xref: /llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision 819ac45d1c1b7a2d784b2606c84de46ce714f278)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP5:
154     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP6:
157     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP7:
160     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   }
163 
164   switch (dec->modrm_type) {
165   default:
166     llvm_unreachable("Corrupt table!  Unknown modrm_type");
167     return 0;
168   case MODRM_ONEENTRY:
169     return modRMTable[dec->instructionIDs];
170   case MODRM_SPLITRM:
171     if (modFromModRM(modRM) == 0x3)
172       return modRMTable[dec->instructionIDs + 1];
173     return modRMTable[dec->instructionIDs];
174   case MODRM_SPLITREG:
175     if (modFromModRM(modRM) == 0x3)
176       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
177     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
178   case MODRM_SPLITMISC:
179     if (modFromModRM(modRM) == 0x3)
180       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
181     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
182   case MODRM_FULL:
183     return modRMTable[dec->instructionIDs + modRM];
184   }
185 }
186 
187 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
188   uint64_t offset = insn->readerCursor - insn->startLocation;
189   if (offset >= insn->bytes.size())
190     return true;
191   byte = insn->bytes[offset];
192   return false;
193 }
194 
195 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
196   auto r = insn->bytes;
197   uint64_t offset = insn->readerCursor - insn->startLocation;
198   if (offset + sizeof(T) > r.size())
199     return true;
200   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
201   insn->readerCursor += sizeof(T);
202   return false;
203 }
204 
205 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
206   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
207 }
208 
209 // Consumes all of an instruction's prefix bytes, and marks the
210 // instruction as having them.  Also sets the instruction's default operand,
211 // address, and other relevant data sizes to report operands correctly.
212 //
213 // insn must not be empty.
214 static int readPrefixes(struct InternalInstruction *insn) {
215   bool isPrefix = true;
216   uint8_t byte = 0;
217   uint8_t nextByte;
218 
219   LLVM_DEBUG(dbgs() << "readPrefixes()");
220 
221   while (isPrefix) {
222     // If we fail reading prefixes, just stop here and let the opcode reader
223     // deal with it.
224     if (consume(insn, byte))
225       break;
226 
227     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
228     // break and let it be disassembled as a normal "instruction".
229     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
230       break;
231 
232     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
233       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
234       // met:
235       // - it is followed by a LOCK (0xf0) prefix
236       // - it is followed by an xchg instruction
237       // then it should be disassembled as a xacquire/xrelease not repne/rep.
238       if (((nextByte == 0xf0) ||
239            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
240         insn->xAcquireRelease = true;
241         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
242           break;
243       }
244       // Also if the byte is 0xf3, and the following condition is met:
245       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
246       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
247       // then it should be disassembled as an xrelease not rep.
248       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
249                            nextByte == 0xc6 || nextByte == 0xc7)) {
250         insn->xAcquireRelease = true;
251         break;
252       }
253       if (isREX(insn, nextByte)) {
254         uint8_t nnextByte;
255         // Go to REX prefix after the current one
256         if (consume(insn, nnextByte))
257           return -1;
258         // We should be able to read next byte after REX prefix
259         if (peek(insn, nnextByte))
260           return -1;
261         --insn->readerCursor;
262       }
263     }
264 
265     switch (byte) {
266     case 0xf0: // LOCK
267       insn->hasLockPrefix = true;
268       break;
269     case 0xf2: // REPNE/REPNZ
270     case 0xf3: { // REP or REPE/REPZ
271       uint8_t nextByte;
272       if (peek(insn, nextByte))
273         break;
274       // TODO:
275       //  1. There could be several 0x66
276       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
277       //      it's not mandatory prefix
278       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
279       //     0x0f exactly after it to be mandatory prefix
280       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
281         // The last of 0xf2 /0xf3 is mandatory prefix
282         insn->mandatoryPrefix = byte;
283       insn->repeatPrefix = byte;
284       break;
285     }
286     case 0x2e: // CS segment override -OR- Branch not taken
287       insn->segmentOverride = SEG_OVERRIDE_CS;
288       break;
289     case 0x36: // SS segment override -OR- Branch taken
290       insn->segmentOverride = SEG_OVERRIDE_SS;
291       break;
292     case 0x3e: // DS segment override
293       insn->segmentOverride = SEG_OVERRIDE_DS;
294       break;
295     case 0x26: // ES segment override
296       insn->segmentOverride = SEG_OVERRIDE_ES;
297       break;
298     case 0x64: // FS segment override
299       insn->segmentOverride = SEG_OVERRIDE_FS;
300       break;
301     case 0x65: // GS segment override
302       insn->segmentOverride = SEG_OVERRIDE_GS;
303       break;
304     case 0x66: { // Operand-size override {
305       uint8_t nextByte;
306       insn->hasOpSize = true;
307       if (peek(insn, nextByte))
308         break;
309       // 0x66 can't overwrite existing mandatory prefix and should be ignored
310       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
311         insn->mandatoryPrefix = byte;
312       break;
313     }
314     case 0x67: // Address-size override
315       insn->hasAdSize = true;
316       break;
317     default: // Not a prefix byte
318       isPrefix = false;
319       break;
320     }
321 
322     if (isPrefix)
323       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
324   }
325 
326   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
327 
328   if (byte == 0x62) {
329     uint8_t byte1, byte2;
330     if (consume(insn, byte1)) {
331       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
332       return -1;
333     }
334 
335     if (peek(insn, byte2)) {
336       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
337       return -1;
338     }
339 
340     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
341         ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) {
342       insn->vectorExtensionType = TYPE_EVEX;
343     } else {
344       --insn->readerCursor; // unconsume byte1
345       --insn->readerCursor; // unconsume byte
346     }
347 
348     if (insn->vectorExtensionType == TYPE_EVEX) {
349       insn->vectorExtensionPrefix[0] = byte;
350       insn->vectorExtensionPrefix[1] = byte1;
351       if (consume(insn, insn->vectorExtensionPrefix[2])) {
352         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
353         return -1;
354       }
355       if (consume(insn, insn->vectorExtensionPrefix[3])) {
356         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
357         return -1;
358       }
359 
360       // We simulate the REX prefix for simplicity's sake
361       if (insn->mode == MODE_64BIT) {
362         insn->rexPrefix = 0x40 |
363                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
364                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
365                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
366                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
367       }
368 
369       LLVM_DEBUG(
370           dbgs() << format(
371               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
372               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
373               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
374     }
375   } else if (byte == 0xc4) {
376     uint8_t byte1;
377     if (peek(insn, byte1)) {
378       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
379       return -1;
380     }
381 
382     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
383       insn->vectorExtensionType = TYPE_VEX_3B;
384     else
385       --insn->readerCursor;
386 
387     if (insn->vectorExtensionType == TYPE_VEX_3B) {
388       insn->vectorExtensionPrefix[0] = byte;
389       consume(insn, insn->vectorExtensionPrefix[1]);
390       consume(insn, insn->vectorExtensionPrefix[2]);
391 
392       // We simulate the REX prefix for simplicity's sake
393 
394       if (insn->mode == MODE_64BIT)
395         insn->rexPrefix = 0x40 |
396                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
397                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
398                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
399                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
400 
401       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
402                                   insn->vectorExtensionPrefix[0],
403                                   insn->vectorExtensionPrefix[1],
404                                   insn->vectorExtensionPrefix[2]));
405     }
406   } else if (byte == 0xc5) {
407     uint8_t byte1;
408     if (peek(insn, byte1)) {
409       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
410       return -1;
411     }
412 
413     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
414       insn->vectorExtensionType = TYPE_VEX_2B;
415     else
416       --insn->readerCursor;
417 
418     if (insn->vectorExtensionType == TYPE_VEX_2B) {
419       insn->vectorExtensionPrefix[0] = byte;
420       consume(insn, insn->vectorExtensionPrefix[1]);
421 
422       if (insn->mode == MODE_64BIT)
423         insn->rexPrefix =
424             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
425 
426       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
427       default:
428         break;
429       case VEX_PREFIX_66:
430         insn->hasOpSize = true;
431         break;
432       }
433 
434       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
435                                   insn->vectorExtensionPrefix[0],
436                                   insn->vectorExtensionPrefix[1]));
437     }
438   } else if (byte == 0x8f) {
439     uint8_t byte1;
440     if (peek(insn, byte1)) {
441       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
442       return -1;
443     }
444 
445     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
446       insn->vectorExtensionType = TYPE_XOP;
447     else
448       --insn->readerCursor;
449 
450     if (insn->vectorExtensionType == TYPE_XOP) {
451       insn->vectorExtensionPrefix[0] = byte;
452       consume(insn, insn->vectorExtensionPrefix[1]);
453       consume(insn, insn->vectorExtensionPrefix[2]);
454 
455       // We simulate the REX prefix for simplicity's sake
456 
457       if (insn->mode == MODE_64BIT)
458         insn->rexPrefix = 0x40 |
459                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
460                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
461                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
462                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
463 
464       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
465       default:
466         break;
467       case VEX_PREFIX_66:
468         insn->hasOpSize = true;
469         break;
470       }
471 
472       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
473                                   insn->vectorExtensionPrefix[0],
474                                   insn->vectorExtensionPrefix[1],
475                                   insn->vectorExtensionPrefix[2]));
476     }
477   } else if (isREX(insn, byte)) {
478     if (peek(insn, nextByte))
479       return -1;
480     insn->rexPrefix = byte;
481     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
482   } else
483     --insn->readerCursor;
484 
485   if (insn->mode == MODE_16BIT) {
486     insn->registerSize = (insn->hasOpSize ? 4 : 2);
487     insn->addressSize = (insn->hasAdSize ? 4 : 2);
488     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
489     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
490   } else if (insn->mode == MODE_32BIT) {
491     insn->registerSize = (insn->hasOpSize ? 2 : 4);
492     insn->addressSize = (insn->hasAdSize ? 2 : 4);
493     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
494     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
495   } else if (insn->mode == MODE_64BIT) {
496     insn->displacementSize = 4;
497     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
498       insn->registerSize = 8;
499       insn->addressSize = (insn->hasAdSize ? 4 : 8);
500       insn->immediateSize = 4;
501       insn->hasOpSize = false;
502     } else {
503       insn->registerSize = (insn->hasOpSize ? 2 : 4);
504       insn->addressSize = (insn->hasAdSize ? 4 : 8);
505       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
506     }
507   }
508 
509   return 0;
510 }
511 
512 // Consumes the SIB byte to determine addressing information.
