xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetTransformInfo.cpp (revision 1af35e77f4b8c3314dc20a10d579b52f22c75a00)
1 //===-- WebAssemblyTargetTransformInfo.cpp - WebAssembly-specific TTI -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific TargetTransformInfo
11 /// implementation.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "WebAssemblyTargetTransformInfo.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "wasmtti"
21 
22 TargetTransformInfo::PopcntSupportKind
23 WebAssemblyTTIImpl::getPopcntSupport(unsigned TyWidth) const {
24   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
25   return TargetTransformInfo::PSK_FastHardware;
26 }
27 
28 unsigned WebAssemblyTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
29   unsigned Result = BaseT::getNumberOfRegisters(ClassID);
30 
31   // For SIMD, use at least 16 registers, as a rough guess.
32   bool Vector = (ClassID == 1);
33   if (Vector)
34     Result = std::max(Result, 16u);
35 
36   return Result;
37 }
38 
39 TypeSize WebAssemblyTTIImpl::getRegisterBitWidth(
40     TargetTransformInfo::RegisterKind K) const {
41   switch (K) {
42   case TargetTransformInfo::RGK_Scalar:
43     return TypeSize::getFixed(64);
44   case TargetTransformInfo::RGK_FixedWidthVector:
45     return TypeSize::getFixed(getST()->hasSIMD128() ? 128 : 64);
46   case TargetTransformInfo::RGK_ScalableVector:
47     return TypeSize::getScalable(0);
48   }
49 
50   llvm_unreachable("Unsupported register kind");
51 }
52 
53 unsigned WebAssemblyTTIImpl::getArithmeticInstrCost(
54     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
55     TTI::OperandValueKind Opd1Info,
56     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
57     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
58     const Instruction *CxtI) {
59 
60   unsigned Cost = BasicTTIImplBase<WebAssemblyTTIImpl>::getArithmeticInstrCost(
61       Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
62 
63   if (auto *VTy = dyn_cast<VectorType>(Ty)) {
64     switch (Opcode) {
65     case Instruction::LShr:
66     case Instruction::AShr:
67     case Instruction::Shl:
68       // SIMD128's shifts currently only accept a scalar shift count. For each
69       // element, we'll need to extract, op, insert. The following is a rough
70       // approxmation.
71       if (Opd2Info != TTI::OK_UniformValue &&
72           Opd2Info != TTI::OK_UniformConstantValue)
73         Cost =
74             cast<FixedVectorType>(VTy)->getNumElements() *
75             (TargetTransformInfo::TCC_Basic +
76              getArithmeticInstrCost(Opcode, VTy->getElementType(), CostKind) +
77              TargetTransformInfo::TCC_Basic);
78       break;
79     }
80   }
81   return Cost;
82 }
83 
84 InstructionCost WebAssemblyTTIImpl::getVectorInstrCost(unsigned Opcode,
85                                                        Type *Val,
86                                                        unsigned Index) {
87   InstructionCost Cost =
88       BasicTTIImplBase::getVectorInstrCost(Opcode, Val, Index);
89 
90   // SIMD128's insert/extract currently only take constant indices.
91   if (Index == -1u)
92     return Cost + 25 * TargetTransformInfo::TCC_Expensive;
93 
94   return Cost;
95 }
96 
97 bool WebAssemblyTTIImpl::areInlineCompatible(const Function *Caller,
98                                              const Function *Callee) const {
99   // Allow inlining only when the Callee has a subset of the Caller's
100   // features. In principle, we should be able to inline regardless of any
101   // features because WebAssembly supports features at module granularity, not
102   // function granularity, but without this restriction it would be possible for
103   // a module to "forget" about features if all the functions that used them
104   // were inlined.
105   const TargetMachine &TM = getTLI()->getTargetMachine();
106 
107   const FeatureBitset &CallerBits =
108       TM.getSubtargetImpl(*Caller)->getFeatureBits();
109   const FeatureBitset &CalleeBits =
110       TM.getSubtargetImpl(*Callee)->getFeatureBits();
111 
112   return (CallerBits & CalleeBits) == CalleeBits;
113 }
114 
115 void WebAssemblyTTIImpl::getUnrollingPreferences(
116   Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) const {
117   // Scan the loop: don't unroll loops with calls. This is a standard approach
118   // for most (all?) targets.
119   for (BasicBlock *BB : L->blocks())
120     for (Instruction &I : *BB)
121       if (isa<CallInst>(I) || isa<InvokeInst>(I))
122         if (const Function *F = cast<CallBase>(I).getCalledFunction())
123           if (isLoweredToCall(F))
124             return;
125 
126   // The chosen threshold is within the range of 'LoopMicroOpBufferSize' of
127   // the various microarchitectures that use the BasicTTI implementation and
128   // has been selected through heuristics across multiple cores and runtimes.
129   UP.Partial = UP.Runtime = UP.UpperBound = true;
130   UP.PartialThreshold = 30;
131 
132   // Avoid unrolling when optimizing for size.
133   UP.OptSizeThreshold = 0;
134   UP.PartialOptSizeThreshold = 0;
135 
136   // Set number of instructions optimized when "back edge"
137   // becomes "fall through" to default value of 2.
138   UP.BEInsns = 2;
139 }
140