xref: /llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision 1ca8092e87aea58f1c3752d03c20bdfc4259e409)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP4:
154     dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP5:
157     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP6:
160     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   case MAP7:
163     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164     break;
165   }
166 
167   switch (dec->modrm_type) {
168   default:
169     llvm_unreachable("Corrupt table!  Unknown modrm_type");
170     return 0;
171   case MODRM_ONEENTRY:
172     return modRMTable[dec->instructionIDs];
173   case MODRM_SPLITRM:
174     if (modFromModRM(modRM) == 0x3)
175       return modRMTable[dec->instructionIDs + 1];
176     return modRMTable[dec->instructionIDs];
177   case MODRM_SPLITREG:
178     if (modFromModRM(modRM) == 0x3)
179       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181   case MODRM_SPLITMISC:
182     if (modFromModRM(modRM) == 0x3)
183       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185   case MODRM_FULL:
186     return modRMTable[dec->instructionIDs + modRM];
187   }
188 }
189 
190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191   uint64_t offset = insn->readerCursor - insn->startLocation;
192   if (offset >= insn->bytes.size())
193     return true;
194   byte = insn->bytes[offset];
195   return false;
196 }
197 
198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199   auto r = insn->bytes;
200   uint64_t offset = insn->readerCursor - insn->startLocation;
201   if (offset + sizeof(T) > r.size())
202     return true;
203   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204   insn->readerCursor += sizeof(T);
205   return false;
206 }
207 
208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211 
212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213   return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215 
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them.  Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
221 static int readPrefixes(struct InternalInstruction *insn) {
222   bool isPrefix = true;
223   uint8_t byte = 0;
224   uint8_t nextByte;
225 
226   LLVM_DEBUG(dbgs() << "readPrefixes()");
227 
228   while (isPrefix) {
229     // If we fail reading prefixes, just stop here and let the opcode reader
230     // deal with it.
231     if (consume(insn, byte))
232       break;
233 
234     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235     // break and let it be disassembled as a normal "instruction".
236     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237       break;
238 
239     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241       // met:
242       // - it is followed by a LOCK (0xf0) prefix
243       // - it is followed by an xchg instruction
244       // then it should be disassembled as a xacquire/xrelease not repne/rep.
245       if (((nextByte == 0xf0) ||
246            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247         insn->xAcquireRelease = true;
248         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249           break;
250       }
251       // Also if the byte is 0xf3, and the following condition is met:
252       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254       // then it should be disassembled as an xrelease not rep.
255       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256                            nextByte == 0xc6 || nextByte == 0xc7)) {
257         insn->xAcquireRelease = true;
258         break;
259       }
260       if (isREX(insn, nextByte)) {
261         uint8_t nnextByte;
262         // Go to REX prefix after the current one
263         if (consume(insn, nnextByte))
264           return -1;
265         // We should be able to read next byte after REX prefix
266         if (peek(insn, nnextByte))
267           return -1;
268         --insn->readerCursor;
269       }
270     }
271 
272     switch (byte) {
273     case 0xf0: // LOCK
274       insn->hasLockPrefix = true;
275       break;
276     case 0xf2: // REPNE/REPNZ
277     case 0xf3: { // REP or REPE/REPZ
278       uint8_t nextByte;
279       if (peek(insn, nextByte))
280         break;
281       // TODO:
282       //  1. There could be several 0x66
283       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284       //      it's not mandatory prefix
285       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286       //     0x0f exactly after it to be mandatory prefix
287       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
288         // The last of 0xf2 /0xf3 is mandatory prefix
289         insn->mandatoryPrefix = byte;
290       insn->repeatPrefix = byte;
291       break;
292     }
293     case 0x2e: // CS segment override -OR- Branch not taken
294       insn->segmentOverride = SEG_OVERRIDE_CS;
295       break;
296     case 0x36: // SS segment override -OR- Branch taken
297       insn->segmentOverride = SEG_OVERRIDE_SS;
298       break;
299     case 0x3e: // DS segment override
300       insn->segmentOverride = SEG_OVERRIDE_DS;
301       break;
302     case 0x26: // ES segment override
303       insn->segmentOverride = SEG_OVERRIDE_ES;
304       break;
305     case 0x64: // FS segment override
306       insn->segmentOverride = SEG_OVERRIDE_FS;
307       break;
308     case 0x65: // GS segment override
309       insn->segmentOverride = SEG_OVERRIDE_GS;
310       break;
311     case 0x66: { // Operand-size override {
312       uint8_t nextByte;
313       insn->hasOpSize = true;
314       if (peek(insn, nextByte))
315         break;
316       // 0x66 can't overwrite existing mandatory prefix and should be ignored
317       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
318         insn->mandatoryPrefix = byte;
319       break;
320     }
321     case 0x67: // Address-size override
322       insn->hasAdSize = true;
323       break;
324     default: // Not a prefix byte
325       isPrefix = false;
326       break;
327     }
328 
329     if (isPrefix)
330       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
331   }
332 
333   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
334 
335   if (byte == 0x62) {
336     uint8_t byte1, byte2;
337     if (consume(insn, byte1)) {
338       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
339       return -1;
340     }
341 
342     if (peek(insn, byte2)) {
343       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
344       return -1;
345     }
346 
347     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
348       insn->vectorExtensionType = TYPE_EVEX;
349     } else {
350       --insn->readerCursor; // unconsume byte1
351       --insn->readerCursor; // unconsume byte
352     }
353 
354     if (insn->vectorExtensionType == TYPE_EVEX) {
355       insn->vectorExtensionPrefix[0] = byte;
356       insn->vectorExtensionPrefix[1] = byte1;
357       if (consume(insn, insn->vectorExtensionPrefix[2])) {
358         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
359         return -1;
360       }
361       if (consume(insn, insn->vectorExtensionPrefix[3])) {
362         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
363         return -1;
364       }
365 
366       if (insn->mode == MODE_64BIT) {
367         // We simulate the REX prefix for simplicity's sake
368         insn->rexPrefix = 0x40 |
369                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
370                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
371                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
372                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
373 
374         // We simulate the REX2 prefix for simplicity's sake
375         insn->rex2ExtensionPrefix[1] =
376             (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
377             (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
378             (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
379       }
380 
381       LLVM_DEBUG(
382           dbgs() << format(
383               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
384               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
385               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
386     }
387   } else if (byte == 0xc4) {
388     uint8_t byte1;
389     if (peek(insn, byte1)) {
390       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
391       return -1;
392     }
393 
394     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
395       insn->vectorExtensionType = TYPE_VEX_3B;
396     else
397       --insn->readerCursor;
398 
399     if (insn->vectorExtensionType == TYPE_VEX_3B) {
400       insn->vectorExtensionPrefix[0] = byte;
401       consume(insn, insn->vectorExtensionPrefix[1]);
402       consume(insn, insn->vectorExtensionPrefix[2]);
403 
404       // We simulate the REX prefix for simplicity's sake
405 
406       if (insn->mode == MODE_64BIT)
407         insn->rexPrefix = 0x40 |
408                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
409                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
410                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
411                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
412 
413       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
414                                   insn->vectorExtensionPrefix[0],
415                                   insn->vectorExtensionPrefix[1],
416                                   insn->vectorExtensionPrefix[2]));
417     }
418   } else if (byte == 0xc5) {
419     uint8_t byte1;
420     if (peek(insn, byte1)) {
421       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
422       return -1;
423     }
424 
425     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
426       insn->vectorExtensionType = TYPE_VEX_2B;
427     else
428       --insn->readerCursor;
429 
430     if (insn->vectorExtensionType == TYPE_VEX_2B) {
431       insn->vectorExtensionPrefix[0] = byte;
432       consume(insn, insn->vectorExtensionPrefix[1]);
433 
434       if (insn->mode == MODE_64BIT)
435         insn->rexPrefix =
436             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
437 
438       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
439       default:
440         break;
441       case VEX_PREFIX_66:
442         insn->hasOpSize = true;
443         break;
444       }
445 
446       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
447                                   insn->vectorExtensionPrefix[0],
448                                   insn->vectorExtensionPrefix[1]));
449     }
450   } else if (byte == 0x8f) {
451     uint8_t byte1;
452     if (peek(insn, byte1)) {
453       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
454       return -1;
455     }
456 
457     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
458       insn->vectorExtensionType = TYPE_XOP;
459     else
460       --insn->readerCursor;
461 
462     if (insn->vectorExtensionType == TYPE_XOP) {
463       insn->vectorExtensionPrefix[0] = byte;
464       consume(insn, insn->vectorExtensionPrefix[1]);
465       consume(insn, insn->vectorExtensionPrefix[2]);
466 
467       // We simulate the REX prefix for simplicity's sake
468 
469       if (insn->mode == MODE_64BIT)
470         insn->rexPrefix = 0x40 |
471                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
472                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
473                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
474                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
475 
476       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
477       default:
478         break;
479       case VEX_PREFIX_66:
480         insn->hasOpSize = true;
481         break;
482       }
483 
484       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
485                                   insn->vectorExtensionPrefix[0],
486                                   insn->vectorExtensionPrefix[1],
487                                   insn->vectorExtensionPrefix[2]));
488     }
489   } else if (isREX2(insn, byte)) {
490     uint8_t byte1;
491     if (peek(insn, byte1)) {
492       LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
493       return -1;
494     }
495     insn->rex2ExtensionPrefix[0] = byte;
496     consume(insn, insn->rex2ExtensionPrefix[1]);
497 
498     // We simulate the REX prefix for simplicity's sake
499     insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
500                       (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
501                       (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
502                       (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
503     LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
504                                 insn->rex2ExtensionPrefix[0],
505                                 insn->rex2ExtensionPrefix[1]));
506   } else if (isREX(insn, byte)) {
507     if (peek(insn, nextByte))
508       return -1;
509     insn->rexPrefix = byte;
510     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
511   } else
512     --insn->readerCursor;
513 
514   if (insn->mode == MODE_16BIT) {
515     insn->registerSize = (insn->hasOpSize ? 4 : 2);
516     insn->addressSize = (insn->hasAdSize ? 4 : 2);
517     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
518     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
519   } else if (insn->mode == MODE_32BIT) {
520     insn->registerSize = (insn->hasOpSize ? 2 : 4);
521     insn->addressSize = (insn->hasAdSize ? 2 : 4);
522     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
523     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
524   } else if (insn->mode == MODE_64BIT) {
525     insn->displacementSize = 4;
526     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
527       insn->registerSize = 8;
528       insn->addressSize = (insn->hasAdSize ? 4 : 8);
529       insn->immediateSize = 4;
530       insn->hasOpSize = false;
531     } else {
532       insn->registerSize = (insn->hasOpSize ? 2 : 4);
533       insn->addressSize = (insn->hasAdSize ? 4 : 8);
534       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
535     }
536   }
537 
538   return 0;
539 }
540 
541 // Consumes the SIB byte to determine addressing information.