513 static int readSIB(struct InternalInstruction *insn) {
514   SIBBase sibBaseBase = SIB_BASE_NONE;
515   uint8_t index, base;
516 
517   LLVM_DEBUG(dbgs() << "readSIB()");
518   switch (insn->addressSize) {
519   case 2:
520   default:
521     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
522   case 4:
523     insn->sibIndexBase = SIB_INDEX_EAX;
524     sibBaseBase = SIB_BASE_EAX;
525     break;
526   case 8:
527     insn->sibIndexBase = SIB_INDEX_RAX;
528     sibBaseBase = SIB_BASE_RAX;
529     break;
530   }
531 
532   if (consume(insn, insn->sib))
533     return -1;
534 
535   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
536 
537   if (index == 0x4) {
538     insn->sibIndex = SIB_INDEX_NONE;
539   } else {
540     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
541   }
542 
543   insn->sibScale = 1 << scaleFromSIB(insn->sib);
544 
545   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
546 
547   switch (base) {
548   case 0x5:
549   case 0xd:
550     switch (modFromModRM(insn->modRM)) {
551     case 0x0:
552       insn->eaDisplacement = EA_DISP_32;
553       insn->sibBase = SIB_BASE_NONE;
554       break;
555     case 0x1:
556       insn->eaDisplacement = EA_DISP_8;
557       insn->sibBase = (SIBBase)(sibBaseBase + base);
558       break;
559     case 0x2:
560       insn->eaDisplacement = EA_DISP_32;
561       insn->sibBase = (SIBBase)(sibBaseBase + base);
562       break;
563     default:
564       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
565     }
566     break;
567   default:
568     insn->sibBase = (SIBBase)(sibBaseBase + base);
569     break;
570   }
571 
572   return 0;
573 }
574 
575 static int readDisplacement(struct InternalInstruction *insn) {
576   int8_t d8;
577   int16_t d16;
578   int32_t d32;
579   LLVM_DEBUG(dbgs() << "readDisplacement()");
580 
581   insn->displacementOffset = insn->readerCursor - insn->startLocation;
582   switch (insn->eaDisplacement) {
583   case EA_DISP_NONE:
584     break;
585   case EA_DISP_8:
586     if (consume(insn, d8))
587       return -1;
588     insn->displacement = d8;
589     break;
590   case EA_DISP_16:
591     if (consume(insn, d16))
592       return -1;
593     insn->displacement = d16;
594     break;
595   case EA_DISP_32:
596     if (consume(insn, d32))
597       return -1;
598     insn->displacement = d32;
599     break;
600   }
601 
602   return 0;
603 }
604 
605 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
606 static int readModRM(struct InternalInstruction *insn) {
607   uint8_t mod, rm, reg, evexrm;
608   LLVM_DEBUG(dbgs() << "readModRM()");
609 
610   if (insn->consumedModRM)
611     return 0;
612 
613   if (consume(insn, insn->modRM))
614     return -1;
615   insn->consumedModRM = true;
616 
617   mod = modFromModRM(insn->modRM);
618   rm = rmFromModRM(insn->modRM);
619   reg = regFromModRM(insn->modRM);
620 
621   // This goes by insn->registerSize to pick the correct register, which messes
622   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
623   // fixupReg().
624   switch (insn->registerSize) {
625   case 2:
626     insn->regBase = MODRM_REG_AX;
627     insn->eaRegBase = EA_REG_AX;
628     break;
629   case 4:
630     insn->regBase = MODRM_REG_EAX;
631     insn->eaRegBase = EA_REG_EAX;
632     break;
633   case 8:
634     insn->regBase = MODRM_REG_RAX;
635     insn->eaRegBase = EA_REG_RAX;
636     break;
637   }
638 
639   reg |= rFromREX(insn->rexPrefix) << 3;
640   rm |= bFromREX(insn->rexPrefix) << 3;
641 
642   evexrm = 0;
643   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
644     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
645     evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
646   }
647 
648   insn->reg = (Reg)(insn->regBase + reg);
649 
650   switch (insn->addressSize) {
651   case 2: {
652     EABase eaBaseBase = EA_BASE_BX_SI;
653 
654     switch (mod) {
655     case 0x0:
656       if (rm == 0x6) {
657         insn->eaBase = EA_BASE_NONE;
658         insn->eaDisplacement = EA_DISP_16;
659         if (readDisplacement(insn))
660           return -1;
661       } else {
662         insn->eaBase = (EABase)(eaBaseBase + rm);
663         insn->eaDisplacement = EA_DISP_NONE;
664       }
665       break;
666     case 0x1:
667       insn->eaBase = (EABase)(eaBaseBase + rm);
668       insn->eaDisplacement = EA_DISP_8;
669       insn->displacementSize = 1;
670       if (readDisplacement(insn))
671         return -1;
672       break;
673     case 0x2:
674       insn->eaBase = (EABase)(eaBaseBase + rm);
675       insn->eaDisplacement = EA_DISP_16;
676       if (readDisplacement(insn))
677         return -1;
678       break;
679     case 0x3:
680       insn->eaBase = (EABase)(insn->eaRegBase + rm);
681       if (readDisplacement(insn))
682         return -1;
683       break;
684     }
685     break;
686   }
687   case 4:
688   case 8: {
689     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
690 
691     switch (mod) {
692     case 0x0:
693       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
694       // In determining whether RIP-relative mode is used (rm=5),
695       // or whether a SIB byte is present (rm=4),
696       // the extension bits (REX.b and EVEX.x) are ignored.
