1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp function 11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try 12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in 13 /// case of Emscripten SjLJ. 14 /// 15 /// * Emscripten exception handling 16 /// This pass lowers invokes and landingpads into library functions in JS glue 17 /// code. Invokes are lowered into function wrappers called invoke wrappers that 18 /// exist in JS side, which wraps the original function call with JS try-catch. 19 /// If an exception occurred, cxa_throw() function in JS side sets some 20 /// variables (see below) so we can check whether an exception occurred from 21 /// wasm code and handle it appropriately. 22 /// 23 /// * Emscripten setjmp-longjmp handling 24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 25 /// The idea is that each block with a setjmp is broken up into two parts: the 26 /// part containing setjmp and the part right after the setjmp. The latter part 27 /// is either reached from the setjmp, or later from a longjmp. To handle the 28 /// longjmp, all calls that might longjmp are also called using invoke wrappers 29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 30 /// we can check / whether a longjmp occurred from wasm code. Each block with a 31 /// function call that might longjmp is also split up after the longjmp call. 32 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 33 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 34 /// We assume setjmp-longjmp handling always run after EH handling, which means 35 /// we don't expect any exception-related instructions when SjLj runs. 36 /// FIXME Currently this scheme does not support indirect call of setjmp, 37 /// because of the limitation of the scheme itself. fastcomp does not support it 38 /// either. 39 /// 40 /// In detail, this pass does following things: 41 /// 42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 44 /// These variables are used for both exceptions and setjmp/longjmps. 45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 46 /// means nothing occurred, 1 means an exception occurred, and other numbers 47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 48 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 50 /// longjmp. 51 /// 52 /// * Emscripten exception handling 53 /// 54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 55 /// at link time. setThrew exists in Emscripten's compiler-rt: 56 /// 57 /// void setThrew(uintptr_t threw, int value) { 58 /// if (__THREW__ == 0) { 59 /// __THREW__ = threw; 60 /// __threwValue = value; 61 /// } 62 /// } 63 // 64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 65 /// In exception handling, getTempRet0 indicates the type of an exception 66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 67 /// function. 68 /// 69 /// 3) Lower 70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 71 /// into 72 /// __THREW__ = 0; 73 /// call @__invoke_SIG(func, arg1, arg2) 74 /// %__THREW__.val = __THREW__; 75 /// __THREW__ = 0; 76 /// if (%__THREW__.val == 1) 77 /// goto %lpad 78 /// else 79 /// goto %invoke.cont 80 /// SIG is a mangled string generated based on the LLVM IR-level function 81 /// signature. After LLVM IR types are lowered to the target wasm types, 82 /// the names for these wrappers will change based on wasm types as well, 83 /// as in invoke_vi (function takes an int and returns void). The bodies of 84 /// these wrappers will be generated in JS glue code, and inside those 85 /// wrappers we use JS try-catch to generate actual exception effects. It 86 /// also calls the original callee function. An example wrapper in JS code 87 /// would look like this: 88 /// function invoke_vi(index,a1) { 89 /// try { 90 /// Module["dynCall_vi"](index,a1); // This calls original callee 91 /// } catch(e) { 92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 93 /// _setThrew(1, 0); // setThrew is called here 94 /// } 95 /// } 96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 97 /// so we can jump to the right BB based on this value. 98 /// 99 /// 4) Lower 100 /// %val = landingpad catch c1 catch c2 catch c3 ... 101 /// ... use %val ... 102 /// into 103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 104 /// %val = {%fmc, getTempRet0()} 105 /// ... use %val ... 106 /// Here N is a number calculated based on the number of clauses. 107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 108 /// 109 /// 5) Lower 110 /// resume {%a, %b} 111 /// into 112 /// call @__resumeException(%a) 113 /// where __resumeException() is a function in JS glue code. 114 /// 115 /// 6) Lower 116 /// call @llvm.eh.typeid.for(type) (intrinsic) 117 /// into 118 /// call @llvm_eh_typeid_for(type) 119 /// llvm_eh_typeid_for function will be generated in JS glue code. 120 /// 121 /// * Emscripten setjmp / longjmp handling 122 /// 123 /// If there are calls to longjmp() 124 /// 125 /// 1) Lower 126 /// longjmp(env, val) 127 /// into 128 /// emscripten_longjmp(env, val) 129 /// 130 /// If there are calls to setjmp() 131 /// 132 /// 2) In the function entry that calls setjmp, initialize 133 /// functionInvocationId as follows: 134 /// 135 /// functionInvocationId = alloca(4) 136 /// 137 /// Note: the alloca size is not important as this pointer is 138 /// merely used for pointer comparisions. 139 /// 140 /// 3) Lower 141 /// setjmp(env) 142 /// into 143 /// __wasm_setjmp(env, label, functionInvocationId) 144 /// 145 /// __wasm_setjmp records the necessary info (the label and 146 /// functionInvocationId) to the "env". 147 /// A BB with setjmp is split into two after setjmp call in order to 148 /// make the post-setjmp BB the possible destination of longjmp BB. 149 /// 150 /// 4) Lower every call that might longjmp into 151 /// __THREW__ = 0; 152 /// call @__invoke_SIG(func, arg1, arg2) 153 /// %__THREW__.val = __THREW__; 154 /// __THREW__ = 0; 155 /// %__threwValue.val = __threwValue; 156 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 157 /// %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId); 158 /// if (%label == 0) 159 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 160 /// setTempRet0(%__threwValue.val); 161 /// } else { 162 /// %label = -1; 163 /// } 164 /// longjmp_result = getTempRet0(); 165 /// switch %label { 166 /// label 1: goto post-setjmp BB 1 167 /// label 2: goto post-setjmp BB 2 168 /// ... 169 /// default: goto splitted next BB 170 /// } 171 /// 172 /// __wasm_setjmp_test examines the jmp buf to see if it was for a matching 173 /// setjmp call. After calling an invoke wrapper, if a longjmp occurred, 174 /// __THREW__ will be the address of matching jmp_buf buffer and 175 /// __threwValue be the second argument to longjmp. 176 /// __wasm_setjmp_test returns a setjmp label, a unique ID to each setjmp 177 /// callsite. Label 0 means this longjmp buffer does not correspond to one 178 /// of the setjmp callsites in this function, so in this case we just chain 179 /// the longjmp to the caller. Label -1 means no longjmp occurred. 180 /// Otherwise we jump to the right post-setjmp BB based on the label. 