xref: /llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision ae91a427ac8f9fc7368ec052995cec6a6aeb8ea8)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP4:
154     dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP5:
157     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP6:
160     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   case MAP7:
163     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164     break;
165   }
166 
167   switch (dec->modrm_type) {
168   default:
169     llvm_unreachable("Corrupt table!  Unknown modrm_type");
170     return 0;
171   case MODRM_ONEENTRY:
172     return modRMTable[dec->instructionIDs];
173   case MODRM_SPLITRM:
174     if (modFromModRM(modRM) == 0x3)
175       return modRMTable[dec->instructionIDs + 1];
176     return modRMTable[dec->instructionIDs];
177   case MODRM_SPLITREG:
178     if (modFromModRM(modRM) == 0x3)
179       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181   case MODRM_SPLITMISC:
182     if (modFromModRM(modRM) == 0x3)
183       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185   case MODRM_FULL:
186     return modRMTable[dec->instructionIDs + modRM];
187   }
188 }
189 
190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191   uint64_t offset = insn->readerCursor - insn->startLocation;
192   if (offset >= insn->bytes.size())
193     return true;
194   byte = insn->bytes[offset];
195   return false;
196 }
197 
198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199   auto r = insn->bytes;
200   uint64_t offset = insn->readerCursor - insn->startLocation;
201   if (offset + sizeof(T) > r.size())
202     return true;
203   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204   insn->readerCursor += sizeof(T);
205   return false;
206 }
207 
208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211 
212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213   return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215 
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them.  Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
221 static int readPrefixes(struct InternalInstruction *insn) {
222   bool isPrefix = true;
223   uint8_t byte = 0;
224   uint8_t nextByte;
225 
226   LLVM_DEBUG(dbgs() << "readPrefixes()");
227 
228   while (isPrefix) {
229     // If we fail reading prefixes, just stop here and let the opcode reader
230     // deal with it.
231     if (consume(insn, byte))
232       break;
233 
234     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235     // break and let it be disassembled as a normal "instruction".
236     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237       break;
238 
239     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241       // met:
242       // - it is followed by a LOCK (0xf0) prefix
243       // - it is followed by an xchg instruction
244       // then it should be disassembled as a xacquire/xrelease not repne/rep.
245       if (((nextByte == 0xf0) ||
246            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247         insn->xAcquireRelease = true;
248         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249           break;
250       }
251       // Also if the byte is 0xf3, and the following condition is met:
252       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254       // then it should be disassembled as an xrelease not rep.
255       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256                            nextByte == 0xc6 || nextByte == 0xc7)) {
257         insn->xAcquireRelease = true;
258         break;
259       }
260       if (isREX(insn, nextByte)) {
261         uint8_t nnextByte;
262         // Go to REX prefix after the current one
263         if (consume(insn, nnextByte))
264           return -1;
265         // We should be able to read next byte after REX prefix
266         if (peek(insn, nnextByte))
267           return -1;
268         --insn->readerCursor;
269       }
270     }
271 
272     switch (byte) {
273     case 0xf0: // LOCK
274       insn->hasLockPrefix = true;
275       break;
276     case 0xf2: // REPNE/REPNZ
277     case 0xf3: { // REP or REPE/REPZ
278       uint8_t nextByte;
279       if (peek(insn, nextByte))
280         break;
281       // TODO:
282       //  1. There could be several 0x66
283       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284       //      it's not mandatory prefix
285       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286       //     0x0f exactly after it to be mandatory prefix
287       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
288         // The last of 0xf2 /0xf3 is mandatory prefix
289         insn->mandatoryPrefix = byte;
290       insn->repeatPrefix = byte;
291       break;
292     }
293     case 0x2e: // CS segment override -OR- Branch not taken
294       insn->segmentOverride = SEG_OVERRIDE_CS;
295       break;
296     case 0x36: // SS segment override -OR- Branch taken
297       insn->segmentOverride = SEG_OVERRIDE_SS;
298       break;
299     case 0x3e: // DS segment override
300       insn->segmentOverride = SEG_OVERRIDE_DS;
301       break;
302     case 0x26: // ES segment override
303       insn->segmentOverride = SEG_OVERRIDE_ES;
304       break;
305     case 0x64: // FS segment override
306       insn->segmentOverride = SEG_OVERRIDE_FS;
307       break;
308     case 0x65: // GS segment override
309       insn->segmentOverride = SEG_OVERRIDE_GS;
310       break;
311     case 0x66: { // Operand-size override {
312       uint8_t nextByte;
313       insn->hasOpSize = true;
314       if (peek(insn, nextByte))
315         break;
316       // 0x66 can't overwrite existing mandatory prefix and should be ignored
317       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
318         insn->mandatoryPrefix = byte;
319       break;
320     }
321     case 0x67: // Address-size override
322       insn->hasAdSize = true;
323       break;
324     default: // Not a prefix byte
325       isPrefix = false;
326       break;
327     }
328 
329     if (isPrefix)
330       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
331   }
332 
333   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
334 
335   if (byte == 0x62) {
336     uint8_t byte1, byte2;
337     if (consume(insn, byte1)) {
338       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
339       return -1;
340     }
341 
342     if (peek(insn, byte2)) {
343       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
344       return -1;
345     }
346 
347     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
348       insn->vectorExtensionType = TYPE_EVEX;
349     } else {
350       --insn->readerCursor; // unconsume byte1
351       --insn->readerCursor; // unconsume byte
352     }
353 
354     if (insn->vectorExtensionType == TYPE_EVEX) {
355       insn->vectorExtensionPrefix[0] = byte;
356       insn->vectorExtensionPrefix[1] = byte1;
357       if (consume(insn, insn->vectorExtensionPrefix[2])) {
358         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
359         return -1;
360       }
361       if (consume(insn, insn->vectorExtensionPrefix[3])) {
362         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
363         return -1;
364       }
365 
366       if (insn->mode == MODE_64BIT) {
367         // We simulate the REX prefix for simplicity's sake
368         insn->rexPrefix = 0x40 |
369                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
370                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
371                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
372                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
373 
374         // We simulate the REX2 prefix for simplicity's sake
375         insn->rex2ExtensionPrefix[1] =
376             (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
377             (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
378             (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
379       }
380 
381       LLVM_DEBUG(
382           dbgs() << format(
383               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
384               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
385               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
386     }
387   } else if (byte == 0xc4) {
388     uint8_t byte1;
389     if (peek(insn, byte1)) {
390       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
391       return -1;
392     }
393 
394     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
395       insn->vectorExtensionType = TYPE_VEX_3B;
396     else
397       --insn->readerCursor;
398 
399     if (insn->vectorExtensionType == TYPE_VEX_3B) {
400       insn->vectorExtensionPrefix[0] = byte;
401       consume(insn, insn->vectorExtensionPrefix[1]);
402       consume(insn, insn->vectorExtensionPrefix[2]);
403 
404       // We simulate the REX prefix for simplicity's sake
405 
406       if (insn->mode == MODE_64BIT)
407         insn->rexPrefix = 0x40 |
408                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
409                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
410                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
411                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
412 
413       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
414                                   insn->vectorExtensionPrefix[0],
415                                   insn->vectorExtensionPrefix[1],
416                                   insn->vectorExtensionPrefix[2]));
417     }
418   } else if (byte == 0xc5) {
419     uint8_t byte1;
420     if (peek(insn, byte1)) {
421       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
422       return -1;
423     }
424 
425     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
426       insn->vectorExtensionType = TYPE_VEX_2B;
427     else
428       --insn->readerCursor;
429 
430     if (insn->vectorExtensionType == TYPE_VEX_2B) {
431       insn->vectorExtensionPrefix[0] = byte;
432       consume(insn, insn->vectorExtensionPrefix[1]);
433 
434       if (insn->mode == MODE_64BIT)
435         insn->rexPrefix =
436             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
437 
438       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
439       default:
440         break;
441       case VEX_PREFIX_66:
442         insn->hasOpSize = true;
443         break;
444       }
445 
446       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
447                                   insn->vectorExtensionPrefix[0],
448                                   insn->vectorExtensionPrefix[1]));
449     }
450   } else if (byte == 0x8f) {
451     uint8_t byte1;
452     if (peek(insn, byte1)) {
453       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
454       return -1;
455     }
456 
457     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
458       insn->vectorExtensionType = TYPE_XOP;
459     else
460       --insn->readerCursor;
461 
462     if (insn->vectorExtensionType == TYPE_XOP) {
463       insn->vectorExtensionPrefix[0] = byte;
464       consume(insn, insn->vectorExtensionPrefix[1]);
465       consume(insn, insn->vectorExtensionPrefix[2]);
466 
467       // We simulate the REX prefix for simplicity's sake
468 
469       if (insn->mode == MODE_64BIT)
470         insn->rexPrefix = 0x40 |
471                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
472                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
473                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
474                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
475 
476       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
477       default:
478         break;
479       case VEX_PREFIX_66:
480         insn->hasOpSize = true;
481         break;
482       }
483 
484       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
485                                   insn->vectorExtensionPrefix[0],
486                                   insn->vectorExtensionPrefix[1],
487                                   insn->vectorExtensionPrefix[2]));
488     }
489   } else if (isREX2(insn, byte)) {
490     uint8_t byte1;
491     if (peek(insn, byte1)) {
492       LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
493       return -1;
494     }
495     insn->rex2ExtensionPrefix[0] = byte;
496     consume(insn, insn->rex2ExtensionPrefix[1]);
497 
498     // We simulate the REX prefix for simplicity's sake
499     insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
500                       (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
501                       (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
502                       (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
503     LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
504                                 insn->rex2ExtensionPrefix[0],
505                                 insn->rex2ExtensionPrefix[1]));
506   } else if (isREX(insn, byte)) {
507     if (peek(insn, nextByte))
508       return -1;
509     insn->rexPrefix = byte;
510     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
511   } else
512     --insn->readerCursor;
513 
514   if (insn->mode == MODE_16BIT) {
515     insn->registerSize = (insn->hasOpSize ? 4 : 2);
516     insn->addressSize = (insn->hasAdSize ? 4 : 2);
517     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
518     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
519   } else if (insn->mode == MODE_32BIT) {
520     insn->registerSize = (insn->hasOpSize ? 2 : 4);
521     insn->addressSize = (insn->hasAdSize ? 2 : 4);
522     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
523     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
524   } else if (insn->mode == MODE_64BIT) {
525     insn->displacementSize = 4;
526     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
527       insn->registerSize = 8;
528       insn->addressSize = (insn->hasAdSize ? 4 : 8);
529       insn->immediateSize = 4;
530       insn->hasOpSize = false;
531     } else {
532       insn->registerSize = (insn->hasOpSize ? 2 : 4);
533       insn->addressSize = (insn->hasAdSize ? 4 : 8);
534       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
535     }
536   }
537 
538   return 0;
539 }
540 
541 // Consumes the SIB byte to determine addressing information.
