1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "TargetInfo/X86TargetInfo.h" 79 #include "X86DisassemblerDecoder.h" 80 #include "llvm/MC/MCContext.h" 81 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 82 #include "llvm/MC/MCExpr.h" 83 #include "llvm/MC/MCInst.h" 84 #include "llvm/MC/MCInstrInfo.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/MC/TargetRegistry.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/raw_ostream.h" 90 91 using namespace llvm; 92 using namespace llvm::X86Disassembler; 93 94 #define DEBUG_TYPE "x86-disassembler" 95 96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); 97 98 // Specifies whether a ModR/M byte is needed and (if so) which 99 // instruction each possible value of the ModR/M byte corresponds to. Once 100 // this information is known, we have narrowed down to a single instruction. 101 struct ModRMDecision { 102 uint8_t modrm_type; 103 uint16_t instructionIDs; 104 }; 105 106 // Specifies which set of ModR/M->instruction tables to look at 107 // given a particular opcode. 108 struct OpcodeDecision { 109 ModRMDecision modRMDecisions[256]; 110 }; 111 112 // Specifies which opcode->instruction tables to look at given 113 // a particular context (set of attributes). Since there are many possible 114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context 115 // applies given a specific set of attributes. Hence there are only IC_max 116 // entries in this table, rather than 2^(ATTR_max). 117 struct ContextDecision { 118 OpcodeDecision opcodeDecisions[IC_max]; 119 }; 120 121 #include "X86GenDisassemblerTables.inc" 122 123 static InstrUID decode(OpcodeType type, InstructionContext insnContext, 124 uint8_t opcode, uint8_t modRM) { 125 const struct ModRMDecision *dec; 126 127 switch (type) { 128 case ONEBYTE: 129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 130 break; 131 case TWOBYTE: 132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 133 break; 134 case THREEBYTE_38: 135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 136 break; 137 case THREEBYTE_3A: 138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 139 break; 140 case XOP8_MAP: 141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 142 break; 143 case XOP9_MAP: 144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 145 break; 146 case XOPA_MAP: 147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 148 break; 149 case THREEDNOW_MAP: 150 dec = 151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 152 break; 153 case MAP4: 154 dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 155 break; 156 case MAP5: 157 dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 158 break; 159 case MAP6: 160 dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 161 break; 162 case MAP7: 163 dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 164 break; 165 } 166 167 switch (dec->modrm_type) { 168 default: 169 llvm_unreachable("Corrupt table! Unknown modrm_type"); 170 return 0; 171 case MODRM_ONEENTRY: 172 return modRMTable[dec->instructionIDs]; 173 case MODRM_SPLITRM: 174 if (modFromModRM(modRM) == 0x3) 175 return modRMTable[dec->instructionIDs + 1]; 176 return modRMTable[dec->instructionIDs]; 177 case MODRM_SPLITREG: 178 if (modFromModRM(modRM) == 0x3) 179 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; 180 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 181 case MODRM_SPLITMISC: 182 if (modFromModRM(modRM) == 0x3) 183 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; 184 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 185 case MODRM_FULL: 186 return modRMTable[dec->instructionIDs + modRM]; 187 } 188 } 189 190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) { 191 uint64_t offset = insn->readerCursor - insn->startLocation; 192 if (offset >= insn->bytes.size()) 193 return true; 194 byte = insn->bytes[offset]; 195 return false; 196 } 197 198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { 199 auto r = insn->bytes; 200 uint64_t offset = insn->readerCursor - insn->startLocation; 201 if (offset + sizeof(T) > r.size()) 202 return true; 203 ptr = support::endian::read<T>(&r[offset], llvm::endianness::little); 204 insn->readerCursor += sizeof(T); 205 return false; 206 } 207 208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { 209 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; 210 } 211 212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) { 213 return insn->mode == MODE_64BIT && prefix == 0xd5; 214 } 215 216 // Consumes all of an instruction's prefix bytes, and marks the 217 // instruction as having them. Also sets the instruction's default operand, 218 // address, and other relevant data sizes to report operands correctly. 219 // 220 // insn must not be empty. 221 static int readPrefixes(struct InternalInstruction *insn) { 222 bool isPrefix = true; 223 uint8_t byte = 0; 224 uint8_t nextByte; 225 226 LLVM_DEBUG(dbgs() << "readPrefixes()"); 227 228 while (isPrefix) { 229 // If we fail reading prefixes, just stop here and let the opcode reader 230 // deal with it. 231 if (consume(insn, byte)) 232 break; 233 234 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then 235 // break and let it be disassembled as a normal "instruction". 236 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK 237 break; 238 239 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { 240 // If the byte is 0xf2 or 0xf3, and any of the following conditions are 241 // met: 242 // - it is followed by a LOCK (0xf0) prefix 243 // - it is followed by an xchg instruction 244 // then it should be disassembled as a xacquire/xrelease not repne/rep. 245 if (((nextByte == 0xf0) || 246 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { 247 insn->xAcquireRelease = true; 248 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support 249 break; 250 } 251 // Also if the byte is 0xf3, and the following condition is met: 252 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or 253 // "mov mem, imm" (opcode 0xc6/0xc7) instructions. 254 // then it should be disassembled as an xrelease not rep. 255 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || 256 nextByte == 0xc6 || nextByte == 0xc7)) { 257 insn->xAcquireRelease = true; 258 break; 259 } 260 if (isREX(insn, nextByte)) { 261 uint8_t nnextByte; 262 // Go to REX prefix after the current one 263 if (consume(insn, nnextByte)) 264 return -1; 265 // We should be able to read next byte after REX prefix 266 if (peek(insn, nnextByte)) 267 return -1; 268 --insn->readerCursor; 269 } 270 } 271 272 switch (byte) { 273 case 0xf0: // LOCK 274 insn->hasLockPrefix = true; 275 break; 276 case 0xf2: // REPNE/REPNZ 277 case 0xf3: { // REP or REPE/REPZ 278 uint8_t nextByte; 279 if (peek(insn, nextByte)) 280 break; 281 // TODO: 282 // 1. There could be several 0x66 283 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then 284 // it's not mandatory prefix 285 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need 286 // 0x0f exactly after it to be mandatory prefix 287 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) 288 // The last of 0xf2 /0xf3 is mandatory prefix 289 insn->mandatoryPrefix = byte; 290 insn->repeatPrefix = byte; 291 break; 292 } 293 case 0x2e: // CS segment override -OR- Branch not taken 294 insn->segmentOverride = SEG_OVERRIDE_CS; 295 break; 296 case 0x36: // SS segment override -OR- Branch taken 297 insn->segmentOverride = SEG_OVERRIDE_SS; 298 break; 299 case 0x3e: // DS segment override 300 insn->segmentOverride = SEG_OVERRIDE_DS; 301 break; 302 case 0x26: // ES segment override 303 insn->segmentOverride = SEG_OVERRIDE_ES; 304 break; 305 case 0x64: // FS segment override 306 insn->segmentOverride = SEG_OVERRIDE_FS; 307 break; 308 case 0x65: // GS segment override 309 insn->segmentOverride = SEG_OVERRIDE_GS; 310 break; 311 case 0x66: { // Operand-size override { 312 uint8_t nextByte; 313 insn->hasOpSize = true; 314 if (peek(insn, nextByte)) 315 break; 316 // 0x66 can't overwrite existing mandatory prefix and should be ignored 317 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) 318 insn->mandatoryPrefix = byte; 319 break; 320 } 321 case 0x67: // Address-size override 322 insn->hasAdSize = true; 323 break; 324 default: // Not a prefix byte 325 isPrefix = false; 326 break; 327 } 328 329 if (isPrefix) 330 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); 331 } 332 333 insn->vectorExtensionType = TYPE_NO_VEX_XOP; 334 335 if (byte == 0x62) { 336 uint8_t byte1, byte2; 337 if (consume(insn, byte1)) { 338 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); 339 return -1; 340 } 341 342 if (peek(insn, byte2)) { 343 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 344 return -1; 345 } 346 347 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) { 348 insn->vectorExtensionType = TYPE_EVEX; 349 } else { 350 --insn->readerCursor; // unconsume byte1 351 --insn->readerCursor; // unconsume byte 352 } 353 354 if (insn->vectorExtensionType == TYPE_EVEX) { 355 insn->vectorExtensionPrefix[0] = byte; 356 