181 /// 182 /// * Wasm setjmp / longjmp handling 183 /// This mode still uses some Emscripten library functions but not JavaScript's 184 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics, 185 /// which will be lowered to exception handling instructions. 186 /// 187 /// If there are calls to longjmp() 188 /// 189 /// 1) Lower 190 /// longjmp(env, val) 191 /// into 192 /// __wasm_longjmp(env, val) 193 /// 194 /// If there are calls to setjmp() 195 /// 196 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj. 197 /// (functionInvocationId initialization + setjmp callsite transformation) 198 /// 199 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value 200 /// thrown by __wasm_longjmp function. In the runtime library, we have an 201 /// equivalent of the following struct: 202 /// 203 /// struct __WasmLongjmpArgs { 204 /// void *env; 205 /// int val; 206 /// }; 207 /// 208 /// The thrown value here is a pointer to the struct. We use this struct to 209 /// transfer two values by throwing a single value. Wasm throw and catch 210 /// instructions are capable of throwing and catching multiple values, but 211 /// it also requires multivalue support that is currently not very reliable. 212 /// TODO Switch to throwing and catching two values without using the struct 213 /// 214 /// All longjmpable function calls will be converted to an invoke that will 215 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we 216 /// test the thrown values using __wasm_setjmp_test function as we do for 217 /// Emscripten SjLj. The main difference is, in Emscripten SjLj, we need to 218 /// transform every longjmpable callsite into a sequence of code including 219 /// __wasm_setjmp_test() call; in Wasm SjLj we do the testing in only one 220 /// place, in this catchpad. 221 /// 222 /// After testing calling __wasm_setjmp_test(), if the longjmp does not 223 /// correspond to one of the setjmps within the current function, it rethrows 224 /// the longjmp by calling __wasm_longjmp(). If it corresponds to one of 225 /// setjmps in the function, we jump to the beginning of the function, which 226 /// contains a switch to each post-setjmp BB. Again, in Emscripten SjLj, this 227 /// switch is added for every longjmpable callsite; in Wasm SjLj we do this 228 /// only once at the top of the function. (after functionInvocationId 229 /// initialization) 230 /// 231 /// The below is the pseudocode for what we have described 232 /// 233 /// entry: 234 /// Initialize functionInvocationId 235 /// 236 /// setjmp.dispatch: 237 /// switch %label { 238 /// label 1: goto post-setjmp BB 1 239 /// label 2: goto post-setjmp BB 2 240 /// ... 241 /// default: goto splitted next BB 242 /// } 243 /// ... 244 /// 245 /// bb: 246 /// invoke void @foo() ;; foo is a longjmpable function 247 /// to label %next unwind label %catch.dispatch.longjmp 248 /// ... 249 /// 250 /// catch.dispatch.longjmp: 251 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller 252 /// 253 /// catch.longjmp: 254 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs 255 /// %env = load 'env' field from __WasmLongjmpArgs 256 /// %val = load 'val' field from __WasmLongjmpArgs 257 /// %label = __wasm_setjmp_test(%env, functionInvocationId); 258 /// if (%label == 0) 259 /// __wasm_longjmp(%env, %val) 260 /// catchret to %setjmp.dispatch 261 /// 262 ///===----------------------------------------------------------------------===// 263 264 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 265 #include "WebAssembly.h" 266 #include "WebAssemblyTargetMachine.h" 267 #include "llvm/ADT/StringExtras.h" 268 #include "llvm/CodeGen/TargetPassConfig.h" 269 #include "llvm/CodeGen/WasmEHFuncInfo.h" 270 #include "llvm/IR/DebugInfoMetadata.h" 271 #include "llvm/IR/Dominators.h" 272 #include "llvm/IR/IRBuilder.h" 273 #include "llvm/IR/IntrinsicsWebAssembly.h" 274 #include "llvm/IR/Module.h" 275 #include "llvm/Support/CommandLine.h" 276 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 277 #include "llvm/Transforms/Utils/Local.h" 278 #include "llvm/Transforms/Utils/SSAUpdater.h" 279 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 280 #include <set> 281 282 using namespace llvm; 283 284 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 285 286 static cl::list<std::string> 287 EHAllowlist("emscripten-cxx-exceptions-allowed", 288 cl::desc("The list of function names in which Emscripten-style " 289 "exception handling is enabled (see emscripten " 290 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 291 cl::CommaSeparated); 292 293 namespace { 294 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 295 bool EnableEmEH; // Enable Emscripten exception handling 296 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 297 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 298 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 299 300 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 301 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 302 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 303 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 304 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 305 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 306 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 307 Function *WasmSetjmpF = nullptr; // __wasm_setjmp() (Emscripten) 308 Function *WasmSetjmpTestF = nullptr; // __wasm_setjmp_test() (Emscripten) 309 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten) 310 Function *CatchF = nullptr; // wasm.catch() (intrinsic) 311 312 // type of 'struct __WasmLongjmpArgs' defined in emscripten 313 Type *LongjmpArgsTy = nullptr; 314 315 // __cxa_find_matching_catch_N functions. 316 // Indexed by the number of clauses in an original landingpad instruction. 317 DenseMap<int, Function *> FindMatchingCatches; 318 // Map of <function signature string, invoke_ wrappers> 319 StringMap<Function *> InvokeWrappers; 320 // Set of allowed function names for exception handling 321 std::set<std::string> EHAllowlistSet; 322 // Functions that contains calls to setjmp 323 SmallPtrSet<Function *, 8> SetjmpUsers; 324 325 StringRef getPassName() const override { 326 return "WebAssembly Lower Emscripten Exceptions"; 327 } 328 329 using InstVector = SmallVectorImpl<Instruction *>; 330 bool runEHOnFunction(Function &F); 331 bool runSjLjOnFunction(Function &F); 332 void handleLongjmpableCallsForEmscriptenSjLj( 333 Function &F, Instruction *FunctionInvocationId, 334 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 335 void 336 handleLongjmpableCallsForWasmSjLj(Function &F, 337 Instruction *FunctionInvocationId, 338 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 339 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 340 341 Value *wrapInvoke(CallBase *CI); 342 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 343 Value *FunctionInvocationId, Value *&Label, 344 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 345 PHINode *&CallEmLongjmpBBThrewPHI, 346 PHINode *&CallEmLongjmpBBThrewValuePHI, 347 BasicBlock *&EndBB); 348 Function *getInvokeWrapper(CallBase *CI); 349 350 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 351 bool supportsException(const Function *F) const { 352 return EnableEmEH && (areAllExceptionsAllowed() || 353 EHAllowlistSet.count(std::string(F->getName()))); 354 } 355 void replaceLongjmpWith(Function *LongjmpF, Function *NewF); 356 357 void rebuildSSA(Function &F); 358 359 public: 360 static char ID; 361 362 WebAssemblyLowerEmscriptenEHSjLj() 363 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH), 364 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj), 365 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) { 366 assert(!