542 static int readSIB(struct InternalInstruction *insn) {
543   SIBBase sibBaseBase = SIB_BASE_NONE;
544   uint8_t index, base;
545 
546   LLVM_DEBUG(dbgs() << "readSIB()");
547   switch (insn->addressSize) {
548   case 2:
549   default:
550     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
551   case 4:
552     insn->sibIndexBase = SIB_INDEX_EAX;
553     sibBaseBase = SIB_BASE_EAX;
554     break;
555   case 8:
556     insn->sibIndexBase = SIB_INDEX_RAX;
557     sibBaseBase = SIB_BASE_RAX;
558     break;
559   }
560 
561   if (consume(insn, insn->sib))
562     return -1;
563 
564   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
565           (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
566 
567   if (index == 0x4) {
568     insn->sibIndex = SIB_INDEX_NONE;
569   } else {
570     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
571   }
572 
573   insn->sibScale = 1 << scaleFromSIB(insn->sib);
574 
575   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
576          (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
577 
578   switch (base) {
579   case 0x5:
580   case 0xd:
581     switch (modFromModRM(insn->modRM)) {
582     case 0x0:
583       insn->eaDisplacement = EA_DISP_32;
584       insn->sibBase = SIB_BASE_NONE;
585       break;
586     case 0x1:
587       insn->eaDisplacement = EA_DISP_8;
588       insn->sibBase = (SIBBase)(sibBaseBase + base);
589       break;
590     case 0x2:
591       insn->eaDisplacement = EA_DISP_32;
592       insn->sibBase = (SIBBase)(sibBaseBase + base);
593       break;
594     default:
595       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
596     }
597     break;
598   default:
599     insn->sibBase = (SIBBase)(sibBaseBase + base);
600     break;
601   }
602 
603   return 0;
604 }
605 
606 static int readDisplacement(struct InternalInstruction *insn) {
607   int8_t d8;
608   int16_t d16;
609   int32_t d32;
610   LLVM_DEBUG(dbgs() << "readDisplacement()");
611 
612   insn->displacementOffset = insn->readerCursor - insn->startLocation;
613   switch (insn->eaDisplacement) {
614   case EA_DISP_NONE:
615     break;
616   case EA_DISP_8:
617     if (consume(insn, d8))
618       return -1;
619     insn->displacement = d8;
620     break;
621   case EA_DISP_16:
622     if (consume(insn, d16))
623       return -1;
624     insn->displacement = d16;
625     break;
626   case EA_DISP_32:
627     if (consume(insn, d32))
628       return -1;
629     insn->displacement = d32;
630     break;
631   }
632 
633   return 0;
634 }
635 
636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
637 static int readModRM(struct InternalInstruction *insn) {
638   uint8_t mod, rm, reg;
639   LLVM_DEBUG(dbgs() << "readModRM()");
640 
641   if (insn->consumedModRM)
642     return 0;
643 
644   if (consume(insn, insn->modRM))
645     return -1;
646   insn->consumedModRM = true;
647 
648   mod = modFromModRM(insn->modRM);
649   rm = rmFromModRM(insn->modRM);
650   reg = regFromModRM(insn->modRM);
651 
652   // This goes by insn->registerSize to pick the correct register, which messes
653   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
654   // fixupReg().
655   switch (insn->registerSize) {
656   case 2:
657     insn->regBase = MODRM_REG_AX;
658     insn->eaRegBase = EA_REG_AX;
659     break;
660   case 4:
661     insn->regBase = MODRM_REG_EAX;
662     insn->eaRegBase = EA_REG_EAX;
663     break;
664   case 8:
665     insn->regBase = MODRM_REG_RAX;
666     insn->eaRegBase = EA_REG_RAX;
667     break;
668   }
669 
670   reg |= (rFromREX(insn->rexPrefix) << 3) |
671          (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
672   rm |= (bFromREX(insn->rexPrefix) << 3) |
673         (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
674 
675   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
676     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
677 
678   insn->reg = (Reg)(insn->regBase + reg);
679 
680   switch (insn->addressSize) {
681   case 2: {
682     EABase eaBaseBase = EA_BASE_BX_SI;
683 
684     switch (mod) {
685     case 0x0:
686       if (rm == 0x6) {
687         insn->eaBase = EA_BASE_NONE;
688         insn->eaDisplacement = EA_DISP_16;
689         if (readDisplacement(insn))
690           return -1;
691       } else {
692         insn->eaBase = (EABase)(eaBaseBase + rm);
693         insn->eaDisplacement = EA_DISP_NONE;
694       }
695       break;
696     case 0x1:
697       insn->eaBase = (EABase)(eaBaseBase + rm);
698       insn->eaDisplacement = EA_DISP_8;
699       insn->displacementSize = 1;
700       if (readDisplacement(insn))
701         return -1;
702       break;
703     case 0x2:
704       insn->eaBase = (EABase)(eaBaseBase + rm);
705       insn->eaDisplacement = EA_DISP_16;
706       if (readDisplacement(insn))
707         return -1;
708       break;
709     case 0x3:
710       insn->eaBase = (EABase)(insn->eaRegBase + rm);
711       if (readDisplacement(insn))
712         return -1;
713       break;
714     }
715     break;
716   }
717   case 4:
718   case 8: {
719     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
720 
721     switch (mod) {
722     case 0x0:
723       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
724       // In determining whether RIP-relative mode is used (rm=5),
725       // or whether a SIB byte is present (rm=4),
726       // the extension bits (REX.b and EVEX.x) are ignored.
