break; 2020 case ENCODING_ID: 2021 if(immediate & 0x80000000) 2022 immediate |= ~(0xffffffffull); 2023 break; 2024 case ENCODING_IO: 2025 break; 2026 } 2027 } 2028 2029 switch (type) { 2030 case TYPE_XMM: 2031 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 2032 return; 2033 case TYPE_YMM: 2034 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 2035 return; 2036 case TYPE_ZMM: 2037 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 2038 return; 2039 default: 2040 // operand is 64 bits wide. Do nothing. 2041 break; 2042 } 2043 2044 if (!Dis->tryAddingSymbolicOperand( 2045 mcInst, immediate + pcrel, insn.startLocation, isBranch, 2046 insn.immediateOffset, insn.immediateSize, insn.length)) 2047 mcInst.addOperand(MCOperand::createImm(immediate)); 2048 2049 if (type == TYPE_MOFFS) { 2050 MCOperand segmentReg; 2051 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2052 mcInst.addOperand(segmentReg); 2053 } 2054 } 2055 2056 /// translateRMRegister - Translates a register stored in the R/M field of the 2057 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 2058 /// @param mcInst - The MCInst to append to. 2059 /// @param insn - The internal instruction to extract the R/M field 2060 /// from. 2061 /// @return - 0 on success; -1 otherwise 2062 static bool translateRMRegister(MCInst &mcInst, 2063 InternalInstruction &insn) { 2064 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2065 debug("A R/M register operand may not have a SIB byte"); 2066 return true; 2067 } 2068 2069 switch (insn.eaBase) { 2070 default: 2071 debug("Unexpected EA base register"); 2072 return true; 2073 case EA_BASE_NONE: 2074 debug("EA_BASE_NONE for ModR/M base"); 2075 return true; 2076 #define ENTRY(x) case EA_BASE_##x: 2077 ALL_EA_BASES 2078 #undef ENTRY 2079 debug("A R/M register operand may not have a base; " 2080 "the operand must be a register."); 2081 return true; 2082 #define ENTRY(x) \ 2083 case EA_REG_##x: \ 2084 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 2085 ALL_REGS 2086 #undef ENTRY 2087 } 2088 2089 return false; 2090 } 2091 2092 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 2093 /// fields of an internal instruction (and possibly its SIB byte) to a memory 2094 /// operand in LLVM's format, and appends it to an MCInst. 2095 /// 2096 /// @param mcInst - The MCInst to append to. 2097 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2098 /// from. 2099 /// @param ForceSIB - The instruction must use SIB. 2100 /// @return - 0 on success; nonzero otherwise 2101 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 2102 const MCDisassembler *Dis, 2103 bool ForceSIB = false) { 2104 // Addresses in an MCInst are represented as five operands: 2105 // 1. basereg (register) The R/M base, or (if there is a SIB) the 2106 // SIB base 2107 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 2108 // scale amount 2109 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 2110 // the index (which is multiplied by the 2111 // scale amount) 2112 // 4. displacement (immediate) 0, or the displacement if there is one 2113 // 5. segmentreg (register) x86_registerNONE for now, but could be set 2114 // if we have segment overrides 2115 2116 MCOperand baseReg; 2117 MCOperand scaleAmount; 2118 MCOperand indexReg; 2119 MCOperand displacement; 2120 MCOperand segmentReg; 2121 uint64_t pcrel = 0; 2122 2123 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2124 if (insn.sibBase != SIB_BASE_NONE) { 2125 switch (insn.sibBase) { 2126 default: 2127 debug("Unexpected sibBase"); 2128 return true; 2129 #define ENTRY(x) \ 2130 case SIB_BASE_##x: \ 2131 baseReg = MCOperand::createReg(X86::x); break; 2132 ALL_SIB_BASES 2133 #undef ENTRY 2134 } 2135 } else { 2136 baseReg = MCOperand::createReg(X86::NoRegister); 2137 } 2138 2139 if (insn.sibIndex != SIB_INDEX_NONE) { 2140 switch (insn.sibIndex) { 2141 default: 2142 debug("Unexpected sibIndex"); 2143 return true; 2144 #define ENTRY(x) \ 2145 case SIB_INDEX_##x: \ 2146 indexReg = MCOperand::createReg(X86::x); break; 2147 EA_BASES_32BIT 2148 EA_BASES_64BIT 2149 REGS_XMM 2150 REGS_YMM 2151 REGS_ZMM 2152 #undef ENTRY 2153 } 2154 } else { 2155 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 2156 // but no index is used and modrm alone should have been enough. 2157 // -No base register in 32-bit mode. In 64-bit mode this is used to 2158 // avoid rip-relative addressing. 