542 static int readSIB(struct InternalInstruction *insn) {
543   SIBBase sibBaseBase = SIB_BASE_NONE;
544   uint8_t index, base;
545 
546   LLVM_DEBUG(dbgs() << "readSIB()");
547   switch (insn->addressSize) {
548   case 2:
549   default:
550     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
551   case 4:
552     insn->sibIndexBase = SIB_INDEX_EAX;
553     sibBaseBase = SIB_BASE_EAX;
554     break;
555   case 8:
556     insn->sibIndexBase = SIB_INDEX_RAX;
557     sibBaseBase = SIB_BASE_RAX;
558     break;
559   }
560 
561   if (consume(insn, insn->sib))
562     return -1;
563 
564   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
565           (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
566 
567   if (index == 0x4) {
568     insn->sibIndex = SIB_INDEX_NONE;
569   } else {
570     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
571   }
572 
573   insn->sibScale = 1 << scaleFromSIB(insn->sib);
574 
575   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
576          (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
577 
578   switch (base) {
579   case 0x5:
580   case 0xd:
581     switch (modFromModRM(insn->modRM)) {
582     case 0x0:
583       insn->eaDisplacement = EA_DISP_32;
584       insn->sibBase = SIB_BASE_NONE;
585       break;
586     case 0x1:
587       insn->eaDisplacement = EA_DISP_8;
588       insn->sibBase = (SIBBase)(sibBaseBase + base);
589       break;
590     case 0x2:
591       insn->eaDisplacement = EA_DISP_32;
592       insn->sibBase = (SIBBase)(sibBaseBase + base);
593       break;
594     default:
595       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
596     }
597     break;
598   default:
599     insn->sibBase = (SIBBase)(sibBaseBase + base);
600     break;
601   }
602 
603   return 0;
604 }
605 
606 static int readDisplacement(struct InternalInstruction *insn) {
607   int8_t d8;
608   int16_t d16;
609   int32_t d32;
610   LLVM_DEBUG(dbgs() << "readDisplacement()");
611 
612   insn->displacementOffset = insn->readerCursor - insn->startLocation;
613   switch (insn->eaDisplacement) {
614   case EA_DISP_NONE:
615     break;
616   case EA_DISP_8:
617     if (consume(insn, d8))
618       return -1;
619     insn->displacement = d8;
620     break;
621   case EA_DISP_16:
622     if (consume(insn, d16))
623       return -1;
624     insn->displacement = d16;
625     break;
626   case EA_DISP_32:
627     if (consume(insn, d32))
628       return -1;
629     insn->displacement = d32;
630     break;
631   }
632 
633   return 0;
634 }
635 
636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
637 static int readModRM(struct InternalInstruction *insn) {
638   uint8_t mod, rm, reg;
639   LLVM_DEBUG(dbgs() << "readModRM()");
640 
641   if (insn->consumedModRM)
642     return 0;
643 
644   if (consume(insn, insn->modRM))
645     return -1;
646   insn->consumedModRM = true;
647 
648   mod = modFromModRM(insn->modRM);
649   rm = rmFromModRM(insn->modRM);
650   reg = regFromModRM(insn->modRM);
651 
652   // This goes by insn->registerSize to pick the correct register, which messes
653   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
654   // fixupReg().
655   switch (insn->registerSize) {
656   case 2:
657     insn->regBase = MODRM_REG_AX;
658     insn->eaRegBase = EA_REG_AX;
659     break;
660   case 4:
661     insn->regBase = MODRM_REG_EAX;
662     insn->eaRegBase = EA_REG_EAX;
663     break;
664   case 8:
665     insn->regBase = MODRM_REG_RAX;
666     insn->eaRegBase = EA_REG_RAX;
667     break;
668   }
669 
670   reg |= (rFromREX(insn->rexPrefix) << 3) |
671          (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
672   rm |= (bFromREX(insn->rexPrefix) << 3) |
673         (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
674 
675   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
676     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
677 
678   insn->reg = (Reg)(insn->regBase + reg);
679 
680   switch (insn->addressSize) {
681   case 2: {
682     EABase eaBaseBase = EA_BASE_BX_SI;
683 
684     switch (mod) {
685     case 0x0:
686       if (rm == 0x6) {
687         insn->eaBase = EA_BASE_NONE;
688         insn->eaDisplacement = EA_DISP_16;
689         if (readDisplacement(insn))
690           return -1;
691       } else {
692         insn->eaBase = (EABase)(eaBaseBase + rm);
693         insn->eaDisplacement = EA_DISP_NONE;
694       }
695       break;
696     case 0x1:
697       insn->eaBase = (EABase)(eaBaseBase + rm);
698       insn->eaDisplacement = EA_DISP_8;
699       insn->displacementSize = 1;
700       if (readDisplacement(insn))
701         return -1;
702       break;
703     case 0x2:
704       insn->eaBase = (EABase)(eaBaseBase + rm);
705       insn->eaDisplacement = EA_DISP_16;
706       if (readDisplacement(insn))
707         return -1;
708       break;
709     case 0x3:
710       insn->eaBase = (EABase)(insn->eaRegBase + rm);
711       if (readDisplacement(insn))
712         return -1;
713       break;
714     }
715     break;
716   }
717   case 4:
718   case 8: {
719     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
720 
721     switch (mod) {
722     case 0x0:
723       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
724       // In determining whether RIP-relative mode is used (rm=5),
725       // or whether a SIB byte is present (rm=4),
726       // the extension bits (REX.b and EVEX.x) are ignored.