(EnableEmSjLj && EnableWasmSjLj) && 367 "Two SjLj modes cannot be turned on at the same time"); 368 assert(!(EnableEmEH && EnableWasmSjLj) && 369 "Wasm SjLj should be only used with Wasm EH"); 370 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 371 } 372 bool runOnModule(Module &M) override; 373 374 void getAnalysisUsage(AnalysisUsage &AU) const override { 375 AU.addRequired<DominatorTreeWrapperPass>(); 376 } 377 }; 378 } // End anonymous namespace 379 380 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 381 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 382 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 383 false, false) 384 385 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 386 return new WebAssemblyLowerEmscriptenEHSjLj(); 387 } 388 389 static bool canThrow(const Value *V) { 390 if (const auto *F = dyn_cast<const Function>(V)) { 391 // Intrinsics cannot throw 392 if (F->isIntrinsic()) 393 return false; 394 StringRef Name = F->getName(); 395 // leave setjmp and longjmp (mostly) alone, we process them properly later 396 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 397 return false; 398 return !F->doesNotThrow(); 399 } 400 // not a function, so an indirect call - can throw, we can't tell 401 return true; 402 } 403 404 // Get a thread-local global variable with the given name. If it doesn't exist 405 // declare it, which will generate an import and assume that it will exist at 406 // link time. 407 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 408 WebAssemblyTargetMachine &TM, 409 const char *Name) { 410 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 411 if (!GV) 412 report_fatal_error(Twine("unable to create global: ") + Name); 413 414 // Variables created by this function are thread local. If the target does not 415 // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it 416 // to non-thread-local ones, in which case we don't allow this object to be 417 // linked with other objects using shared memory. 418 GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel); 419 return GV; 420 } 421 422 // Simple function name mangler. 423 // This function simply takes LLVM's string representation of parameter types 424 // and concatenate them with '_'. There are non-alphanumeric characters but llc 425 // is ok with it, and we need to postprocess these names after the lowering 426 // phase anyway. 427 static std::string getSignature(FunctionType *FTy) { 428 std::string Sig; 429 raw_string_ostream OS(Sig); 430 OS << *FTy->getReturnType(); 431 for (Type *ParamTy : FTy->params()) 432 OS << "_" << *ParamTy; 433 if (FTy->isVarArg()) 434 OS << "_..."; 435 Sig = OS.str(); 436 erase_if(Sig, isSpace); 437 // When s2wasm parses .s file, a comma means the end of an argument. So a 438 // mangled function name can contain any character but a comma. 439 std::replace(Sig.begin(), Sig.end(), ',', '.'); 440 return Sig; 441 } 442 443 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 444 Module *M) { 445 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 446 // Tell the linker that this function is expected to be imported from the 447 // 'env' module. 448 if (!F->hasFnAttribute("wasm-import-module")) { 449 llvm::AttrBuilder B(M->getContext()); 450 B.addAttribute("wasm-import-module", "env"); 451 F->addFnAttrs(B); 452 } 453 if (!F->hasFnAttribute("wasm-import-name")) { 454 llvm::AttrBuilder B(M->getContext()); 455 B.addAttribute("wasm-import-name", F->getName()); 456 F->addFnAttrs(B); 457 } 458 return F; 459 } 460 461 // Returns an integer type for the target architecture's address space. 462 // i32 for wasm32 and i64 for wasm64. 463 static Type *getAddrIntType(Module *M) { 464 IRBuilder<> IRB(M->getContext()); 465 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 466 } 467 468 // Returns an integer pointer type for the target architecture's address space. 469 // i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr 470 // in address space zero. 471 static Type *getAddrPtrType(Module *M) { 472 return PointerType::getUnqual(M->getContext()); 473 } 474 475 // Returns an integer whose type is the integer type for the target's address 476 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 477 // integer. 478 static Value *getAddrSizeInt(Module *M, uint64_t C) { 479 IRBuilder<> IRB(M->getContext()); 480 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 481 } 482 483 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 484 // This is because a landingpad instruction contains two more arguments, a 485 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 486 // functions are named after the number of arguments in the original landingpad 487 // instruction. 488 Function * 489 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 490 unsigned NumClauses) { 491 if (FindMatchingCatches.count(NumClauses)) 492 return FindMatchingCatches[NumClauses]; 493 PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext()); 494 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 495 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 496 Function *F = getEmscriptenFunction( 497 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 498 FindMatchingCatches[NumClauses] = F; 499 return F; 500 } 501 502 // Generate invoke wrapper seqence with preamble and postamble 503 // Preamble: 504 // __THREW__ = 0; 505 // Postamble: 506 // %__THREW__.val = __THREW__; __THREW__ = 0; 507 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 508 // whether longjmp occurred), for future use. 509 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 510 Module *M = CI->getModule(); 511 LLVMContext &C = M->getContext(); 512 513 IRBuilder<> IRB(C); 514 IRB.SetInsertPoint(CI); 515 516 // Pre-invoke 517 // __THREW__ = 0; 518 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 519 520 // Invoke function wrapper in JavaScript 521 SmallVector<Value *, 16> Args; 522 // Put the pointer to the callee as first argument, so it can be called 523 // within the invoke wrapper later 524 Args.push_back(CI->getCalledOperand()); 525 Args.append(CI->arg_begin(), CI->arg_end()); 526 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 527 NewCall->takeName(CI); 528 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 529 NewCall->setDebugLoc(CI->getDebugLoc()); 530 531 // Because we added the pointer to the callee as first argument, all 532 // argument attribute indices have to be incremented by one. 533 SmallVector<AttributeSet, 8> ArgAttributes; 534 const AttributeList &InvokeAL = CI->getAttributes(); 535 536 // No attributes for the callee pointer. 