727       switch (rm & 7) {
728       case 0x4: // SIB byte is present
729         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
730         if (readSIB(insn) || readDisplacement(insn))
731           return -1;
732         break;
733       case 0x5: // RIP-relative
734         insn->eaBase = EA_BASE_NONE;
735         insn->eaDisplacement = EA_DISP_32;
736         if (readDisplacement(insn))
737           return -1;
738         break;
739       default:
740         insn->eaBase = (EABase)(eaBaseBase + rm);
741         break;
742       }
743       break;
744     case 0x1:
745       insn->displacementSize = 1;
746       [[fallthrough]];
747     case 0x2:
748       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
749       switch (rm & 7) {
750       case 0x4: // SIB byte is present
751         insn->eaBase = EA_BASE_sib;
752         if (readSIB(insn) || readDisplacement(insn))
753           return -1;
754         break;
755       default:
756         insn->eaBase = (EABase)(eaBaseBase + rm);
757         if (readDisplacement(insn))
758           return -1;
759         break;
760       }
761       break;
762     case 0x3:
763       insn->eaDisplacement = EA_DISP_NONE;
764       insn->eaBase = (EABase)(insn->eaRegBase + rm);
765       break;
766     }
767     break;
768   }
769   } // switch (insn->addressSize)
770 
771   return 0;
772 }
773 
774 #define GENERIC_FIXUP_FUNC(name, base, prefix)                                 \
775   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
776                        uint8_t index, uint8_t *valid) {                        \
777     *valid = 1;                                                                \
778     switch (type) {                                                            \
779     default:                                                                   \
780       debug("Unhandled register type");                                        \
781       *valid = 0;                                                              \
782       return 0;                                                                \
783     case TYPE_Rv:                                                              \
784       return base + index;                                                     \
785     case TYPE_R8:                                                              \
786       if (insn->rexPrefix && index >= 4 && index <= 7)                         \
787         return prefix##_SPL + (index - 4);                                     \
788       else                                                                     \
789         return prefix##_AL + index;                                            \
790     case TYPE_R16:                                                             \
791       return prefix##_AX + index;                                              \
792     case TYPE_R32:                                                             \
793       return prefix##_EAX + index;                                             \
794     case TYPE_R64:                                                             \
795       return prefix##_RAX + index;                                             \
796     case TYPE_ZMM:                                                             \
797       return prefix##_ZMM0 + index;                                            \
798     case TYPE_YMM:                                                             \
799       return prefix##_YMM0 + index;                                            \
800     case TYPE_XMM:                                                             \
801       return prefix##_XMM0 + index;                                            \
802     case TYPE_TMM:                                                             \
803       if (index > 7)                                                           \
804         *valid = 0;                                                            \
805       return prefix##_TMM0 + index;                                            \
806     case TYPE_VK:                                                              \
807       index &= 0xf;                                                            \
808       if (index > 7)                                                           \
809         *valid = 0;                                                            \
810       return prefix##_K0 + index;                                              \
811     case TYPE_VK_PAIR:                                                         \
812       if (index > 7)                                                           \
813         *valid = 0;                                                            \
814       return prefix##_K0_K1 + (index / 2);                                     \
815     case TYPE_MM64:                                                            \
816       return prefix##_MM0 + (index & 0x7);                                     \
817     case TYPE_SEGMENTREG:                                                      \
818       if ((index & 7) > 5)                                                     \
819         *valid = 0;                                                            \
820       return prefix##_ES + (index & 7);                                        \
821     case TYPE_DEBUGREG:                                                        \
822       if (index > 15)                                                          \
823         *valid = 0;                                                            \
824       return prefix##_DR0 + index;                                             \
825     case TYPE_CONTROLREG:                                                      \
826       if (index > 15)                                                          \
827         *valid = 0;                                                            \
828       return prefix##_CR0 + index;                                             \
829     case TYPE_MVSIBX:                                                          \
830       return prefix##_XMM0 + index;                                            \
831     case TYPE_MVSIBY:                                                          \
832       return prefix##_YMM0 + index;                                            \
833     case TYPE_MVSIBZ:                                                          \
834       return prefix##_ZMM0 + index;                                            \
835     }                                                                          \
836   }
837 
838 // Consult an operand type to determine the meaning of the reg or R/M field. If
839 // the operand is an XMM operand, for example, an operand would be XMM0 instead
840 // of AX, which readModRM() would otherwise misinterpret it as.
841 //
842 // @param insn  - The instruction containing the operand.
843 // @param type  - The operand type.
844 // @param index - The existing value of the field as reported by readModRM().
845 // @param valid - The address of a uint8_t.  The target is set to 1 if the
846 //                field is valid for the register class; 0 if not.
847 // @return      - The proper value.
848 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
849 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
850 
851 // Consult an operand specifier to determine which of the fixup*Value functions
852 // to use in correcting readModRM()'ss interpretation.
853 //
854 // @param insn  - See fixup*Value().
855 // @param op    - The operand specifier.
856 // @return      - 0 if fixup was successful; -1 if the register returned was
857 //                invalid for its class.
858 static int fixupReg(struct InternalInstruction *insn,
859                     const struct OperandSpecifier *op) {
860   uint8_t valid;
861   LLVM_DEBUG(dbgs() << "fixupReg()");
862 
863   switch ((OperandEncoding)op->encoding) {
864   default:
865     debug("Expected a REG or R/M encoding in fixupReg");
866     return -1;
867   case ENCODING_VVVV:
868     insn->vvvv =
869         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
870     if (!valid)
871       return -1;
872     break;
873   case ENCODING_REG:
874     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
875                                    insn->reg - insn->regBase, &valid);
876     if (!valid)
877       return -1;
878     break;
879   CASE_ENCODING_RM:
880     if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
881         modFromModRM(insn->modRM) == 3) {
882       // EVEX_X can extend the register id to 32 for a non-GPR register that is
883       // encoded in RM.
884       // mode : MODE_64_BIT
885       //  Only 8 vector registers are available in 32 bit mode
886       // mod : 3
887       //  RM encodes a register
888       switch (op->type) {
889       case TYPE_Rv:
890       case TYPE_R8:
891       case TYPE_R16:
892       case TYPE_R32:
893       case TYPE_R64:
894         break;
895       default:
896         insn->eaBase =
897             (EABase)(insn->eaBase +
898                      (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
899         break;
900       }
901     }
902     [[fallthrough]];
903   case ENCODING_SIB:
904     if (insn->eaBase >= insn->eaRegBase) {
905       insn->eaBase = (EABase)fixupRMValue(
906           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
907       if (!valid)
908         return -1;
909     }
910     break;
911   }
912 
913   return 0;
914 }
915 
916 // Read the opcode (except the ModR/M byte in the case of extended or escape
917 // opcodes).
918 static bool readOpcode(struct InternalInstruction *insn) {
919   uint8_t current;
920   LLVM_DEBUG(dbgs() << "readOpcode()");
921 
922   insn->opcodeType = ONEBYTE;
923   if (insn->vectorExtensionType == TYPE_EVEX) {
924     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
925     default:
926       LLVM_DEBUG(
927           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
928                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
929       return true;
930     case VEX_LOB_0F:
931       insn->opcodeType = TWOBYTE;
932       return consume(insn, insn->opcode);
933     case VEX_LOB_0F38:
934       insn->opcodeType = THREEBYTE_38;
935       return consume(insn, insn->opcode);
936     case VEX_LOB_0F3A:
937       insn->opcodeType = THREEBYTE_3A;
938       return consume(insn, insn->opcode);
939     case VEX_LOB_MAP4:
940       insn->opcodeType = MAP4;
941       return consume(insn, insn->opcode);
942     case VEX_LOB_MAP5:
943       insn->opcodeType = MAP5;
944       return consume(insn, insn->opcode);
945     case VEX_LOB_MAP6:
946       insn->opcodeType = MAP6;
947       return consume(insn, insn->opcode);
948     case VEX_LOB_MAP7:
949       insn->opcodeType = MAP7;
950       return consume(insn, insn->opcode);
951     }
952   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
953     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
954     default:
955       LLVM_DEBUG(
956           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
957                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
958       return true;
959     case VEX_LOB_0F:
960       insn->opcodeType = TWOBYTE;
961       return consume(insn, insn->opcode);
962     case VEX_LOB_0F38:
963       insn->opcodeType = THREEBYTE_38;
964       return consume(insn, insn->opcode);
965     case VEX_LOB_0F3A:
966       insn->opcodeType = THREEBYTE_3A;
967       return consume(insn, insn->opcode);
968     case VEX_LOB_MAP5:
969       insn->opcodeType = MAP5;
970       return consume(insn, insn->opcode);
971     case VEX_LOB_MAP6:
972       insn->opcodeType = MAP6;
973       return consume(insn, insn->opcode);
974     case VEX_LOB_MAP7:
975       insn->opcodeType = MAP7;
976       return consume(insn, insn->opcode);
977     }
978   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
979     insn->opcodeType = TWOBYTE;
980     return consume(insn, insn->opcode);
981   } else if (insn->vectorExtensionType == TYPE_XOP) {
982     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
983     default:
984       LLVM_DEBUG(
985           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
986                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
987       return true;
988     case XOP_MAP_SELECT_8:
989       insn->opcodeType = XOP8_MAP;
990       return consume(insn, insn->opcode);
991     case XOP_MAP_SELECT_9:
992       insn->opcodeType = XOP9_MAP;
993       return consume(insn, insn->opcode);
994     case XOP_MAP_SELECT_A:
995       insn->opcodeType = XOPA_MAP;
996       return consume(insn, insn->opcode);
997     }
998   } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
999     // m bit indicates opcode map 1
1000     insn->opcodeType = TWOBYTE;
1001     return consume(insn, insn->opcode);
1002   }
1003 
1004   if (consume(insn, current))
1005     return true;
1006 
1007   if (current == 0x0f) {
1008     LLVM_DEBUG(
1009         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1010     if (consume(insn, current))
1011       return true;
1012 
1013     if (current == 0x38) {
1014       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1015                                   current));
1016       if (consume(insn, current))
1017         return true;
1018 
1019       insn->opcodeType = THREEBYTE_38;
1020     } else if (current == 0x3a) {
1021       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1022                                   current));
1023       if (consume(insn, current))
1024         return true;
1025 
1026       insn->opcodeType = THREEBYTE_3A;
1027     } else if (current == 0x0f) {
1028       LLVM_DEBUG(
1029           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1030 
1031       // Consume operands before the opcode to comply with the 3DNow encoding
1032       if (readModRM(insn))
1033         return true;
1034 
1035       if (consume(insn, current))
1036         return true;
1037 
1038       insn->opcodeType = THREEDNOW_MAP;
1039     } else {
1040       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1041       insn->opcodeType = TWOBYTE;
1042     }
1043   } else if (insn->mandatoryPrefix)
1044     // The opcode with mandatory prefix must start with opcode escape.