727       switch (rm & 7) {
728       case 0x4: // SIB byte is present
729         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
730         if (readSIB(insn) || readDisplacement(insn))
731           return -1;
732         break;
733       case 0x5: // RIP-relative
734         insn->eaBase = EA_BASE_NONE;
735         insn->eaDisplacement = EA_DISP_32;
736         if (readDisplacement(insn))
737           return -1;
738         break;
739       default:
740         insn->eaBase = (EABase)(eaBaseBase + rm);
741         break;
742       }
743       break;
744     case 0x1:
745       insn->displacementSize = 1;
746       [[fallthrough]];
747     case 0x2:
748       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
749       switch (rm & 7) {
750       case 0x4: // SIB byte is present
751         insn->eaBase = EA_BASE_sib;
752         if (readSIB(insn) || readDisplacement(insn))
753           return -1;
754         break;
755       default:
756         insn->eaBase = (EABase)(eaBaseBase + rm);
757         if (readDisplacement(insn))
758           return -1;
759         break;
760       }
761       break;
762     case 0x3:
763       insn->eaDisplacement = EA_DISP_NONE;
764       insn->eaBase = (EABase)(insn->eaRegBase + rm);
765       break;
766     }
767     break;
768   }
769   } // switch (insn->addressSize)
770 
771   return 0;
772 }
773 
774 #define GENERIC_FIXUP_FUNC(name, base, prefix)                                 \
775   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
776                        uint8_t index, uint8_t *valid) {                        \
777     *valid = 1;                                                                \
778     switch (type) {                                                            \
779     default:                                                                   \
780       debug("Unhandled register type");                                        \
781       *valid = 0;                                                              \
782       return 0;                                                                \
783     case TYPE_Rv:                                                              \
784       return base + index;                                                     \
785     case TYPE_R8:                                                              \
786       if (insn->rexPrefix && index >= 4 && index <= 7)                         \
787         return prefix##_SPL + (index - 4);                                     \
788       else                                                                     \
789         return prefix##_AL + index;                                            \
790     case TYPE_R16:                                                             \
791       return prefix##_AX + index;                                              \
792     case TYPE_R32:                                                             \
793       return prefix##_EAX + index;                                             \
794     case TYPE_R64:                                                             \
795       return prefix##_RAX + index;                                             \
796     case TYPE_ZMM:                                                             \
797       return prefix##_ZMM0 + index;                                            \
798     case TYPE_YMM:                                                             \
799       return prefix##_YMM0 + index;                                            \
800     case TYPE_XMM:                                                             \
801       return prefix##_XMM0 + index;                                            \
802     case TYPE_TMM:                                                             \
803       if (index > 7)                                                           \
804         *valid = 0;                                                            \
805       return prefix##_TMM0 + index;                                            \
806     case TYPE_VK:                                                              \
807       index &= 0xf;                                                            \
808       if (index > 7)                                                           \
809         *valid = 0;                                                            \
810       return prefix##_K0 + index;                                              \
811     case TYPE_VK_PAIR:                                                         \
812       if (index > 7)                                                           \
813         *valid = 0;                                                            \
814       return prefix##_K0_K1 + (index / 2);                                     \
815     case TYPE_MM64:                                                            \
816       return prefix##_MM0 + (index & 0x7);                                     \
817     case TYPE_SEGMENTREG:                                                      \
818       if ((index & 7) > 5)                                                     \
819         *valid = 0;                                                            \
820       return prefix##_ES + (index & 7);                                        \
821     case TYPE_DEBUGREG:                                                        \
822       if (index > 15)                                                          \
823         *valid = 0;                                                            \
824       return prefix##_DR0 + index;                                             \
825     case TYPE_CONTROLREG:                                                      \
826       if (index > 15)                                                          \
827         *valid = 0;                                                            \
828       return prefix##_CR0 + index;                                             \
829     case TYPE_MVSIBX:                                                          \
830       return prefix##_XMM0 + index;                                            \
831     case TYPE_MVSIBY:                                                          \
832       return prefix##_YMM0 + index;                                            \
833     case TYPE_MVSIBZ:                                                          \
834       return prefix##_ZMM0 + index;                                            \
835     }                                                                          \
836   }
837 
838 // Consult an operand type to determine the meaning of the reg or R/M field. If
839 // the operand is an XMM operand, for example, an operand would be XMM0 instead
840 // of AX, which readModRM() would otherwise misinterpret it as.
841 //
842 // @param insn  - The instruction containing the operand.
843 // @param type  - The operand type.
844 // @param index - The existing value of the field as reported by readModRM().
845 // @param valid - The address of a uint8_t.  The target is set to 1 if the
846 //                field is valid for the register class; 0 if not.
847 // @return      - The proper value.
848 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
849 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
850 
851 // Consult an operand specifier to determine which of the fixup*Value functions
852 // to use in correcting readModRM()'ss interpretation.
853 //
854 // @param insn  - See fixup*Value().
855 // @param op    - The operand specifier.
856 // @return      - 0 if fixup was successful; -1 if the register returned was
857 //                invalid for its class.
858 static int fixupReg(struct InternalInstruction *insn,
859                     const struct OperandSpecifier *op) {
860   uint8_t valid;
861   LLVM_DEBUG(dbgs() << "fixupReg()");
862 
863   switch ((OperandEncoding)op->encoding) {
864   default:
865     debug("Expected a REG or R/M encoding in fixupReg");
866     return -1;
867   case ENCODING_VVVV:
868     insn->vvvv =
869         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
870     if (!valid)
871       return -1;
872     break;
873   case ENCODING_REG:
874     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
875                                    insn->reg - insn->regBase, &valid);
876     if (!valid)
877       return -1;
878     break;
879   CASE_ENCODING_RM:
880     if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
881         modFromModRM(insn->modRM) == 3) {
882       // EVEX_X can extend the register id to 32 for a non-GPR register that is
883       // encoded in RM.
884       // mode : MODE_64_BIT
885       //  Only 8 vector registers are available in 32 bit mode
886       // mod : 3
887       //  RM encodes a register
888       switch (op->type) {
889       case TYPE_Rv:
890       case TYPE_R8:
891       case TYPE_R16:
892       case TYPE_R32:
893       case TYPE_R64:
894         break;
895       default:
896         insn->eaBase =
897             (EABase)(insn->eaBase +
898                      (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
899         break;
900       }
901     }
902     [[fallthrough]];
903   case ENCODING_SIB:
904     if (insn->eaBase >= insn->eaRegBase) {
905       insn->eaBase = (EABase)fixupRMValue(
906           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
907       if (!valid)
908         return -1;
909     }
910     break;
911   }
912 
913   return 0;
914 }
915 
916 // Read the opcode (except the ModR/M byte in the case of extended or escape
917 // opcodes).
918 static bool readOpcode(struct InternalInstruction *insn) {
919   uint8_t current;
920   LLVM_DEBUG(dbgs() << "readOpcode()");
921 
922   insn->opcodeType = ONEBYTE;
923   if (insn->vectorExtensionType == TYPE_EVEX) {
924     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
925     default:
926       LLVM_DEBUG(
927           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
928                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
929       return true;
930     case VEX_LOB_0F:
931       insn->opcodeType = TWOBYTE;
932       return consume(insn, insn->opcode);
933     case VEX_LOB_0F38:
934       insn->opcodeType = THREEBYTE_38;
935       return consume(insn, insn->opcode);
936     case VEX_LOB_0F3A:
937       insn->opcodeType = THREEBYTE_3A;
938       return consume(insn, insn->opcode);
939     case VEX_LOB_MAP4:
940       insn->opcodeType = MAP4;
941       return consume(insn, insn->opcode);
942     case VEX_LOB_MAP5:
943       insn->opcodeType = MAP5;
944       return consume(insn, insn->opcode);
945     case VEX_LOB_MAP6:
946       insn->opcodeType = MAP6;
947       return consume(insn, insn->opcode);
948     case VEX_LOB_MAP7:
949       insn->opcodeType = MAP7;
950       return consume(insn, insn->opcode);
951     }
952   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
953     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
954     default:
955       LLVM_DEBUG(
956           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
957                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
958       return true;
959     case VEX_LOB_0F:
960       insn->opcodeType = TWOBYTE;
961       return consume(insn, insn->opcode);
962     case VEX_LOB_0F38:
963       insn->opcodeType = THREEBYTE_38;
964       return consume(insn, insn->opcode);
965     case VEX_LOB_0F3A:
966       insn->opcodeType = THREEBYTE_3A;
967       return consume(insn, insn->opcode);
968     case VEX_LOB_MAP5:
969       insn->opcodeType = MAP5;
970       return consume(insn, insn->opcode);
971     case VEX_LOB_MAP6:
972       insn->opcodeType = MAP6;
973       return consume(insn, insn->opcode);
974     case VEX_LOB_MAP7:
975       insn->opcodeType = MAP7;
976       return consume(insn, insn->opcode);
977     }
978   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
979     insn->opcodeType = TWOBYTE;
980     return consume(insn, insn->opcode);
981   } else if (insn->vectorExtensionType == TYPE_XOP) {
982     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
983     default:
984       LLVM_DEBUG(
985           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
986                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
987       return true;
988     case XOP_MAP_SELECT_8:
989       insn->opcodeType = XOP8_MAP;
990       return consume(insn, insn->opcode);
991     case XOP_MAP_SELECT_9:
992       insn->opcodeType = XOP9_MAP;
993       return consume(insn, insn->opcode);
994     case XOP_MAP_SELECT_A:
995       insn->opcodeType = XOPA_MAP;
996       return consume(insn, insn->opcode);
997     }
998   } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
999     // m bit indicates opcode map 1
1000     insn->opcodeType = TWOBYTE;
1001     return consume(insn, insn->opcode);
1002   }
1003 
1004   if (consume(insn, current))
1005     return true;
1006 
1007   if (current == 0x0f) {
1008     LLVM_DEBUG(
1009         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1010     if (consume(insn, current))
1011       return true;
1012 
1013     if (current == 0x38) {
1014       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1015                                   current));
1016       if (consume(insn, current))
1017         return true;
1018 
1019       insn->opcodeType = THREEBYTE_38;
1020     } else if (current == 0x3a) {
1021       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1022                                   current));
1023       if (consume(insn, current))
1024         return true;
1025 
1026       insn->opcodeType = THREEBYTE_3A;
1027     } else if (current == 0x0f) {
1028       LLVM_DEBUG(
1029           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1030 
1031       // Consume operands before the opcode to comply with the 3DNow encoding
1032       if (readModRM(insn))
1033         return true;
1034 
1035       if (consume(insn, current))
1036         return true;
1037 
1038       insn->opcodeType = THREEDNOW_MAP;
1039     } else {
1040       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1041       insn->opcodeType = TWOBYTE;
1042     }
1043   } else if (insn->mandatoryPrefix)
1044     // The opcode with mandatory prefix must start with opcode escape.
