xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp (revision 52221d56bcf3d087bb88d44b56c682fd27f59a13)
1 //===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific subclass of TargetMachine.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyTargetMachine.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssembly.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblyTargetObjectFile.h"
19 #include "WebAssemblyTargetTransformInfo.h"
20 #include "llvm/CodeGen/MIRParser/MIParser.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegAllocRegistry.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/Support/TargetRegistry.h"
27 #include "llvm/Target/TargetOptions.h"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/Transforms/Utils.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "wasm"
33 
34 // Emscripten's asm.js-style exception handling
35 static cl::opt<bool> EnableEmException(
36     "enable-emscripten-cxx-exceptions",
37     cl::desc("WebAssembly Emscripten-style exception handling"),
38     cl::init(false));
39 
40 // Emscripten's asm.js-style setjmp/longjmp handling
41 static cl::opt<bool> EnableEmSjLj(
42     "enable-emscripten-sjlj",
43     cl::desc("WebAssembly Emscripten-style setjmp/longjmp handling"),
44     cl::init(false));
45 
46 extern "C" void LLVMInitializeWebAssemblyTarget() {
47   // Register the target.
48   RegisterTargetMachine<WebAssemblyTargetMachine> X(
49       getTheWebAssemblyTarget32());
50   RegisterTargetMachine<WebAssemblyTargetMachine> Y(
51       getTheWebAssemblyTarget64());
52 
53   // Register backend passes
54   auto &PR = *PassRegistry::getPassRegistry();
55   initializeWebAssemblyAddMissingPrototypesPass(PR);
56   initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR);
57   initializeLowerGlobalDtorsPass(PR);
58   initializeFixFunctionBitcastsPass(PR);
59   initializeOptimizeReturnedPass(PR);
60   initializeWebAssemblyArgumentMovePass(PR);
61   initializeWebAssemblySetP2AlignOperandsPass(PR);
62   initializeWebAssemblyReplacePhysRegsPass(PR);
63   initializeWebAssemblyPrepareForLiveIntervalsPass(PR);
64   initializeWebAssemblyOptimizeLiveIntervalsPass(PR);
65   initializeWebAssemblyMemIntrinsicResultsPass(PR);
66   initializeWebAssemblyRegStackifyPass(PR);
67   initializeWebAssemblyRegColoringPass(PR);
68   initializeWebAssemblyExplicitLocalsPass(PR);
69   initializeWebAssemblyFixIrreducibleControlFlowPass(PR);
70   initializeWebAssemblyLateEHPreparePass(PR);
71   initializeWebAssemblyExceptionInfoPass(PR);
72   initializeWebAssemblyCFGSortPass(PR);
73   initializeWebAssemblyCFGStackifyPass(PR);
74   initializeWebAssemblyLowerBrUnlessPass(PR);
75   initializeWebAssemblyRegNumberingPass(PR);
76   initializeWebAssemblyPeepholePass(PR);
77   initializeWebAssemblyCallIndirectFixupPass(PR);
78 }
79 
80 //===----------------------------------------------------------------------===//
81 // WebAssembly Lowering public interface.
82 //===----------------------------------------------------------------------===//
83 
84 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
85   if (!RM.hasValue()) {
86     // Default to static relocation model.  This should always be more optimial
87     // than PIC since the static linker can determine all global addresses and
88     // assume direct function calls.
89     return Reloc::Static;
90   }
91   return *RM;
92 }
93 
94 /// Create an WebAssembly architecture model.
95 ///
96 WebAssemblyTargetMachine::WebAssemblyTargetMachine(
97     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
98     const TargetOptions &Options, Optional<Reloc::Model> RM,
99     Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
100     : LLVMTargetMachine(T,
101                         TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128"
102                                          : "e-m:e-p:32:32-i64:64-n32:64-S128",
103                         TT, CPU, FS, Options, getEffectiveRelocModel(RM),
104                         getEffectiveCodeModel(CM, CodeModel::Large), OL),
105       TLOF(new WebAssemblyTargetObjectFile()) {
106   // WebAssembly type-checks instructions, but a noreturn function with a return
107   // type that doesn't match the context will cause a check failure. So we lower
108   // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
109   // 'unreachable' instructions which is meant for that case.