1045     // If not it's legacy repeat prefix
1046     insn->mandatoryPrefix = 0;
1047 
1048   // At this point we have consumed the full opcode.
1049   // Anything we consume from here on must be unconsumed.
1050   insn->opcode = current;
1051 
1052   return false;
1053 }
1054 
1055 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1056 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1057   for (int i = 0;; i++) {
1058     if (orig[i] == '\0' && equiv[i] == '\0')
1059       return true;
1060     if (orig[i] == '\0' || equiv[i] == '\0')
1061       return false;
1062     if (orig[i] != equiv[i]) {
1063       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1064         continue;
1065       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1066         continue;
1067       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1068         continue;
1069       return false;
1070     }
1071   }
1072 }
1073 
1074 // Determine whether this instruction is a 64-bit instruction.
1075 static bool is64Bit(const char *name) {
1076   for (int i = 0;; ++i) {
1077     if (name[i] == '\0')
1078       return false;
1079     if (name[i] == '6' && name[i + 1] == '4')
1080       return true;
1081   }
1082 }
1083 
1084 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1085 // for extended and escape opcodes, and using a supplied attribute mask.
1086 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1087                                         struct InternalInstruction *insn,
1088                                         uint16_t attrMask) {
1089   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1090   const ContextDecision *decision;
1091   switch (insn->opcodeType) {
1092   case ONEBYTE:
1093     decision = &ONEBYTE_SYM;
1094     break;
1095   case TWOBYTE:
1096     decision = &TWOBYTE_SYM;
1097     break;
1098   case THREEBYTE_38:
1099     decision = &THREEBYTE38_SYM;
1100     break;
1101   case THREEBYTE_3A:
1102     decision = &THREEBYTE3A_SYM;
1103     break;
1104   case XOP8_MAP:
1105     decision = &XOP8_MAP_SYM;
1106     break;
1107   case XOP9_MAP:
1108     decision = &XOP9_MAP_SYM;
1109     break;
1110   case XOPA_MAP:
1111     decision = &XOPA_MAP_SYM;
1112     break;
1113   case THREEDNOW_MAP:
1114     decision = &THREEDNOW_MAP_SYM;
1115     break;
1116   case MAP4:
1117     decision = &MAP4_SYM;
1118     break;
1119   case MAP5:
1120     decision = &MAP5_SYM;
1121     break;
1122   case MAP6:
1123     decision = &MAP6_SYM;
1124     break;
1125   case MAP7:
1126     decision = &MAP7_SYM;
1127     break;
1128   }
1129 
1130   if (decision->opcodeDecisions[insnCtx]
1131           .modRMDecisions[insn->opcode]
1132           .modrm_type != MODRM_ONEENTRY) {
1133     if (readModRM(insn))
1134       return -1;
1135     *instructionID =
1136         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1137   } else {
1138     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1139   }
1140 
1141   return 0;
1142 }
1143 
1144 static bool isNF(InternalInstruction *insn) {
1145   if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1146     return false;
1147   if (insn->opcodeType == MAP4)
1148     return true;
1149   // Below NF instructions are not in map4.
1150   if (insn->opcodeType == THREEBYTE_38 &&
1151       ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) {
1152     switch (insn->opcode) {
1153     case 0xf2: // ANDN
1154     case 0xf3: // BLSI, BLSR, BLSMSK
1155     case 0xf5: // BZHI
1156     case 0xf7: // BEXTR
1157       return true;
1158     default:
1159       break;
1160     }
1161   }
1162   return false;
1163 }
1164 
1165 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1166 // for extended and escape opcodes. Determines the attributes and context for
1167 // the instruction before doing so.
1168 static int getInstructionID(struct InternalInstruction *insn,
1169                             const MCInstrInfo *mii) {
1170   uint16_t attrMask;
1171   uint16_t instructionID;
1172 
1173   LLVM_DEBUG(dbgs() << "getID()");
1174 
1175   attrMask = ATTR_NONE;
1176 
1177   if (insn->mode == MODE_64BIT)
1178     attrMask |= ATTR_64BIT;
1179 
1180   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1181     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1182 
1183     if (insn->vectorExtensionType == TYPE_EVEX) {
1184       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1185       case VEX_PREFIX_66:
1186         attrMask |= ATTR_OPSIZE;
1187         break;
1188       case VEX_PREFIX_F3:
1189         attrMask |= ATTR_XS;
1190         break;
1191       case VEX_PREFIX_F2:
1192         attrMask |= ATTR_XD;
1193         break;
1194       }
1195 
1196       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1197         attrMask |= ATTR_EVEXKZ;
1198       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1199         attrMask |= ATTR_EVEXB;
1200       if (isNF(insn)) // NF bit is the MSB of aaa.
1201         attrMask |= ATTR_EVEXNF;
1202       else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1203         attrMask |= ATTR_EVEXK;
1204       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1205         attrMask |= ATTR_VEXL;
1206       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1207         attrMask |= ATTR_EVEXL2;
1208     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1209       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1210       case VEX_PREFIX_66:
1211         attrMask |= ATTR_OPSIZE;
1212         break;
1213       case VEX_PREFIX_F3:
1214         attrMask |= ATTR_XS;
1215         break;
1216       case VEX_PREFIX_F2:
1217         attrMask |= ATTR_XD;
1218         break;
1219       }
1220 
1221       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1222         attrMask |= ATTR_VEXL;
1223     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1224       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1225       case VEX_PREFIX_66:
1226         attrMask |= ATTR_OPSIZE;
1227         if (insn->hasAdSize)
1228           attrMask |= ATTR_ADSIZE;
1229         break;
1230       case VEX_PREFIX_F3:
1231         attrMask |= ATTR_XS;
1232         break;
1233       case VEX_PREFIX_F2:
1234         attrMask |= ATTR_XD;
1235         break;
1236       }
1237 
1238       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1239         attrMask |= ATTR_VEXL;
1240     } else if (insn->vectorExtensionType == TYPE_XOP) {
1241       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1242       case VEX_PREFIX_66:
1243         attrMask |= ATTR_OPSIZE;
1244         break;
1245       case VEX_PREFIX_F3:
1246         attrMask |= ATTR_XS;
1247         break;
1248       case VEX_PREFIX_F2:
1249         attrMask |= ATTR_XD;
1250         break;
1251       }
1252 
1253       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1254         attrMask |= ATTR_VEXL;
1255     } else {
1256       return -1;
1257     }
1258   } else if (!insn->mandatoryPrefix) {
1259     // If we don't have mandatory prefix we should use legacy prefixes here
1260     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1261       attrMask |= ATTR_OPSIZE;
1262     if (insn->hasAdSize)
1263       attrMask |= ATTR_ADSIZE;
1264     if (insn->opcodeType == ONEBYTE) {
1265       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1266         // Special support for PAUSE
1267         attrMask |= ATTR_XS;
1268     } else {
1269       if (insn->repeatPrefix == 0xf2)
1270         attrMask |= ATTR_XD;
1271       else if (insn->repeatPrefix == 0xf3)
1272         attrMask |= ATTR_XS;
1273     }
1274   } else {
1275     switch (insn->mandatoryPrefix) {
1276     case 0xf2:
1277       attrMask |= ATTR_XD;
1278       break;
1279     case 0xf3:
1280       attrMask |= ATTR_XS;
1281       break;
1282     case 0x66:
1283       if (insn->mode != MODE_16BIT)
1284         attrMask |= ATTR_OPSIZE;
1285       if (insn->hasAdSize)
1286         attrMask |= ATTR_ADSIZE;
1287       break;
1288     case 0x67:
1289       attrMask |= ATTR_ADSIZE;
1290       break;
1291     }
1292   }
1293 
1294   if (insn->rexPrefix & 0x08) {
1295     attrMask |= ATTR_REXW;
1296     attrMask &= ~ATTR_ADSIZE;
1297   }
1298 
1299   // Absolute jump and pushp/popp need special handling
1300   if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1301       (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1302     attrMask |= ATTR_REX2;
1303 
1304   if (insn->mode == MODE_16BIT) {
1305     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1306     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1307     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1308       attrMask ^= ATTR_ADSIZE;
1309     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1310     // prefix isn't present, we need to force the opsize attribute since the
1311     // prefix is inverted relative to 32-bit mode.