1045     // If not it's legacy repeat prefix
1046     insn->mandatoryPrefix = 0;
1047 
1048   // At this point we have consumed the full opcode.
1049   // Anything we consume from here on must be unconsumed.
1050   insn->opcode = current;
1051 
1052   return false;
1053 }
1054 
1055 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1056 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1057   for (int i = 0;; i++) {
1058     if (orig[i] == '\0' && equiv[i] == '\0')
1059       return true;
1060     if (orig[i] == '\0' || equiv[i] == '\0')
1061       return false;
1062     if (orig[i] != equiv[i]) {
1063       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1064         continue;
1065       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1066         continue;
1067       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1068         continue;
1069       return false;
1070     }
1071   }
1072 }
1073 
1074 // Determine whether this instruction is a 64-bit instruction.
1075 static bool is64Bit(const char *name) {
1076   for (int i = 0;; ++i) {
1077     if (name[i] == '\0')
1078       return false;
1079     if (name[i] == '6' && name[i + 1] == '4')
1080       return true;
1081   }
1082 }
1083 
1084 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1085 // for extended and escape opcodes, and using a supplied attribute mask.
1086 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1087                                         struct InternalInstruction *insn,
1088                                         uint16_t attrMask) {
1089   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1090   const ContextDecision *decision;
1091   switch (insn->opcodeType) {
1092   case ONEBYTE:
1093     decision = &ONEBYTE_SYM;
1094     break;
1095   case TWOBYTE:
1096     decision = &TWOBYTE_SYM;
1097     break;
1098   case THREEBYTE_38:
1099     decision = &THREEBYTE38_SYM;
1100     break;
1101   case THREEBYTE_3A:
1102     decision = &THREEBYTE3A_SYM;
1103     break;
1104   case XOP8_MAP:
1105     decision = &XOP8_MAP_SYM;
1106     break;
1107   case XOP9_MAP:
1108     decision = &XOP9_MAP_SYM;
1109     break;
1110   case XOPA_MAP:
1111     decision = &XOPA_MAP_SYM;
1112     break;
1113   case THREEDNOW_MAP:
1114     decision = &THREEDNOW_MAP_SYM;
1115     break;
1116   case MAP4:
1117     decision = &MAP4_SYM;
1118     break;
1119   case MAP5:
1120     decision = &MAP5_SYM;
1121     break;
1122   case MAP6:
1123     decision = &MAP6_SYM;
1124     break;
1125   case MAP7:
1126     decision = &MAP7_SYM;
1127     break;
1128   }
1129 
1130   if (decision->opcodeDecisions[insnCtx]
1131           .modRMDecisions[insn->opcode]
1132           .modrm_type != MODRM_ONEENTRY) {
1133     if (readModRM(insn))
1134       return -1;
1135     *instructionID =
1136         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1137   } else {
1138     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1139   }
1140 
1141   return 0;
1142 }
1143 
1144 static bool isCCMPOrCTEST(InternalInstruction *insn) {
1145   if (insn->opcodeType != MAP4)
1146     return false;
1147   if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7)
1148     return true;
1149   switch (insn->opcode & 0xfe) {
1150   default:
1151     return false;
1152   case 0x38:
1153   case 0x3a:
1154   case 0x84:
1155     return true;
1156   case 0x80:
1157     return regFromModRM(insn->modRM) == 7;
1158   case 0xf6:
1159     return regFromModRM(insn->modRM) == 0;
1160   }
1161 }
1162 
1163 static bool isNF(InternalInstruction *insn) {
1164   if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1165     return false;
1166   if (insn->opcodeType == MAP4)
1167     return true;
1168   // Below NF instructions are not in map4.
1169   if (insn->opcodeType == THREEBYTE_38 &&
1170       ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) {
1171     switch (insn->opcode) {
1172     case 0xf2: // ANDN
1173     case 0xf3: // BLSI, BLSR, BLSMSK
1174     case 0xf5: // BZHI
1175     case 0xf7: // BEXTR
1176       return true;
1177     default:
1178       break;
1179     }
1180   }
1181   return false;
1182 }
1183 
1184 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1185 // for extended and escape opcodes. Determines the attributes and context for
1186 // the instruction before doing so.
1187 static int getInstructionID(struct InternalInstruction *insn,
1188                             const MCInstrInfo *mii) {
1189   uint16_t attrMask;
1190   uint16_t instructionID;
1191 
1192   LLVM_DEBUG(dbgs() << "getID()");
1193 
1194   attrMask = ATTR_NONE;
1195 
1196   if (insn->mode == MODE_64BIT)
1197     attrMask |= ATTR_64BIT;
1198 
1199   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1200     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1201 
1202     if (insn->vectorExtensionType == TYPE_EVEX) {
1203       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1204       case VEX_PREFIX_66:
1205         attrMask |= ATTR_OPSIZE;
1206         break;
1207       case VEX_PREFIX_F3:
1208         attrMask |= ATTR_XS;
1209         break;
1210       case VEX_PREFIX_F2:
1211         attrMask |= ATTR_XD;
1212         break;
1213       }
1214 
1215       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1216         attrMask |= ATTR_EVEXKZ;
1217       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1218         attrMask |= ATTR_EVEXB;
1219       if (isNF(insn) && !readModRM(insn) &&
1220           !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa.
1221         attrMask |= ATTR_EVEXNF;
1222       // aaa is not used a opmask in MAP4
1223       else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
1224                (insn->opcodeType != MAP4))
1225         attrMask |= ATTR_EVEXK;
1226       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1227         attrMask |= ATTR_VEXL;
1228       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1229         attrMask |= ATTR_EVEXL2;
1230     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1231       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1232       case VEX_PREFIX_66:
1233         attrMask |= ATTR_OPSIZE;
1234         break;
1235       case VEX_PREFIX_F3:
1236         attrMask |= ATTR_XS;
1237         break;
1238       case VEX_PREFIX_F2:
1239         attrMask |= ATTR_XD;
1240         break;
1241       }
1242 
1243       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1244         attrMask |= ATTR_VEXL;
1245     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1246       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1247       case VEX_PREFIX_66:
1248         attrMask |= ATTR_OPSIZE;
1249         if (insn->hasAdSize)
1250           attrMask |= ATTR_ADSIZE;
1251         break;
1252       case VEX_PREFIX_F3:
1253         attrMask |= ATTR_XS;
1254         break;
1255       case VEX_PREFIX_F2:
1256         attrMask |= ATTR_XD;
1257         break;
1258       }
1259 
1260       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1261         attrMask |= ATTR_VEXL;
1262     } else if (insn->vectorExtensionType == TYPE_XOP) {
1263       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1264       case VEX_PREFIX_66:
1265         attrMask |= ATTR_OPSIZE;
1266         break;
1267       case VEX_PREFIX_F3:
1268         attrMask |= ATTR_XS;
1269         break;
1270       case VEX_PREFIX_F2:
1271         attrMask |= ATTR_XD;
1272         break;
1273       }
1274 
1275       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1276         attrMask |= ATTR_VEXL;
1277     } else {
1278       return -1;
1279     }
1280   } else if (!insn->mandatoryPrefix) {
1281     // If we don't have mandatory prefix we should use legacy prefixes here
1282     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1283       attrMask |= ATTR_OPSIZE;
1284     if (insn->hasAdSize)
1285       attrMask |= ATTR_ADSIZE;
1286     if (insn->opcodeType == ONEBYTE) {
1287       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1288         // Special support for PAUSE
1289         attrMask |= ATTR_XS;
1290     } else {
1291       if (insn->repeatPrefix == 0xf2)
1292         attrMask |= ATTR_XD;
1293       else if (insn->repeatPrefix == 0xf3)
1294         attrMask |= ATTR_XS;
1295     }
1296   } else {
1297     switch (insn->mandatoryPrefix) {
1298     case 0xf2:
1299       attrMask |= ATTR_XD;
1300       break;
1301     case 0xf3:
1302       attrMask |= ATTR_XS;
1303       break;
1304     case 0x66:
1305       if (insn->mode != MODE_16BIT)
1306         attrMask |= ATTR_OPSIZE;
1307       if (insn->hasAdSize)
1308         attrMask |= ATTR_ADSIZE;
1309       break;
1310     case 0x67:
1311       attrMask |= ATTR_ADSIZE;
1312       break;
1313     }
1314   }
1315 
1316   if (insn->rexPrefix & 0x08) {
1317     attrMask |= ATTR_REXW;
1318     attrMask &= ~ATTR_ADSIZE;
1319   }
1320 
1321   // Absolute jump and pushp/popp need special handling
1322   if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1323       (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1324     attrMask |= ATTR_REX2;
1325 
1326   if (insn->mode == MODE_16BIT) {
1327     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1328     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1329     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1330       attrMask ^= ATTR_ADSIZE;
1331     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1332     // prefix isn't present, we need to force the opsize attribute since the
1333     // prefix is inverted relative to 32-bit mode.