110   this->Options.TrapUnreachable = true;
111 
112   // WebAssembly treats each function as an independent unit. Force
113   // -ffunction-sections, effectively, so that we can emit them independently.
114   this->Options.FunctionSections = true;
115   this->Options.DataSections = true;
116   this->Options.UniqueSectionNames = true;
117 
118   initAsmInfo();
119 
120   // Create a subtarget using the unmodified target machine features to
121   // initialize the used feature set with explicitly enabled features.
122   getSubtargetImpl(getTargetCPU(), getTargetFeatureString());
123 
124   // Note that we don't use setRequiresStructuredCFG(true). It disables
125   // optimizations than we're ok with, and want, such as critical edge
126   // splitting and tail merging.
127 }
128 
129 WebAssemblyTargetMachine::~WebAssemblyTargetMachine() = default; // anchor.
130 
131 const WebAssemblySubtarget *
132 WebAssemblyTargetMachine::getSubtargetImpl(std::string CPU,
133                                            std::string FS) const {
134   auto &I = SubtargetMap[CPU + FS];
135   if (!I) {
136     I = llvm::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
137     UsedFeatures |= I->getFeatureBits();
138   }
139   return I.get();
140 }
141 
142 const WebAssemblySubtarget *
143 WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
144   Attribute CPUAttr = F.getFnAttribute("target-cpu");
145   Attribute FSAttr = F.getFnAttribute("target-features");
146 
147   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
148                         ? CPUAttr.getValueAsString().str()
149                         : TargetCPU;
150   std::string FS = !FSAttr.hasAttribute(Attribute::None)
151                        ? FSAttr.getValueAsString().str()
152                        : TargetFS;
153 
154   // This needs to be done before we create a new subtarget since any
155   // creation will depend on the TM and the code generation flags on the
156   // function that reside in TargetOptions.
157   resetTargetOptions(F);
158 
159   return getSubtargetImpl(CPU, FS);
160 }
161 
162 namespace {
163 class StripThreadLocal final : public ModulePass {
164   // The default thread model for wasm is single, where thread-local variables
165   // are identical to regular globals and should be treated the same. So this
166   // pass just converts all GlobalVariables to NotThreadLocal
167   static char ID;
168 
169 public:
170   StripThreadLocal() : ModulePass(ID) {}
171   bool runOnModule(Module &M) override {
172     for (auto &GV : M.globals())
173       GV.setThreadLocalMode(GlobalValue::ThreadLocalMode::NotThreadLocal);
174     return true;
175   }
176 };
177 char StripThreadLocal::ID = 0;
178 
179 /// WebAssembly Code Generator Pass Configuration Options.
180 class WebAssemblyPassConfig final : public TargetPassConfig {
181 public:
182   WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM)
183       : TargetPassConfig(TM, PM) {}
184 
185   WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
186     return getTM<WebAssemblyTargetMachine>();
187   }
188 
189   FunctionPass *createTargetRegisterAllocator(bool) override;
190 
191   void addIRPasses() override;
192   bool addInstSelector() override;
193   void addPostRegAlloc() override;
194   bool addGCPasses() override { return false; }
195   void addPreEmitPass() override;
196 
197   // No reg alloc
198   bool addRegAssignmentFast() override { return false; }
199 
200   // No reg alloc
201   bool addRegAssignmentOptimized() override { return false; }
202 };
203 } // end anonymous namespace
204 
205 TargetTransformInfo
206 WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) {
207   return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
208 }
209 
210 TargetPassConfig *
211 WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
212   return new WebAssemblyPassConfig(*this, PM);
213 }
214 
215 FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
216   return nullptr; // No reg alloc
217 }
218 
219 //===----------------------------------------------------------------------===//
220 // The following functions are called from lib/CodeGen/Passes.cpp to modify
221 // the CodeGen pass sequence.