insn->vectorExtensionPrefix[1] = byte1; 357 if (consume(insn, insn->vectorExtensionPrefix[2])) { 358 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 359 return -1; 360 } 361 if (consume(insn, insn->vectorExtensionPrefix[3])) { 362 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); 363 return -1; 364 } 365 366 if (insn->mode == MODE_64BIT) { 367 // We simulate the REX prefix for simplicity's sake 368 insn->rexPrefix = 0x40 | 369 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | 370 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | 371 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | 372 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); 373 374 // We simulate the REX2 prefix for simplicity's sake 375 insn->rex2ExtensionPrefix[1] = 376 (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) | 377 (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) | 378 (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4); 379 } 380 381 LLVM_DEBUG( 382 dbgs() << format( 383 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", 384 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], 385 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); 386 } 387 } else if (byte == 0xc4) { 388 uint8_t byte1; 389 if (peek(insn, byte1)) { 390 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 391 return -1; 392 } 393 394 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 395 insn->vectorExtensionType = TYPE_VEX_3B; 396 else 397 --insn->readerCursor; 398 399 if (insn->vectorExtensionType == TYPE_VEX_3B) { 400 insn->vectorExtensionPrefix[0] = byte; 401 consume(insn, insn->vectorExtensionPrefix[1]); 402 consume(insn, insn->vectorExtensionPrefix[2]); 403 404 // We simulate the REX prefix for simplicity's sake 405 406 if (insn->mode == MODE_64BIT) 407 insn->rexPrefix = 0x40 | 408 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | 409 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | 410 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | 411 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); 412 413 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", 414 insn->vectorExtensionPrefix[0], 415 insn->vectorExtensionPrefix[1], 416 insn->vectorExtensionPrefix[2])); 417 } 418 } else if (byte == 0xc5) { 419 uint8_t byte1; 420 if (peek(insn, byte1)) { 421 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 422 return -1; 423 } 424 425 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 426 insn->vectorExtensionType = TYPE_VEX_2B; 427 else 428 --insn->readerCursor; 429 430 if (insn->vectorExtensionType == TYPE_VEX_2B) { 431 insn->vectorExtensionPrefix[0] = byte; 432 consume(insn, insn->vectorExtensionPrefix[1]); 433 434 if (insn->mode == MODE_64BIT) 435 insn->rexPrefix = 436 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); 437 438 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 439 default: 440 break; 441 case VEX_PREFIX_66: 442 insn->hasOpSize = true; 443 break; 444 } 445 446 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", 447 insn->vectorExtensionPrefix[0], 448 insn->vectorExtensionPrefix[1])); 449 } 450 } else if (byte == 0x8f) { 451 uint8_t byte1; 452 if (peek(insn, byte1)) { 453 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); 454 return -1; 455 } 456 457 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. 458 insn->vectorExtensionType = TYPE_XOP; 459 else 460 --insn->readerCursor; 461 462 if (insn->vectorExtensionType == TYPE_XOP) { 463 insn->vectorExtensionPrefix[0] = byte; 464 consume(insn, insn->vectorExtensionPrefix[1]); 465 consume(insn, insn->vectorExtensionPrefix[2]); 466 467 // We simulate the REX prefix for simplicity's sake 468 469 if (insn->mode == MODE_64BIT) 470 insn->rexPrefix = 0x40 | 471 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | 472 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | 473 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | 474 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); 475 476 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 477 default: 478 break; 479 case VEX_PREFIX_66: 480 insn->hasOpSize = true; 481 break; 482 } 483 484 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", 485 insn->vectorExtensionPrefix[0], 486 insn->vectorExtensionPrefix[1], 487 insn->vectorExtensionPrefix[2])); 488 } 489 } else if (isREX2(insn, byte)) { 490 uint8_t byte1; 491 if (peek(insn, byte1)) { 492 LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2"); 493 return -1; 494 } 495 insn->rex2ExtensionPrefix[0] = byte; 496 consume(insn, insn->rex2ExtensionPrefix[1]); 497 498 // We simulate the REX prefix for simplicity's sake 499 insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) | 500 (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) | 501 (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) | 502 (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0); 503 LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx", 504 insn->rex2ExtensionPrefix[0], 505 insn->rex2ExtensionPrefix[1])); 506 } else if (isREX(insn, byte)) { 507 if (peek(insn, nextByte)) 508 return -1; 509 insn->rexPrefix = byte; 510 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); 511 } else 512 --insn->readerCursor; 513 514 if (insn->mode == MODE_16BIT) { 515 insn->registerSize = (insn->hasOpSize ? 4 : 2); 516 insn->addressSize = (insn->hasAdSize ? 4 : 2); 517 insn->displacementSize = (insn->hasAdSize ? 4 : 2); 518 insn->immediateSize = (insn->hasOpSize ? 4 : 2); 519 } else if (insn->mode == MODE_32BIT) { 520 insn->registerSize = (insn->hasOpSize ? 2 : 4); 521 insn->addressSize = (insn->hasAdSize ? 2 : 4); 522 insn->displacementSize = (insn->hasAdSize ? 2 : 4); 523 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 524 } else if (insn->mode == MODE_64BIT) { 525 insn->displacementSize = 4; 526 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { 527 insn->registerSize = 8; 528 insn->addressSize = (insn->hasAdSize ? 4 : 8); 529 insn->immediateSize = 4; 530 insn->hasOpSize = false; 531 } else { 532 insn->registerSize = (insn->hasOpSize ? 2 : 4); 533 insn->addressSize = (insn->hasAdSize ? 4 : 8); 534 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 535 } 536 } 537 538 return 0; 539 } 540 541 // Consumes the SIB byte to determine addressing information. 542 static int readSIB(struct InternalInstruction *insn) { 543 SIBBase sibBaseBase = SIB_BASE_NONE; 544 uint8_t index, base; 545 546 LLVM_DEBUG(dbgs() << "readSIB()"); 547 switch (insn->addressSize) { 548 case 2: 549 default: 550 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); 551 case 4: 552 insn->sibIndexBase = SIB_INDEX_EAX; 553 sibBaseBase = SIB_BASE_EAX; 554 break; 555 case 8: 556 insn->sibIndexBase = SIB_INDEX_RAX; 557 sibBaseBase = SIB_BASE_RAX; 558 break; 559 } 560 561 if (consume(insn, insn->sib)) 562 return -1; 563 564 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) | 565 (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 566 567 if (index == 0x4) { 568 insn->sibIndex = SIB_INDEX_NONE; 569 } else { 570 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); 571 } 572 573 insn->sibScale = 1 << scaleFromSIB(insn->sib); 574 575 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) | 576 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 577 578 switch (base) { 579 case 0x5: 580 case 0xd: 581 switch (modFromModRM(insn->modRM)) { 582 case 0x0: 583 insn->eaDisplacement = EA_DISP_32; 584 insn->sibBase = SIB_BASE_NONE; 585 break; 586 case 0x1: 587 insn->eaDisplacement = EA_DISP_8; 588 insn->sibBase = (SIBBase)(sibBaseBase + base); 589 break; 590 case 0x2: 591 insn->eaDisplacement = EA_DISP_32; 592 insn->sibBase = (SIBBase)(sibBaseBase + base); 593 break; 594 default: 595 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); 596 } 597 break; 598 default: 599 insn->sibBase = (SIBBase)(sibBaseBase + base); 600 break; 601 } 602 603 return 0; 604 } 605 606 static int readDisplacement(struct InternalInstruction *insn) { 607 int8_t d8; 608 int16_t d16; 609 int32_t d32; 610 LLVM_DEBUG(dbgs() << "readDisplacement()"); 611 612 insn->displacementOffset = insn->readerCursor - insn->startLocation; 613 switch (insn->eaDisplacement) { 614 case EA_DISP_NONE: 615 break; 616 case EA_DISP_8: 617 if (consume(insn, d8)) 618 return -1; 619 insn->displacement = d8; 620 break; 621 case EA_DISP_16: 622 if (consume(insn, d16)) 623 return -1; 624 insn->displacement = d16; 625 break; 626 case EA_DISP_32: 627 if (consume(insn, d32)) 628 return -1; 629 insn->displacement = d32; 630 break; 631 } 632 633 return 0; 634 } 635 636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. 637 static int readModRM(struct InternalInstruction *insn) { 638 uint8_t mod, rm, reg; 639 LLVM_DEBUG(dbgs() << "readModRM()"); 640 641 if (insn->consumedModRM) 642 return 0; 643 644 if (consume(insn, insn->modRM)) 645 return -1; 646 insn->consumedModRM = true; 647 648 mod = modFromModRM(insn->modRM); 649 rm = rmFromModRM(insn->modRM); 650 reg = regFromModRM(insn->modRM); 651 652 // This goes by insn->registerSize to pick the correct register, which messes 653 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in 654 // fixupReg(). 