2159 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 2160 // base always requires a SIB byte. 2161 // -A scale other than 1 is used. 2162 if (!ForceSIB && 2163 (insn.sibScale != 1 || 2164 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 2165 (insn.sibBase != SIB_BASE_NONE && 2166 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 2167 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { 2168 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 2169 X86::RIZ); 2170 } else 2171 indexReg = MCOperand::createReg(X86::NoRegister); 2172 } 2173 2174 scaleAmount = MCOperand::createImm(insn.sibScale); 2175 } else { 2176 switch (insn.eaBase) { 2177 case EA_BASE_NONE: 2178 if (insn.eaDisplacement == EA_DISP_NONE) { 2179 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 2180 return true; 2181 } 2182 if (insn.mode == MODE_64BIT){ 2183 pcrel = insn.startLocation + insn.length; 2184 Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel, 2185 insn.startLocation + 2186 insn.displacementOffset); 2187 // Section 2.2.1.6 2188 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 2189 X86::RIP); 2190 } 2191 else 2192 baseReg = MCOperand::createReg(X86::NoRegister); 2193 2194 indexReg = MCOperand::createReg(X86::NoRegister); 2195 break; 2196 case EA_BASE_BX_SI: 2197 baseReg = MCOperand::createReg(X86::BX); 2198 indexReg = MCOperand::createReg(X86::SI); 2199 break; 2200 case EA_BASE_BX_DI: 2201 baseReg = MCOperand::createReg(X86::BX); 2202 indexReg = MCOperand::createReg(X86::DI); 2203 break; 2204 case EA_BASE_BP_SI: 2205 baseReg = MCOperand::createReg(X86::BP); 2206 indexReg = MCOperand::createReg(X86::SI); 2207 break; 2208 case EA_BASE_BP_DI: 2209 baseReg = MCOperand::createReg(X86::BP); 2210 indexReg = MCOperand::createReg(X86::DI); 2211 break; 2212 default: 2213 indexReg = MCOperand::createReg(X86::NoRegister); 2214 switch (insn.eaBase) { 2215 default: 2216 debug("Unexpected eaBase"); 2217 return true; 2218 // Here, we will use the fill-ins defined above. However, 2219 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 2220 // sib and sib64 were handled in the top-level if, so they're only 2221 // placeholders to keep the compiler happy. 2222 #define ENTRY(x) \ 2223 case EA_BASE_##x: \ 2224 baseReg = MCOperand::createReg(X86::x); break; 2225 ALL_EA_BASES 2226 #undef ENTRY 2227 #define ENTRY(x) case EA_REG_##x: 2228 ALL_REGS 2229 #undef ENTRY 2230 debug("A R/M memory operand may not be a register; " 2231 "the base field must be a base."); 2232 return true; 2233 } 2234 } 2235 2236 scaleAmount = MCOperand::createImm(1); 2237 } 2238 2239 displacement = MCOperand::createImm(insn.displacement); 2240 2241 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2242 2243 mcInst.addOperand(baseReg); 2244 mcInst.addOperand(scaleAmount); 2245 mcInst.addOperand(indexReg); 2246 2247 const uint8_t dispSize = 2248 (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize; 2249 2250 if (!Dis->tryAddingSymbolicOperand( 2251 mcInst, insn.displacement + pcrel, insn.startLocation, false, 2252 insn.displacementOffset, dispSize, insn.length)) 2253 mcInst.addOperand(displacement); 2254 mcInst.addOperand(segmentReg); 2255 return false; 2256 } 2257 2258 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 2259 /// byte of an instruction to LLVM form, and appends it to an MCInst. 2260 /// 2261 /// @param mcInst - The MCInst to append to. 2262 /// @param operand - The operand, as stored in the descriptor table. 2263 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2264 /// from. 2265 /// @return - 0 on success; nonzero otherwise 2266 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 2267 InternalInstruction &insn, const MCDisassembler *Dis) { 2268 switch (operand.type) { 2269 default: 2270 debug("Unexpected type for a R/M operand"); 2271 return true; 2272 case TYPE_R8: 2273 case TYPE_R16: 2274 case TYPE_R32: 2275 case TYPE_R64: 2276 case TYPE_Rv: 2277 case TYPE_MM64: 2278 case TYPE_XMM: 2279 case TYPE_YMM: 2280 case TYPE_ZMM: 2281 case TYPE_TMM: 2282 case TYPE_VK_PAIR: 2283 case TYPE_VK: 2284 case TYPE_DEBUGREG: 2285 case TYPE_CONTROLREG: 2286 case TYPE_BNDR: 2287 return translateRMRegister(mcInst, insn); 2288 case TYPE_M: 2289 case TYPE_MVSIBX: 2290 case TYPE_MVSIBY: 2291 case TYPE_MVSIBZ: 2292 return translateRMMemory(mcInst, insn, Dis); 2293 case TYPE_MSIB: 2294 return translateRMMemory(mcInst, insn, Dis, true); 2295 } 2296 } 2297 2298 /// translateFPRegister - Translates a stack position on the FPU stack to its 2299 /// LLVM form, and appends it to an MCInst. 2300 /// 2301 /// @param mcInst - The MCInst to append to. 2302 /// @param stackPos - The stack position to translate. 