1334     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1335         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1336       attrMask |= ATTR_OPSIZE;
1337 
1338     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1339         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1340       attrMask |= ATTR_OPSIZE;
1341   }
1342 
1343 
1344   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1345     return -1;
1346 
1347   // The following clauses compensate for limitations of the tables.
1348 
1349   if (insn->mode != MODE_64BIT &&
1350       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1351     // The tables can't distinquish between cases where the W-bit is used to
1352     // select register size and cases where its a required part of the opcode.
1353     if ((insn->vectorExtensionType == TYPE_EVEX &&
1354          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1355         (insn->vectorExtensionType == TYPE_VEX_3B &&
1356          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1357         (insn->vectorExtensionType == TYPE_XOP &&
1358          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1359 
1360       uint16_t instructionIDWithREXW;
1361       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1362                                        attrMask | ATTR_REXW)) {
1363         insn->instructionID = instructionID;
1364         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1365         return 0;
1366       }
1367 
1368       auto SpecName = mii->getName(instructionIDWithREXW);
1369       // If not a 64-bit instruction. Switch the opcode.
1370       if (!is64Bit(SpecName.data())) {
1371         insn->instructionID = instructionIDWithREXW;
1372         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1373         return 0;
1374       }
1375     }
1376   }
1377 
1378   // Absolute moves, umonitor, and movdir64b need special handling.
1379   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1380   //  inverted w.r.t.
1381   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1382   //  any position.
1383   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1384       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1385       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1386       (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1387     // Make sure we observed the prefixes in any position.
1388     if (insn->hasAdSize)
1389       attrMask |= ATTR_ADSIZE;
1390     if (insn->hasOpSize)
1391       attrMask |= ATTR_OPSIZE;
1392 
1393     // In 16-bit, invert the attributes.
1394     if (insn->mode == MODE_16BIT) {
1395       attrMask ^= ATTR_ADSIZE;
1396 
1397       // The OpSize attribute is only valid with the absolute moves.
1398       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1399         attrMask ^= ATTR_OPSIZE;
1400     }
1401 
1402     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1403       return -1;
1404 
1405     insn->instructionID = instructionID;
1406     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1407     return 0;
1408   }
1409 
1410   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1411       !(attrMask & ATTR_OPSIZE)) {
1412     // The instruction tables make no distinction between instructions that
1413     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1414     // particular spot (i.e., many MMX operations). In general we're
1415     // conservative, but in the specific case where OpSize is present but not in
1416     // the right place we check if there's a 16-bit operation.
1417     const struct InstructionSpecifier *spec;
1418     uint16_t instructionIDWithOpsize;
1419     llvm::StringRef specName, specWithOpSizeName;
1420 
1421     spec = &INSTRUCTIONS_SYM[instructionID];
1422 
1423     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1424                                      attrMask | ATTR_OPSIZE)) {
1425       // ModRM required with OpSize but not present. Give up and return the
1426       // version without OpSize set.
1427       insn->instructionID = instructionID;
1428       insn->spec = spec;
1429       return 0;
1430     }
1431 
1432     specName = mii->getName(instructionID);
1433     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1434 
1435     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1436         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1437       insn->instructionID = instructionIDWithOpsize;
1438       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1439     } else {
1440       insn->instructionID = instructionID;
1441       insn->spec = spec;
1442     }
1443     return 0;
1444   }
1445 
1446   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1447       insn->rexPrefix & 0x01) {
1448     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1449     // as XCHG %r8, %eax.
1450     const struct InstructionSpecifier *spec;
1451     uint16_t instructionIDWithNewOpcode;
1452     const struct InstructionSpecifier *specWithNewOpcode;
1453 
1454     spec = &INSTRUCTIONS_SYM[instructionID];
1455 
1456     // Borrow opcode from one of the other XCHGar opcodes
1457     insn->opcode = 0x91;
1458 
1459     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1460                                      attrMask)) {
1461       insn->opcode = 0x90;
1462 
1463       insn->instructionID = instructionID;
1464       insn->spec = spec;
1465       return 0;
1466     }
1467 
1468     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1469 
1470     // Change back
1471     insn->opcode = 0x90;
1472 
1473     insn->instructionID = instructionIDWithNewOpcode;
1474     insn->spec = specWithNewOpcode;
1475 
1476     return 0;
1477   }
1478 
1479   insn->instructionID = instructionID;
1480   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1481 
1482   return 0;
1483 }
1484 
1485 // Read an operand from the opcode field of an instruction and interprets it
1486 // appropriately given the operand width. Handles AddRegFrm instructions.
1487 //
1488 // @param insn  - the instruction whose opcode field is to be read.
1489 // @param size  - The width (in bytes) of the register being specified.
1490 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1491 //                RAX.
1492 // @return      - 0 on success; nonzero otherwise.
1493 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1494   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1495 
1496   if (size == 0)
1497     size = insn->registerSize;
1498 
1499   auto setOpcodeRegister = [&](unsigned base) {
1500     insn->opcodeRegister =
1501         (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1502                       (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1503                       (insn->opcode & 7)));
1504   };
1505 
1506   switch (size) {
1507   case 1:
1508     setOpcodeRegister(MODRM_REG_AL);
1509     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1510         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1511       insn->opcodeRegister =
1512           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1513     }
1514 
1515     break;
1516   case 2:
1517     setOpcodeRegister(MODRM_REG_AX);
1518     break;
1519   case 4:
1520     setOpcodeRegister(MODRM_REG_EAX);
1521     break;
1522   case 8:
1523     setOpcodeRegister(MODRM_REG_RAX);
1524     break;
1525   }
1526 
1527   return 0;
1528 }
1529 
1530 // Consume an immediate operand from an instruction, given the desired operand
1531 // size.
1532 //
1533 // @param insn  - The instruction whose operand is to be read.
1534 // @param size  - The width (in bytes) of the operand.
1535 // @return      - 0 if the immediate was successfully consumed; nonzero
1536 //                otherwise.
1537 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1538   uint8_t imm8;
1539   uint16_t imm16;
1540   uint32_t imm32;
1541   uint64_t imm64;
1542 
1543   LLVM_DEBUG(dbgs() << "readImmediate()");
1544 
1545   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1546 
1547   insn->immediateSize = size;
1548   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1549 
1550   switch (size) {
1551   case 1:
1552     if (consume(insn, imm8))
1553       return -1;
1554     insn->immediates[insn->numImmediatesConsumed] = imm8;
1555     break;
1556   case 2:
1557     if (consume(insn, imm16))
1558       return -1;
1559     insn->immediates[insn->numImmediatesConsumed] = imm16;
1560     break;
1561   case 4:
1562     if (consume(insn, imm32))
1563       return -1;
1564     insn->immediates[insn->numImmediatesConsumed] = imm32;
1565     break;
1566   case 8:
1567     if (consume(insn, imm64))
1568       return -1;
1569     insn->immediates[insn->numImmediatesConsumed] = imm64;
1570     break;
1571   default:
1572     llvm_unreachable("invalid size");
1573   }
1574 
1575   insn->numImmediatesConsumed++;
1576 
1577   return 0;
1578 }
1579 
1580 // Consume vvvv from an instruction if it has a VEX prefix.
1581 static int readVVVV(struct InternalInstruction *insn) {
1582   LLVM_DEBUG(dbgs() << "readVVVV()");
1583 
1584   int vvvv;
1585   if (insn->vectorExtensionType == TYPE_EVEX)
1586     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1587             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1588   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1589     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1590   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1591     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1592   else if (insn->vectorExtensionType == TYPE_XOP)
1593     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1594   else
1595     return -1;
1596 
1597   if (insn->mode != MODE_64BIT)
1598     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1599 
1600   insn->vvvv = static_cast<Reg>(vvvv);
1601   return 0;
1602 }
1603 
1604 // Read an mask register from the opcode field of an instruction.
1605 //
1606 // @param insn    - The instruction whose opcode field is to be read.
1607 // @return        - 0 on success; nonzero otherwise.
1608 static int readMaskRegister(struct InternalInstruction *insn) {
1609   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1610 
1611   if (insn->vectorExtensionType != TYPE_EVEX)
1612     return -1;
1613 
1614   insn->writemask =
1615       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1616   return 0;
1617 }
1618 
1619 // Consults the specifier for an instruction and consumes all
1620 // operands for that instruction, interpreting them as it goes.
1621 static int readOperands(struct InternalInstruction *insn) {
1622   int hasVVVV, needVVVV;
1623   int sawRegImm = 0;
1624 
1625   LLVM_DEBUG(dbgs() << "readOperands()");
1626 
1627   // If non-zero vvvv specified, make sure one of the operands uses it.
1628   hasVVVV = !readVVVV(insn);
1629   needVVVV = hasVVVV && (insn->vvvv != 0);
1630 
1631   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1632     switch (Op.encoding) {
1633     case ENCODING_NONE:
1634     case ENCODING_SI:
1635     case ENCODING_DI:
1636       break;
1637     CASE_ENCODING_VSIB:
1638       // VSIB can use the V2 bit so check only the other bits.