655 switch (insn->registerSize) { 656 case 2: 657 insn->regBase = MODRM_REG_AX; 658 insn->eaRegBase = EA_REG_AX; 659 break; 660 case 4: 661 insn->regBase = MODRM_REG_EAX; 662 insn->eaRegBase = EA_REG_EAX; 663 break; 664 case 8: 665 insn->regBase = MODRM_REG_RAX; 666 insn->eaRegBase = EA_REG_RAX; 667 break; 668 } 669 670 reg |= (rFromREX(insn->rexPrefix) << 3) | 671 (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 672 rm |= (bFromREX(insn->rexPrefix) << 3) | 673 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4); 674 675 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) 676 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 677 678 insn->reg = (Reg)(insn->regBase + reg); 679 680 switch (insn->addressSize) { 681 case 2: { 682 EABase eaBaseBase = EA_BASE_BX_SI; 683 684 switch (mod) { 685 case 0x0: 686 if (rm == 0x6) { 687 insn->eaBase = EA_BASE_NONE; 688 insn->eaDisplacement = EA_DISP_16; 689 if (readDisplacement(insn)) 690 return -1; 691 } else { 692 insn->eaBase = (EABase)(eaBaseBase + rm); 693 insn->eaDisplacement = EA_DISP_NONE; 694 } 695 break; 696 case 0x1: 697 insn->eaBase = (EABase)(eaBaseBase + rm); 698 insn->eaDisplacement = EA_DISP_8; 699 insn->displacementSize = 1; 700 if (readDisplacement(insn)) 701 return -1; 702 break; 703 case 0x2: 704 insn->eaBase = (EABase)(eaBaseBase + rm); 705 insn->eaDisplacement = EA_DISP_16; 706 if (readDisplacement(insn)) 707 return -1; 708 break; 709 case 0x3: 710 insn->eaBase = (EABase)(insn->eaRegBase + rm); 711 if (readDisplacement(insn)) 712 return -1; 713 break; 714 } 715 break; 716 } 717 case 4: 718 case 8: { 719 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); 720 721 switch (mod) { 722 case 0x0: 723 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this 724 // In determining whether RIP-relative mode is used (rm=5), 725 // or whether a SIB byte is present (rm=4), 726 // the extension bits (REX.b and EVEX.x) are ignored. 727 switch (rm & 7) { 728 case 0x4: // SIB byte is present 729 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); 730 if (readSIB(insn) || readDisplacement(insn)) 731 return -1; 732 break; 733 case 0x5: // RIP-relative 734 insn->eaBase = EA_BASE_NONE; 735 insn->eaDisplacement = EA_DISP_32; 736 if (readDisplacement(insn)) 737 return -1; 738 break; 739 default: 740 insn->eaBase = (EABase)(eaBaseBase + rm); 741 break; 742 } 743 break; 744 case 0x1: 745 insn->displacementSize = 1; 746 [[fallthrough]]; 747 case 0x2: 748 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); 749 switch (rm & 7) { 750 case 0x4: // SIB byte is present 751 insn->eaBase = EA_BASE_sib; 752 if (readSIB(insn) || readDisplacement(insn)) 753 return -1; 754 break; 755 default: 756 insn->eaBase = (EABase)(eaBaseBase + rm); 757 if (readDisplacement(insn)) 758 return -1; 759 break; 760 } 761 break; 762 case 0x3: 763 insn->eaDisplacement = EA_DISP_NONE; 764 insn->eaBase = (EABase)(insn->eaRegBase + rm); 765 break; 766 } 767 break; 768 } 769 } // switch (insn->addressSize) 770 771 return 0; 772 } 773 774 #define GENERIC_FIXUP_FUNC(name, base, prefix) \ 775 static uint16_t name(struct InternalInstruction *insn, OperandType type, \ 776 uint8_t index, uint8_t *valid) { \ 777 *valid = 1; \ 778 switch (type) { \ 779 default: \ 780 debug("Unhandled register type"); \ 781 *valid = 0; \ 782 return 0; \ 783 case TYPE_Rv: \ 784 return base + index; \ 785 case TYPE_R8: \ 786 if (insn->rexPrefix && index >= 4 && index <= 7) \ 787 return prefix##_SPL + (index - 4); \ 788 else \ 789 return prefix##_AL + index; \ 790 case TYPE_R16: \ 791 return prefix##_AX + index; \ 792 case TYPE_R32: \ 793 return prefix##_EAX + index; \ 794 case TYPE_R64: \ 795 return prefix##_RAX + index; \ 796 case TYPE_ZMM: \ 797 return prefix##_ZMM0 + index; \ 798 case TYPE_YMM: \ 799 return prefix##_YMM0 + index; \ 800 case TYPE_XMM: \ 801 return prefix##_XMM0 + index; \ 802 case TYPE_TMM: \ 803 if (index > 7) \ 804 *valid = 0; \ 805 return prefix##_TMM0 + index; \ 806 case TYPE_VK: \ 807 index &= 0xf; \ 808 if (index > 7) \ 809 *valid = 0; \ 810 return prefix##_K0 + index; \ 811 case TYPE_VK_PAIR: \ 812 if (index > 7) \ 813 *valid = 0; \ 814 return prefix##_K0_K1 + (index / 2); \ 815 case TYPE_MM64: \ 816 return prefix##_MM0 + (index & 0x7); \ 817 case TYPE_SEGMENTREG: \ 818 if ((index & 7) > 5) \ 819 *valid = 0; \ 820 return prefix##_ES + (index & 7); \ 821 case TYPE_DEBUGREG: \ 822 return prefix##_DR0 + index; \ 823 case TYPE_CONTROLREG: \ 824 return prefix##_CR0 + index; \ 825 case TYPE_MVSIBX: \ 826 return prefix##_XMM0 + index; \ 827 case TYPE_MVSIBY: \ 828 return prefix##_YMM0 + index; \ 829 case TYPE_MVSIBZ: \ 830 return prefix##_ZMM0 + index; \ 831 } \ 832 } 833 834 // Consult an operand type to determine the meaning of the reg or R/M field. If 835 // the operand is an XMM operand, for example, an operand would be XMM0 instead 836 // of AX, which readModRM() would otherwise misinterpret it as. 837 // 838 // @param insn - The instruction containing the operand. 839 // @param type - The operand type. 840 // @param index - The existing value of the field as reported by readModRM(). 841 // @param valid - The address of a uint8_t. The target is set to 1 if the 842 // field is valid for the register class; 0 if not. 843 // @return - The proper value. 844 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG) 845 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) 846 847 // Consult an operand specifier to determine which of the fixup*Value functions 848 // to use in correcting readModRM()'ss interpretation. 849 // 850 // @param insn - See fixup*Value(). 851 // @param op - The operand specifier. 852 // @return - 0 if fixup was successful; -1 if the register returned was 853 // invalid for its class. 854 static int fixupReg(struct InternalInstruction *insn, 855 const struct OperandSpecifier *op) { 856 uint8_t valid; 857 LLVM_DEBUG(dbgs() << "fixupReg()"); 858 859 switch ((OperandEncoding)op->encoding) { 860 default: 861 debug("Expected a REG or R/M encoding in fixupReg"); 862 return -1; 863 case ENCODING_VVVV: 864 insn->vvvv = 865 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); 866 if (!valid) 867 return -1; 868 break; 869 case ENCODING_REG: 870 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, 871 insn->reg - insn->regBase, &valid); 872 if (!valid) 873 return -1; 874 break; 875 CASE_ENCODING_RM: 876 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 877 modFromModRM(insn->modRM) == 3) { 878 // EVEX_X can extend the register id to 32 for a non-GPR register that is 879 // encoded in RM. 880 // mode : MODE_64_BIT 881 // Only 8 vector registers are available in 32 bit mode 882 // mod : 3 883 // RM encodes a register 884 switch (op->type) { 885 case TYPE_Rv: 886 case TYPE_R8: 887 case TYPE_R16: 888 case TYPE_R32: 889 case TYPE_R64: 890 break; 891 default: 892 insn->eaBase = 893 (EABase)(insn->eaBase + 894 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4)); 895 break; 896 } 897 } 898 [[fallthrough]]; 899 case ENCODING_SIB: 900 if (insn->eaBase >= insn->eaRegBase) { 901 insn->eaBase = (EABase)fixupRMValue( 902 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); 903 if (!valid) 904 return -1; 905 } 906 break; 907 } 908 909 return 0; 910 } 911 912 // Read the opcode (except the ModR/M byte in the case of extended or escape 913 // opcodes). 914 static bool readOpcode(struct InternalInstruction *insn) { 915 uint8_t current; 916 LLVM_DEBUG(dbgs() << "readOpcode()"); 917 918 insn->opcodeType = ONEBYTE; 919 if (insn->vectorExtensionType == TYPE_EVEX) { 920 switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { 921 default: 922 LLVM_DEBUG( 923 dbgs() << format("Unhandled mmm field for instruction (0x%hhx)", 924 mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); 925 return true; 926 case VEX_LOB_0F: 927 insn->opcodeType = TWOBYTE; 928 return consume(insn, insn->opcode); 929 case VEX_LOB_0F38: 930 insn->opcodeType = THREEBYTE_38; 931 return consume(insn, insn->opcode); 932 case VEX_LOB_0F3A: 933 insn->opcodeType = THREEBYTE_3A; 934 return consume(insn, insn->opcode); 935 case VEX_LOB_MAP4: 936 insn->opcodeType = MAP4; 937 return consume(insn, insn->opcode); 938 case VEX_LOB_MAP5: 939 insn->opcodeType = MAP5; 940 return consume(insn, insn->opcode); 941 case VEX_LOB_MAP6: 942 insn->opcodeType = MAP6; 943 return consume(insn, insn->opcode); 944 } 945 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 946 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { 947 default: 948 LLVM_DEBUG( 949 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 950 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 951 return true; 952 case VEX_LOB_0F: 953 insn->opcodeType = TWOBYTE; 954 return consume(insn, insn->opcode); 955 case VEX_LOB_0F38: 956 insn->opcodeType = THREEBYTE_38; 957 return consume(insn, insn->opcode); 958 case