2303 static void translateFPRegister(MCInst &mcInst, 2304 uint8_t stackPos) { 2305 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 2306 } 2307 2308 /// translateMaskRegister - Translates a 3-bit mask register number to 2309 /// LLVM form, and appends it to an MCInst. 2310 /// 2311 /// @param mcInst - The MCInst to append to. 2312 /// @param maskRegNum - Number of mask register from 0 to 7. 2313 /// @return - false on success; true otherwise. 2314 static bool translateMaskRegister(MCInst &mcInst, 2315 uint8_t maskRegNum) { 2316 if (maskRegNum >= 8) { 2317 debug("Invalid mask register number"); 2318 return true; 2319 } 2320 2321 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 2322 return false; 2323 } 2324 2325 /// translateOperand - Translates an operand stored in an internal instruction 2326 /// to LLVM's format and appends it to an MCInst. 2327 /// 2328 /// @param mcInst - The MCInst to append to. 2329 /// @param operand - The operand, as stored in the descriptor table. 2330 /// @param insn - The internal instruction. 2331 /// @return - false on success; true otherwise. 2332 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 2333 InternalInstruction &insn, 2334 const MCDisassembler *Dis) { 2335 switch (operand.encoding) { 2336 default: 2337 debug("Unhandled operand encoding during translation"); 2338 return true; 2339 case ENCODING_REG: 2340 translateRegister(mcInst, insn.reg); 2341 return false; 2342 case ENCODING_WRITEMASK: 2343 return translateMaskRegister(mcInst, insn.writemask); 2344 case ENCODING_SIB: 2345 CASE_ENCODING_RM: 2346 CASE_ENCODING_VSIB: 2347 return translateRM(mcInst, operand, insn, Dis); 2348 case ENCODING_IB: 2349 case ENCODING_IW: 2350 case ENCODING_ID: 2351 case ENCODING_IO: 2352 case ENCODING_Iv: 2353 case ENCODING_Ia: 2354 translateImmediate(mcInst, 2355 insn.immediates[insn.numImmediatesTranslated++], 2356 operand, 2357 insn, 2358 Dis); 2359 return false; 2360 case ENCODING_IRC: 2361 mcInst.addOperand(MCOperand::createImm(insn.RC)); 2362 return false; 2363 case ENCODING_SI: 2364 return translateSrcIndex(mcInst, insn); 2365 case ENCODING_DI: 2366 return translateDstIndex(mcInst, insn); 2367 case ENCODING_RB: 2368 case ENCODING_RW: 2369 case ENCODING_RD: 2370 case ENCODING_RO: 2371 case ENCODING_Rv: 2372 translateRegister(mcInst, insn.opcodeRegister); 2373 return false; 2374 case ENCODING_CC: 2375 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 2376 return false; 2377 case ENCODING_FP: 2378 translateFPRegister(mcInst, insn.modRM & 7); 2379 return false; 2380 case ENCODING_VVVV: 2381 translateRegister(mcInst, insn.vvvv); 2382 return false; 2383 case ENCODING_DUP: 2384 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 2385 insn, Dis); 2386 } 2387 } 2388 2389 /// translateInstruction - Translates an internal instruction and all its 2390 /// operands to an MCInst. 2391 /// 2392 /// @param mcInst - The MCInst to populate with the instruction's data. 2393 /// @param insn - The internal instruction. 2394 /// @return - false on success; true otherwise. 2395 static bool translateInstruction(MCInst &mcInst, 2396 InternalInstruction &insn, 2397 const MCDisassembler *Dis) { 2398 if (!insn.spec) { 2399 debug("Instruction has no specification"); 2400 return true; 2401 } 2402 2403 mcInst.clear(); 2404 mcInst.setOpcode(insn.instructionID); 2405 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 2406 // prefix bytes should be disassembled as xrelease and xacquire then set the 2407 // opcode to those instead of the rep and repne opcodes. 2408 if (insn.xAcquireRelease) { 2409 if(mcInst.getOpcode() == X86::REP_PREFIX) 2410 mcInst.setOpcode(X86::XRELEASE_PREFIX); 2411 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 2412 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 2413 } 2414 2415 insn.numImmediatesTranslated = 0; 2416 2417 for (const auto &Op : insn.operands) { 2418 if (Op.encoding != ENCODING_NONE) { 2419 if (translateOperand(mcInst, Op, insn, Dis)) { 2420 return true; 2421 } 2422 } 2423 } 2424 2425 return false; 2426 } 2427 2428 static MCDisassembler *createX86Disassembler(const Target &T, 2429 const MCSubtargetInfo &STI, 2430 MCContext &Ctx) { 2431 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 2432 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 2433 } 2434 2435 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { 2436 // Register the disassembler. 2437 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 2438 createX86Disassembler); 2439 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 2440 createX86Disassembler); 2441 } 2442