1639       if (needVVVV)
1640         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1641       if (readModRM(insn))
1642         return -1;
1643 
1644       // Reject if SIB wasn't used.
1645       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1646         return -1;
1647 
1648       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1649       if (insn->sibIndex == SIB_INDEX_NONE)
1650         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1651 
1652       // If EVEX.v2 is set this is one of the 16-31 registers.
1653       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1654           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1655         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1656 
1657       // Adjust the index register to the correct size.
1658       switch ((OperandType)Op.type) {
1659       default:
1660         debug("Unhandled VSIB index type");
1661         return -1;
1662       case TYPE_MVSIBX:
1663         insn->sibIndex =
1664             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1665         break;
1666       case TYPE_MVSIBY:
1667         insn->sibIndex =
1668             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1669         break;
1670       case TYPE_MVSIBZ:
1671         insn->sibIndex =
1672             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1673         break;
1674       }
1675 
1676       // Apply the AVX512 compressed displacement scaling factor.
1677       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1678         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1679       break;
1680     case ENCODING_SIB:
1681       // Reject if SIB wasn't used.
1682       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1683         return -1;
1684       if (readModRM(insn))
1685         return -1;
1686       if (fixupReg(insn, &Op))
1687         return -1;
1688       break;
1689     case ENCODING_REG:
1690     CASE_ENCODING_RM:
1691       if (readModRM(insn))
1692         return -1;
1693       if (fixupReg(insn, &Op))
1694         return -1;
1695       // Apply the AVX512 compressed displacement scaling factor.
1696       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1697         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1698       break;
1699     case ENCODING_IB:
1700       if (sawRegImm) {
1701         // Saw a register immediate so don't read again and instead split the
1702         // previous immediate. FIXME: This is a hack.
1703         insn->immediates[insn->numImmediatesConsumed] =
1704             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1705         ++insn->numImmediatesConsumed;
1706         break;
1707       }
1708       if (readImmediate(insn, 1))
1709         return -1;
1710       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1711         sawRegImm = 1;
1712       break;
1713     case ENCODING_IW:
1714       if (readImmediate(insn, 2))
1715         return -1;
1716       break;
1717     case ENCODING_ID:
1718       if (readImmediate(insn, 4))
1719         return -1;
1720       break;
1721     case ENCODING_IO:
1722       if (readImmediate(insn, 8))
1723         return -1;
1724       break;
1725     case ENCODING_Iv:
1726       if (readImmediate(insn, insn->immediateSize))
1727         return -1;
1728       break;
1729     case ENCODING_Ia:
1730       if (readImmediate(insn, insn->addressSize))
1731         return -1;
1732       break;
1733     case ENCODING_IRC:
1734       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1735                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1736       break;
1737     case ENCODING_RB:
1738       if (readOpcodeRegister(insn, 1))
1739         return -1;
1740       break;
1741     case ENCODING_RW:
1742       if (readOpcodeRegister(insn, 2))
1743         return -1;
1744       break;
1745     case ENCODING_RD:
1746       if (readOpcodeRegister(insn, 4))
1747         return -1;
1748       break;
1749     case ENCODING_RO:
1750       if (readOpcodeRegister(insn, 8))
1751         return -1;
1752       break;
1753     case ENCODING_Rv:
1754       if (readOpcodeRegister(insn, 0))
1755         return -1;
1756       break;
1757     case ENCODING_CF:
1758       insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]);
1759       needVVVV = false; // oszc shares the same bits with VVVV
1760       break;
1761     case ENCODING_CC:
1762       if (isCCMPOrCTEST(insn))
1763         insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1764       else
1765         insn->immediates[1] = insn->opcode & 0xf;
1766       break;
1767     case ENCODING_FP:
1768       break;
1769     case ENCODING_VVVV:
1770       needVVVV = 0; // Mark that we have found a VVVV operand.
1771       if (!hasVVVV)
1772         return -1;
1773       if (insn->mode != MODE_64BIT)
1774         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1775       if (fixupReg(insn, &Op))
1776         return -1;
1777       break;
1778     case ENCODING_WRITEMASK:
1779       if (readMaskRegister(insn))
1780         return -1;
1781       break;
1782     case ENCODING_DUP:
1783       break;
1784     default:
1785       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1786       return -1;
1787     }
1788   }
1789 
1790   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1791   if (needVVVV)
1792     return -1;
1793 
1794   return 0;
1795 }
1796 
1797 namespace llvm {
1798 
1799 // Fill-ins to make the compiler happy. These constants are never actually
1800 // assigned; they are just filler to make an automatically-generated switch
1801 // statement work.
1802 namespace X86 {
1803   enum {
1804     BX_SI = 500,
1805     BX_DI = 501,
1806     BP_SI = 502,
1807     BP_DI = 503,
1808     sib   = 504,
1809     sib64 = 505
1810   };
1811 } // namespace X86
1812 
1813 } // namespace llvm
1814 
1815 static bool translateInstruction(MCInst &target,
1816                                 InternalInstruction &source,
1817                                 const MCDisassembler *Dis);
1818 
1819 namespace {
1820 
1821 /// Generic disassembler for all X86 platforms. All each platform class should
1822 /// have to do is subclass the constructor, and provide a different
1823 /// disassemblerMode value.
1824 class X86GenericDisassembler : public MCDisassembler {
1825   std::unique_ptr<const MCInstrInfo> MII;
1826 public:
1827   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1828                          std::unique_ptr<const MCInstrInfo> MII);
1829 public:
1830   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1831                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1832                               raw_ostream &cStream) const override;
1833 
1834 private:
1835   DisassemblerMode              fMode;
1836 };
1837 
1838 } // namespace
1839 
1840 X86GenericDisassembler::X86GenericDisassembler(
1841                                          const MCSubtargetInfo &STI,
1842                                          MCContext &Ctx,
1843                                          std::unique_ptr<const MCInstrInfo> MII)
1844   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1845   const FeatureBitset &FB = STI.getFeatureBits();
1846   if (FB[X86::Is16Bit]) {
1847     fMode = MODE_16BIT;
1848     return;
1849   } else if (FB[X86::Is32Bit]) {
1850     fMode = MODE_32BIT;
1851     return;
1852   } else if (FB[X86::Is64Bit]) {
1853     fMode = MODE_64BIT;
1854     return;
1855   }
1856 
1857   llvm_unreachable("Invalid CPU mode");
1858 }
1859 
1860 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1861     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1862     raw_ostream &CStream) const {
1863   CommentStream = &CStream;
1864 
1865   InternalInstruction Insn;
1866   memset(&Insn, 0, sizeof(InternalInstruction));
1867   Insn.bytes = Bytes;
1868   Insn.startLocation = Address;
1869   Insn.readerCursor = Address;
1870   Insn.mode = fMode;
1871 
1872   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1873       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1874       readOperands(&Insn)) {
1875     Size = Insn.readerCursor - Address;
1876     return Fail;
1877   }
1878 
1879   Insn.operands = x86OperandSets[Insn.spec->operands];
1880   Insn.length = Insn.readerCursor - Insn.startLocation;
1881   Size = Insn.length;
1882   if (Size > 15)
1883     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1884 
1885   bool Ret = translateInstruction(Instr, Insn, this);
1886   if (!Ret) {
1887     unsigned Flags = X86::IP_NO_PREFIX;
1888     if (Insn.hasAdSize)
1889       Flags |= X86::IP_HAS_AD_SIZE;
1890     if (!Insn.mandatoryPrefix) {
1891       if (Insn.hasOpSize)
1892         Flags |= X86::IP_HAS_OP_SIZE;
1893       if (Insn.repeatPrefix == 0xf2)
1894         Flags |= X86::IP_HAS_REPEAT_NE;
1895       else if (Insn.repeatPrefix == 0xf3 &&
1896                // It should not be 'pause' f3 90
1897                Insn.opcode != 0x90)
1898         Flags |= X86::IP_HAS_REPEAT;
1899       if (Insn.hasLockPrefix)
1900         Flags |= X86::IP_HAS_LOCK;
1901     }
1902     Instr.setFlags(Flags);
1903   }
1904   return (!Ret) ? Success : Fail;
1905 }
1906 
1907 //
1908 // Private code that translates from struct InternalInstructions to MCInsts.
1909 //
1910 
1911 /// translateRegister - Translates an internal register to the appropriate LLVM
1912 ///   register, and appends it as an operand to an MCInst.
1913 ///
1914 /// @param mcInst     - The MCInst to append to.
1915 /// @param reg        - The Reg to append.
1916 static void translateRegister(MCInst &mcInst, Reg reg) {
1917 #define ENTRY(x) X86::x,
1918   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1919 #undef ENTRY
1920 
1921   MCPhysReg llvmRegnum = llvmRegnums[reg];
1922   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1923 }
1924 
1925 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1926   0,        // SEG_OVERRIDE_NONE
1927   X86::CS,
1928   X86::SS,
1929   X86::DS,
1930   X86::ES,
1931   X86::FS,
1932   X86::GS
1933 };
1934 
1935 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1936 ///
1937 /// @param mcInst       - The MCInst to append to.