697       switch (rm & 7) {
698       case 0x4: // SIB byte is present
699         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
700         if (readSIB(insn) || readDisplacement(insn))
701           return -1;
702         break;
703       case 0x5: // RIP-relative
704         insn->eaBase = EA_BASE_NONE;
705         insn->eaDisplacement = EA_DISP_32;
706         if (readDisplacement(insn))
707           return -1;
708         break;
709       default:
710         insn->eaBase = (EABase)(eaBaseBase + rm);
711         break;
712       }
713       break;
714     case 0x1:
715       insn->displacementSize = 1;
716       [[fallthrough]];
717     case 0x2:
718       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
719       switch (rm & 7) {
720       case 0x4: // SIB byte is present
721         insn->eaBase = EA_BASE_sib;
722         if (readSIB(insn) || readDisplacement(insn))
723           return -1;
724         break;
725       default:
726         insn->eaBase = (EABase)(eaBaseBase + rm);
727         if (readDisplacement(insn))
728           return -1;
729         break;
730       }
731       break;
732     case 0x3:
733       insn->eaDisplacement = EA_DISP_NONE;
734       insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
735       break;
736     }
737     break;
738   }
739   } // switch (insn->addressSize)
740 
741   return 0;
742 }
743 
744 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
745   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
746                        uint8_t index, uint8_t *valid) {                        \
747     *valid = 1;                                                                \
748     switch (type) {                                                            \
749     default:                                                                   \
750       debug("Unhandled register type");                                        \
751       *valid = 0;                                                              \
752       return 0;                                                                \
753     case TYPE_Rv:                                                              \
754       return base + index;                                                     \
755     case TYPE_R8:                                                              \
756       index &= mask;                                                           \
757       if (index > 0xf)                                                         \
758         *valid = 0;                                                            \
759       if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
760         return prefix##_SPL + (index - 4);                                     \
761       } else {                                                                 \
762         return prefix##_AL + index;                                            \
763       }                                                                        \
764     case TYPE_R16:                                                             \
765       index &= mask;                                                           \
766       if (index > 0xf)                                                         \
767         *valid = 0;                                                            \
768       return prefix##_AX + index;                                              \
769     case TYPE_R32:                                                             \
770       index &= mask;                                                           \
771       if (index > 0xf)                                                         \
772         *valid = 0;                                                            \
773       return prefix##_EAX + index;                                             \
774     case TYPE_R64:                                                             \
775       index &= mask;                                                           \
776       if (index > 0xf)                                                         \
777         *valid = 0;                                                            \
778       return prefix##_RAX + index;                                             \
779     case TYPE_ZMM:                                                             \
780       return prefix##_ZMM0 + index;                                            \
781     case TYPE_YMM:                                                             \
782       return prefix##_YMM0 + index;                                            \
783     case TYPE_XMM:                                                             \
784       return prefix##_XMM0 + index;                                            \
785     case TYPE_TMM:                                                             \
786       if (index > 7)                                                           \
787         *valid = 0;                                                            \
788       return prefix##_TMM0 + index;                                            \
789     case TYPE_VK:                                                              \
790       index &= 0xf;                                                            \
791       if (index > 7)                                                           \
792         *valid = 0;                                                            \
793       return prefix##_K0 + index;                                              \
794     case TYPE_VK_PAIR:                                                         \
795       if (index > 7)                                                           \
796         *valid = 0;                                                            \
797       return prefix##_K0_K1 + (index / 2);                                     \
798     case TYPE_MM64:                                                            \
799       return prefix##_MM0 + (index & 0x7);                                     \
800     case TYPE_SEGMENTREG:                                                      \
801       if ((index & 7) > 5)                                                     \
802         *valid = 0;                                                            \
803       return prefix##_ES + (index & 7);                                        \
804     case TYPE_DEBUGREG:                                                        \
805       return prefix##_DR0 + index;                                             \
806     case TYPE_CONTROLREG:                                                      \
807       return prefix##_CR0 + index;                                             \
808     case TYPE_MVSIBX:                                                          \
809       return prefix##_XMM0 + index;                                            \
810     case TYPE_MVSIBY:                                                          \
811       return prefix##_YMM0 + index;                                            \
812     case TYPE_MVSIBZ:                                                          \
813       return prefix##_ZMM0 + index;                                            \
814     }                                                                          \
815   }
816 
817 // Consult an operand type to determine the meaning of the reg or R/M field. If
818 // the operand is an XMM operand, for example, an operand would be XMM0 instead
819 // of AX, which readModRM() would otherwise misinterpret it as.
820 //
821 // @param insn  - The instruction containing the operand.
822 // @param type  - The operand type.
823 // @param index - The existing value of the field as reported by readModRM().
824 // @param valid - The address of a uint8_t.  The target is set to 1 if the
825 //                field is valid for the register class; 0 if not.
826 // @return      - The proper value.
827 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
828 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
829 
830 // Consult an operand specifier to determine which of the fixup*Value functions
831 // to use in correcting readModRM()'ss interpretation.
832 //
833 // @param insn  - See fixup*Value().
834 // @param op    - The operand specifier.
835 // @return      - 0 if fixup was successful; -1 if the register returned was
836 //                invalid for its class.
837 static int fixupReg(struct InternalInstruction *insn,
838                     const struct OperandSpecifier *op) {
839   uint8_t valid;
840   LLVM_DEBUG(dbgs() << "fixupReg()");
841 
842   switch ((OperandEncoding)op->encoding) {
843   default:
844     debug("Expected a REG or R/M encoding in fixupReg");
845     return -1;
846   case ENCODING_VVVV:
847     insn->vvvv =
848         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
849     if (!valid)
850       return -1;
851     break;
852   case ENCODING_REG:
853     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
854                                    insn->reg - insn->regBase, &valid);
855     if (!valid)
856       return -1;
857     break;
858   case ENCODING_SIB:
859   CASE_ENCODING_RM:
860     if (insn->eaBase >= insn->eaRegBase) {
861       insn->eaBase = (EABase)fixupRMValue(
862           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
863       if (!valid)
864         return -1;
865     }
866     break;
867   }
868 
869   return 0;
870 }
871 
872 // Read the opcode (except the ModR/M byte in the case of extended or escape
873 // opcodes).
874 static bool readOpcode(struct InternalInstruction *insn) {
875   uint8_t current;
876   LLVM_DEBUG(dbgs() << "readOpcode()");
877 
878   insn->opcodeType = ONEBYTE;
879   if (insn->vectorExtensionType == TYPE_EVEX) {
880     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
881     default:
882       LLVM_DEBUG(
883           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
884                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
885       return true;
886     case VEX_LOB_0F:
887       insn->opcodeType = TWOBYTE;
888       return consume(insn, insn->opcode);
889     case VEX_LOB_0F38:
890       insn->opcodeType = THREEBYTE_38;
891       return consume(insn, insn->opcode);
892     case VEX_LOB_0F3A:
893       insn->opcodeType = THREEBYTE_3A;
894       return consume(insn, insn->opcode);
895     case VEX_LOB_MAP5:
896       insn->opcodeType = MAP5;
897       return consume(insn, insn->opcode);
898     case VEX_LOB_MAP6:
899       insn->opcodeType = MAP6;
900       return consume(insn, insn->opcode);
901     }
902   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
903     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
904     default:
905       LLVM_DEBUG(
906           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
907                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
908       return true;
909     case VEX_LOB_0F:
910       insn->opcodeType = TWOBYTE;
911       return consume(insn, insn->opcode);
912     case VEX_LOB_0F38:
913       insn->opcodeType = THREEBYTE_38;
914       return consume(insn, insn->opcode);
915     case VEX_LOB_0F3A:
916       insn->opcodeType = THREEBYTE_3A;
917       return consume(insn, insn->opcode);
918     case VEX_LOB_MAP5:
919       insn->opcodeType = MAP5;
920       return consume(insn, insn->opcode);
921     case VEX_LOB_MAP6:
922       insn->opcodeType = MAP6;
923       return consume(insn, insn->opcode);
924     case VEX_LOB_MAP7:
925       insn->opcodeType = MAP7;
926       return consume(insn, insn->opcode);
927     }
928   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
929     insn->opcodeType = TWOBYTE;
930     return consume(insn, insn->opcode);
931   } else if (insn->vectorExtensionType == TYPE_XOP) {
932     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
933     default:
934       LLVM_DEBUG(
935           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
936                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
937       return true;
938     case XOP_MAP_SELECT_8:
939       insn->opcodeType = XOP8_MAP;
940       return consume(insn, insn->opcode);
941     case XOP_MAP_SELECT_9:
942       insn->opcodeType = XOP9_MAP;
943       return consume(insn, insn->opcode);
944     case XOP_MAP_SELECT_A:
945       insn->opcodeType = XOPA_MAP;
946       return consume(insn, insn->opcode);
947     }
948   }
949 
950   if (consume(insn, current))
951     return true;
952 
953   if (current == 0x0f) {
954     LLVM_DEBUG(
955         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
956     if (consume(insn, current))
957       return true;
958 
959     if (current == 0x38) {
960       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
961                                   current));
962       if (consume(insn, current))
963         return true;
964 
965       insn->opcodeType = THREEBYTE_38;
966     } else if (current == 0x3a) {
967       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
968                                   current));
969       if (consume(insn, current))
970         return true;
971 
972       insn->opcodeType = THREEBYTE_3A;
973     } else if (current == 0x0f) {
974       LLVM_DEBUG(
975           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
976 
977       // Consume operands before the opcode to comply with the 3DNow encoding
978       if (readModRM(insn))
979         return true;
980 
981       if (consume(insn, current))
982         return true;
983 
984       insn->opcodeType = THREEDNOW_MAP;
985     } else {
986       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
987       insn->opcodeType = TWOBYTE;
988     }
989   } else if (insn->mandatoryPrefix)
990     // The opcode with mandatory prefix must start with opcode escape.