222 //===----------------------------------------------------------------------===//
223 
224 void WebAssemblyPassConfig::addIRPasses() {
225   if (static_cast<WebAssemblyTargetMachine *>(TM)
226           ->getUsedFeatures()[WebAssembly::FeatureAtomics]) {
227     // Expand some atomic operations. WebAssemblyTargetLowering has hooks which
228     // control specifically what gets lowered.
229     addPass(createAtomicExpandPass());
230   } else {
231     // If atomics are not enabled, they get lowered to non-atomics.
232     addPass(createLowerAtomicPass());
233     addPass(new StripThreadLocal());
234   }
235 
236   // Add signatures to prototype-less function declarations
237   addPass(createWebAssemblyAddMissingPrototypes());
238 
239   // Lower .llvm.global_dtors into .llvm_global_ctors with __cxa_atexit calls.
240   addPass(createWebAssemblyLowerGlobalDtors());
241 
242   // Fix function bitcasts, as WebAssembly requires caller and callee signatures
243   // to match.
244   addPass(createWebAssemblyFixFunctionBitcasts());
245 
246   // Optimize "returned" function attributes.
247   if (getOptLevel() != CodeGenOpt::None)
248     addPass(createWebAssemblyOptimizeReturned());
249 
250   // If exception handling is not enabled and setjmp/longjmp handling is
251   // enabled, we lower invokes into calls and delete unreachable landingpad
252   // blocks. Lowering invokes when there is no EH support is done in
253   // TargetPassConfig::addPassesToHandleExceptions, but this runs after this
254   // function and SjLj handling expects all invokes to be lowered before.
255   if (!EnableEmException &&
256       TM->Options.ExceptionModel == ExceptionHandling::None) {
257     addPass(createLowerInvokePass());
258     // The lower invoke pass may create unreachable code. Remove it in order not
259     // to process dead blocks in setjmp/longjmp handling.
260     addPass(createUnreachableBlockEliminationPass());
261   }
262 
263   // Handle exceptions and setjmp/longjmp if enabled.
264   if (EnableEmException || EnableEmSjLj)
265     addPass(createWebAssemblyLowerEmscriptenEHSjLj(EnableEmException,
266                                                    EnableEmSjLj));
267 
268   TargetPassConfig::addIRPasses();
269 }
270 
271 bool WebAssemblyPassConfig::addInstSelector() {
272   (void)TargetPassConfig::addInstSelector();
273   addPass(
274       createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
275   // Run the argument-move pass immediately after the ScheduleDAG scheduler
276   // so that we can fix up the ARGUMENT instructions before anything else
277   // sees them in the wrong place.
278   addPass(createWebAssemblyArgumentMove());
279   // Set the p2align operands. This information is present during ISel, however
280   // it's inconvenient to collect. Collect it now, and update the immediate
281   // operands.
282   addPass(createWebAssemblySetP2AlignOperands());
283   return false;
284 }
285 
286 void WebAssemblyPassConfig::addPostRegAlloc() {
287   // TODO: The following CodeGen passes don't currently support code containing
288   // virtual registers. Consider removing their restrictions and re-enabling
289   // them.
290 
291   // These functions all require the NoVRegs property.
292   disablePass(&MachineCopyPropagationID);
293   disablePass(&PostRAMachineSinkingID);
294   disablePass(&PostRASchedulerID);
295   disablePass(&FuncletLayoutID);
296   disablePass(&StackMapLivenessID);
297   disablePass(&LiveDebugValuesID);
298   disablePass(&PatchableFunctionID);
299   disablePass(&ShrinkWrapID);
300 
301   // This pass hurts code size for wasm because it can generate irreducible
302   // control flow.