1312     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1313         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1314       attrMask |= ATTR_OPSIZE;
1315 
1316     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1317         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1318       attrMask |= ATTR_OPSIZE;
1319   }
1320 
1321 
1322   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1323     return -1;
1324 
1325   // The following clauses compensate for limitations of the tables.
1326 
1327   if (insn->mode != MODE_64BIT &&
1328       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1329     // The tables can't distinquish between cases where the W-bit is used to
1330     // select register size and cases where its a required part of the opcode.
1331     if ((insn->vectorExtensionType == TYPE_EVEX &&
1332          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1333         (insn->vectorExtensionType == TYPE_VEX_3B &&
1334          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1335         (insn->vectorExtensionType == TYPE_XOP &&
1336          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1337 
1338       uint16_t instructionIDWithREXW;
1339       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1340                                        attrMask | ATTR_REXW)) {
1341         insn->instructionID = instructionID;
1342         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1343         return 0;
1344       }
1345 
1346       auto SpecName = mii->getName(instructionIDWithREXW);
1347       // If not a 64-bit instruction. Switch the opcode.
1348       if (!is64Bit(SpecName.data())) {
1349         insn->instructionID = instructionIDWithREXW;
1350         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1351         return 0;
1352       }
1353     }
1354   }
1355 
1356   // Absolute moves, umonitor, and movdir64b need special handling.
1357   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1358   //  inverted w.r.t.
1359   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1360   //  any position.
1361   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1362       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1363       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1364       (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1365     // Make sure we observed the prefixes in any position.
1366     if (insn->hasAdSize)
1367       attrMask |= ATTR_ADSIZE;
1368     if (insn->hasOpSize)
1369       attrMask |= ATTR_OPSIZE;
1370 
1371     // In 16-bit, invert the attributes.
1372     if (insn->mode == MODE_16BIT) {
1373       attrMask ^= ATTR_ADSIZE;
1374 
1375       // The OpSize attribute is only valid with the absolute moves.
1376       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1377         attrMask ^= ATTR_OPSIZE;
1378     }
1379 
1380     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1381       return -1;
1382 
1383     insn->instructionID = instructionID;
1384     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1385     return 0;
1386   }
1387 
1388   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1389       !(attrMask & ATTR_OPSIZE)) {
1390     // The instruction tables make no distinction between instructions that
1391     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1392     // particular spot (i.e., many MMX operations). In general we're
1393     // conservative, but in the specific case where OpSize is present but not in
1394     // the right place we check if there's a 16-bit operation.
1395     const struct InstructionSpecifier *spec;
1396     uint16_t instructionIDWithOpsize;
1397     llvm::StringRef specName, specWithOpSizeName;
1398 
1399     spec = &INSTRUCTIONS_SYM[instructionID];
1400 
1401     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1402                                      attrMask | ATTR_OPSIZE)) {
1403       // ModRM required with OpSize but not present. Give up and return the
1404       // version without OpSize set.
1405       insn->instructionID = instructionID;
1406       insn->spec = spec;
1407       return 0;
1408     }
1409 
1410     specName = mii->getName(instructionID);
1411     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1412 
1413     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1414         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1415       insn->instructionID = instructionIDWithOpsize;
1416       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1417     } else {
1418       insn->instructionID = instructionID;
1419       insn->spec = spec;
1420     }
1421     return 0;
1422   }
1423 
1424   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1425       insn->rexPrefix & 0x01) {
1426     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1427     // as XCHG %r8, %eax.
1428     const struct InstructionSpecifier *spec;
1429     uint16_t instructionIDWithNewOpcode;
1430     const struct InstructionSpecifier *specWithNewOpcode;
1431 
1432     spec = &INSTRUCTIONS_SYM[instructionID];
1433 
1434     // Borrow opcode from one of the other XCHGar opcodes
1435     insn->opcode = 0x91;
1436 
1437     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1438                                      attrMask)) {
1439       insn->opcode = 0x90;
1440 
1441       insn->instructionID = instructionID;
1442       insn->spec = spec;
1443       return 0;
1444     }
1445 
1446     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1447 
1448     // Change back
1449     insn->opcode = 0x90;
1450 
1451     insn->instructionID = instructionIDWithNewOpcode;
1452     insn->spec = specWithNewOpcode;
1453 
1454     return 0;
1455   }
1456 
1457   insn->instructionID = instructionID;
1458   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1459 
1460   return 0;
1461 }
1462 
1463 // Read an operand from the opcode field of an instruction and interprets it
1464 // appropriately given the operand width. Handles AddRegFrm instructions.
1465 //
1466 // @param insn  - the instruction whose opcode field is to be read.
1467 // @param size  - The width (in bytes) of the register being specified.
1468 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1469 //                RAX.
1470 // @return      - 0 on success; nonzero otherwise.
1471 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1472   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1473 
1474   if (size == 0)
1475     size = insn->registerSize;
1476 
1477   auto setOpcodeRegister = [&](unsigned base) {
1478     insn->opcodeRegister =
1479         (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1480                       (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1481                       (insn->opcode & 7)));
1482   };
1483 
1484   switch (size) {
1485   case 1:
1486     setOpcodeRegister(MODRM_REG_AL);
1487     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1488         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1489       insn->opcodeRegister =
1490           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1491     }
1492 
1493     break;
1494   case 2:
1495     setOpcodeRegister(MODRM_REG_AX);
1496     break;
1497   case 4:
1498     setOpcodeRegister(MODRM_REG_EAX);
1499     break;
1500   case 8:
1501     setOpcodeRegister(MODRM_REG_RAX);
1502     break;
1503   }
1504 
1505   return 0;
1506 }
1507 
1508 // Consume an immediate operand from an instruction, given the desired operand
1509 // size.
1510 //
1511 // @param insn  - The instruction whose operand is to be read.
1512 // @param size  - The width (in bytes) of the operand.
1513 // @return      - 0 if the immediate was successfully consumed; nonzero
1514 //                otherwise.
1515 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1516   uint8_t imm8;
1517   uint16_t imm16;
1518   uint32_t imm32;
1519   uint64_t imm64;
1520 
1521   LLVM_DEBUG(dbgs() << "readImmediate()");
1522 
1523   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1524 
1525   insn->immediateSize = size;
1526   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1527 
1528   switch (size) {
1529   case 1:
1530     if (consume(insn, imm8))
1531       return -1;
1532     insn->immediates[insn->numImmediatesConsumed] = imm8;
1533     break;
1534   case 2:
1535     if (consume(insn, imm16))
1536       return -1;
1537     insn->immediates[insn->numImmediatesConsumed] = imm16;
1538     break;
1539   case 4:
1540     if (consume(insn, imm32))
1541       return -1;
1542     insn->immediates[insn->numImmediatesConsumed] = imm32;
1543     break;
1544   case 8:
1545     if (consume(insn, imm64))
1546       return -1;
1547     insn->immediates[insn->numImmediatesConsumed] = imm64;
1548     break;
1549   default:
1550     llvm_unreachable("invalid size");
1551   }
1552 
1553   insn->numImmediatesConsumed++;
1554 
1555   return 0;
1556 }
1557 
1558 // Consume vvvv from an instruction if it has a VEX prefix.
1559 static int readVVVV(struct InternalInstruction *insn) {
1560   LLVM_DEBUG(dbgs() << "readVVVV()");
1561 
1562   int vvvv;
1563   if (insn->vectorExtensionType == TYPE_EVEX)
1564     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1565             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1566   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1567     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1568   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1569     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1570   else if (insn->vectorExtensionType == TYPE_XOP)
1571     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1572   else
1573     return -1;
1574 
1575   if (insn->mode != MODE_64BIT)
1576     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1577 
1578   insn->vvvv = static_cast<Reg>(vvvv);
1579   return 0;
1580 }
1581 
1582 // Read an mask register from the opcode field of an instruction.
1583 //
1584 // @param insn    - The instruction whose opcode field is to be read.
1585 // @return        - 0 on success; nonzero otherwise.
1586 static int readMaskRegister(struct InternalInstruction *insn) {
1587   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1588 
1589   if (insn->vectorExtensionType != TYPE_EVEX)
1590     return -1;
1591 
1592   insn->writemask =
1593       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1594   return 0;
1595 }
1596 
1597 // Consults the specifier for an instruction and consumes all
1598 // operands for that instruction, interpreting them as it goes.
1599 static int readOperands(struct InternalInstruction *insn) {
1600   int hasVVVV, needVVVV;
1601   int sawRegImm = 0;
1602 
1603   LLVM_DEBUG(dbgs() << "readOperands()");
1604 
1605   // If non-zero vvvv specified, make sure one of the operands uses it.
1606   hasVVVV = !readVVVV(insn);
1607   needVVVV = hasVVVV && (insn->vvvv != 0);
1608 
1609   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1610     switch (Op.encoding) {
1611     case ENCODING_NONE:
1612     case ENCODING_SI:
1613     case ENCODING_DI:
1614       break;
1615     CASE_ENCODING_VSIB:
1616       // VSIB can use the V2 bit so check only the other bits.