991     // If not it's legacy repeat prefix
992     insn->mandatoryPrefix = 0;
993 
994   // At this point we have consumed the full opcode.
995   // Anything we consume from here on must be unconsumed.
996   insn->opcode = current;
997 
998   return false;
999 }
1000 
1001 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1002 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1003   for (int i = 0;; i++) {
1004     if (orig[i] == '\0' && equiv[i] == '\0')
1005       return true;
1006     if (orig[i] == '\0' || equiv[i] == '\0')
1007       return false;
1008     if (orig[i] != equiv[i]) {
1009       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1010         continue;
1011       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1012         continue;
1013       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1014         continue;
1015       return false;
1016     }
1017   }
1018 }
1019 
1020 // Determine whether this instruction is a 64-bit instruction.
1021 static bool is64Bit(const char *name) {
1022   for (int i = 0;; ++i) {
1023     if (name[i] == '\0')
1024       return false;
1025     if (name[i] == '6' && name[i + 1] == '4')
1026       return true;
1027   }
1028 }
1029 
1030 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1031 // for extended and escape opcodes, and using a supplied attribute mask.
1032 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1033                                         struct InternalInstruction *insn,
1034                                         uint16_t attrMask) {
1035   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1036   const ContextDecision *decision;
1037   switch (insn->opcodeType) {
1038   case ONEBYTE:
1039     decision = &ONEBYTE_SYM;
1040     break;
1041   case TWOBYTE:
1042     decision = &TWOBYTE_SYM;
1043     break;
1044   case THREEBYTE_38:
1045     decision = &THREEBYTE38_SYM;
1046     break;
1047   case THREEBYTE_3A:
1048     decision = &THREEBYTE3A_SYM;
1049     break;
1050   case XOP8_MAP:
1051     decision = &XOP8_MAP_SYM;
1052     break;
1053   case XOP9_MAP:
1054     decision = &XOP9_MAP_SYM;
1055     break;
1056   case XOPA_MAP:
1057     decision = &XOPA_MAP_SYM;
1058     break;
1059   case THREEDNOW_MAP:
1060     decision = &THREEDNOW_MAP_SYM;
1061     break;
1062   case MAP5:
1063     decision = &MAP5_SYM;
1064     break;
1065   case MAP6:
1066     decision = &MAP6_SYM;
1067     break;
1068   case MAP7:
1069     decision = &MAP7_SYM;
1070     break;
1071   }
1072 
1073   if (decision->opcodeDecisions[insnCtx]
1074           .modRMDecisions[insn->opcode]
1075           .modrm_type != MODRM_ONEENTRY) {
1076     if (readModRM(insn))
1077       return -1;
1078     *instructionID =
1079         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1080   } else {
1081     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1082   }
1083 
1084   return 0;
1085 }
1086 
1087 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1088 // for extended and escape opcodes. Determines the attributes and context for
1089 // the instruction before doing so.
1090 static int getInstructionID(struct InternalInstruction *insn,
1091                             const MCInstrInfo *mii) {
1092   uint16_t attrMask;
1093   uint16_t instructionID;
1094 
1095   LLVM_DEBUG(dbgs() << "getID()");
1096 
1097   attrMask = ATTR_NONE;
1098 
1099   if (insn->mode == MODE_64BIT)
1100     attrMask |= ATTR_64BIT;
1101 
1102   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1103     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1104 
1105     if (insn->vectorExtensionType == TYPE_EVEX) {
1106       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1107       case VEX_PREFIX_66:
1108         attrMask |= ATTR_OPSIZE;
1109         break;
1110       case VEX_PREFIX_F3:
1111         attrMask |= ATTR_XS;
1112         break;
1113       case VEX_PREFIX_F2:
1114         attrMask |= ATTR_XD;
1115         break;
1116       }
1117 
1118       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1119         attrMask |= ATTR_EVEXKZ;
1120       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1121         attrMask |= ATTR_EVEXB;
1122       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1123         attrMask |= ATTR_EVEXK;
1124       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1125         attrMask |= ATTR_VEXL;
1126       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1127         attrMask |= ATTR_EVEXL2;
1128     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1129       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1130       case VEX_PREFIX_66:
1131         attrMask |= ATTR_OPSIZE;
1132         break;
1133       case VEX_PREFIX_F3:
1134         attrMask |= ATTR_XS;
1135         break;
1136       case VEX_PREFIX_F2:
1137         attrMask |= ATTR_XD;
1138         break;
1139       }
1140 
1141       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1142         attrMask |= ATTR_VEXL;
1143     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1144       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1145       case VEX_PREFIX_66:
1146         attrMask |= ATTR_OPSIZE;
1147         if (insn->hasAdSize)
1148           attrMask |= ATTR_ADSIZE;
1149         break;
1150       case VEX_PREFIX_F3:
1151         attrMask |= ATTR_XS;
1152         break;
1153       case VEX_PREFIX_F2:
1154         attrMask |= ATTR_XD;
1155         break;
1156       }
1157 
1158       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1159         attrMask |= ATTR_VEXL;
1160     } else if (insn->vectorExtensionType == TYPE_XOP) {
1161       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1162       case VEX_PREFIX_66:
1163         attrMask |= ATTR_OPSIZE;
1164         break;
1165       case VEX_PREFIX_F3:
1166         attrMask |= ATTR_XS;
1167         break;
1168       case VEX_PREFIX_F2:
1169         attrMask |= ATTR_XD;
1170         break;
1171       }
1172 
1173       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1174         attrMask |= ATTR_VEXL;
1175     } else {
1176       return -1;
1177     }
1178   } else if (!insn->mandatoryPrefix) {
1179     // If we don't have mandatory prefix we should use legacy prefixes here
1180     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1181       attrMask |= ATTR_OPSIZE;
1182     if (insn->hasAdSize)
1183       attrMask |= ATTR_ADSIZE;
1184     if (insn->opcodeType == ONEBYTE) {
1185       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1186         // Special support for PAUSE
1187         attrMask |= ATTR_XS;
1188     } else {
1189       if (insn->repeatPrefix == 0xf2)
1190         attrMask |= ATTR_XD;
1191       else if (insn->repeatPrefix == 0xf3)
1192         attrMask |= ATTR_XS;
1193     }
1194   } else {
1195     switch (insn->mandatoryPrefix) {
1196     case 0xf2:
1197       attrMask |= ATTR_XD;
1198       break;
1199     case 0xf3:
1200       attrMask |= ATTR_XS;
1201       break;
1202     case 0x66:
1203       if (insn->mode != MODE_16BIT)
1204         attrMask |= ATTR_OPSIZE;
1205       if (insn->hasAdSize)
1206         attrMask |= ATTR_ADSIZE;
1207       break;
1208     case 0x67:
1209       attrMask |= ATTR_ADSIZE;
1210       break;
1211     }
1212   }
1213 
1214   if (insn->rexPrefix & 0x08) {
1215     attrMask |= ATTR_REXW;
1216     attrMask &= ~ATTR_ADSIZE;
1217   }
1218 
1219   if (insn->mode == MODE_16BIT) {
1220     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1221     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1222     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1223       attrMask ^= ATTR_ADSIZE;
1224     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1225     // prefix isn't present, we need to force the opsize attribute since the
1226     // prefix is inverted relative to 32-bit mode.
1227     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1228         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1229       attrMask |= ATTR_OPSIZE;
1230 
1231     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1232         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1233       attrMask |= ATTR_OPSIZE;
1234   }
1235 
1236 
1237   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1238     return -1;
1239 
1240   // The following clauses compensate for limitations of the tables.
1241 
1242   if (insn->mode != MODE_64BIT &&
1243       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1244     // The tables can't distinquish between cases where the W-bit is used to
1245     // select register size and cases where its a required part of the opcode.
1246     if ((insn->vectorExtensionType == TYPE_EVEX &&
1247          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1248         (insn->vectorExtensionType == TYPE_VEX_3B &&
1249          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1250         (insn->vectorExtensionType == TYPE_XOP &&
1251          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1252 
1253       uint16_t instructionIDWithREXW;
1254       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1255                                        attrMask | ATTR_REXW)) {
1256         insn->instructionID = instructionID;
1257         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1258         return 0;
1259       }
1260 
1261       auto SpecName = mii->getName(instructionIDWithREXW);
1262       // If not a 64-bit instruction. Switch the opcode.