1938 /// @param insn         - The internal instruction.
1939 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1940   unsigned baseRegNo;
1941 
1942   if (insn.mode == MODE_64BIT)
1943     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1944   else if (insn.mode == MODE_32BIT)
1945     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1946   else {
1947     assert(insn.mode == MODE_16BIT);
1948     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1949   }
1950   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1951   mcInst.addOperand(baseReg);
1952 
1953   MCOperand segmentReg;
1954   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1955   mcInst.addOperand(segmentReg);
1956   return false;
1957 }
1958 
1959 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1960 ///
1961 /// @param mcInst       - The MCInst to append to.
1962 /// @param insn         - The internal instruction.
1963 
1964 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1965   unsigned baseRegNo;
1966 
1967   if (insn.mode == MODE_64BIT)
1968     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1969   else if (insn.mode == MODE_32BIT)
1970     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1971   else {
1972     assert(insn.mode == MODE_16BIT);
1973     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1974   }
1975   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1976   mcInst.addOperand(baseReg);
1977   return false;
1978 }
1979 
1980 /// translateImmediate  - Appends an immediate operand to an MCInst.
1981 ///
1982 /// @param mcInst       - The MCInst to append to.
1983 /// @param immediate    - The immediate value to append.
1984 /// @param operand      - The operand, as stored in the descriptor table.
1985 /// @param insn         - The internal instruction.
1986 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1987                                const OperandSpecifier &operand,
1988                                InternalInstruction &insn,
1989                                const MCDisassembler *Dis) {
1990   // Sign-extend the immediate if necessary.
1991 
1992   OperandType type = (OperandType)operand.type;
1993 
1994   bool isBranch = false;
1995   uint64_t pcrel = 0;
1996   if (type == TYPE_REL) {
1997     isBranch = true;
1998     pcrel = insn.startLocation + insn.length;
1999     switch (operand.encoding) {
2000     default:
2001       break;
2002     case ENCODING_Iv:
2003       switch (insn.displacementSize) {
2004       default:
2005         break;
2006       case 1:
2007         if(immediate & 0x80)
2008           immediate |= ~(0xffull);
2009         break;
2010       case 2:
2011         if(immediate & 0x8000)
2012           immediate |= ~(0xffffull);
2013         break;
2014       case 4:
2015         if(immediate & 0x80000000)
2016           immediate |= ~(0xffffffffull);
2017         break;
2018       case 8:
2019         break;
2020       }
2021       break;
2022     case ENCODING_IB:
2023       if(immediate & 0x80)
2024         immediate |= ~(0xffull);
2025       break;
2026     case ENCODING_IW:
2027       if(immediate & 0x8000)
2028         immediate |= ~(0xffffull);
2029       break;
2030     case ENCODING_ID:
2031       if(immediate & 0x80000000)
2032         immediate |= ~(0xffffffffull);
2033       break;
2034     }
2035   }
2036   // By default sign-extend all X86 immediates based on their encoding.
2037   else if (type == TYPE_IMM) {
2038     switch (operand.encoding) {
2039     default:
2040       break;
2041     case ENCODING_IB:
2042       if(immediate & 0x80)
2043         immediate |= ~(0xffull);
2044       break;
2045     case ENCODING_IW:
2046       if(immediate & 0x8000)
2047         immediate |= ~(0xffffull);
2048       break;
2049     case ENCODING_ID:
2050       if(immediate & 0x80000000)
2051         immediate |= ~(0xffffffffull);
2052       break;
2053     case ENCODING_IO:
2054       break;
2055     }
2056   }
2057 
2058   switch (type) {
2059   case TYPE_XMM:
2060     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2061     return;
2062   case TYPE_YMM:
2063     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2064     return;
2065   case TYPE_ZMM:
2066     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2067     return;
2068   default:
2069     // operand is 64 bits wide.  Do nothing.
2070     break;
2071   }
2072 
2073   if (!Dis->tryAddingSymbolicOperand(
2074           mcInst, immediate + pcrel, insn.startLocation, isBranch,
2075           insn.immediateOffset, insn.immediateSize, insn.length))
2076     mcInst.addOperand(MCOperand::createImm(immediate));
2077 
2078   if (type == TYPE_MOFFS) {
2079     MCOperand segmentReg;
2080     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2081     mcInst.addOperand(segmentReg);
2082   }
2083 }
2084 
2085 /// translateRMRegister - Translates a register stored in the R/M field of the
2086 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2087 /// @param mcInst       - The MCInst to append to.
2088 /// @param insn         - The internal instruction to extract the R/M field
2089 ///                       from.
2090 /// @return             - 0 on success; -1 otherwise
2091 static bool translateRMRegister(MCInst &mcInst,
2092                                 InternalInstruction &insn) {
2093   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2094     debug("A R/M register operand may not have a SIB byte");
2095     return true;
2096   }
2097 
2098   switch (insn.eaBase) {
2099   default:
2100     debug("Unexpected EA base register");
2101     return true;
2102   case EA_BASE_NONE:
2103     debug("EA_BASE_NONE for ModR/M base");
2104     return true;
2105 #define ENTRY(x) case EA_BASE_##x:
2106   ALL_EA_BASES
2107 #undef ENTRY
2108     debug("A R/M register operand may not have a base; "
2109           "the operand must be a register.");
2110     return true;
2111 #define ENTRY(x)                                                      \
2112   case EA_REG_##x:                                                    \
2113     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2114   ALL_REGS
2115 #undef ENTRY
2116   }
2117 
2118   return false;
2119 }
2120 
2121 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2122 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2123 ///   operand in LLVM's format, and appends it to an MCInst.
2124 ///
2125 /// @param mcInst       - The MCInst to append to.
2126 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2127 ///                       from.
2128 /// @param ForceSIB     - The instruction must use SIB.
2129 /// @return             - 0 on success; nonzero otherwise
2130 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2131                               const MCDisassembler *Dis,
2132                               bool ForceSIB = false) {
2133   // Addresses in an MCInst are represented as five operands:
2134   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2135   //                                SIB base
2136   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2137   //                                scale amount
2138   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2139   //                                the index (which is multiplied by the
2140   //                                scale amount)
2141   //   4. displacement  (immediate) 0, or the displacement if there is one
2142   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2143   //                                if we have segment overrides
2144 
2145   MCOperand baseReg;
2146   MCOperand scaleAmount;
2147   MCOperand indexReg;
2148   MCOperand displacement;
2149   MCOperand segmentReg;
2150   uint64_t pcrel = 0;
2151 
2152   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2153     if (insn.sibBase != SIB_BASE_NONE) {
2154       switch (insn.sibBase) {
2155       default:
2156         debug("Unexpected sibBase");
2157         return true;
2158 #define ENTRY(x)                                          \
2159       case SIB_BASE_##x:                                  \
2160         baseReg = MCOperand::createReg(X86::x); break;
2161       ALL_SIB_BASES
2162 #undef ENTRY
2163       }
2164     } else {
2165       baseReg = MCOperand::createReg(X86::NoRegister);
2166     }
2167 
2168     if (insn.sibIndex != SIB_INDEX_NONE) {
2169       switch (insn.sibIndex) {
2170       default:
2171         debug("Unexpected sibIndex");
2172         return true;
2173 #define ENTRY(x)                                          \
2174       case SIB_INDEX_##x:                                 \
2175         indexReg = MCOperand::createReg(X86::x); break;
2176       EA_BASES_32BIT
2177       EA_BASES_64BIT
2178       REGS_XMM
2179       REGS_YMM
2180       REGS_ZMM
2181 #undef ENTRY
2182       }
2183     } else {
2184       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2185       // but no index is used and modrm alone should have been enough.
2186       // -No base register in 32-bit mode. In 64-bit mode this is used to
2187       //  avoid rip-relative addressing.
2188       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2189       //  base always requires a SIB byte.
2190       // -A scale other than 1 is used.