VEX_LOB_0F3A: 959 insn->opcodeType = THREEBYTE_3A; 960 return consume(insn, insn->opcode); 961 case VEX_LOB_MAP5: 962 insn->opcodeType = MAP5; 963 return consume(insn, insn->opcode); 964 case VEX_LOB_MAP6: 965 insn->opcodeType = MAP6; 966 return consume(insn, insn->opcode); 967 case VEX_LOB_MAP7: 968 insn->opcodeType = MAP7; 969 return consume(insn, insn->opcode); 970 } 971 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 972 insn->opcodeType = TWOBYTE; 973 return consume(insn, insn->opcode); 974 } else if (insn->vectorExtensionType == TYPE_XOP) { 975 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { 976 default: 977 LLVM_DEBUG( 978 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 979 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 980 return true; 981 case XOP_MAP_SELECT_8: 982 insn->opcodeType = XOP8_MAP; 983 return consume(insn, insn->opcode); 984 case XOP_MAP_SELECT_9: 985 insn->opcodeType = XOP9_MAP; 986 return consume(insn, insn->opcode); 987 case XOP_MAP_SELECT_A: 988 insn->opcodeType = XOPA_MAP; 989 return consume(insn, insn->opcode); 990 } 991 } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) { 992 // m bit indicates opcode map 1 993 insn->opcodeType = TWOBYTE; 994 return consume(insn, insn->opcode); 995 } 996 997 if (consume(insn, current)) 998 return true; 999 1000 if (current == 0x0f) { 1001 LLVM_DEBUG( 1002 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); 1003 if (consume(insn, current)) 1004 return true; 1005 1006 if (current == 0x38) { 1007 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 1008 current)); 1009 if (consume(insn, current)) 1010 return true; 1011 1012 insn->opcodeType = THREEBYTE_38; 1013 } else if (current == 0x3a) { 1014 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 1015 current)); 1016 if (consume(insn, current)) 1017 return true; 1018 1019 insn->opcodeType = THREEBYTE_3A; 1020 } else if (current == 0x0f) { 1021 LLVM_DEBUG( 1022 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); 1023 1024 // Consume operands before the opcode to comply with the 3DNow encoding 1025 if (readModRM(insn)) 1026 return true; 1027 1028 if (consume(insn, current)) 1029 return true; 1030 1031 insn->opcodeType = THREEDNOW_MAP; 1032 } else { 1033 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); 1034 insn->opcodeType = TWOBYTE; 1035 } 1036 } else if (insn->mandatoryPrefix) 1037 // The opcode with mandatory prefix must start with opcode escape. 1038 // If not it's legacy repeat prefix 1039 insn->mandatoryPrefix = 0; 1040 1041 // At this point we have consumed the full opcode. 1042 // Anything we consume from here on must be unconsumed. 1043 insn->opcode = current; 1044 1045 return false; 1046 } 1047 1048 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). 1049 static bool is16BitEquivalent(const char *orig, const char *equiv) { 1050 for (int i = 0;; i++) { 1051 if (orig[i] == '\0' && equiv[i] == '\0') 1052 return true; 1053 if (orig[i] == '\0' || equiv[i] == '\0') 1054 return false; 1055 if (orig[i] != equiv[i]) { 1056 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') 1057 continue; 1058 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') 1059 continue; 1060 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') 1061 continue; 1062 return false; 1063 } 1064 } 1065 } 1066 1067 // Determine whether this instruction is a 64-bit instruction. 1068 static bool is64Bit(const char *name) { 1069 for (int i = 0;; ++i) { 1070 if (name[i] == '\0') 1071 return false; 1072 if (name[i] == '6' && name[i + 1] == '4') 1073 return true; 1074 } 1075 } 1076 1077 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1078 // for extended and escape opcodes, and using a supplied attribute mask. 1079 static int getInstructionIDWithAttrMask(uint16_t *instructionID, 1080 struct InternalInstruction *insn, 1081 uint16_t attrMask) { 1082 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); 1083 const ContextDecision *decision; 1084 switch (insn->opcodeType) { 1085 case ONEBYTE: 1086 decision = &ONEBYTE_SYM; 1087 break; 1088 case TWOBYTE: 1089 decision = &TWOBYTE_SYM; 1090 break; 1091 case THREEBYTE_38: 1092 decision = &THREEBYTE38_SYM; 1093 break; 1094 case THREEBYTE_3A: 1095 decision = &THREEBYTE3A_SYM; 1096 break; 1097 case XOP8_MAP: 1098 decision = &XOP8_MAP_SYM; 1099 break; 1100 case XOP9_MAP: 1101 decision = &XOP9_MAP_SYM; 1102 break; 1103 case XOPA_MAP: 1104 decision = &XOPA_MAP_SYM; 1105 break; 1106 case THREEDNOW_MAP: 1107 decision = &THREEDNOW_MAP_SYM; 1108 break; 1109 case MAP4: 1110 decision = &MAP4_SYM; 1111 break; 1112 case MAP5: 1113 decision = &MAP5_SYM; 1114 break; 1115 case MAP6: 1116 decision = &MAP6_SYM; 1117 break; 1118 case MAP7: 1119 decision = &MAP7_SYM; 1120 break; 1121 } 1122 1123 if (decision->opcodeDecisions[insnCtx] 1124 .modRMDecisions[insn->opcode] 1125 .modrm_type != MODRM_ONEENTRY) { 1126 if (readModRM(insn)) 1127 return -1; 1128 *instructionID = 1129 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); 1130 } else { 1131 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); 1132 } 1133 1134 return 0; 1135 } 1136 1137 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1138 // for extended and escape opcodes. Determines the attributes and context for 1139 // the instruction before doing so. 1140 static int getInstructionID(struct InternalInstruction *insn, 1141 const MCInstrInfo *mii) { 1142 uint16_t attrMask; 1143 uint16_t instructionID; 1144 1145 LLVM_DEBUG(dbgs() << "getID()"); 1146 1147 attrMask = ATTR_NONE; 1148 1149 if (insn->mode == MODE_64BIT) 1150 attrMask |= ATTR_64BIT; 1151 1152 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1153 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; 1154 1155 if (insn->vectorExtensionType == TYPE_EVEX) { 1156 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { 1157 case VEX_PREFIX_66: 1158 attrMask |= ATTR_OPSIZE; 1159 break; 1160 case VEX_PREFIX_F3: 1161 attrMask |= ATTR_XS; 1162 break; 1163 case VEX_PREFIX_F2: 1164 attrMask |= ATTR_XD; 1165 break; 1166 } 1167 1168 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1169 attrMask |= ATTR_EVEXKZ; 1170 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1171 attrMask |= ATTR_EVEXB; 1172 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1173 attrMask |= ATTR_EVEXK; 1174 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1175 attrMask |= ATTR_VEXL; 1176 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1177 attrMask |= ATTR_EVEXL2; 1178 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 1179 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { 1180 case VEX_PREFIX_66: 1181 attrMask |= ATTR_OPSIZE; 1182 break; 1183 case VEX_PREFIX_F3: 1184 attrMask |= ATTR_XS; 1185 break; 1186 case VEX_PREFIX_F2: 1187 attrMask |= ATTR_XD; 1188 break; 1189 } 1190 1191 if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) 1192 attrMask |= ATTR_VEXL; 1193 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 1194 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 1195 case VEX_PREFIX_66: 1196 attrMask |= ATTR_OPSIZE; 1197 if (insn->hasAdSize) 1198 attrMask |= ATTR_ADSIZE; 1199 break; 1200 case VEX_PREFIX_F3: 1201 attrMask |= ATTR_XS; 1202 break; 1203 case VEX_PREFIX_F2: 1204 attrMask |= ATTR_XD; 1205 break; 1206 } 1207 1208 if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) 1209 attrMask |= ATTR_VEXL; 1210 } else if (insn->vectorExtensionType == TYPE_XOP) { 1211 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 1212 case VEX_PREFIX_66: 1213 attrMask |= ATTR_OPSIZE; 1214 break; 1215 case VEX_PREFIX_F3: 1216 attrMask |= ATTR_XS; 1217 break; 1218 case VEX_PREFIX_F2: 1219 attrMask |= ATTR_XD; 1220 break; 1221 } 1222 1223 if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) 1224 attrMask |= ATTR_VEXL; 1225 } else { 1226 return -1; 1227 } 1228 } else if (!insn->mandatoryPrefix) { 1229 // If we don't have mandatory prefix we should use legacy prefixes here 1230 if (insn->hasOpSize && (insn->mode != MODE_16BIT)) 1231 attrMask |= ATTR_OPSIZE; 1232 if (insn->hasAdSize) 1233 attrMask |= ATTR_ADSIZE; 1234 if (insn->opcodeType == ONEBYTE) { 1235 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) 1236 // Special support for PAUSE 1237 attrMask |= ATTR_XS; 1238 } else { 1239 if (insn->repeatPrefix == 0xf2) 1240 attrMask |= ATTR_XD; 1241 else if (insn->repeatPrefix == 0xf3) 1242 attrMask |= ATTR_XS; 1243 } 1244 } else { 1245 switch (insn->mandatoryPrefix) { 1246 case 0xf2: 1247 attrMask |= ATTR_XD; 1248 break; 1249 case 0xf3: 1250 attrMask |= ATTR_XS; 1251 break; 1252 case 0x66: 1253 if (insn->mode != MODE_16BIT) 1254 attrMask |= ATTR_OPSIZE; 1255 if (insn->hasAdSize) 1256 attrMask |= ATTR_ADSIZE; 1257 break; 1258 case 0x67: 1259 attrMask |= ATTR_ADSIZE; 1260 break; 1261 } 1262 } 1263 1264 if (insn->rexPrefix & 0x08) { 1265 attrMask |= ATTR_REXW; 1266 attrMask &= ~ATTR_ADSIZE; 1267 } 1268 1269 // Absolute jump and pushp/popp need special handling 1270 if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE && 1271 (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50)) 1272 attrMask |= ATTR_REX2; 1273 1274 if (insn->mode == MODE_16BIT) { 1275 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning 1276 // of the AdSize prefix is inverted w.r.t. 32-bit mode. 1277 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) 1278 attrMask ^= ATTR_ADSIZE; 1279 // If we're in 16-bit mode and this is one of the relative jumps and opsize 1280 // prefix isn't present, we need to force the opsize attribute since the 1281 // prefix is inverted relative to 32-bit mode. 1282 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && 1283 (insn->opcode == 0xE8 || insn->opcode == 0xE9)) 1284 attrMask |= ATTR_OPSIZE; 1285 1286 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && 1287 insn->opcode >= 0x80 && insn->opcode <= 0x8F) 1288 attrMask |= ATTR_OPSIZE; 1289 } 1290 1291 1292 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1293 return -1; 1294 1295 // The following clauses compensate for limitations of the tables. 