537 ArgAttributes.push_back(AttributeSet()); 538 // Copy the argument attributes from the original 539 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I) 540 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 541 542 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs()); 543 if (auto Args = FnAttrs.getAllocSizeArgs()) { 544 // The allocsize attribute (if any) referes to parameters by index and needs 545 // to be adjusted. 546 auto [SizeArg, NEltArg] = *Args; 547 SizeArg += 1; 548 if (NEltArg) 549 NEltArg = *NEltArg + 1; 550 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 551 } 552 // In case the callee has 'noreturn' attribute, We need to remove it, because 553 // we expect invoke wrappers to return. 554 FnAttrs.removeAttribute(Attribute::NoReturn); 555 556 // Reconstruct the AttributesList based on the vector we constructed. 557 AttributeList NewCallAL = AttributeList::get( 558 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 559 NewCall->setAttributes(NewCallAL); 560 561 CI->replaceAllUsesWith(NewCall); 562 563 // Post-invoke 564 // %__THREW__.val = __THREW__; __THREW__ = 0; 565 Value *Threw = 566 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 567 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 568 return Threw; 569 } 570 571 // Get matching invoke wrapper based on callee signature 572 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 573 Module *M = CI->getModule(); 574 SmallVector<Type *, 16> ArgTys; 575 FunctionType *CalleeFTy = CI->getFunctionType(); 576 577 std::string Sig = getSignature(CalleeFTy); 578 if (InvokeWrappers.contains(Sig)) 579 return InvokeWrappers[Sig]; 580 581 // Put the pointer to the callee as first argument 582 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 583 // Add argument types 584 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 585 586 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 587 CalleeFTy->isVarArg()); 588 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 589 InvokeWrappers[Sig] = F; 590 return F; 591 } 592 593 static bool canLongjmp(const Value *Callee) { 594 if (auto *CalleeF = dyn_cast<Function>(Callee)) 595 if (CalleeF->isIntrinsic()) 596 return false; 597 598 // Attempting to transform inline assembly will result in something like: 599 // call void @__invoke_void(void ()* asm ...) 600 // which is invalid because inline assembly blocks do not have addresses 601 // and can't be passed by pointer. The result is a crash with illegal IR. 602 if (isa<InlineAsm>(Callee)) 603 return false; 604 StringRef CalleeName = Callee->getName(); 605 606 // TODO Include more functions or consider checking with mangled prefixes 607 608 // The reason we include malloc/free here is to exclude the malloc/free 609 // calls generated in setjmp prep / cleanup routines. 610 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 611 return false; 612 613 // There are functions in Emscripten's JS glue code or compiler-rt 614 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 615 CalleeName == "__wasm_setjmp" || CalleeName == "__wasm_setjmp_test" || 616 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 617 return false; 618 619 // __cxa_find_matching_catch_N functions cannot longjmp 620 if (Callee->getName().starts_with("__cxa_find_matching_catch_")) 621 return false; 622 623 // Exception-catching related functions 624 // 625 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though 626 // it surely cannot longjmp, in order to maintain the unwind relationship from 627 // all existing catchpads (and calls within them) to catch.dispatch.longjmp. 628 // 629 // In Wasm EH + Wasm SjLj, we 630 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to 631 // catch.dispatch.longjmp instead 632 // 2. Convert all longjmpable calls to invokes that unwind to 633 // catch.dispatch.longjmp 634 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated 635 // from an exception)'s catchpad does not contain any calls that are converted 636 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship 637 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and 638 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in 639 // CFGSort. 640 // int ret = setjmp(buf); 641 // try { 642 // foo(); // longjmps 643 // } catch (...) { 644 // } 645 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)' 646 // catchswitch, and is not caught by that catchswitch because it is a longjmp, 647 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch 648 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost, 649 // it will not unwind to catch.dispatch.longjmp, producing an incorrect 650 // result. 651 // 652 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we 653 // intentionally treat it as longjmpable to work around this problem. This is 654 // a hacky fix but an easy one. 655 // 656 // The comment block in findWasmUnwindDestinations() in 657 // SelectionDAGBuilder.cpp is addressing a similar problem. 658 if (CalleeName == "__cxa_end_catch") 659 return WebAssembly::WasmEnableSjLj; 660 if (CalleeName == "__cxa_begin_catch" || 661 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 662 CalleeName == "__clang_call_terminate") 663 return false; 664 665 // std::terminate, which is generated when another exception occurs while 666 // handling an exception, cannot longjmp. 667 if (CalleeName == "_ZSt9terminatev") 668 return false; 669 670 // Otherwise we don't know 671 return true; 672 } 673 674 static bool isEmAsmCall(const Value *Callee) { 675 StringRef CalleeName = Callee->getName(); 676 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 677 return CalleeName == "emscripten_asm_const_int" || 678 CalleeName == "emscripten_asm_const_double" || 679 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 680 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 681 CalleeName == "emscripten_asm_const_async_on_main_thread"; 682 } 683 684 // Generate __wasm_setjmp_test function call seqence with preamble and 685 // postamble. The code this generates is equivalent to the following 686 // JavaScript code: 687 // %__threwValue.val = __threwValue; 688 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 689 // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId); 690 // if (%label == 0) 691 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 692 // setTempRet0(%__threwValue.val); 693 // } else { 694 // %label = -1; 695 // } 696 // %longjmp_result = getTempRet0(); 697 // 698 // As output parameters. returns %label, %longjmp_result, and the BB the last 699 // instruction (%longjmp_result = ...) is in. 700 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 701 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *FunctionInvocationId, 702 Value *&Label, Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 703 PHINode *&CallEmLongjmpBBThrewPHI, PHINode *&CallEmLongjmpBBThrewValuePHI, 704 BasicBlock *&EndBB) { 705 Function *F = BB->getParent(); 706 Module *M = F->getParent(); 707 LLVMContext &C = M->getContext(); 708 IRBuilder<> IRB(C); 709 IRB.SetCurrentDebugLocation(DL); 710 711 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 712 IRB.SetInsertPoint(BB); 713 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 714 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 715 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 716 