1263       if (!is64Bit(SpecName.data())) {
1264         insn->instructionID = instructionIDWithREXW;
1265         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1266         return 0;
1267       }
1268     }
1269   }
1270 
1271   // Absolute moves, umonitor, and movdir64b need special handling.
1272   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1273   //  inverted w.r.t.
1274   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1275   //  any position.
1276   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1277       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1278       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1279     // Make sure we observed the prefixes in any position.
1280     if (insn->hasAdSize)
1281       attrMask |= ATTR_ADSIZE;
1282     if (insn->hasOpSize)
1283       attrMask |= ATTR_OPSIZE;
1284 
1285     // In 16-bit, invert the attributes.
1286     if (insn->mode == MODE_16BIT) {
1287       attrMask ^= ATTR_ADSIZE;
1288 
1289       // The OpSize attribute is only valid with the absolute moves.
1290       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1291         attrMask ^= ATTR_OPSIZE;
1292     }
1293 
1294     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1295       return -1;
1296 
1297     insn->instructionID = instructionID;
1298     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1299     return 0;
1300   }
1301 
1302   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1303       !(attrMask & ATTR_OPSIZE)) {
1304     // The instruction tables make no distinction between instructions that
1305     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1306     // particular spot (i.e., many MMX operations). In general we're
1307     // conservative, but in the specific case where OpSize is present but not in
1308     // the right place we check if there's a 16-bit operation.
1309     const struct InstructionSpecifier *spec;
1310     uint16_t instructionIDWithOpsize;
1311     llvm::StringRef specName, specWithOpSizeName;
1312 
1313     spec = &INSTRUCTIONS_SYM[instructionID];
1314 
1315     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1316                                      attrMask | ATTR_OPSIZE)) {
1317       // ModRM required with OpSize but not present. Give up and return the
1318       // version without OpSize set.
1319       insn->instructionID = instructionID;
1320       insn->spec = spec;
1321       return 0;
1322     }
1323 
1324     specName = mii->getName(instructionID);
1325     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1326 
1327     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1328         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1329       insn->instructionID = instructionIDWithOpsize;
1330       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1331     } else {
1332       insn->instructionID = instructionID;
1333       insn->spec = spec;
1334     }
1335     return 0;
1336   }
1337 
1338   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1339       insn->rexPrefix & 0x01) {
1340     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1341     // as XCHG %r8, %eax.
1342     const struct InstructionSpecifier *spec;
1343     uint16_t instructionIDWithNewOpcode;
1344     const struct InstructionSpecifier *specWithNewOpcode;
1345 
1346     spec = &INSTRUCTIONS_SYM[instructionID];
1347 
1348     // Borrow opcode from one of the other XCHGar opcodes
1349     insn->opcode = 0x91;
1350 
1351     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1352                                      attrMask)) {
1353       insn->opcode = 0x90;
1354 
1355       insn->instructionID = instructionID;
1356       insn->spec = spec;
1357       return 0;
1358     }
1359 
1360     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1361 
1362     // Change back
1363     insn->opcode = 0x90;
1364 
1365     insn->instructionID = instructionIDWithNewOpcode;
1366     insn->spec = specWithNewOpcode;
1367 
1368     return 0;
1369   }
1370 
1371   insn->instructionID = instructionID;
1372   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1373 
1374   return 0;
1375 }
1376 
1377 // Read an operand from the opcode field of an instruction and interprets it
1378 // appropriately given the operand width. Handles AddRegFrm instructions.
1379 //
1380 // @param insn  - the instruction whose opcode field is to be read.
1381 // @param size  - The width (in bytes) of the register being specified.
1382 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1383 //                RAX.
1384 // @return      - 0 on success; nonzero otherwise.
1385 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1386   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1387 
1388   if (size == 0)
1389     size = insn->registerSize;
1390 
1391   switch (size) {
1392   case 1:
1393     insn->opcodeRegister = (Reg)(
1394         MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1395     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1396         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1397       insn->opcodeRegister =
1398           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1399     }
1400 
1401     break;
1402   case 2:
1403     insn->opcodeRegister = (Reg)(
1404         MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1405     break;
1406   case 4:
1407     insn->opcodeRegister =
1408         (Reg)(MODRM_REG_EAX +
1409               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1410     break;
1411   case 8:
1412     insn->opcodeRegister =
1413         (Reg)(MODRM_REG_RAX +
1414               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1415     break;
1416   }
1417 
1418   return 0;
1419 }
1420 
1421 // Consume an immediate operand from an instruction, given the desired operand
1422 // size.
1423 //
1424 // @param insn  - The instruction whose operand is to be read.
1425 // @param size  - The width (in bytes) of the operand.
1426 // @return      - 0 if the immediate was successfully consumed; nonzero
1427 //                otherwise.
1428 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1429   uint8_t imm8;
1430   uint16_t imm16;
1431   uint32_t imm32;
1432   uint64_t imm64;
1433 
1434   LLVM_DEBUG(dbgs() << "readImmediate()");
1435 
1436   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1437 
1438   insn->immediateSize = size;
1439   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1440 
1441   switch (size) {
1442   case 1:
1443     if (consume(insn, imm8))
1444       return -1;
1445     insn->immediates[insn->numImmediatesConsumed] = imm8;
1446     break;
1447   case 2:
1448     if (consume(insn, imm16))
1449       return -1;
1450     insn->immediates[insn->numImmediatesConsumed] = imm16;
1451     break;
1452   case 4:
1453     if (consume(insn, imm32))
1454       return -1;
1455     insn->immediates[insn->numImmediatesConsumed] = imm32;
1456     break;
1457   case 8:
1458     if (consume(insn, imm64))
1459       return -1;
1460     insn->immediates[insn->numImmediatesConsumed] = imm64;
1461     break;
1462   default:
1463     llvm_unreachable("invalid size");
1464   }
1465 
1466   insn->numImmediatesConsumed++;
1467 
1468   return 0;
1469 }
1470 
1471 // Consume vvvv from an instruction if it has a VEX prefix.
1472 static int readVVVV(struct InternalInstruction *insn) {
1473   LLVM_DEBUG(dbgs() << "readVVVV()");
1474 
1475   int vvvv;
1476   if (insn->vectorExtensionType == TYPE_EVEX)
1477     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1478             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1479   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1480     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1481   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1482     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1483   else if (insn->vectorExtensionType == TYPE_XOP)
1484     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1485   else
1486     return -1;
1487 
1488   if (insn->mode != MODE_64BIT)
1489     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1490 
1491   insn->vvvv = static_cast<Reg>(vvvv);
1492   return 0;
1493 }
1494 
1495 // Read an mask register from the opcode field of an instruction.
1496 //
1497 // @param insn    - The instruction whose opcode field is to be read.
1498 // @return        - 0 on success; nonzero otherwise.
1499 static int readMaskRegister(struct InternalInstruction *insn) {
1500   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1501 
1502   if (insn->vectorExtensionType != TYPE_EVEX)
1503     return -1;
1504 
1505   insn->writemask =
1506       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1507   return 0;
1508 }
1509 
1510 // Consults the specifier for an instruction and consumes all
1511 // operands for that instruction, interpreting them as it goes.
1512 static int readOperands(struct InternalInstruction *insn) {
1513   int hasVVVV, needVVVV;
1514   int sawRegImm = 0;
1515 
1516   LLVM_DEBUG(dbgs() << "readOperands()");
1517 
1518   // If non-zero vvvv specified, make sure one of the operands uses it.
1519   hasVVVV = !readVVVV(insn);
1520   needVVVV = hasVVVV && (insn->vvvv != 0);
1521 
1522   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1523     switch (Op.encoding) {
1524     case ENCODING_NONE:
1525     case ENCODING_SI:
1526     case ENCODING_DI:
1527       break;
1528     CASE_ENCODING_VSIB:
1529       // VSIB can use the V2 bit so check only the other bits.
1530       if (needVVVV)
1531         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1532       if (readModRM(insn))
1533         return -1;
1534 
1535       // Reject if SIB wasn't used.
1536       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1537         return -1;
1538 
1539       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1540       if (insn->sibIndex == SIB_INDEX_NONE)
1541         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1542 
1543       // If EVEX.v2 is set this is one of the 16-31 registers.
1544       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1545           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1546         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1547 
1548       // Adjust the index register to the correct size.
1549       switch ((OperandType)Op.type) {
1550       default:
1551         debug("Unhandled VSIB index type");
1552         return -1;
1553       case TYPE_MVSIBX:
1554         insn->sibIndex =
1555             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1556         break;
1557       case TYPE_MVSIBY:
1558         insn->sibIndex =
1559             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1560         break;
1561       case TYPE_MVSIBZ:
1562         insn->sibIndex =
1563             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1564         break;
1565       }
1566 
1567       // Apply the AVX512 compressed displacement scaling factor.