1617       if (needVVVV)
1618         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1619       if (readModRM(insn))
1620         return -1;
1621 
1622       // Reject if SIB wasn't used.
1623       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1624         return -1;
1625 
1626       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1627       if (insn->sibIndex == SIB_INDEX_NONE)
1628         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1629 
1630       // If EVEX.v2 is set this is one of the 16-31 registers.
1631       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1632           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1633         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1634 
1635       // Adjust the index register to the correct size.
1636       switch ((OperandType)Op.type) {
1637       default:
1638         debug("Unhandled VSIB index type");
1639         return -1;
1640       case TYPE_MVSIBX:
1641         insn->sibIndex =
1642             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1643         break;
1644       case TYPE_MVSIBY:
1645         insn->sibIndex =
1646             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1647         break;
1648       case TYPE_MVSIBZ:
1649         insn->sibIndex =
1650             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1651         break;
1652       }
1653 
1654       // Apply the AVX512 compressed displacement scaling factor.
1655       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1656         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1657       break;
1658     case ENCODING_SIB:
1659       // Reject if SIB wasn't used.
1660       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1661         return -1;
1662       if (readModRM(insn))
1663         return -1;
1664       if (fixupReg(insn, &Op))
1665         return -1;
1666       break;
1667     case ENCODING_REG:
1668     CASE_ENCODING_RM:
1669       if (readModRM(insn))
1670         return -1;
1671       if (fixupReg(insn, &Op))
1672         return -1;
1673       // Apply the AVX512 compressed displacement scaling factor.
1674       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1675         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1676       break;
1677     case ENCODING_IB:
1678       if (sawRegImm) {
1679         // Saw a register immediate so don't read again and instead split the
1680         // previous immediate. FIXME: This is a hack.
1681         insn->immediates[insn->numImmediatesConsumed] =
1682             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1683         ++insn->numImmediatesConsumed;
1684         break;
1685       }
1686       if (readImmediate(insn, 1))
1687         return -1;
1688       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1689         sawRegImm = 1;
1690       break;
1691     case ENCODING_IW:
1692       if (readImmediate(insn, 2))
1693         return -1;
1694       break;
1695     case ENCODING_ID:
1696       if (readImmediate(insn, 4))
1697         return -1;
1698       break;
1699     case ENCODING_IO:
1700       if (readImmediate(insn, 8))
1701         return -1;
1702       break;
1703     case ENCODING_Iv:
1704       if (readImmediate(insn, insn->immediateSize))
1705         return -1;
1706       break;
1707     case ENCODING_Ia:
1708       if (readImmediate(insn, insn->addressSize))
1709         return -1;
1710       break;
1711     case ENCODING_IRC:
1712       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1713                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1714       break;
1715     case ENCODING_RB:
1716       if (readOpcodeRegister(insn, 1))
1717         return -1;
1718       break;
1719     case ENCODING_RW:
1720       if (readOpcodeRegister(insn, 2))
1721         return -1;
1722       break;
1723     case ENCODING_RD:
1724       if (readOpcodeRegister(insn, 4))
1725         return -1;
1726       break;
1727     case ENCODING_RO:
1728       if (readOpcodeRegister(insn, 8))
1729         return -1;
1730       break;
1731     case ENCODING_Rv:
1732       if (readOpcodeRegister(insn, 0))
1733         return -1;
1734       break;
1735     case ENCODING_CC:
1736       insn->immediates[1] = insn->opcode & 0xf;
1737       break;
1738     case ENCODING_FP:
1739       break;
1740     case ENCODING_VVVV:
1741       needVVVV = 0; // Mark that we have found a VVVV operand.
1742       if (!hasVVVV)
1743         return -1;
1744       if (insn->mode != MODE_64BIT)
1745         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1746       if (fixupReg(insn, &Op))
1747         return -1;
1748       break;
1749     case ENCODING_WRITEMASK:
1750       if (readMaskRegister(insn))
1751         return -1;
1752       break;
1753     case ENCODING_DUP:
1754       break;
1755     default:
1756       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1757       return -1;
1758     }
1759   }
1760 
1761   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1762   if (needVVVV)
1763     return -1;
1764 
1765   return 0;
1766 }
1767 
1768 namespace llvm {
1769 
1770 // Fill-ins to make the compiler happy. These constants are never actually
1771 // assigned; they are just filler to make an automatically-generated switch
1772 // statement work.
1773 namespace X86 {
1774   enum {
1775     BX_SI = 500,
1776     BX_DI = 501,
1777     BP_SI = 502,
1778     BP_DI = 503,
1779     sib   = 504,
1780     sib64 = 505
1781   };
1782 } // namespace X86
1783 
1784 } // namespace llvm
1785 
1786 static bool translateInstruction(MCInst &target,
1787                                 InternalInstruction &source,
1788                                 const MCDisassembler *Dis);
1789 
1790 namespace {
1791 
1792 /// Generic disassembler for all X86 platforms. All each platform class should
1793 /// have to do is subclass the constructor, and provide a different
1794 /// disassemblerMode value.
1795 class X86GenericDisassembler : public MCDisassembler {
1796   std::unique_ptr<const MCInstrInfo> MII;
1797 public:
1798   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1799                          std::unique_ptr<const MCInstrInfo> MII);
1800 public:
1801   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1802                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1803                               raw_ostream &cStream) const override;
1804 
1805 private:
1806   DisassemblerMode              fMode;
1807 };
1808 
1809 } // namespace
1810 
1811 X86GenericDisassembler::X86GenericDisassembler(
1812                                          const MCSubtargetInfo &STI,
1813                                          MCContext &Ctx,
1814                                          std::unique_ptr<const MCInstrInfo> MII)
1815   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1816   const FeatureBitset &FB = STI.getFeatureBits();
1817   if (FB[X86::Is16Bit]) {
1818     fMode = MODE_16BIT;
1819     return;
1820   } else if (FB[X86::Is32Bit]) {
1821     fMode = MODE_32BIT;
1822     return;
1823   } else if (FB[X86::Is64Bit]) {
1824     fMode = MODE_64BIT;
1825     return;
1826   }
1827 
1828   llvm_unreachable("Invalid CPU mode");
1829 }
1830 
1831 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1832     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1833     raw_ostream &CStream) const {
1834   CommentStream = &CStream;
1835 
1836   InternalInstruction Insn;
1837   memset(&Insn, 0, sizeof(InternalInstruction));
1838   Insn.bytes = Bytes;
1839   Insn.startLocation = Address;
1840   Insn.readerCursor = Address;
1841   Insn.mode = fMode;
1842 
1843   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1844       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1845       readOperands(&Insn)) {
1846     Size = Insn.readerCursor - Address;
1847     return Fail;
1848   }
1849 
1850   Insn.operands = x86OperandSets[Insn.spec->operands];
1851   Insn.length = Insn.readerCursor - Insn.startLocation;
1852   Size = Insn.length;
1853   if (Size > 15)
1854     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1855 
1856   bool Ret = translateInstruction(Instr, Insn, this);
1857   if (!Ret) {
1858     unsigned Flags = X86::IP_NO_PREFIX;
1859     if (Insn.hasAdSize)
1860       Flags |= X86::IP_HAS_AD_SIZE;
1861     if (!Insn.mandatoryPrefix) {
1862       if (Insn.hasOpSize)
1863         Flags |= X86::IP_HAS_OP_SIZE;
1864       if (Insn.repeatPrefix == 0xf2)
1865         Flags |= X86::IP_HAS_REPEAT_NE;
1866       else if (Insn.repeatPrefix == 0xf3 &&
1867                // It should not be 'pause' f3 90
1868                Insn.opcode != 0x90)
1869         Flags |= X86::IP_HAS_REPEAT;
1870       if (Insn.hasLockPrefix)
1871         Flags |= X86::IP_HAS_LOCK;
1872     }
1873     Instr.setFlags(Flags);
1874   }
1875   return (!Ret) ? Success : Fail;
1876 }
1877 
1878 //
1879 // Private code that translates from struct InternalInstructions to MCInsts.
1880 //
1881 
1882 /// translateRegister - Translates an internal register to the appropriate LLVM
1883 ///   register, and appends it as an operand to an MCInst.
1884 ///
1885 /// @param mcInst     - The MCInst to append to.
1886 /// @param reg        - The Reg to append.
1887 static void translateRegister(MCInst &mcInst, Reg reg) {
1888 #define ENTRY(x) X86::x,
1889   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1890 #undef ENTRY
1891 
1892   MCPhysReg llvmRegnum = llvmRegnums[reg];
1893   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1894 }
1895 
1896 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1897   0,        // SEG_OVERRIDE_NONE
1898   X86::CS,
1899   X86::SS,
1900   X86::DS,
1901   X86::ES,
1902   X86::FS,
1903   X86::GS
1904 };
1905 
1906 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1907 ///
1908 /// @param mcInst       - The MCInst to append to.