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 717 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 718 ThrewValueGV->getName() + ".val"); 719 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 720 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 721 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 722 723 // Generate call.em.longjmp BB once and share it within the function 724 if (!CallEmLongjmpBB) { 725 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 726 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 727 IRB.SetInsertPoint(CallEmLongjmpBB); 728 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 729 CallEmLongjmpBBThrewValuePHI = 730 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 731 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 732 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 733 IRB.CreateCall(EmLongjmpF, 734 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 735 IRB.CreateUnreachable(); 736 } else { 737 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 738 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 739 } 740 741 // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId); 742 // if (%label == 0) 743 IRB.SetInsertPoint(ThenBB1); 744 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 745 Value *ThrewPtr = 746 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 747 Value *ThenLabel = IRB.CreateCall(WasmSetjmpTestF, 748 {ThrewPtr, FunctionInvocationId}, "label"); 749 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 750 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 751 752 // setTempRet0(%__threwValue.val); 753 IRB.SetInsertPoint(EndBB2); 754 IRB.CreateCall(SetTempRet0F, ThrewValue); 755 IRB.CreateBr(EndBB1); 756 757 IRB.SetInsertPoint(ElseBB1); 758 IRB.CreateBr(EndBB1); 759 760 // longjmp_result = getTempRet0(); 761 IRB.SetInsertPoint(EndBB1); 762 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 763 LabelPHI->addIncoming(ThenLabel, EndBB2); 764 765 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 766 767 // Output parameter assignment 768 Label = LabelPHI; 769 EndBB = EndBB1; 770 LongjmpResult = IRB.CreateCall(GetTempRet0F, std::nullopt, "longjmp_result"); 771 } 772 773 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 774 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 775 DT.recalculate(F); // CFG has been changed 776 777 SSAUpdaterBulk SSA; 778 for (BasicBlock &BB : F) { 779 for (Instruction &I : BB) { 780 if (I.getType()->isVoidTy()) 781 continue; 782 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 783 // If a value is defined by an invoke instruction, it is only available in 784 // its normal destination and not in its unwind destination. 785 if (auto *II = dyn_cast<InvokeInst>(&I)) 786 SSA.AddAvailableValue(VarID, II->getNormalDest(), II); 787 else 788 SSA.AddAvailableValue(VarID, &BB, &I); 789 for (auto &U : I.uses()) { 790 auto *User = cast<Instruction>(U.getUser()); 791 if (auto *UserPN = dyn_cast<PHINode>(User)) 792 if (UserPN->getIncomingBlock(U) == &BB) 793 continue; 794 if (DT.dominates(&I, User)) 795 continue; 796 SSA.AddUse(VarID, &U); 797 } 798 } 799 } 800 SSA.RewriteAllUses(&DT); 801 } 802 803 // Replace uses of longjmp with a new longjmp function in Emscripten library. 804 // In Emscripten SjLj, the new function is 805 // void emscripten_longjmp(uintptr_t, i32) 806 // In Wasm SjLj, the new function is 807 // void __wasm_longjmp(i8*, i32) 808 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a 809 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will 810 // eventually be lowered to i32/i64 in the wasm backend. 811 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF, 812 Function *NewF) { 813 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF); 814 Module *M = LongjmpF->getParent(); 815 SmallVector<CallInst *, 8> ToErase; 816 LLVMContext &C = LongjmpF->getParent()->getContext(); 817 IRBuilder<> IRB(C); 818 819 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and 820 // cast its first argument (jmp_buf*) appropriately 821 for (User *U : LongjmpF->users()) { 822 auto *CI = dyn_cast<CallInst>(U); 823 if (CI && CI->getCalledFunction() == LongjmpF) { 824 IRB.SetInsertPoint(CI); 825 Value *Env = nullptr; 826 if (NewF == EmLongjmpF) 827 Env = 828 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 829 else // WasmLongjmpF 830 Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env"); 831 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)}); 832 ToErase.push_back(CI); 833 } 834 } 835 for (auto *I : ToErase) 836 I->eraseFromParent(); 837 838 // If we have any remaining uses of longjmp's function pointer, replace it 839 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp. 840 if (!LongjmpF->uses().empty()) { 841 Value *NewLongjmp = 842 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast"); 843 LongjmpF->replaceAllUsesWith(NewLongjmp); 844 } 845 } 846 847 static bool containsLongjmpableCalls(const Function *F) { 848 for (const auto &BB : *F) 849 for (const auto &I : BB) 850 if (const auto *CB = dyn_cast<CallBase>(&I)) 851 if (canLongjmp(CB->getCalledOperand())) 852 return true; 853 return false; 854 } 855 856 // When a function contains a setjmp call but not other calls that can longjmp, 857 // we don't do setjmp transformation for that setjmp. But we need to convert the 858 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always 859 // returns 0 when called directly. 860 static void nullifySetjmp(Function *F) { 861 Module &M = *F->getParent(); 862 IRBuilder<> IRB(M.getContext()); 863 Function *SetjmpF = M.getFunction("setjmp"); 864 SmallVector<Instruction *, 1> ToErase; 865 866 for (User *U : make_early_inc_range(SetjmpF->users())) { 867 auto *CB = cast<CallBase>(U); 868 BasicBlock *BB = CB->getParent(); 869 if (BB->getParent() != F) // in other function 870 continue; 871 CallInst *CI = nullptr; 872 // setjmp cannot throw. So if it is an invoke, lower it to a call 873 if (auto *II = dyn_cast<InvokeInst>(CB)) 874 CI = llvm::changeToCall(II); 875 else 876 CI = cast<CallInst>(CB); 877 ToErase.push_back(CI); 878 CI->replaceAllUsesWith(IRB.getInt32(0)); 879 } 880 for (auto *I : ToErase) 881 I->eraseFromParent(); 882 } 883 884 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 885 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 886 887 LLVMContext &C = M.getContext(); 888 IRBuilder<> IRB(C); 889 890 Function *SetjmpF = M.getFunction("setjmp"); 891 Function *LongjmpF = M.getFunction("longjmp"); 892 893 // In some platforms _setjmp and _longjmp are used instead. Change these to 894 // use setjmp/longjmp instead, because we later detect these functions by 895 // their names. 