303   disablePass(&MachineBlockPlacementID);
304 
305   TargetPassConfig::addPostRegAlloc();
306 }
307 
308 void WebAssemblyPassConfig::addPreEmitPass() {
309   TargetPassConfig::addPreEmitPass();
310 
311   // Rewrite pseudo call_indirect instructions as real instructions.
312   // This needs to run before register stackification, because we change the
313   // order of the arguments.
314   addPass(createWebAssemblyCallIndirectFixup());
315 
316   // Eliminate multiple-entry loops.
317   addPass(createWebAssemblyFixIrreducibleControlFlow());
318 
319   // Do various transformations for exception handling.
320   // Every CFG-changing optimizations should come before this.
321   addPass(createWebAssemblyLateEHPrepare());
322 
323   // Now that we have a prologue and epilogue and all frame indices are
324   // rewritten, eliminate SP and FP. This allows them to be stackified,
325   // colored, and numbered with the rest of the registers.
326   addPass(createWebAssemblyReplacePhysRegs());
327 
328   // Preparations and optimizations related to register stackification.
329   if (getOptLevel() != CodeGenOpt::None) {
330     // LiveIntervals isn't commonly run this late. Re-establish preconditions.
331     addPass(createWebAssemblyPrepareForLiveIntervals());
332 
333     // Depend on LiveIntervals and perform some optimizations on it.
334     addPass(createWebAssemblyOptimizeLiveIntervals());
335 
336     // Prepare memory intrinsic calls for register stackifying.
337     addPass(createWebAssemblyMemIntrinsicResults());
338 
339     // Mark registers as representing wasm's value stack. This is a key
340     // code-compression technique in WebAssembly. We run this pass (and
341     // MemIntrinsicResults above) very late, so that it sees as much code as
342     // possible, including code emitted by PEI and expanded by late tail
343     // duplication.
344     addPass(createWebAssemblyRegStackify());
345 
346     // Run the register coloring pass to reduce the total number of registers.
347     // This runs after stackification so that it doesn't consider registers
348     // that become stackified.
349     addPass(createWebAssemblyRegColoring());
350   }
351 
352   // Insert explicit local.get and local.set operators.
353   addPass(createWebAssemblyExplicitLocals());
354 
355   // Sort the blocks of the CFG into topological order, a prerequisite for
356   // BLOCK and LOOP markers.
357   addPass(createWebAssemblyCFGSort());
358 
359   // Insert BLOCK and LOOP markers.
360   addPass(createWebAssemblyCFGStackify());
361 
362   // Lower br_unless into br_if.
363   addPass(createWebAssemblyLowerBrUnless());
364 
365   // Perform the very last peephole optimizations on the code.
366   if (getOptLevel() != CodeGenOpt::None)
367     addPass(createWebAssemblyPeephole());
368 
369   // Create a mapping from LLVM CodeGen virtual registers to wasm registers.
370   addPass(createWebAssemblyRegNumbering());
371 }
372 
373 yaml::MachineFunctionInfo *
374 WebAssemblyTargetMachine::createDefaultFuncInfoYAML() const {
375   return new yaml::WebAssemblyFunctionInfo();
376 }
377 
378 yaml::MachineFunctionInfo *WebAssemblyTargetMachine::convertFuncInfoToYAML(
379     const MachineFunction &MF) const {
380   const auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
381   return new yaml::WebAssemblyFunctionInfo(*MFI);
382 }
383 
384 bool WebAssemblyTargetMachine::parseMachineFunctionInfo(
385     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
386     SMDiagnostic &Error, SMRange &SourceRange) const {
387   const auto &YamlMFI =
388       reinterpret_cast<const yaml::WebAssemblyFunctionInfo &>(MFI);
389   MachineFunction &MF = PFS.MF;
390   MF.getInfo<WebAssemblyFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
391   return false;
392 }
393