1909 /// @param insn         - The internal instruction.
1910 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1911   unsigned baseRegNo;
1912 
1913   if (insn.mode == MODE_64BIT)
1914     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1915   else if (insn.mode == MODE_32BIT)
1916     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1917   else {
1918     assert(insn.mode == MODE_16BIT);
1919     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1920   }
1921   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1922   mcInst.addOperand(baseReg);
1923 
1924   MCOperand segmentReg;
1925   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1926   mcInst.addOperand(segmentReg);
1927   return false;
1928 }
1929 
1930 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1931 ///
1932 /// @param mcInst       - The MCInst to append to.
1933 /// @param insn         - The internal instruction.
1934 
1935 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1936   unsigned baseRegNo;
1937 
1938   if (insn.mode == MODE_64BIT)
1939     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1940   else if (insn.mode == MODE_32BIT)
1941     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1942   else {
1943     assert(insn.mode == MODE_16BIT);
1944     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1945   }
1946   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1947   mcInst.addOperand(baseReg);
1948   return false;
1949 }
1950 
1951 /// translateImmediate  - Appends an immediate operand to an MCInst.
1952 ///
1953 /// @param mcInst       - The MCInst to append to.
1954 /// @param immediate    - The immediate value to append.
1955 /// @param operand      - The operand, as stored in the descriptor table.
1956 /// @param insn         - The internal instruction.
1957 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1958                                const OperandSpecifier &operand,
1959                                InternalInstruction &insn,
1960                                const MCDisassembler *Dis) {
1961   // Sign-extend the immediate if necessary.
1962 
1963   OperandType type = (OperandType)operand.type;
1964 
1965   bool isBranch = false;
1966   uint64_t pcrel = 0;
1967   if (type == TYPE_REL) {
1968     isBranch = true;
1969     pcrel = insn.startLocation + insn.length;
1970     switch (operand.encoding) {
1971     default:
1972       break;
1973     case ENCODING_Iv:
1974       switch (insn.displacementSize) {
1975       default:
1976         break;
1977       case 1:
1978         if(immediate & 0x80)
1979           immediate |= ~(0xffull);
1980         break;
1981       case 2:
1982         if(immediate & 0x8000)
1983           immediate |= ~(0xffffull);
1984         break;
1985       case 4:
1986         if(immediate & 0x80000000)
1987           immediate |= ~(0xffffffffull);
1988         break;
1989       case 8:
1990         break;
1991       }
1992       break;
1993     case ENCODING_IB:
1994       if(immediate & 0x80)
1995         immediate |= ~(0xffull);
1996       break;
1997     case ENCODING_IW:
1998       if(immediate & 0x8000)
1999         immediate |= ~(0xffffull);
2000       break;
2001     case ENCODING_ID:
2002       if(immediate & 0x80000000)
2003         immediate |= ~(0xffffffffull);
2004       break;
2005     }
2006   }
2007   // By default sign-extend all X86 immediates based on their encoding.
2008   else if (type == TYPE_IMM) {
2009     switch (operand.encoding) {
2010     default:
2011       break;
2012     case ENCODING_IB:
2013       if(immediate & 0x80)
2014         immediate |= ~(0xffull);
2015       break;
2016     case ENCODING_IW:
2017       if(immediate & 0x8000)
2018         immediate |= ~(0xffffull);
2019       break;
2020     case ENCODING_ID:
2021       if(immediate & 0x80000000)
2022         immediate |= ~(0xffffffffull);
2023       break;
2024     case ENCODING_IO:
2025       break;
2026     }
2027   }
2028 
2029   switch (type) {
2030   case TYPE_XMM:
2031     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2032     return;
2033   case TYPE_YMM:
2034     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2035     return;
2036   case TYPE_ZMM:
2037     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2038     return;
2039   default:
2040     // operand is 64 bits wide.  Do nothing.
2041     break;
2042   }
2043 
2044   if (!Dis->tryAddingSymbolicOperand(
2045           mcInst, immediate + pcrel, insn.startLocation, isBranch,
2046           insn.immediateOffset, insn.immediateSize, insn.length))
2047     mcInst.addOperand(MCOperand::createImm(immediate));
2048 
2049   if (type == TYPE_MOFFS) {
2050     MCOperand segmentReg;
2051     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2052     mcInst.addOperand(segmentReg);
2053   }
2054 }
2055 
2056 /// translateRMRegister - Translates a register stored in the R/M field of the
2057 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2058 /// @param mcInst       - The MCInst to append to.
2059 /// @param insn         - The internal instruction to extract the R/M field
2060 ///                       from.
2061 /// @return             - 0 on success; -1 otherwise
2062 static bool translateRMRegister(MCInst &mcInst,
2063                                 InternalInstruction &insn) {
2064   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2065     debug("A R/M register operand may not have a SIB byte");
2066     return true;
2067   }
2068 
2069   switch (insn.eaBase) {
2070   default:
2071     debug("Unexpected EA base register");
2072     return true;
2073   case EA_BASE_NONE:
2074     debug("EA_BASE_NONE for ModR/M base");
2075     return true;
2076 #define ENTRY(x) case EA_BASE_##x:
2077   ALL_EA_BASES
2078 #undef ENTRY
2079     debug("A R/M register operand may not have a base; "
2080           "the operand must be a register.");
2081     return true;
2082 #define ENTRY(x)                                                      \
2083   case EA_REG_##x:                                                    \
2084     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2085   ALL_REGS
2086 #undef ENTRY
2087   }
2088 
2089   return false;
2090 }
2091 
2092 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2093 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2094 ///   operand in LLVM's format, and appends it to an MCInst.
2095 ///
2096 /// @param mcInst       - The MCInst to append to.
2097 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2098 ///                       from.
2099 /// @param ForceSIB     - The instruction must use SIB.
2100 /// @return             - 0 on success; nonzero otherwise
2101 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2102                               const MCDisassembler *Dis,
2103                               bool ForceSIB = false) {
2104   // Addresses in an MCInst are represented as five operands:
2105   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2106   //                                SIB base
2107   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2108   //                                scale amount
2109   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2110   //                                the index (which is multiplied by the
2111   //                                scale amount)
2112   //   4. displacement  (immediate) 0, or the displacement if there is one
2113   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2114   //                                if we have segment overrides
2115 
2116   MCOperand baseReg;
2117   MCOperand scaleAmount;
2118   MCOperand indexReg;
2119   MCOperand displacement;
2120   MCOperand segmentReg;
2121   uint64_t pcrel = 0;
2122 
2123   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2124     if (insn.sibBase != SIB_BASE_NONE) {
2125       switch (insn.sibBase) {
2126       default:
2127         debug("Unexpected sibBase");
2128         return true;
2129 #define ENTRY(x)                                          \
2130       case SIB_BASE_##x:                                  \
2131         baseReg = MCOperand::createReg(X86::x); break;
2132       ALL_SIB_BASES
2133 #undef ENTRY
2134       }
2135     } else {
2136       baseReg = MCOperand::createReg(X86::NoRegister);
2137     }
2138 
2139     if (insn.sibIndex != SIB_INDEX_NONE) {
2140       switch (insn.sibIndex) {
2141       default:
2142         debug("Unexpected sibIndex");
2143         return true;
2144 #define ENTRY(x)                                          \
2145       case SIB_INDEX_##x:                                 \
2146         indexReg = MCOperand::createReg(X86::x); break;
2147       EA_BASES_32BIT
2148       EA_BASES_64BIT
2149       REGS_XMM
2150       REGS_YMM
2151       REGS_ZMM
2152 #undef ENTRY
2153       }
2154     } else {
2155       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2156       // but no index is used and modrm alone should have been enough.
2157       // -No base register in 32-bit mode. In 64-bit mode this is used to
2158       //  avoid rip-relative addressing.
2159       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2160       //  base always requires a SIB byte.
2161       // -A scale other than 1 is used.