896 Function *SetjmpF2 = M.getFunction("_setjmp"); 897 Function *LongjmpF2 = M.getFunction("_longjmp"); 898 if (SetjmpF2) { 899 if (SetjmpF) { 900 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType()) 901 report_fatal_error("setjmp and _setjmp have different function types"); 902 } else { 903 SetjmpF = Function::Create(SetjmpF2->getFunctionType(), 904 GlobalValue::ExternalLinkage, "setjmp", M); 905 } 906 SetjmpF2->replaceAllUsesWith(SetjmpF); 907 } 908 if (LongjmpF2) { 909 if (LongjmpF) { 910 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType()) 911 report_fatal_error( 912 "longjmp and _longjmp have different function types"); 913 } else { 914 LongjmpF = Function::Create(LongjmpF2->getFunctionType(), 915 GlobalValue::ExternalLinkage, "setjmp", M); 916 } 917 LongjmpF2->replaceAllUsesWith(LongjmpF); 918 } 919 920 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 921 assert(TPC && "Expected a TargetPassConfig"); 922 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 923 924 // Declare (or get) global variables __THREW__, __threwValue, and 925 // getTempRet0/setTempRet0 function which are used in common for both 926 // exception handling and setjmp/longjmp handling 927 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 928 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 929 GetTempRet0F = getEmscriptenFunction( 930 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 931 SetTempRet0F = getEmscriptenFunction( 932 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 933 "setTempRet0", &M); 934 GetTempRet0F->setDoesNotThrow(); 935 SetTempRet0F->setDoesNotThrow(); 936 937 bool Changed = false; 938 939 // Function registration for exception handling 940 if (EnableEmEH) { 941 // Register __resumeException function 942 FunctionType *ResumeFTy = 943 FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false); 944 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 945 ResumeF->addFnAttr(Attribute::NoReturn); 946 947 // Register llvm_eh_typeid_for function 948 FunctionType *EHTypeIDTy = 949 FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false); 950 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 951 } 952 953 // Functions that contains calls to setjmp but don't have other longjmpable 954 // calls within them. 955 SmallPtrSet<Function *, 4> SetjmpUsersToNullify; 956 957 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) { 958 // Precompute setjmp users 959 for (User *U : SetjmpF->users()) { 960 if (auto *CB = dyn_cast<CallBase>(U)) { 961 auto *UserF = CB->getFunction(); 962 // If a function that calls setjmp does not contain any other calls that 963 // can longjmp, we don't need to do any transformation on that function, 964 // so can ignore it 965 if (containsLongjmpableCalls(UserF)) 966 SetjmpUsers.insert(UserF); 967 else 968 SetjmpUsersToNullify.insert(UserF); 969 } else { 970 std::string S; 971 raw_string_ostream SS(S); 972 SS << *U; 973 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") + 974 SS.str()); 975 } 976 } 977 } 978 979 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 980 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 981 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed); 982 983 // Function registration and data pre-gathering for setjmp/longjmp handling 984 if (DoSjLj) { 985 assert(EnableEmSjLj || EnableWasmSjLj); 986 if (EnableEmSjLj) { 987 // Register emscripten_longjmp function 988 FunctionType *FTy = FunctionType::get( 989 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 990 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 991 EmLongjmpF->addFnAttr(Attribute::NoReturn); 992 } else { // EnableWasmSjLj 993 Type *Int8PtrTy = IRB.getPtrTy(); 994 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp. 995 FunctionType *FTy = FunctionType::get( 996 IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false); 997 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M); 998 WasmLongjmpF->addFnAttr(Attribute::NoReturn); 999 } 1000 1001 if (SetjmpF) { 1002 Type *Int8PtrTy = IRB.getPtrTy(); 1003 Type *Int32PtrTy = IRB.getPtrTy(); 1004 Type *Int32Ty = IRB.getInt32Ty(); 1005 1006 // Register __wasm_setjmp function 1007 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 1008 FunctionType *FTy = FunctionType::get( 1009 IRB.getVoidTy(), {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy}, 1010 false); 1011 WasmSetjmpF = getEmscriptenFunction(FTy, "__wasm_setjmp", &M); 1012 1013 // Register __wasm_setjmp_test function 1014 FTy = FunctionType::get(Int32Ty, {Int32PtrTy, Int32PtrTy}, false); 1015 WasmSetjmpTestF = getEmscriptenFunction(FTy, "__wasm_setjmp_test", &M); 1016 1017 // wasm.catch() will be lowered down to wasm 'catch' instruction in 1018 // instruction selection. 1019 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch); 1020 // Type for struct __WasmLongjmpArgs 1021 LongjmpArgsTy = StructType::get(Int8PtrTy, // env 1022 Int32Ty // val 1023 ); 1024 } 1025 } 1026 1027 // Exception handling transformation 1028 if (EnableEmEH) { 1029 for (Function &F : M) { 1030 if (F.isDeclaration()) 1031 continue; 1032 Changed |= runEHOnFunction(F); 1033 } 1034 } 1035 1036 // Setjmp/longjmp handling transformation 1037 if (DoSjLj) { 1038 Changed = true; // We have setjmp or longjmp somewhere 1039 if (LongjmpF) 1040 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF); 1041 // Only traverse functions that uses setjmp in order not to insert 1042 // unnecessary prep / cleanup code in every function 1043 if (SetjmpF) 1044 for (Function *F : SetjmpUsers) 1045 runSjLjOnFunction(*F); 1046 } 1047 1048 // Replace unnecessary setjmp calls with 0 1049 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) { 1050 Changed = true; 1051 assert(SetjmpF); 1052 for (Function *F : SetjmpUsersToNullify) 1053 nullifySetjmp(F); 1054 } 1055 1056 // Delete unused global variables and functions 1057 for (auto *V : {ThrewGV, ThrewValueGV}) 1058 if (V && V->use_empty()) 1059 V->eraseFromParent(); 1060 for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF, 1061 WasmSetjmpF, WasmSetjmpTestF, WasmLongjmpF, CatchF}) 1062 if (V && V->use_empty()) 1063 V->eraseFromParent(); 1064 1065 return Changed; 1066 } 1067 1068 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 1069 Module &M = *F.getParent(); 1070 LLVMContext &C = F.getContext(); 1071 IRBuilder<> IRB(C); 1072 bool Changed = false; 1073 SmallVector<Instruction *, 64> ToErase; 1074 SmallPtrSet<LandingPadInst *, 32> LandingPads; 1075 1076 // rethrow.longjmp BB that will be shared within the function. 1077 BasicBlock *RethrowLongjmpBB = nullptr; 1078 // PHI node for the loaded value of __THREW__ global variable in 1079 // rethrow.longjmp BB 1080 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 1081 1082 for (BasicBlock &BB : F) { 1083 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 1084 if (!II) 1085 continue; 1086 Changed = true; 1087 LandingPads.insert(II->getLandingPadInst()); 1088 IRB.SetInsertPoint(II); 1089 1090 const Value *Callee = II->getCalledOperand(); 1091 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 1092 if (NeedInvoke) { 1093 // Wrap invoke with invoke wrapper and generate preamble/postamble 1094 Value *Threw = wrapInvoke(II); 1095 ToErase.push_back(II); 1096 1097 // If setjmp/longjmp handling is enabled, the thrown value can be not an 1098 // exception but a longjmp. If the current function contains calls to 1099 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 1100 // if the function does not contain setjmp calls, we shouldn't silently 1101 // ignore longjmps; we should rethrow them so they can be correctly 1102 // handled in somewhere up the call chain where setjmp is. __THREW__'s 1103 // value is 0 when nothing happened, 1 when an exception is thrown, and 1104 // other values when longjmp is thrown. 