1568       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1569         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1570       break;
1571     case ENCODING_SIB:
1572       // Reject if SIB wasn't used.
1573       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1574         return -1;
1575       if (readModRM(insn))
1576         return -1;
1577       if (fixupReg(insn, &Op))
1578         return -1;
1579       break;
1580     case ENCODING_REG:
1581     CASE_ENCODING_RM:
1582       if (readModRM(insn))
1583         return -1;
1584       if (fixupReg(insn, &Op))
1585         return -1;
1586       // Apply the AVX512 compressed displacement scaling factor.
1587       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1588         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1589       break;
1590     case ENCODING_IB:
1591       if (sawRegImm) {
1592         // Saw a register immediate so don't read again and instead split the
1593         // previous immediate. FIXME: This is a hack.
1594         insn->immediates[insn->numImmediatesConsumed] =
1595             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1596         ++insn->numImmediatesConsumed;
1597         break;
1598       }
1599       if (readImmediate(insn, 1))
1600         return -1;
1601       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1602         sawRegImm = 1;
1603       break;
1604     case ENCODING_IW:
1605       if (readImmediate(insn, 2))
1606         return -1;
1607       break;
1608     case ENCODING_ID:
1609       if (readImmediate(insn, 4))
1610         return -1;
1611       break;
1612     case ENCODING_IO:
1613       if (readImmediate(insn, 8))
1614         return -1;
1615       break;
1616     case ENCODING_Iv:
1617       if (readImmediate(insn, insn->immediateSize))
1618         return -1;
1619       break;
1620     case ENCODING_Ia:
1621       if (readImmediate(insn, insn->addressSize))
1622         return -1;
1623       break;
1624     case ENCODING_IRC:
1625       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1626                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1627       break;
1628     case ENCODING_RB:
1629       if (readOpcodeRegister(insn, 1))
1630         return -1;
1631       break;
1632     case ENCODING_RW:
1633       if (readOpcodeRegister(insn, 2))
1634         return -1;
1635       break;
1636     case ENCODING_RD:
1637       if (readOpcodeRegister(insn, 4))
1638         return -1;
1639       break;
1640     case ENCODING_RO:
1641       if (readOpcodeRegister(insn, 8))
1642         return -1;
1643       break;
1644     case ENCODING_Rv:
1645       if (readOpcodeRegister(insn, 0))
1646         return -1;
1647       break;
1648     case ENCODING_CC:
1649       insn->immediates[1] = insn->opcode & 0xf;
1650       break;
1651     case ENCODING_FP:
1652       break;
1653     case ENCODING_VVVV:
1654       needVVVV = 0; // Mark that we have found a VVVV operand.
1655       if (!hasVVVV)
1656         return -1;
1657       if (insn->mode != MODE_64BIT)
1658         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1659       if (fixupReg(insn, &Op))
1660         return -1;
1661       break;
1662     case ENCODING_WRITEMASK:
1663       if (readMaskRegister(insn))
1664         return -1;
1665       break;
1666     case ENCODING_DUP:
1667       break;
1668     default:
1669       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1670       return -1;
1671     }
1672   }
1673 
1674   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1675   if (needVVVV)
1676     return -1;
1677 
1678   return 0;
1679 }
1680 
1681 namespace llvm {
1682 
1683 // Fill-ins to make the compiler happy. These constants are never actually
1684 // assigned; they are just filler to make an automatically-generated switch
1685 // statement work.
1686 namespace X86 {
1687   enum {
1688     BX_SI = 500,
1689     BX_DI = 501,
1690     BP_SI = 502,
1691     BP_DI = 503,
1692     sib   = 504,
1693     sib64 = 505
1694   };
1695 } // namespace X86
1696 
1697 } // namespace llvm
1698 
1699 static bool translateInstruction(MCInst &target,
1700                                 InternalInstruction &source,
1701                                 const MCDisassembler *Dis);
1702 
1703 namespace {
1704 
1705 /// Generic disassembler for all X86 platforms. All each platform class should
1706 /// have to do is subclass the constructor, and provide a different
1707 /// disassemblerMode value.
1708 class X86GenericDisassembler : public MCDisassembler {
1709   std::unique_ptr<const MCInstrInfo> MII;
1710 public:
1711   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1712                          std::unique_ptr<const MCInstrInfo> MII);
1713 public:
1714   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1715                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1716                               raw_ostream &cStream) const override;
1717 
1718 private:
1719   DisassemblerMode              fMode;
1720 };
1721 
1722 } // namespace
1723 
1724 X86GenericDisassembler::X86GenericDisassembler(
1725                                          const MCSubtargetInfo &STI,
1726                                          MCContext &Ctx,
1727                                          std::unique_ptr<const MCInstrInfo> MII)
1728   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1729   const FeatureBitset &FB = STI.getFeatureBits();
1730   if (FB[X86::Is16Bit]) {
1731     fMode = MODE_16BIT;
1732     return;
1733   } else if (FB[X86::Is32Bit]) {
1734     fMode = MODE_32BIT;
1735     return;
1736   } else if (FB[X86::Is64Bit]) {
1737     fMode = MODE_64BIT;
1738     return;
1739   }
1740 
1741   llvm_unreachable("Invalid CPU mode");
1742 }
1743 
1744 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1745     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1746     raw_ostream &CStream) const {
1747   CommentStream = &CStream;
1748 
1749   InternalInstruction Insn;
1750   memset(&Insn, 0, sizeof(InternalInstruction));
1751   Insn.bytes = Bytes;
1752   Insn.startLocation = Address;
1753   Insn.readerCursor = Address;
1754   Insn.mode = fMode;
1755 
1756   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1757       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1758       readOperands(&Insn)) {
1759     Size = Insn.readerCursor - Address;
1760     return Fail;
1761   }
1762 
1763   Insn.operands = x86OperandSets[Insn.spec->operands];
1764   Insn.length = Insn.readerCursor - Insn.startLocation;
1765   Size = Insn.length;
1766   if (Size > 15)
1767     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1768 
1769   bool Ret = translateInstruction(Instr, Insn, this);
1770   if (!Ret) {
1771     unsigned Flags = X86::IP_NO_PREFIX;
1772     if (Insn.hasAdSize)
1773       Flags |= X86::IP_HAS_AD_SIZE;
1774     if (!Insn.mandatoryPrefix) {
1775       if (Insn.hasOpSize)
1776         Flags |= X86::IP_HAS_OP_SIZE;
1777       if (Insn.repeatPrefix == 0xf2)
1778         Flags |= X86::IP_HAS_REPEAT_NE;
1779       else if (Insn.repeatPrefix == 0xf3 &&
1780                // It should not be 'pause' f3 90
1781                Insn.opcode != 0x90)
1782         Flags |= X86::IP_HAS_REPEAT;
1783       if (Insn.hasLockPrefix)
1784         Flags |= X86::IP_HAS_LOCK;
1785     }
1786     Instr.setFlags(Flags);
1787   }
1788   return (!Ret) ? Success : Fail;
1789 }
1790 
1791 //
1792 // Private code that translates from struct InternalInstructions to MCInsts.
1793 //
1794 
1795 /// translateRegister - Translates an internal register to the appropriate LLVM
1796 ///   register, and appends it as an operand to an MCInst.
1797 ///
1798 /// @param mcInst     - The MCInst to append to.
1799 /// @param reg        - The Reg to append.
1800 static void translateRegister(MCInst &mcInst, Reg reg) {
1801 #define ENTRY(x) X86::x,
1802   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1803 #undef ENTRY
1804 
1805   MCPhysReg llvmRegnum = llvmRegnums[reg];
1806   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1807 }
1808 
1809 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1810   0,        // SEG_OVERRIDE_NONE
1811   X86::CS,
1812   X86::SS,
1813   X86::DS,
1814   X86::ES,
1815   X86::FS,
1816   X86::GS
1817 };
1818 
1819 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1820 ///
1821 /// @param mcInst       - The MCInst to append to.
1822 /// @param insn         - The internal instruction.
1823 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1824   unsigned baseRegNo;
1825 
1826   if (insn.mode == MODE_64BIT)
1827     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1828   else if (insn.mode == MODE_32BIT)
1829     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1830   else {
1831     assert(insn.mode == MODE_16BIT);
1832     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1833   }
1834   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1835   mcInst.addOperand(baseReg);
1836 
1837   MCOperand segmentReg;
1838   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1839   mcInst.addOperand(segmentReg);
1840   return false;
1841 }
1842 
1843 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1844 ///
1845 /// @param mcInst       - The MCInst to append to.