2191       if (!ForceSIB &&
2192           (insn.sibScale != 1 ||
2193            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2194            (insn.sibBase != SIB_BASE_NONE &&
2195             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2196             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2197         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2198                                                                 X86::RIZ);
2199       } else
2200         indexReg = MCOperand::createReg(X86::NoRegister);
2201     }
2202 
2203     scaleAmount = MCOperand::createImm(insn.sibScale);
2204   } else {
2205     switch (insn.eaBase) {
2206     case EA_BASE_NONE:
2207       if (insn.eaDisplacement == EA_DISP_NONE) {
2208         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2209         return true;
2210       }
2211       if (insn.mode == MODE_64BIT){
2212         pcrel = insn.startLocation + insn.length;
2213         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2214                                              insn.startLocation +
2215                                                  insn.displacementOffset);
2216         // Section 2.2.1.6
2217         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2218                                                                X86::RIP);
2219       }
2220       else
2221         baseReg = MCOperand::createReg(X86::NoRegister);
2222 
2223       indexReg = MCOperand::createReg(X86::NoRegister);
2224       break;
2225     case EA_BASE_BX_SI:
2226       baseReg = MCOperand::createReg(X86::BX);
2227       indexReg = MCOperand::createReg(X86::SI);
2228       break;
2229     case EA_BASE_BX_DI:
2230       baseReg = MCOperand::createReg(X86::BX);
2231       indexReg = MCOperand::createReg(X86::DI);
2232       break;
2233     case EA_BASE_BP_SI:
2234       baseReg = MCOperand::createReg(X86::BP);
2235       indexReg = MCOperand::createReg(X86::SI);
2236       break;
2237     case EA_BASE_BP_DI:
2238       baseReg = MCOperand::createReg(X86::BP);
2239       indexReg = MCOperand::createReg(X86::DI);
2240       break;
2241     default:
2242       indexReg = MCOperand::createReg(X86::NoRegister);
2243       switch (insn.eaBase) {
2244       default:
2245         debug("Unexpected eaBase");
2246         return true;
2247         // Here, we will use the fill-ins defined above.  However,
2248         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2249         //   sib and sib64 were handled in the top-level if, so they're only
2250         //   placeholders to keep the compiler happy.
2251 #define ENTRY(x)                                        \
2252       case EA_BASE_##x:                                 \
2253         baseReg = MCOperand::createReg(X86::x); break;
2254       ALL_EA_BASES
2255 #undef ENTRY
2256 #define ENTRY(x) case EA_REG_##x:
2257       ALL_REGS
2258 #undef ENTRY
2259         debug("A R/M memory operand may not be a register; "
2260               "the base field must be a base.");
2261         return true;
2262       }
2263     }
2264 
2265     scaleAmount = MCOperand::createImm(1);
2266   }
2267 
2268   displacement = MCOperand::createImm(insn.displacement);
2269 
2270   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2271 
2272   mcInst.addOperand(baseReg);
2273   mcInst.addOperand(scaleAmount);
2274   mcInst.addOperand(indexReg);
2275 
2276   const uint8_t dispSize =
2277       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2278 
2279   if (!Dis->tryAddingSymbolicOperand(
2280           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2281           insn.displacementOffset, dispSize, insn.length))
2282     mcInst.addOperand(displacement);
2283   mcInst.addOperand(segmentReg);
2284   return false;
2285 }
2286 
2287 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2288 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2289 ///
2290 /// @param mcInst       - The MCInst to append to.
2291 /// @param operand      - The operand, as stored in the descriptor table.
2292 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2293 ///                       from.
2294 /// @return             - 0 on success; nonzero otherwise
2295 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2296                         InternalInstruction &insn, const MCDisassembler *Dis) {
2297   switch (operand.type) {
2298   default:
2299     debug("Unexpected type for a R/M operand");
2300     return true;
2301   case TYPE_R8:
2302   case TYPE_R16:
2303   case TYPE_R32:
2304   case TYPE_R64:
2305   case TYPE_Rv:
2306   case TYPE_MM64:
2307   case TYPE_XMM:
2308   case TYPE_YMM:
2309   case TYPE_ZMM:
2310   case TYPE_TMM:
2311   case TYPE_VK_PAIR:
2312   case TYPE_VK:
2313   case TYPE_DEBUGREG:
2314   case TYPE_CONTROLREG:
2315   case TYPE_BNDR:
2316     return translateRMRegister(mcInst, insn);
2317   case TYPE_M:
2318   case TYPE_MVSIBX:
2319   case TYPE_MVSIBY:
2320   case TYPE_MVSIBZ:
2321     return translateRMMemory(mcInst, insn, Dis);
2322   case TYPE_MSIB:
2323     return translateRMMemory(mcInst, insn, Dis, true);
2324   }
2325 }
2326 
2327 /// translateFPRegister - Translates a stack position on the FPU stack to its
2328 ///   LLVM form, and appends it to an MCInst.
2329 ///
2330 /// @param mcInst       - The MCInst to append to.
2331 /// @param stackPos     - The stack position to translate.
2332 static void translateFPRegister(MCInst &mcInst,
2333                                 uint8_t stackPos) {
2334   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2335 }
2336 
2337 /// translateMaskRegister - Translates a 3-bit mask register number to
2338 ///   LLVM form, and appends it to an MCInst.
2339 ///
2340 /// @param mcInst       - The MCInst to append to.
2341 /// @param maskRegNum   - Number of mask register from 0 to 7.
2342 /// @return             - false on success; true otherwise.
2343 static bool translateMaskRegister(MCInst &mcInst,
2344                                 uint8_t maskRegNum) {
2345   if (maskRegNum >= 8) {
2346     debug("Invalid mask register number");
2347     return true;
2348   }
2349 
2350   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2351   return false;
2352 }
2353 
2354 /// translateOperand - Translates an operand stored in an internal instruction
2355 ///   to LLVM's format and appends it to an MCInst.
2356 ///
2357 /// @param mcInst       - The MCInst to append to.
2358 /// @param operand      - The operand, as stored in the descriptor table.
2359 /// @param insn         - The internal instruction.
2360 /// @return             - false on success; true otherwise.
2361 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2362                              InternalInstruction &insn,
2363                              const MCDisassembler *Dis) {
2364   switch (operand.encoding) {
2365   default:
2366     debug("Unhandled operand encoding during translation");
2367     return true;
2368   case ENCODING_REG:
2369     translateRegister(mcInst, insn.reg);
2370     return false;
2371   case ENCODING_WRITEMASK:
2372     return translateMaskRegister(mcInst, insn.writemask);
2373   case ENCODING_SIB:
2374   CASE_ENCODING_RM:
2375   CASE_ENCODING_VSIB:
2376     return translateRM(mcInst, operand, insn, Dis);
2377   case ENCODING_IB:
2378   case ENCODING_IW:
2379   case ENCODING_ID:
2380   case ENCODING_IO:
2381   case ENCODING_Iv:
2382   case ENCODING_Ia:
2383     translateImmediate(mcInst,
2384                        insn.immediates[insn.numImmediatesTranslated++],
2385                        operand,
2386                        insn,
2387                        Dis);
2388     return false;
2389   case ENCODING_IRC:
2390     mcInst.addOperand(MCOperand::createImm(insn.RC));
2391     return false;
2392   case ENCODING_SI:
2393     return translateSrcIndex(mcInst, insn);
2394   case ENCODING_DI:
2395     return translateDstIndex(mcInst, insn);
2396   case ENCODING_RB:
2397   case ENCODING_RW:
2398   case ENCODING_RD:
2399   case ENCODING_RO:
2400   case ENCODING_Rv:
2401     translateRegister(mcInst, insn.opcodeRegister);
2402     return false;
2403   case ENCODING_CF:
2404     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2405     return false;
2406   case ENCODING_CC:
2407     if (isCCMPOrCTEST(&insn))
2408       mcInst.addOperand(MCOperand::createImm(insn.immediates[2]));
2409     else
2410       mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2411     return false;
2412   case ENCODING_FP:
2413     translateFPRegister(mcInst, insn.modRM & 7);
2414     return false;
2415   case ENCODING_VVVV:
2416     translateRegister(mcInst, insn.vvvv);
2417     return false;
2418   case ENCODING_DUP:
2419     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2420                             insn, Dis);
2421   }
2422 }
2423 
2424 /// translateInstruction - Translates an internal instruction and all its
2425 ///   operands to an MCInst.
2426 ///
2427 /// @param mcInst       - The MCInst to populate with the instruction's data.
2428 /// @param insn         - The internal instruction.
2429 /// @return             - false on success; true otherwise.
2430 static bool translateInstruction(MCInst &mcInst,
2431                                 InternalInstruction &insn,
2432                                 const MCDisassembler *Dis) {
2433   if (!insn.spec) {
2434     debug("Instruction has no specification");
2435     return true;
2436   }
2437 
2438   mcInst.clear();
2439   mcInst.setOpcode(insn.instructionID);
2440   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2441   // prefix bytes should be disassembled as xrelease and xacquire then set the
2442   // opcode to those instead of the rep and repne opcodes.
2443   if (insn.xAcquireRelease) {
2444     if(mcInst.getOpcode() == X86::REP_PREFIX)
2445       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2446     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2447       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2448   }
2449 
2450   insn.numImmediatesTranslated = 0;
2451 
2452   for (const auto &Op : insn.operands) {
2453     if (Op.encoding != ENCODING_NONE) {
2454       if (translateOperand(mcInst, Op, insn, Dis)) {
2455         return true;
2456       }
2457     }
2458   }
2459 
2460   return false;
2461 }
2462 
2463 static MCDisassembler *createX86Disassembler(const Target &T,
2464                                              const MCSubtargetInfo &STI,
2465                                              MCContext &Ctx) {
2466   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2467   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2468 }
2469 
2470 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2471   // Register the disassembler.
2472   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2473                                          createX86Disassembler);
2474   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2475                                          createX86Disassembler);
2476 }
2477