1105 // 1106 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 1107 // goto %tail 1108 // else 1109 // goto %longjmp.rethrow 1110 // 1111 // rethrow.longjmp: ;; This is longjmp. Rethrow it 1112 // %__threwValue.val = __threwValue 1113 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 1114 // 1115 // tail: ;; Nothing happened or an exception is thrown 1116 // ... Continue exception handling ... 1117 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) && 1118 canLongjmp(Callee)) { 1119 // Create longjmp.rethrow BB once and share it within the function 1120 if (!RethrowLongjmpBB) { 1121 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 1122 IRB.SetInsertPoint(RethrowLongjmpBB); 1123 RethrowLongjmpBBThrewPHI = 1124 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 1125 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1126 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 1127 ThrewValueGV->getName() + ".val"); 1128 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 1129 IRB.CreateUnreachable(); 1130 } else { 1131 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1132 } 1133 1134 IRB.SetInsertPoint(II); // Restore the insert point back 1135 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 1136 Value *CmpEqOne = 1137 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1138 Value *CmpEqZero = 1139 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 1140 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 1141 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 1142 IRB.SetInsertPoint(Tail); 1143 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 1144 } 1145 1146 // Insert a branch based on __THREW__ variable 1147 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 1148 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 1149 1150 } else { 1151 // This can't throw, and we don't need this invoke, just replace it with a 1152 // call+branch 1153 changeToCall(II); 1154 } 1155 } 1156 1157 // Process resume instructions 1158 for (BasicBlock &BB : F) { 1159 // Scan the body of the basic block for resumes 1160 for (Instruction &I : BB) { 1161 auto *RI = dyn_cast<ResumeInst>(&I); 1162 if (!RI) 1163 continue; 1164 Changed = true; 1165 1166 // Split the input into legal values 1167 Value *Input = RI->getValue(); 1168 IRB.SetInsertPoint(RI); 1169 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 1170 // Create a call to __resumeException function 1171 IRB.CreateCall(ResumeF, {Low}); 1172 // Add a terminator to the block 1173 IRB.CreateUnreachable(); 1174 ToErase.push_back(RI); 1175 } 1176 } 1177 1178 // Process llvm.eh.typeid.for intrinsics 1179 for (BasicBlock &BB : F) { 1180 for (Instruction &I : BB) { 1181 auto *CI = dyn_cast<CallInst>(&I); 1182 if (!CI) 1183 continue; 1184 const Function *Callee = CI->getCalledFunction(); 1185 if (!Callee) 1186 continue; 1187 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 1188 continue; 1189 Changed = true; 1190 1191 IRB.SetInsertPoint(CI); 1192 CallInst *NewCI = 1193 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 1194 CI->replaceAllUsesWith(NewCI); 1195 ToErase.push_back(CI); 1196 } 1197 } 1198 1199 // Look for orphan landingpads, can occur in blocks with no predecessors 1200 for (BasicBlock &BB : F) { 1201 Instruction *I = BB.getFirstNonPHI(); 1202 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 1203 LandingPads.insert(LPI); 1204 } 1205 Changed |= !LandingPads.empty(); 1206 1207 // Handle all the landingpad for this function together, as multiple invokes 1208 // may share a single lp 1209 for (LandingPadInst *LPI : LandingPads) { 1210 IRB.SetInsertPoint(LPI); 1211 SmallVector<Value *, 16> FMCArgs; 1212 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1213 Constant *Clause = LPI->getClause(I); 1214 // TODO Handle filters (= exception specifications). 1215 // https://github.com/llvm/llvm-project/issues/49740 1216 if (LPI->isCatch(I)) 1217 FMCArgs.push_back(Clause); 1218 } 1219 1220 // Create a call to __cxa_find_matching_catch_N function 1221 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1222 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1223 Value *Poison = PoisonValue::get(LPI->getType()); 1224 Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0"); 1225 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, std::nullopt, "tempret0"); 1226 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1227 1228 LPI->replaceAllUsesWith(Pair1); 1229 ToErase.push_back(LPI); 1230 } 1231 1232 // Erase everything we no longer need in this function 1233 for (Instruction *I : ToErase) 1234 I->eraseFromParent(); 1235 1236 return Changed; 1237 } 1238 1239 // This tries to get debug info from the instruction before which a new 1240 // instruction will be inserted, and if there's no debug info in that 1241 // instruction, tries to get the info instead from the previous instruction (if 1242 // any). If none of these has debug info and a DISubprogram is provided, it 1243 // creates a dummy debug info with the first line of the function, because IR 1244 // verifier requires all inlinable callsites should have debug info when both a 1245 // caller and callee have DISubprogram. If none of these conditions are met, 1246 // returns empty info. 1247 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1248 DISubprogram *SP) { 1249 assert(InsertBefore); 1250 if (InsertBefore->getDebugLoc()) 1251 return InsertBefore->getDebugLoc(); 1252 const Instruction *Prev = InsertBefore->getPrevNode(); 1253 if (Prev && Prev->getDebugLoc()) 1254 return Prev->getDebugLoc(); 1255 if (SP) 1256 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1257 return DebugLoc(); 1258 } 1259 1260 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1261 assert(EnableEmSjLj || EnableWasmSjLj); 1262 Module &M = *F.getParent(); 1263 LLVMContext &C = F.getContext(); 1264 IRBuilder<> IRB(C); 1265 SmallVector<Instruction *, 64> ToErase; 1266 1267 // Setjmp preparation 1268 1269 BasicBlock *Entry = &F.getEntryBlock(); 1270 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1271 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1272 1273 IRB.SetInsertPoint(Entry->getTerminator()->getIterator()); 1274 // This alloca'ed pointer is used by the runtime to identify function 1275 // invocations. It's just for pointer comparisons. It will never be 1276 // dereferenced. 