1296 1297 if (insn->mode != MODE_64BIT && 1298 insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1299 // The tables can't distinquish between cases where the W-bit is used to 1300 // select register size and cases where its a required part of the opcode. 1301 if ((insn->vectorExtensionType == TYPE_EVEX && 1302 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || 1303 (insn->vectorExtensionType == TYPE_VEX_3B && 1304 wFromVEX3of3(insn->vectorExtensionPrefix[2])) || 1305 (insn->vectorExtensionType == TYPE_XOP && 1306 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { 1307 1308 uint16_t instructionIDWithREXW; 1309 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, 1310 attrMask | ATTR_REXW)) { 1311 insn->instructionID = instructionID; 1312 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1313 return 0; 1314 } 1315 1316 auto SpecName = mii->getName(instructionIDWithREXW); 1317 // If not a 64-bit instruction. Switch the opcode. 1318 if (!is64Bit(SpecName.data())) { 1319 insn->instructionID = instructionIDWithREXW; 1320 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; 1321 return 0; 1322 } 1323 } 1324 } 1325 1326 // Absolute moves, umonitor, and movdir64b need special handling. 1327 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are 1328 // inverted w.r.t. 1329 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in 1330 // any position. 1331 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || 1332 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || 1333 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { 1334 // Make sure we observed the prefixes in any position. 1335 if (insn->hasAdSize) 1336 attrMask |= ATTR_ADSIZE; 1337 if (insn->hasOpSize) 1338 attrMask |= ATTR_OPSIZE; 1339 1340 // In 16-bit, invert the attributes. 1341 if (insn->mode == MODE_16BIT) { 1342 attrMask ^= ATTR_ADSIZE; 1343 1344 // The OpSize attribute is only valid with the absolute moves. 1345 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) 1346 attrMask ^= ATTR_OPSIZE; 1347 } 1348 1349 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1350 return -1; 1351 1352 insn->instructionID = instructionID; 1353 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1354 return 0; 1355 } 1356 1357 if ((insn->mode == MODE_16BIT || insn->hasOpSize) && 1358 !(attrMask & ATTR_OPSIZE)) { 1359 // The instruction tables make no distinction between instructions that 1360 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a 1361 // particular spot (i.e., many MMX operations). In general we're 1362 // conservative, but in the specific case where OpSize is present but not in 1363 // the right place we check if there's a 16-bit operation. 1364 const struct InstructionSpecifier *spec; 1365 uint16_t instructionIDWithOpsize; 1366 llvm::StringRef specName, specWithOpSizeName; 1367 1368 spec = &INSTRUCTIONS_SYM[instructionID]; 1369 1370 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, 1371 attrMask | ATTR_OPSIZE)) { 1372 // ModRM required with OpSize but not present. Give up and return the 1373 // version without OpSize set. 1374 insn->instructionID = instructionID; 1375 insn->spec = spec; 1376 return 0; 1377 } 1378 1379 specName = mii->getName(instructionID); 1380 specWithOpSizeName = mii->getName(instructionIDWithOpsize); 1381 1382 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && 1383 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { 1384 insn->instructionID = instructionIDWithOpsize; 1385 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; 1386 } else { 1387 insn->instructionID = instructionID; 1388 insn->spec = spec; 1389 } 1390 return 0; 1391 } 1392 1393 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && 1394 insn->rexPrefix & 0x01) { 1395 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode 1396 // as XCHG %r8, %eax. 1397 const struct InstructionSpecifier *spec; 1398 uint16_t instructionIDWithNewOpcode; 1399 const struct InstructionSpecifier *specWithNewOpcode; 1400 1401 spec = &INSTRUCTIONS_SYM[instructionID]; 1402 1403 // Borrow opcode from one of the other XCHGar opcodes 1404 insn->opcode = 0x91; 1405 1406 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, 1407 attrMask)) { 1408 insn->opcode = 0x90; 1409 1410 insn->instructionID = instructionID; 1411 insn->spec = spec; 1412 return 0; 1413 } 1414 1415 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; 1416 1417 // Change back 1418 insn->opcode = 0x90; 1419 1420 insn->instructionID = instructionIDWithNewOpcode; 1421 insn->spec = specWithNewOpcode; 1422 1423 return 0; 1424 } 1425 1426 insn->instructionID = instructionID; 1427 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; 1428 1429 return 0; 1430 } 1431 1432 // Read an operand from the opcode field of an instruction and interprets it 1433 // appropriately given the operand width. Handles AddRegFrm instructions. 1434 // 1435 // @param insn - the instruction whose opcode field is to be read. 1436 // @param size - The width (in bytes) of the register being specified. 1437 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means 1438 // RAX. 1439 // @return - 0 on success; nonzero otherwise. 1440 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { 1441 LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); 1442 1443 if (size == 0) 1444 size = insn->registerSize; 1445 1446 auto setOpcodeRegister = [&](unsigned base) { 1447 insn->opcodeRegister = 1448 (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) | 1449 (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) | 1450 (insn->opcode & 7))); 1451 }; 1452 1453 switch (size) { 1454 case 1: 1455 setOpcodeRegister(MODRM_REG_AL); 1456 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && 1457 insn->opcodeRegister < MODRM_REG_AL + 0x8) { 1458 insn->opcodeRegister = 1459 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); 1460 } 1461 1462 break; 1463 case 2: 1464 setOpcodeRegister(MODRM_REG_AX); 1465 break; 1466 case 4: 1467 setOpcodeRegister(MODRM_REG_EAX); 1468 break; 1469 case 8: 1470 setOpcodeRegister(MODRM_REG_RAX); 1471 break; 1472 } 1473 1474 return 0; 1475 } 1476 1477 // Consume an immediate operand from an instruction, given the desired operand 1478 // size. 1479 // 1480 // @param insn - The instruction whose operand is to be read. 1481 // @param size - The width (in bytes) of the operand. 1482 // @return - 0 if the immediate was successfully consumed; nonzero 1483 // otherwise. 1484 static int readImmediate(struct InternalInstruction *insn, uint8_t size) { 1485 uint8_t imm8; 1486 uint16_t imm16; 1487 uint32_t imm32; 1488 uint64_t imm64; 1489 1490 LLVM_DEBUG(dbgs() << "readImmediate()"); 1491 1492 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); 1493 1494 insn->immediateSize = size; 1495 insn->immediateOffset = insn->readerCursor - insn->startLocation; 1496 1497 switch (size) { 1498 case 1: 1499 if (consume(insn, imm8)) 1500 return -1; 1501 insn->immediates[insn->numImmediatesConsumed] = imm8; 1502 break; 1503 case 2: 1504 if (consume(insn, imm16)) 1505 return -1; 1506 insn->immediates[insn->numImmediatesConsumed] = imm16; 1507 break; 1508 case 4: 1509 if (consume(insn, imm32)) 1510 return -1; 1511 insn->immediates[insn->numImmediatesConsumed] = imm32; 1512 break; 1513 case 8: 1514 if (consume(insn, imm64)) 1515 return -1; 1516 insn->immediates[insn->numImmediatesConsumed] = imm64; 1517 break; 1518 default: 1519 llvm_unreachable("invalid size"); 1520 } 1521 1522 insn->numImmediatesConsumed++; 1523 1524 return 0; 1525 } 1526 1527 // Consume vvvv from an instruction if it has a VEX prefix. 1528 static int readVVVV(struct InternalInstruction *insn) { 1529 LLVM_DEBUG(dbgs() << "readVVVV()"); 1530 1531 int vvvv; 1532 if (insn->vectorExtensionType == TYPE_EVEX) 1533 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | 1534 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); 1535 else if (insn->vectorExtensionType == TYPE_VEX_3B) 1536 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); 1537 else if (insn->vectorExtensionType == TYPE_VEX_2B) 1538 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); 1539 else if (insn->vectorExtensionType == TYPE_XOP) 1540 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); 1541 else 1542 return -1; 1543 1544 if (insn->mode != MODE_64BIT) 1545 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. 