xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetTransformInfo.cpp (revision 104fa367ee46e23a3dcf070a2cba22cee3f2000a)
1 //===-- WebAssemblyTargetTransformInfo.cpp - WebAssembly-specific TTI -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific TargetTransformInfo
11 /// implementation.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "WebAssemblyTargetTransformInfo.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "wasmtti"
21 
22 TargetTransformInfo::PopcntSupportKind
23 WebAssemblyTTIImpl::getPopcntSupport(unsigned TyWidth) const {
24   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
25   return TargetTransformInfo::PSK_FastHardware;
26 }
27 
28 unsigned WebAssemblyTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
29   unsigned Result = BaseT::getNumberOfRegisters(ClassID);
30 
31   // For SIMD, use at least 16 registers, as a rough guess.
32   bool Vector = (ClassID == 1);
33   if (Vector)
34     Result = std::max(Result, 16u);
35 
36   return Result;
37 }
38 
39 TypeSize WebAssemblyTTIImpl::getRegisterBitWidth(
40     TargetTransformInfo::RegisterKind K) const {
41   switch (K) {
42   case TargetTransformInfo::RGK_Scalar:
43     return TypeSize::getFixed(64);
44   case TargetTransformInfo::RGK_FixedWidthVector:
45     return TypeSize::getFixed(getST()->hasSIMD128() ? 128 : 64);
46   case TargetTransformInfo::RGK_ScalableVector:
47     return TypeSize::getScalable(0);
48   }
49 
50   llvm_unreachable("Unsupported register kind");
51 }
52 
53 InstructionCost WebAssemblyTTIImpl::getArithmeticInstrCost(
54     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
55     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
56     ArrayRef<const Value *> Args,
57     const Instruction *CxtI) {
58 
59   InstructionCost Cost =
60       BasicTTIImplBase<WebAssemblyTTIImpl>::getArithmeticInstrCost(
61           Opcode, Ty, CostKind, Op1Info, Op2Info);
62 
63   if (auto *VTy = dyn_cast<VectorType>(Ty)) {
64     switch (Opcode) {
65     case Instruction::LShr:
66     case Instruction::AShr:
67     case Instruction::Shl:
68       // SIMD128's shifts currently only accept a scalar shift count. For each
69       // element, we'll need to extract, op, insert. The following is a rough
70       // approximation.
71       if (!Op2Info.isUniform())
72         Cost =
73             cast<FixedVectorType>(VTy)->getNumElements() *
74             (TargetTransformInfo::TCC_Basic +
75              getArithmeticInstrCost(Opcode, VTy->getElementType(), CostKind) +
76              TargetTransformInfo::TCC_Basic);
77       break;
78     }
79   }
80   return Cost;
81 }
82 
83 InstructionCost WebAssemblyTTIImpl::getVectorInstrCost(unsigned Opcode,
84                                                        Type *Val,
85                                                        unsigned Index) {
86   InstructionCost Cost =
87       BasicTTIImplBase::getVectorInstrCost(Opcode, Val, Index);
88 
89   // SIMD128's insert/extract currently only take constant indices.
90   if (Index == -1u)
91     return Cost + 25 * TargetTransformInfo::TCC_Expensive;
92 
93   return Cost;
94 }
95 
96 bool WebAssemblyTTIImpl::areInlineCompatible(const Function *Caller,
97                                              const Function *Callee) const {
98   // Allow inlining only when the Callee has a subset of the Caller's
99   // features. In principle, we should be able to inline regardless of any
100   // features because WebAssembly supports features at module granularity, not
101   // function granularity, but without this restriction it would be possible for
102   // a module to "forget" about features if all the functions that used them
103   // were inlined.
104   const TargetMachine &TM = getTLI()->getTargetMachine();
105 
106   const FeatureBitset &CallerBits =
107       TM.getSubtargetImpl(*Caller)->getFeatureBits();
108   const FeatureBitset &CalleeBits =
109       TM.getSubtargetImpl(*Callee)->getFeatureBits();
110 
111   return (CallerBits & CalleeBits) == CalleeBits;
112 }
113 
114 void WebAssemblyTTIImpl::getUnrollingPreferences(
115     Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
116     OptimizationRemarkEmitter *ORE) const {
117   // Scan the loop: don't unroll loops with calls. This is a standard approach
118   // for most (all?) targets.
119   for (BasicBlock *BB : L->blocks())
120     for (Instruction &I : *BB)
121       if (isa<CallInst>(I) || isa<InvokeInst>(I))
122         if (const Function *F = cast<CallBase>(I).getCalledFunction())
123           if (isLoweredToCall(F))
124             return;
125 
126   // The chosen threshold is within the range of 'LoopMicroOpBufferSize' of
127   // the various microarchitectures that use the BasicTTI implementation and
128   // has been selected through heuristics across multiple cores and runtimes.
129   UP.Partial = UP.Runtime = UP.UpperBound = true;
130   UP.PartialThreshold = 30;
131 
132   // Avoid unrolling when optimizing for size.
133   UP.OptSizeThreshold = 0;
134   UP.PartialOptSizeThreshold = 0;
135 
136   // Set number of instructions optimized when "back edge"
137   // becomes "fall through" to default value of 2.
138   UP.BEInsns = 2;
139 }
140 
141 bool WebAssemblyTTIImpl::supportsTailCalls() const {
142   return getST()->hasTailCall();
143 }
144