1846 /// @param insn         - The internal instruction.
1847 
1848 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1849   unsigned baseRegNo;
1850 
1851   if (insn.mode == MODE_64BIT)
1852     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1853   else if (insn.mode == MODE_32BIT)
1854     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1855   else {
1856     assert(insn.mode == MODE_16BIT);
1857     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1858   }
1859   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1860   mcInst.addOperand(baseReg);
1861   return false;
1862 }
1863 
1864 /// translateImmediate  - Appends an immediate operand to an MCInst.
1865 ///
1866 /// @param mcInst       - The MCInst to append to.
1867 /// @param immediate    - The immediate value to append.
1868 /// @param operand      - The operand, as stored in the descriptor table.
1869 /// @param insn         - The internal instruction.
1870 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1871                                const OperandSpecifier &operand,
1872                                InternalInstruction &insn,
1873                                const MCDisassembler *Dis) {
1874   // Sign-extend the immediate if necessary.
1875 
1876   OperandType type = (OperandType)operand.type;
1877 
1878   bool isBranch = false;
1879   uint64_t pcrel = 0;
1880   if (type == TYPE_REL) {
1881     isBranch = true;
1882     pcrel = insn.startLocation + insn.length;
1883     switch (operand.encoding) {
1884     default:
1885       break;
1886     case ENCODING_Iv:
1887       switch (insn.displacementSize) {
1888       default:
1889         break;
1890       case 1:
1891         if(immediate & 0x80)
1892           immediate |= ~(0xffull);
1893         break;
1894       case 2:
1895         if(immediate & 0x8000)
1896           immediate |= ~(0xffffull);
1897         break;
1898       case 4:
1899         if(immediate & 0x80000000)
1900           immediate |= ~(0xffffffffull);
1901         break;
1902       case 8:
1903         break;
1904       }
1905       break;
1906     case ENCODING_IB:
1907       if(immediate & 0x80)
1908         immediate |= ~(0xffull);
1909       break;
1910     case ENCODING_IW:
1911       if(immediate & 0x8000)
1912         immediate |= ~(0xffffull);
1913       break;
1914     case ENCODING_ID:
1915       if(immediate & 0x80000000)
1916         immediate |= ~(0xffffffffull);
1917       break;
1918     }
1919   }
1920   // By default sign-extend all X86 immediates based on their encoding.
1921   else if (type == TYPE_IMM) {
1922     switch (operand.encoding) {
1923     default:
1924       break;
1925     case ENCODING_IB:
1926       if(immediate & 0x80)
1927         immediate |= ~(0xffull);
1928       break;
1929     case ENCODING_IW:
1930       if(immediate & 0x8000)
1931         immediate |= ~(0xffffull);
1932       break;
1933     case ENCODING_ID:
1934       if(immediate & 0x80000000)
1935         immediate |= ~(0xffffffffull);
1936       break;
1937     case ENCODING_IO:
1938       break;
1939     }
1940   }
1941 
1942   switch (type) {
1943   case TYPE_XMM:
1944     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1945     return;
1946   case TYPE_YMM:
1947     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1948     return;
1949   case TYPE_ZMM:
1950     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1951     return;
1952   default:
1953     // operand is 64 bits wide.  Do nothing.
1954     break;
1955   }
1956 
1957   if (!Dis->tryAddingSymbolicOperand(
1958           mcInst, immediate + pcrel, insn.startLocation, isBranch,
1959           insn.immediateOffset, insn.immediateSize, insn.length))
1960     mcInst.addOperand(MCOperand::createImm(immediate));
1961 
1962   if (type == TYPE_MOFFS) {
1963     MCOperand segmentReg;
1964     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1965     mcInst.addOperand(segmentReg);
1966   }
1967 }
1968 
1969 /// translateRMRegister - Translates a register stored in the R/M field of the
1970 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
1971 /// @param mcInst       - The MCInst to append to.
1972 /// @param insn         - The internal instruction to extract the R/M field
1973 ///                       from.
1974 /// @return             - 0 on success; -1 otherwise
1975 static bool translateRMRegister(MCInst &mcInst,
1976                                 InternalInstruction &insn) {
1977   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
1978     debug("A R/M register operand may not have a SIB byte");
1979     return true;
1980   }
1981 
1982   switch (insn.eaBase) {
1983   default:
1984     debug("Unexpected EA base register");
1985     return true;
1986   case EA_BASE_NONE:
1987     debug("EA_BASE_NONE for ModR/M base");
1988     return true;
1989 #define ENTRY(x) case EA_BASE_##x:
1990   ALL_EA_BASES
1991 #undef ENTRY
1992     debug("A R/M register operand may not have a base; "
1993           "the operand must be a register.");
1994     return true;
1995 #define ENTRY(x)                                                      \
1996   case EA_REG_##x:                                                    \
1997     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
1998   ALL_REGS
1999 #undef ENTRY
2000   }
2001 
2002   return false;
2003 }
2004 
2005 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2006 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2007 ///   operand in LLVM's format, and appends it to an MCInst.
2008 ///
2009 /// @param mcInst       - The MCInst to append to.
2010 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2011 ///                       from.
2012 /// @param ForceSIB     - The instruction must use SIB.
2013 /// @return             - 0 on success; nonzero otherwise
2014 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2015                               const MCDisassembler *Dis,
2016                               bool ForceSIB = false) {
2017   // Addresses in an MCInst are represented as five operands:
2018   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2019   //                                SIB base
2020   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2021   //                                scale amount
2022   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2023   //                                the index (which is multiplied by the
2024   //                                scale amount)
2025   //   4. displacement  (immediate) 0, or the displacement if there is one
2026   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2027   //                                if we have segment overrides
2028 
2029   MCOperand baseReg;
2030   MCOperand scaleAmount;
2031   MCOperand indexReg;
2032   MCOperand displacement;
2033   MCOperand segmentReg;
2034   uint64_t pcrel = 0;
2035 
2036   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2037     if (insn.sibBase != SIB_BASE_NONE) {
2038       switch (insn.sibBase) {
2039       default:
2040         debug("Unexpected sibBase");
2041         return true;
2042 #define ENTRY(x)                                          \
2043       case SIB_BASE_##x:                                  \
2044         baseReg = MCOperand::createReg(X86::x); break;
2045       ALL_SIB_BASES
2046 #undef ENTRY
2047       }
2048     } else {
2049       baseReg = MCOperand::createReg(X86::NoRegister);
2050     }
2051 
2052     if (insn.sibIndex != SIB_INDEX_NONE) {
2053       switch (insn.sibIndex) {
2054       default:
2055         debug("Unexpected sibIndex");
2056         return true;
2057 #define ENTRY(x)                                          \
2058       case SIB_INDEX_##x:                                 \
2059         indexReg = MCOperand::createReg(X86::x); break;
2060       EA_BASES_32BIT
2061       EA_BASES_64BIT
2062       REGS_XMM
2063       REGS_YMM
2064       REGS_ZMM
2065 #undef ENTRY
2066       }
2067     } else {
2068       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2069       // but no index is used and modrm alone should have been enough.
2070       // -No base register in 32-bit mode. In 64-bit mode this is used to
2071       //  avoid rip-relative addressing.
2072       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2073       //  base always requires a SIB byte.
2074       // -A scale other than 1 is used.
2075       if (!ForceSIB &&
2076           (insn.sibScale != 1 ||
2077            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2078            (insn.sibBase != SIB_BASE_NONE &&
2079             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2080             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2081         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2082                                                                 X86::RIZ);
2083       } else
2084         indexReg = MCOperand::createReg(X86::NoRegister);
2085     }
2086 
2087     scaleAmount = MCOperand::createImm(insn.sibScale);
2088   } else {
2089     switch (insn.eaBase) {
2090     case EA_BASE_NONE:
2091       if (insn.eaDisplacement == EA_DISP_NONE) {
2092         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2093         return true;
2094       }
2095       if (insn.mode == MODE_64BIT){
2096         pcrel = insn.startLocation + insn.length;
2097         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2098                                              insn.startLocation +
2099                                                  insn.displacementOffset);
2100         // Section 2.2.1.6
2101         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2102                                                                X86::RIP);
2103       }
2104       else
2105         baseReg = MCOperand::createReg(X86::NoRegister);
2106 
2107       indexReg = MCOperand::createReg(X86::NoRegister);
2108       break;
2109     case EA_BASE_BX_SI:
2110       baseReg = MCOperand::createReg(X86::BX);
2111       indexReg = MCOperand::createReg(X86::SI);
2112       break;
2113     case EA_BASE_BX_DI:
2114       baseReg = MCOperand::createReg(X86::BX);
2115       indexReg = MCOperand::createReg(X86::DI);
2116       break;
2117     case EA_BASE_BP_SI:
2118       baseReg = MCOperand::createReg(X86::BP);
2119       indexReg = MCOperand::createReg(X86::SI);
2120       break;
2121     case EA_BASE_BP_DI:
2122       baseReg = MCOperand::createReg(X86::BP);
2123       indexReg = MCOperand::createReg(X86::DI);
2124       break;
2125     default:
2126       indexReg = MCOperand::createReg(X86::NoRegister);
2127       switch (insn.eaBase) {
2128       default:
2129         debug("Unexpected eaBase");
2130         return true;
2131         // Here, we will use the fill-ins defined above.  However,
2132         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2133         //   sib and sib64 were handled in the top-level if, so they're only
2134         //   placeholders to keep the compiler happy.