1546 1547 insn->vvvv = static_cast<Reg>(vvvv); 1548 return 0; 1549 } 1550 1551 // Read an mask register from the opcode field of an instruction. 1552 // 1553 // @param insn - The instruction whose opcode field is to be read. 1554 // @return - 0 on success; nonzero otherwise. 1555 static int readMaskRegister(struct InternalInstruction *insn) { 1556 LLVM_DEBUG(dbgs() << "readMaskRegister()"); 1557 1558 if (insn->vectorExtensionType != TYPE_EVEX) 1559 return -1; 1560 1561 insn->writemask = 1562 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); 1563 return 0; 1564 } 1565 1566 // Consults the specifier for an instruction and consumes all 1567 // operands for that instruction, interpreting them as it goes. 1568 static int readOperands(struct InternalInstruction *insn) { 1569 int hasVVVV, needVVVV; 1570 int sawRegImm = 0; 1571 1572 LLVM_DEBUG(dbgs() << "readOperands()"); 1573 1574 // If non-zero vvvv specified, make sure one of the operands uses it. 1575 hasVVVV = !readVVVV(insn); 1576 needVVVV = hasVVVV && (insn->vvvv != 0); 1577 1578 for (const auto &Op : x86OperandSets[insn->spec->operands]) { 1579 switch (Op.encoding) { 1580 case ENCODING_NONE: 1581 case ENCODING_SI: 1582 case ENCODING_DI: 1583 break; 1584 CASE_ENCODING_VSIB: 1585 // VSIB can use the V2 bit so check only the other bits. 1586 if (needVVVV) 1587 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); 1588 if (readModRM(insn)) 1589 return -1; 1590 1591 // Reject if SIB wasn't used. 1592 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1593 return -1; 1594 1595 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. 1596 if (insn->sibIndex == SIB_INDEX_NONE) 1597 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); 1598 1599 // If EVEX.v2 is set this is one of the 16-31 registers. 1600 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 1601 v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1602 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); 1603 1604 // Adjust the index register to the correct size. 1605 switch ((OperandType)Op.type) { 1606 default: 1607 debug("Unhandled VSIB index type"); 1608 return -1; 1609 case TYPE_MVSIBX: 1610 insn->sibIndex = 1611 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); 1612 break; 1613 case TYPE_MVSIBY: 1614 insn->sibIndex = 1615 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); 1616 break; 1617 case TYPE_MVSIBZ: 1618 insn->sibIndex = 1619 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); 1620 break; 1621 } 1622 1623 // Apply the AVX512 compressed displacement scaling factor. 1624 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1625 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); 1626 break; 1627 case ENCODING_SIB: 1628 // Reject if SIB wasn't used. 1629 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1630 return -1; 1631 if (readModRM(insn)) 1632 return -1; 1633 if (fixupReg(insn, &Op)) 1634 return -1; 1635 break; 1636 case ENCODING_REG: 1637 CASE_ENCODING_RM: 1638 if (readModRM(insn)) 1639 return -1; 1640 if (fixupReg(insn, &Op)) 1641 return -1; 1642 // Apply the AVX512 compressed displacement scaling factor. 1643 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1644 insn->displacement *= 1 << (Op.encoding - ENCODING_RM); 1645 break; 1646 case ENCODING_IB: 1647 if (sawRegImm) { 1648 // Saw a register immediate so don't read again and instead split the 1649 // previous immediate. FIXME: This is a hack. 1650 insn->immediates[insn->numImmediatesConsumed] = 1651 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; 1652 ++insn->numImmediatesConsumed; 1653 break; 1654 } 1655 if (readImmediate(insn, 1)) 1656 return -1; 1657 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) 1658 sawRegImm = 1; 1659 break; 1660 case ENCODING_IW: 1661 if (readImmediate(insn, 2)) 1662 return -1; 1663 break; 1664 case ENCODING_ID: 1665 if (readImmediate(insn, 4)) 1666 return -1; 1667 break; 1668 case ENCODING_IO: 1669 if (readImmediate(insn, 8)) 1670 return -1; 1671 break; 1672 case ENCODING_Iv: 1673 if (readImmediate(insn, insn->immediateSize)) 1674 return -1; 1675 break; 1676 case ENCODING_Ia: 1677 if (readImmediate(insn, insn->addressSize)) 1678 return -1; 1679 break; 1680 case ENCODING_IRC: 1681 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | 1682 lFromEVEX4of4(insn->vectorExtensionPrefix[3]); 1683 break; 1684 case ENCODING_RB: 1685 if (readOpcodeRegister(insn, 1)) 1686 return -1; 1687 break; 1688 case ENCODING_RW: 1689 if (readOpcodeRegister(insn, 2)) 1690 return -1; 1691 break; 1692 case ENCODING_RD: 1693 if (readOpcodeRegister(insn, 4)) 1694 return -1; 1695 break; 1696 case ENCODING_RO: 1697 if (readOpcodeRegister(insn, 8)) 1698 return -1; 1699 break; 1700 case ENCODING_Rv: 1701 if (readOpcodeRegister(insn, 0)) 1702 return -1; 1703 break; 1704 case ENCODING_CC: 1705 insn->immediates[1] = insn->opcode & 0xf; 1706 break; 1707 case ENCODING_FP: 1708 break; 1709 case ENCODING_VVVV: 1710 needVVVV = 0; // Mark that we have found a VVVV operand. 1711 if (!hasVVVV) 1712 return -1; 1713 if (insn->mode != MODE_64BIT) 1714 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); 1715 if (fixupReg(insn, &Op)) 1716 return -1; 1717 break; 1718 case ENCODING_WRITEMASK: 1719 if (readMaskRegister(insn)) 1720 return -1; 1721 break; 1722 case ENCODING_DUP: 1723 break; 1724 default: 1725 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); 1726 return -1; 1727 } 1728 } 1729 1730 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail 1731 if (needVVVV) 1732 return -1; 1733 1734 return 0; 1735 } 1736 1737 namespace llvm { 1738 1739 // Fill-ins to make the compiler happy. These constants are never actually 1740 // assigned; they are just filler to make an automatically-generated switch 1741 // statement work. 1742 namespace X86 { 1743 enum { 1744 BX_SI = 500, 1745 BX_DI = 501, 1746 BP_SI = 502, 1747 BP_DI = 503, 1748 sib = 504, 1749 sib64 = 505 1750 }; 1751 } // namespace X86 1752 1753 } // namespace llvm 1754 1755 static bool translateInstruction(MCInst &target, 1756 InternalInstruction &source, 1757 const MCDisassembler *Dis); 1758 1759 namespace { 1760 1761 /// Generic disassembler for all X86 platforms. All each platform class should 1762 /// have to do is subclass the constructor, and provide a different 1763 /// disassemblerMode value. 1764 class X86GenericDisassembler : public MCDisassembler { 1765 std::unique_ptr<const MCInstrInfo> MII; 1766 public: 1767 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 1768 std::unique_ptr<const MCInstrInfo> MII); 1769 public: 1770 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 1771 ArrayRef<uint8_t> Bytes, uint64_t Address, 1772 raw_ostream &cStream) const override; 1773 1774 private: 1775 DisassemblerMode fMode; 1776 }; 1777 1778 } // namespace 1779 1780 X86GenericDisassembler::X86GenericDisassembler( 1781 const MCSubtargetInfo &STI, 1782 MCContext &Ctx, 1783 std::unique_ptr<const MCInstrInfo> MII) 1784 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 1785 const FeatureBitset &FB = STI.getFeatureBits(); 1786 if (FB[X86::Is16Bit]) { 1787 fMode = MODE_16BIT; 1788 return; 1789 } else if (FB[X86::Is32Bit]) { 1790 fMode = MODE_32BIT; 1791 return; 1792 } else if (FB[X86::Is64Bit]) { 1793 fMode = MODE_64BIT; 1794 return; 1795 } 1796 1797 llvm_unreachable("Invalid CPU mode"); 1798 } 1799 1800 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 1801 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 1802 raw_ostream &CStream) const { 1803 CommentStream = &CStream; 1804 1805 InternalInstruction Insn; 1806 memset(&Insn, 0, sizeof(InternalInstruction)); 1807 Insn.bytes = Bytes; 1808 Insn.startLocation = Address; 1809 Insn.readerCursor = Address; 1810 Insn.mode = fMode; 1811 1812 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || 1813 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || 1814 readOperands(&Insn)) { 1815 Size = Insn.readerCursor - Address; 1816 return Fail; 1817 } 1818 1819 Insn.operands = x86OperandSets[Insn.spec->operands]; 1820 Insn.length = Insn.readerCursor - Insn.startLocation; 1821 Size = Insn.length; 1822 if (Size > 15) 1823 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); 1824 1825 bool Ret = translateInstruction(Instr, Insn, this); 1826 if (!Ret) { 1827 unsigned Flags = X86::IP_NO_PREFIX; 1828 if (Insn.hasAdSize) 1829 Flags |= X86::IP_HAS_AD_SIZE; 1830 if (!Insn.mandatoryPrefix) { 1831 if (Insn.hasOpSize) 1832 Flags |= X86::IP_HAS_OP_SIZE; 1833 if (Insn.repeatPrefix == 0xf2) 1834 Flags |= X86::IP_HAS_REPEAT_NE; 1835 else if (Insn.repeatPrefix == 0xf3 && 1836 // It should not be 'pause' f3 90 1837 Insn.opcode != 0x90) 1838 Flags |= X86::IP_HAS_REPEAT; 1839 if (Insn.hasLockPrefix) 1840 Flags |= X86::IP_HAS_LOCK; 1841 } 1842 Instr.setFlags(Flags); 1843 } 1844 return (!Ret) ? Success : Fail; 1845 } 1846 1847 // 1848 // Private code that translates from struct InternalInstructions to MCInsts. 