2162       if (!ForceSIB &&
2163           (insn.sibScale != 1 ||
2164            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2165            (insn.sibBase != SIB_BASE_NONE &&
2166             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2167             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2168         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2169                                                                 X86::RIZ);
2170       } else
2171         indexReg = MCOperand::createReg(X86::NoRegister);
2172     }
2173 
2174     scaleAmount = MCOperand::createImm(insn.sibScale);
2175   } else {
2176     switch (insn.eaBase) {
2177     case EA_BASE_NONE:
2178       if (insn.eaDisplacement == EA_DISP_NONE) {
2179         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2180         return true;
2181       }
2182       if (insn.mode == MODE_64BIT){
2183         pcrel = insn.startLocation + insn.length;
2184         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2185                                              insn.startLocation +
2186                                                  insn.displacementOffset);
2187         // Section 2.2.1.6
2188         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2189                                                                X86::RIP);
2190       }
2191       else
2192         baseReg = MCOperand::createReg(X86::NoRegister);
2193 
2194       indexReg = MCOperand::createReg(X86::NoRegister);
2195       break;
2196     case EA_BASE_BX_SI:
2197       baseReg = MCOperand::createReg(X86::BX);
2198       indexReg = MCOperand::createReg(X86::SI);
2199       break;
2200     case EA_BASE_BX_DI:
2201       baseReg = MCOperand::createReg(X86::BX);
2202       indexReg = MCOperand::createReg(X86::DI);
2203       break;
2204     case EA_BASE_BP_SI:
2205       baseReg = MCOperand::createReg(X86::BP);
2206       indexReg = MCOperand::createReg(X86::SI);
2207       break;
2208     case EA_BASE_BP_DI:
2209       baseReg = MCOperand::createReg(X86::BP);
2210       indexReg = MCOperand::createReg(X86::DI);
2211       break;
2212     default:
2213       indexReg = MCOperand::createReg(X86::NoRegister);
2214       switch (insn.eaBase) {
2215       default:
2216         debug("Unexpected eaBase");
2217         return true;
2218         // Here, we will use the fill-ins defined above.  However,
2219         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2220         //   sib and sib64 were handled in the top-level if, so they're only
2221         //   placeholders to keep the compiler happy.
2222 #define ENTRY(x)                                        \
2223       case EA_BASE_##x:                                 \
2224         baseReg = MCOperand::createReg(X86::x); break;
2225       ALL_EA_BASES
2226 #undef ENTRY
2227 #define ENTRY(x) case EA_REG_##x:
2228       ALL_REGS
2229 #undef ENTRY
2230         debug("A R/M memory operand may not be a register; "
2231               "the base field must be a base.");
2232         return true;
2233       }
2234     }
2235 
2236     scaleAmount = MCOperand::createImm(1);
2237   }
2238 
2239   displacement = MCOperand::createImm(insn.displacement);
2240 
2241   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2242 
2243   mcInst.addOperand(baseReg);
2244   mcInst.addOperand(scaleAmount);
2245   mcInst.addOperand(indexReg);
2246 
2247   const uint8_t dispSize =
2248       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2249 
2250   if (!Dis->tryAddingSymbolicOperand(
2251           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2252           insn.displacementOffset, dispSize, insn.length))
2253     mcInst.addOperand(displacement);
2254   mcInst.addOperand(segmentReg);
2255   return false;
2256 }
2257 
2258 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2259 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2260 ///
2261 /// @param mcInst       - The MCInst to append to.
2262 /// @param operand      - The operand, as stored in the descriptor table.
2263 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2264 ///                       from.
2265 /// @return             - 0 on success; nonzero otherwise
2266 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2267                         InternalInstruction &insn, const MCDisassembler *Dis) {
2268   switch (operand.type) {
2269   default:
2270     debug("Unexpected type for a R/M operand");
2271     return true;
2272   case TYPE_R8:
2273   case TYPE_R16:
2274   case TYPE_R32:
2275   case TYPE_R64:
2276   case TYPE_Rv:
2277   case TYPE_MM64:
2278   case TYPE_XMM:
2279   case TYPE_YMM:
2280   case TYPE_ZMM:
2281   case TYPE_TMM:
2282   case TYPE_VK_PAIR:
2283   case TYPE_VK:
2284   case TYPE_DEBUGREG:
2285   case TYPE_CONTROLREG:
2286   case TYPE_BNDR:
2287     return translateRMRegister(mcInst, insn);
2288   case TYPE_M:
2289   case TYPE_MVSIBX:
2290   case TYPE_MVSIBY:
2291   case TYPE_MVSIBZ:
2292     return translateRMMemory(mcInst, insn, Dis);
2293   case TYPE_MSIB:
2294     return translateRMMemory(mcInst, insn, Dis, true);
2295   }
2296 }
2297 
2298 /// translateFPRegister - Translates a stack position on the FPU stack to its
2299 ///   LLVM form, and appends it to an MCInst.
2300 ///
2301 /// @param mcInst       - The MCInst to append to.
2302 /// @param stackPos     - The stack position to translate.
2303 static void translateFPRegister(MCInst &mcInst,
2304                                 uint8_t stackPos) {
2305   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2306 }
2307 
2308 /// translateMaskRegister - Translates a 3-bit mask register number to
2309 ///   LLVM form, and appends it to an MCInst.
2310 ///
2311 /// @param mcInst       - The MCInst to append to.
2312 /// @param maskRegNum   - Number of mask register from 0 to 7.
2313 /// @return             - false on success; true otherwise.
2314 static bool translateMaskRegister(MCInst &mcInst,
2315                                 uint8_t maskRegNum) {
2316   if (maskRegNum >= 8) {
2317     debug("Invalid mask register number");
2318     return true;
2319   }
2320 
2321   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2322   return false;
2323 }
2324 
2325 /// translateOperand - Translates an operand stored in an internal instruction
2326 ///   to LLVM's format and appends it to an MCInst.
2327 ///
2328 /// @param mcInst       - The MCInst to append to.
2329 /// @param operand      - The operand, as stored in the descriptor table.
2330 /// @param insn         - The internal instruction.
2331 /// @return             - false on success; true otherwise.
2332 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2333                              InternalInstruction &insn,
2334                              const MCDisassembler *Dis) {
2335   switch (operand.encoding) {
2336   default:
2337     debug("Unhandled operand encoding during translation");
2338     return true;
2339   case ENCODING_REG:
2340     translateRegister(mcInst, insn.reg);
2341     return false;
2342   case ENCODING_WRITEMASK:
2343     return translateMaskRegister(mcInst, insn.writemask);
2344   case ENCODING_SIB:
2345   CASE_ENCODING_RM:
2346   CASE_ENCODING_VSIB:
2347     return translateRM(mcInst, operand, insn, Dis);
2348   case ENCODING_IB:
2349   case ENCODING_IW:
2350   case ENCODING_ID:
2351   case ENCODING_IO:
2352   case ENCODING_Iv:
2353   case ENCODING_Ia:
2354     translateImmediate(mcInst,
2355                        insn.immediates[insn.numImmediatesTranslated++],
2356                        operand,
2357                        insn,
2358                        Dis);
2359     return false;
2360   case ENCODING_IRC:
2361     mcInst.addOperand(MCOperand::createImm(insn.RC));
2362     return false;
2363   case ENCODING_SI:
2364     return translateSrcIndex(mcInst, insn);
2365   case ENCODING_DI:
2366     return translateDstIndex(mcInst, insn);
2367   case ENCODING_RB:
2368   case ENCODING_RW:
2369   case ENCODING_RD:
2370   case ENCODING_RO:
2371   case ENCODING_Rv:
2372     translateRegister(mcInst, insn.opcodeRegister);
2373     return false;
2374   case ENCODING_CC:
2375     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2376     return false;
2377   case ENCODING_FP:
2378     translateFPRegister(mcInst, insn.modRM & 7);
2379     return false;
2380   case ENCODING_VVVV:
2381     translateRegister(mcInst, insn.vvvv);
2382     return false;
2383   case ENCODING_DUP:
2384     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2385                             insn, Dis);
2386   }
2387 }
2388 
2389 /// translateInstruction - Translates an internal instruction and all its
2390 ///   operands to an MCInst.
2391 ///
2392 /// @param mcInst       - The MCInst to populate with the instruction's data.
2393 /// @param insn         - The internal instruction.
2394 /// @return             - false on success; true otherwise.
2395 static bool translateInstruction(MCInst &mcInst,
2396                                 InternalInstruction &insn,
2397                                 const MCDisassembler *Dis) {
2398   if (!insn.spec) {
2399     debug("Instruction has no specification");
2400     return true;
2401   }
2402 
2403   mcInst.clear();
2404   mcInst.setOpcode(insn.instructionID);
2405   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2406   // prefix bytes should be disassembled as xrelease and xacquire then set the
2407   // opcode to those instead of the rep and repne opcodes.
2408   if (insn.xAcquireRelease) {
2409     if(mcInst.getOpcode() == X86::REP_PREFIX)
2410       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2411     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2412       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2413   }
2414 
2415   insn.numImmediatesTranslated = 0;
2416 
2417   for (const auto &Op : insn.operands) {
2418     if (Op.encoding != ENCODING_NONE) {
2419       if (translateOperand(mcInst, Op, insn, Dis)) {
2420         return true;
2421       }
2422     }
2423   }
2424 
2425   return false;
2426 }
2427 
2428 static MCDisassembler *createX86Disassembler(const Target &T,
2429                                              const MCSubtargetInfo &STI,
2430                                              MCContext &Ctx) {
2431   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2432   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2433 }
2434 
2435 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2436   // Register the disassembler.
2437   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2438                                          createX86Disassembler);
2439   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2440                                          createX86Disassembler);
2441 }
2442