2135 #define ENTRY(x)                                        \
2136       case EA_BASE_##x:                                 \
2137         baseReg = MCOperand::createReg(X86::x); break;
2138       ALL_EA_BASES
2139 #undef ENTRY
2140 #define ENTRY(x) case EA_REG_##x:
2141       ALL_REGS
2142 #undef ENTRY
2143         debug("A R/M memory operand may not be a register; "
2144               "the base field must be a base.");
2145         return true;
2146       }
2147     }
2148 
2149     scaleAmount = MCOperand::createImm(1);
2150   }
2151 
2152   displacement = MCOperand::createImm(insn.displacement);
2153 
2154   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2155 
2156   mcInst.addOperand(baseReg);
2157   mcInst.addOperand(scaleAmount);
2158   mcInst.addOperand(indexReg);
2159 
2160   const uint8_t dispSize =
2161       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2162 
2163   if (!Dis->tryAddingSymbolicOperand(
2164           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2165           insn.displacementOffset, dispSize, insn.length))
2166     mcInst.addOperand(displacement);
2167   mcInst.addOperand(segmentReg);
2168   return false;
2169 }
2170 
2171 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2172 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2173 ///
2174 /// @param mcInst       - The MCInst to append to.
2175 /// @param operand      - The operand, as stored in the descriptor table.
2176 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2177 ///                       from.
2178 /// @return             - 0 on success; nonzero otherwise
2179 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2180                         InternalInstruction &insn, const MCDisassembler *Dis) {
2181   switch (operand.type) {
2182   default:
2183     debug("Unexpected type for a R/M operand");
2184     return true;
2185   case TYPE_R8:
2186   case TYPE_R16:
2187   case TYPE_R32:
2188   case TYPE_R64:
2189   case TYPE_Rv:
2190   case TYPE_MM64:
2191   case TYPE_XMM:
2192   case TYPE_YMM:
2193   case TYPE_ZMM:
2194   case TYPE_TMM:
2195   case TYPE_VK_PAIR:
2196   case TYPE_VK:
2197   case TYPE_DEBUGREG:
2198   case TYPE_CONTROLREG:
2199   case TYPE_BNDR:
2200     return translateRMRegister(mcInst, insn);
2201   case TYPE_M:
2202   case TYPE_MVSIBX:
2203   case TYPE_MVSIBY:
2204   case TYPE_MVSIBZ:
2205     return translateRMMemory(mcInst, insn, Dis);
2206   case TYPE_MSIB:
2207     return translateRMMemory(mcInst, insn, Dis, true);
2208   }
2209 }
2210 
2211 /// translateFPRegister - Translates a stack position on the FPU stack to its
2212 ///   LLVM form, and appends it to an MCInst.
2213 ///
2214 /// @param mcInst       - The MCInst to append to.
2215 /// @param stackPos     - The stack position to translate.
2216 static void translateFPRegister(MCInst &mcInst,
2217                                 uint8_t stackPos) {
2218   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2219 }
2220 
2221 /// translateMaskRegister - Translates a 3-bit mask register number to
2222 ///   LLVM form, and appends it to an MCInst.
2223 ///
2224 /// @param mcInst       - The MCInst to append to.
2225 /// @param maskRegNum   - Number of mask register from 0 to 7.
2226 /// @return             - false on success; true otherwise.
2227 static bool translateMaskRegister(MCInst &mcInst,
2228                                 uint8_t maskRegNum) {
2229   if (maskRegNum >= 8) {
2230     debug("Invalid mask register number");
2231     return true;
2232   }
2233 
2234   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2235   return false;
2236 }
2237 
2238 /// translateOperand - Translates an operand stored in an internal instruction
2239 ///   to LLVM's format and appends it to an MCInst.
2240 ///
2241 /// @param mcInst       - The MCInst to append to.
2242 /// @param operand      - The operand, as stored in the descriptor table.
2243 /// @param insn         - The internal instruction.
2244 /// @return             - false on success; true otherwise.
2245 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2246                              InternalInstruction &insn,
2247                              const MCDisassembler *Dis) {
2248   switch (operand.encoding) {
2249   default:
2250     debug("Unhandled operand encoding during translation");
2251     return true;
2252   case ENCODING_REG:
2253     translateRegister(mcInst, insn.reg);
2254     return false;
2255   case ENCODING_WRITEMASK:
2256     return translateMaskRegister(mcInst, insn.writemask);
2257   case ENCODING_SIB:
2258   CASE_ENCODING_RM:
2259   CASE_ENCODING_VSIB:
2260     return translateRM(mcInst, operand, insn, Dis);
2261   case ENCODING_IB:
2262   case ENCODING_IW:
2263   case ENCODING_ID:
2264   case ENCODING_IO:
2265   case ENCODING_Iv:
2266   case ENCODING_Ia:
2267     translateImmediate(mcInst,
2268                        insn.immediates[insn.numImmediatesTranslated++],
2269                        operand,
2270                        insn,
2271                        Dis);
2272     return false;
2273   case ENCODING_IRC:
2274     mcInst.addOperand(MCOperand::createImm(insn.RC));
2275     return false;
2276   case ENCODING_SI:
2277     return translateSrcIndex(mcInst, insn);
2278   case ENCODING_DI:
2279     return translateDstIndex(mcInst, insn);
2280   case ENCODING_RB:
2281   case ENCODING_RW:
2282   case ENCODING_RD:
2283   case ENCODING_RO:
2284   case ENCODING_Rv:
2285     translateRegister(mcInst, insn.opcodeRegister);
2286     return false;
2287   case ENCODING_CC:
2288     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2289     return false;
2290   case ENCODING_FP:
2291     translateFPRegister(mcInst, insn.modRM & 7);
2292     return false;
2293   case ENCODING_VVVV:
2294     translateRegister(mcInst, insn.vvvv);
2295     return false;
2296   case ENCODING_DUP:
2297     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2298                             insn, Dis);
2299   }
2300 }
2301 
2302 /// translateInstruction - Translates an internal instruction and all its
2303 ///   operands to an MCInst.
2304 ///
2305 /// @param mcInst       - The MCInst to populate with the instruction's data.
2306 /// @param insn         - The internal instruction.
2307 /// @return             - false on success; true otherwise.
2308 static bool translateInstruction(MCInst &mcInst,
2309                                 InternalInstruction &insn,
2310                                 const MCDisassembler *Dis) {
2311   if (!insn.spec) {
2312     debug("Instruction has no specification");
2313     return true;
2314   }
2315 
2316   mcInst.clear();
2317   mcInst.setOpcode(insn.instructionID);
2318   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2319   // prefix bytes should be disassembled as xrelease and xacquire then set the
2320   // opcode to those instead of the rep and repne opcodes.
2321   if (insn.xAcquireRelease) {
2322     if(mcInst.getOpcode() == X86::REP_PREFIX)
2323       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2324     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2325       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2326   }
2327 
2328   insn.numImmediatesTranslated = 0;
2329 
2330   for (const auto &Op : insn.operands) {
2331     if (Op.encoding != ENCODING_NONE) {
2332       if (translateOperand(mcInst, Op, insn, Dis)) {
2333         return true;
2334       }
2335     }
2336   }
2337 
2338   return false;
2339 }
2340 
2341 static MCDisassembler *createX86Disassembler(const Target &T,
2342                                              const MCSubtargetInfo &STI,
2343                                              MCContext &Ctx) {
2344   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2345   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2346 }
2347 
2348 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2349   // Register the disassembler.
2350   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2351                                          createX86Disassembler);
2352   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2353                                          createX86Disassembler);
2354 }
2355