1849 // 1850 1851 /// translateRegister - Translates an internal register to the appropriate LLVM 1852 /// register, and appends it as an operand to an MCInst. 1853 /// 1854 /// @param mcInst - The MCInst to append to. 1855 /// @param reg - The Reg to append. 1856 static void translateRegister(MCInst &mcInst, Reg reg) { 1857 #define ENTRY(x) X86::x, 1858 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 1859 #undef ENTRY 1860 1861 MCPhysReg llvmRegnum = llvmRegnums[reg]; 1862 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 1863 } 1864 1865 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 1866 0, // SEG_OVERRIDE_NONE 1867 X86::CS, 1868 X86::SS, 1869 X86::DS, 1870 X86::ES, 1871 X86::FS, 1872 X86::GS 1873 }; 1874 1875 /// translateSrcIndex - Appends a source index operand to an MCInst. 1876 /// 1877 /// @param mcInst - The MCInst to append to. 1878 /// @param insn - The internal instruction. 1879 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 1880 unsigned baseRegNo; 1881 1882 if (insn.mode == MODE_64BIT) 1883 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 1884 else if (insn.mode == MODE_32BIT) 1885 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 1886 else { 1887 assert(insn.mode == MODE_16BIT); 1888 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 1889 } 1890 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1891 mcInst.addOperand(baseReg); 1892 1893 MCOperand segmentReg; 1894 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1895 mcInst.addOperand(segmentReg); 1896 return false; 1897 } 1898 1899 /// translateDstIndex - Appends a destination index operand to an MCInst. 1900 /// 1901 /// @param mcInst - The MCInst to append to. 1902 /// @param insn - The internal instruction. 1903 1904 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 1905 unsigned baseRegNo; 1906 1907 if (insn.mode == MODE_64BIT) 1908 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 1909 else if (insn.mode == MODE_32BIT) 1910 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 1911 else { 1912 assert(insn.mode == MODE_16BIT); 1913 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 1914 } 1915 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1916 mcInst.addOperand(baseReg); 1917 return false; 1918 } 1919 1920 /// translateImmediate - Appends an immediate operand to an MCInst. 1921 /// 1922 /// @param mcInst - The MCInst to append to. 1923 /// @param immediate - The immediate value to append. 1924 /// @param operand - The operand, as stored in the descriptor table. 1925 /// @param insn - The internal instruction. 1926 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 1927 const OperandSpecifier &operand, 1928 InternalInstruction &insn, 1929 const MCDisassembler *Dis) { 1930 // Sign-extend the immediate if necessary. 1931 1932 OperandType type = (OperandType)operand.type; 1933 1934 bool isBranch = false; 1935 uint64_t pcrel = 0; 1936 if (type == TYPE_REL) { 1937 isBranch = true; 1938 pcrel = insn.startLocation + insn.length; 1939 switch (operand.encoding) { 1940 default: 1941 break; 1942 case ENCODING_Iv: 1943 switch (insn.displacementSize) { 1944 default: 1945 break; 1946 case 1: 1947 if(immediate & 0x80) 1948 immediate |= ~(0xffull); 1949 break; 1950 case 2: 1951 if(immediate & 0x8000) 1952 immediate |= ~(0xffffull); 1953 break; 1954 case 4: 1955 if(immediate & 0x80000000) 1956 immediate |= ~(0xffffffffull); 1957 break; 1958 case 8: 1959 break; 1960 } 1961 break; 1962 case ENCODING_IB: 1963 if(immediate & 0x80) 1964 immediate |= ~(0xffull); 1965 break; 1966 case ENCODING_IW: 1967 if(immediate & 0x8000) 1968 immediate |= ~(0xffffull); 1969 break; 1970 case ENCODING_ID: 1971 if(immediate & 0x80000000) 1972 immediate |= ~(0xffffffffull); 1973 break; 1974 } 1975 } 1976 // By default sign-extend all X86 immediates based on their encoding. 1977 else if (type == TYPE_IMM) { 1978 switch (operand.encoding) { 1979 default: 1980 break; 1981 case ENCODING_IB: 1982 if(immediate & 0x80) 1983 immediate |= ~(0xffull); 1984 break; 1985 case ENCODING_IW: 1986 if(immediate & 0x8000) 1987 immediate |= ~(0xffffull); 1988 break; 1989 case ENCODING_ID: 1990 if(immediate & 0x80000000) 1991 immediate |= ~(0xffffffffull); 1992 break; 1993 case ENCODING_IO: 1994 break; 1995 } 1996 } 1997 1998 switch (type) { 1999 case TYPE_XMM: 2000 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 2001 return; 2002 case TYPE_YMM: 2003 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 2004 return; 2005 case TYPE_ZMM: 2006 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 2007 return; 2008 default: 2009 // operand is 64 bits wide. Do nothing. 2010 break; 2011 } 2012 2013 if (!Dis->tryAddingSymbolicOperand( 2014 mcInst, immediate + pcrel, insn.startLocation, isBranch, 2015 insn.immediateOffset, insn.immediateSize, insn.length)) 2016 mcInst.addOperand(MCOperand::createImm(immediate)); 2017 2018 if (type == TYPE_MOFFS) { 2019 MCOperand segmentReg; 2020 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2021 mcInst.addOperand(segmentReg); 2022 } 2023 } 2024 2025 /// translateRMRegister - Translates a register stored in the R/M field of the 2026 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 2027 /// @param mcInst - The MCInst to append to. 2028 /// @param insn - The internal instruction to extract the R/M field 2029 /// from. 2030 /// @return - 0 on success; -1 otherwise 2031 static bool translateRMRegister(MCInst &mcInst, 2032 InternalInstruction &insn) { 2033 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2034 debug("A R/M register operand may not have a SIB byte"); 2035 return true; 2036 } 2037 2038 switch (insn.eaBase) { 2039 default: 2040 debug("Unexpected EA base register"); 2041 return true; 2042 case EA_BASE_NONE: 2043 debug("EA_BASE_NONE for ModR/M base"); 2044 return true; 2045 #define ENTRY(x) case EA_BASE_##x: 2046 ALL_EA_BASES 2047 #undef ENTRY 2048 debug("A R/M register operand may not have a base; " 2049 "the operand must be a register."); 2050 return true; 2051 #define ENTRY(x) \ 2052 case EA_REG_##x: \ 2053 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 2054 ALL_REGS 2055 #undef ENTRY 2056 } 2057 2058 return false; 2059 } 2060 2061 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 2062 /// fields of an internal instruction (and possibly its SIB byte) to a memory 2063 /// operand in LLVM's format, and appends it to an MCInst. 2064 /// 2065 /// @param mcInst - The MCInst to append to. 2066 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2067 /// from. 2068 /// @param ForceSIB - The instruction must use SIB. 2069 /// @return - 0 on success; nonzero otherwise 2070 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 2071 const MCDisassembler *Dis, 2072 bool ForceSIB = false) { 2073 // Addresses in an MCInst are represented as five operands: 2074 // 1. basereg (register) The R/M base, or (if there is a SIB) the 2075 // SIB base 2076 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 2077 // scale amount 2078 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 2079 // the index (which is multiplied by the 2080 // scale amount) 2081 // 4. displacement (immediate) 0, or the displacement if there is one 2082 // 5. segmentreg (register) x86_registerNONE for now, but could be set 2083 // if we have segment overrides 2084 2085 MCOperand baseReg; 2086 MCOperand scaleAmount; 2087 MCOperand indexReg; 2088 MCOperand displacement; 2089 MCOperand segmentReg; 2090 uint64_t pcrel = 0; 2091 2092 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2093 if (insn.sibBase != SIB_BASE_NONE) { 2094 switch (insn.sibBase) { 2095 default: 2096 debug("Unexpected sibBase"); 2097 return true; 2098 #define ENTRY(x) \ 2099 case SIB_BASE_##x: \ 2100 baseReg = MCOperand::createReg(X86::x); break; 2101 ALL_SIB_BASES 2102 #undef ENTRY 2103 } 2104 } else { 2105 baseReg = MCOperand::createReg(X86::NoRegister); 2106 } 2107 2108 if (insn.sibIndex != SIB_INDEX_NONE) { 2109 switch (insn.sibIndex) { 2110 default: 2111 debug("Unexpected sibIndex"); 2112 return true; 2113 #define ENTRY(x) \ 2114 case SIB_INDEX_##x: \ 2115 indexReg = MCOperand::createReg(X86::x); break; 2116 EA_BASES_32BIT 2117 EA_BASES_64BIT 2118 REGS_XMM 2119 REGS_YMM 2120 REGS_ZMM 2121 #undef ENTRY 2122 } 2123 } else { 2124 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 2125 // but no index is used and modrm alone should have been enough. 2126 // -No base register in 32-bit mode. In 64-bit mode this is used to 2127 // avoid rip-relative addressing. 2128 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 2129 // base always requires a SIB byte. 2130 // -A scale other than 1 is used. 2131 if (!ForceSIB && 2132 (insn.sibScale != 1 || 2133 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 2134 (insn.sibBase != SIB_BASE_NONE && 2135 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 2136 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { 2137 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 2138 X86::RIZ); 2139 } else 2140 indexReg = MCOperand::createReg(X86::NoRegister); 2141 } 2142 2143 scaleAmount = MCOperand::createImm(insn.sibScale); 2144 } else { 2145 switch (insn.eaBase) { 2146 case EA_BASE_NONE: 2147 if (insn.eaDisplacement == EA_DISP_NONE) { 2148 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 2149 return true; 2150 } 2151 if (insn.mode == MODE_64BIT){ 2152 pcrel = insn.startLocation + insn.length; 2153 Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel, 2154 insn.startLocation + 2155 insn.displacementOffset); 2156 // Section 2.2.1.6 2157 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 2158 X86::RIP); 2159 } 2160 else 2161 baseReg = MCOperand::createReg(X86::NoRegister); 2162 2163 indexReg = MCOperand::createReg(X86::NoRegister); 2164 break; 2165 case EA_BASE_BX_SI: 2166 baseReg = MCOperand::createReg(X86::BX); 2167 indexReg = MCOperand::createReg(X86::SI); 2168 break; 2169 case EA_BASE_BX_DI: 2170 baseReg = MCOperand::createReg(X86::BX); 2171 indexReg = MCOperand::createReg(X86::DI); 2172 break; 2173 case EA_BASE_BP_SI: 2174 baseReg = MCOperand::createReg(X86::BP); 2175 indexReg = MCOperand::createReg(X86::SI); 2176 break; 2177 case EA_BASE_BP_DI: 2178 baseReg = MCOperand::createReg(X86::BP); 2179 indexReg = MCOperand::createReg(X86::DI); 2180 break; 2181 default: 2182 indexReg = MCOperand::createReg(X86::NoRegister); 2183 switch (insn.eaBase) { 2184 default: 2185 debug("Unexpected eaBase"); 2186 return true; 2187 // Here, we will use the fill-ins defined above. However, 2188 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 2189 // sib and sib64 were handled in the top-level if, so they're only 2190 // placeholders to keep the compiler happy. 2191 #define ENTRY(x) \ 2192 case EA_BASE_##x: \ 2193 baseReg = MCOperand::createReg(X86::x); break; 2194 ALL_EA_BASES 2195 #undef ENTRY 2196 #define ENTRY(x) case EA_REG_##x: 2197 ALL_REGS 2198 #undef ENTRY 2199 debug("A R/M memory operand may not be a register; " 2200 "the base field must be a base."); 2201 return true; 2202 } 2203 } 2204 2205 scaleAmount = MCOperand::createImm(1); 2206 } 2207 2208 displacement = MCOperand::createImm(insn.displacement); 2209 2210 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2211 2212 mcInst.addOperand(baseReg); 2213 mcInst.addOperand(scaleAmount); 2214 mcInst.addOperand(indexReg); 2215 2216 const uint8_t dispSize = 2217 (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize; 2218 2219 if (!Dis->tryAddingSymbolicOperand( 2220 mcInst, insn.displacement + pcrel, insn.startLocation, false, 2221 insn.displacementOffset, dispSize, insn.length)) 2222 mcInst.addOperand(displacement); 2223 mcInst.addOperand(segmentReg); 2224 return false; 2225 } 2226 2227 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 2228 /// byte of an instruction to LLVM form, and appends it to an MCInst. 2229 /// 2230 /// @param mcInst - The MCInst to append to. 2231 /// @param operand - The operand, as stored in the descriptor table. 2232 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2233 /// from. 2234 /// @return - 0 on success; nonzero otherwise 2235 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 2236 InternalInstruction &insn, const MCDisassembler *Dis) { 2237 switch (operand.type) { 2238 default: 2239 debug("Unexpected type for a R/M operand"); 2240 return true; 2241 case TYPE_R8: 2242 case TYPE_R16: 2243 case TYPE_R32: 2244 case TYPE_R64: 2245 case TYPE_Rv: 2246 case TYPE_MM64: 2247 case TYPE_XMM: 2248 case TYPE_YMM: 2249 case TYPE_ZMM: 2250 case TYPE_TMM: 2251 case TYPE_VK_PAIR: 2252 case TYPE_VK: 2253 case TYPE_DEBUGREG: 2254 case TYPE_CONTROLREG: 2255 case TYPE_BNDR: 2256 return translateRMRegister(mcInst, insn); 2257 case TYPE_M: 2258 case TYPE_MVSIBX: 2259 case TYPE_MVSIBY: 2260 case TYPE_MVSIBZ: 2261 return translateRMMemory(mcInst, insn, Dis); 2262 case TYPE_MSIB: 2263 return translateRMMemory(mcInst, insn, Dis, true); 2264 } 2265 } 2266 2267 /// translateFPRegister - Translates a stack position on the FPU stack to its 2268 /// LLVM form, and appends it to an MCInst. 2269 /// 2270 /// @param mcInst - The MCInst to append to. 2271 /// @param stackPos - The stack position to translate. 2272 static void translateFPRegister(MCInst &mcInst, 2273 uint8_t stackPos) { 2274 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 2275 } 2276 2277 /// translateMaskRegister - Translates a 3-bit mask register number to 2278 /// LLVM form, and appends it to an MCInst. 2279 /// 2280 /// @param mcInst - The MCInst to append to. 2281 /// @param maskRegNum - Number of mask register from 0 to 7. 2282 /// @return - false on success; true otherwise. 2283 static bool translateMaskRegister(MCInst &mcInst, 2284 uint8_t maskRegNum) { 2285 if (maskRegNum >= 8) { 2286 debug("Invalid mask register number"); 2287 return true; 2288 } 2289 2290 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 2291 return false; 2292 } 2293 2294 /// translateOperand - Translates an operand stored in an internal instruction 2295 /// to LLVM's format and appends it to an MCInst. 2296 /// 2297 /// @param mcInst - The MCInst to append to. 2298 /// @param operand - The operand, as stored in the descriptor table. 2299 /// @param insn - The internal instruction. 2300 /// @return - false on success; true otherwise. 2301 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 2302 InternalInstruction &insn, 2303 const MCDisassembler *Dis) { 2304 switch (operand.encoding) { 2305 default: 2306 debug("Unhandled operand encoding during translation"); 2307 return true; 2308 case ENCODING_REG: 2309 translateRegister(mcInst, insn.reg); 2310 return false; 2311 case ENCODING_WRITEMASK: 2312 return translateMaskRegister(mcInst, insn.writemask); 2313 case ENCODING_SIB: 2314 CASE_ENCODING_RM: 2315 CASE_ENCODING_VSIB: 2316 return translateRM(mcInst, operand, insn, Dis); 2317 case ENCODING_IB: 2318 case ENCODING_IW: 2319 case ENCODING_ID: 2320 case ENCODING_IO: 2321 case ENCODING_Iv: 2322 case ENCODING_Ia: 2323 translateImmediate(mcInst, 2324 insn.immediates[insn.numImmediatesTranslated++], 2325 operand, 2326 insn, 2327 Dis); 2328 return false; 2329 case ENCODING_IRC: 2330 mcInst.addOperand(MCOperand::createImm(insn.RC)); 2331 return false; 2332 case ENCODING_SI: 2333 return translateSrcIndex(mcInst, insn); 2334 case ENCODING_DI: 2335 return translateDstIndex(mcInst, insn); 2336 case ENCODING_RB: 2337 case ENCODING_RW: 2338 case ENCODING_RD: 2339 case ENCODING_RO: 2340 case ENCODING_Rv: 2341 translateRegister(mcInst, insn.opcodeRegister); 2342 return false; 2343 case ENCODING_CC: 2344 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 2345 return false; 2346 case ENCODING_FP: 2347 translateFPRegister(mcInst, insn.modRM & 7); 2348 return false; 2349 case ENCODING_VVVV: 2350 translateRegister(mcInst, insn.vvvv); 2351 return false; 2352 case ENCODING_DUP: 2353 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 2354 insn, Dis); 2355 } 2356 } 2357 2358 /// translateInstruction - Translates an internal instruction and all its 2359 /// operands to an MCInst. 2360 /// 2361 /// @param mcInst - The MCInst to populate with the instruction's data. 2362 /// @param insn - The internal instruction. 2363 /// @return - false on success; true otherwise. 2364 static bool translateInstruction(MCInst &mcInst, 2365 InternalInstruction &insn, 2366 const MCDisassembler *Dis) { 2367 if (!insn.spec) { 2368 debug("Instruction has no specification"); 2369 return true; 2370 } 2371 2372 mcInst.clear(); 2373 mcInst.setOpcode(insn.instructionID); 2374 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 2375 // prefix bytes should be disassembled as xrelease and xacquire then set the 2376 // opcode to those instead of the rep and repne opcodes. 2377 if (insn.xAcquireRelease) { 2378 if(mcInst.getOpcode() == X86::REP_PREFIX) 2379 mcInst.setOpcode(X86::XRELEASE_PREFIX); 2380 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 2381 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 2382 } 2383 2384 insn.numImmediatesTranslated = 0; 2385 2386 for (const auto &Op : insn.operands) { 2387 if (Op.encoding != ENCODING_NONE) { 2388 if (translateOperand(mcInst, Op, insn, Dis)) { 2389 return true; 2390 } 2391 } 2392 } 2393 2394 return false; 2395 } 2396 2397 static MCDisassembler *createX86Disassembler(const Target &T, 2398 const MCSubtargetInfo &STI, 2399 MCContext &Ctx) { 2400 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 2401 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 2402 } 2403 2404 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { 2405 // Register the disassembler. 2406 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 2407 createX86Disassembler); 2408 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 2409 createX86Disassembler); 2410 } 2411