1277 Instruction *FunctionInvocationId = 1278 IRB.CreateAlloca(IRB.getInt32Ty(), nullptr, "functionInvocationId"); 1279 FunctionInvocationId->setDebugLoc(FirstDL); 1280 1281 // Setjmp transformation 1282 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1283 Function *SetjmpF = M.getFunction("setjmp"); 1284 for (auto *U : make_early_inc_range(SetjmpF->users())) { 1285 auto *CB = cast<CallBase>(U); 1286 BasicBlock *BB = CB->getParent(); 1287 if (BB->getParent() != &F) // in other function 1288 continue; 1289 if (CB->getOperandBundle(LLVMContext::OB_funclet)) { 1290 std::string S; 1291 raw_string_ostream SS(S); 1292 SS << "In function " + F.getName() + 1293 ": setjmp within a catch clause is not supported in Wasm EH:\n"; 1294 SS << *CB; 1295 report_fatal_error(StringRef(SS.str())); 1296 } 1297 1298 CallInst *CI = nullptr; 1299 // setjmp cannot throw. So if it is an invoke, lower it to a call 1300 if (auto *II = dyn_cast<InvokeInst>(CB)) 1301 CI = llvm::changeToCall(II); 1302 else 1303 CI = cast<CallInst>(CB); 1304 1305 // The tail is everything right after the call, and will be reached once 1306 // when setjmp is called, and later when longjmp returns to the setjmp 1307 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1308 // Add a phi to the tail, which will be the output of setjmp, which 1309 // indicates if this is the first call or a longjmp back. The phi directly 1310 // uses the right value based on where we arrive from 1311 IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt()); 1312 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1313 1314 // setjmp initial call returns 0 1315 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1316 // The proper output is now this, not the setjmp call itself 1317 CI->replaceAllUsesWith(SetjmpRet); 1318 // longjmp returns to the setjmp will add themselves to this phi 1319 SetjmpRetPHIs.push_back(SetjmpRet); 1320 1321 // Fix call target 1322 // Our index in the function is our place in the array + 1 to avoid index 1323 // 0, because index 0 means the longjmp is not ours to handle. 1324 IRB.SetInsertPoint(CI); 1325 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1326 FunctionInvocationId}; 1327 IRB.CreateCall(WasmSetjmpF, Args); 1328 ToErase.push_back(CI); 1329 } 1330 1331 // Handle longjmpable calls. 1332 if (EnableEmSjLj) 1333 handleLongjmpableCallsForEmscriptenSjLj(F, FunctionInvocationId, 1334 SetjmpRetPHIs); 1335 else // EnableWasmSjLj 1336 handleLongjmpableCallsForWasmSjLj(F, FunctionInvocationId, SetjmpRetPHIs); 1337 1338 // Erase everything we no longer need in this function 1339 for (Instruction *I : ToErase) 1340 I->eraseFromParent(); 1341 1342 // Finally, our modifications to the cfg can break dominance of SSA variables. 1343 // For example, in this code, 1344 // if (x()) { .. setjmp() .. } 1345 // if (y()) { .. longjmp() .. } 1346 // We must split the longjmp block, and it can jump into the block splitted 1347 // from setjmp one. But that means that when we split the setjmp block, it's 1348 // first part no longer dominates its second part - there is a theoretically 1349 // possible control flow path where x() is false, then y() is true and we 1350 // reach the second part of the setjmp block, without ever reaching the first 1351 // part. So, we rebuild SSA form here. 1352 rebuildSSA(F); 1353 return true; 1354 } 1355 1356 // Update each call that can longjmp so it can return to the corresponding 1357 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the 1358 // comments at top of the file for details. 1359 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1360 Function &F, Instruction *FunctionInvocationId, 1361 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1362 Module &M = *F.getParent(); 1363 LLVMContext &C = F.getContext(); 1364 IRBuilder<> IRB(C); 1365 SmallVector<Instruction *, 64> ToErase; 1366 1367 // call.em.longjmp BB that will be shared within the function. 1368 BasicBlock *CallEmLongjmpBB = nullptr; 1369 // PHI node for the loaded value of __THREW__ global variable in 1370 // call.em.longjmp BB 1371 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1372 // PHI node for the loaded value of __threwValue global variable in 1373 // call.em.longjmp BB 1374 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1375 // rethrow.exn BB that will be shared within the function. 1376 BasicBlock *RethrowExnBB = nullptr; 1377 1378 // Because we are creating new BBs while processing and don't want to make 1379 // all these newly created BBs candidates again for longjmp processing, we 1380 // first make the vector of candidate BBs. 1381 std::vector<BasicBlock *> BBs; 1382 for (BasicBlock &BB : F) 1383 BBs.push_back(&BB); 1384 1385 // BBs.size() will change within the loop, so we query it every time 1386 for (unsigned I = 0; I < BBs.size(); I++) { 1387 BasicBlock *BB = BBs[I]; 1388 for (Instruction &I : *BB) { 1389 if (isa<InvokeInst>(&I)) { 1390 std::string S; 1391 raw_string_ostream SS(S); 1392 SS << "In function " << F.getName() 1393 << ": When using Wasm EH with Emscripten SjLj, there is a " 1394 "restriction that `setjmp` function call and exception cannot be " 1395 "used within the same function:\n"; 1396 SS << I; 1397 report_fatal_error(StringRef(SS.str())); 1398 } 1399 auto *CI = dyn_cast<CallInst>(&I); 1400 if (!CI) 1401 continue; 1402 1403 const Value *Callee = CI->getCalledOperand(); 1404 if (!canLongjmp(Callee)) 1405 continue; 1406 if (isEmAsmCall(Callee)) 1407 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1408 F.getName() + 1409 ". Please consider using EM_JS, or move the " 1410 "EM_ASM into another function.", 1411 false); 1412 1413 Value *Threw = nullptr; 1414 BasicBlock *Tail; 1415 if (Callee->getName().starts_with("__invoke_")) { 1416 // If invoke wrapper has already been generated for this call in 1417 // previous EH phase, search for the load instruction 1418 // %__THREW__.val = __THREW__; 1419 // in postamble after the invoke wrapper call 1420 LoadInst *ThrewLI = nullptr; 1421 StoreInst *ThrewResetSI = nullptr; 1422 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1423 I != IE; ++I) { 1424 if (auto *LI = dyn_cast<LoadInst>(I)) 1425 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1426 if (GV == ThrewGV) { 1427 Threw = ThrewLI = LI; 1428 break; 1429 } 1430 } 1431 // Search for the store instruction after the load above 1432 // __THREW__ = 0; 1433 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1434 I != IE; ++I) { 1435 if (auto *SI = dyn_cast<StoreInst>(I)) { 1436 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1437 if (GV == ThrewGV && 1438 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1439 ThrewResetSI = SI; 1440 break; 1441 } 1442 } 1443 } 1444 } 1445 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1446 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1447 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1448 1449 } else { 1450 // Wrap call with invoke wrapper and generate preamble/postamble 1451 Threw = wrapInvoke(CI); 1452 ToErase.push_back(CI); 1453 Tail = SplitBlock(BB, CI->getNextNode()); 1454 1455 // If exception handling is enabled, the thrown value can be not a 1456 // longjmp but an exception, in which case we shouldn't silently ignore 1457 // exceptions; we should rethrow them. 1458 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1459 // thrown, other values when longjmp is thrown. 1460 // 1461 // if (%__THREW__.val == 1) 1462 // goto %eh.rethrow 1463 // else 1464 // goto %normal 1465 // 1466 // eh.rethrow: ;; Rethrow exception 1467 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1468 // __resumeException(%exn) 1469 // 1470 // normal: 1471 // <-- Insertion point. Will insert sjlj handling code from here 1472 // goto %tail 1473 // 1474 // tail: 1475 // ... 1476 if (supportsException(&F) && canThrow(Callee)) { 1477 // We will add a new conditional branch. So remove the branch created 1478 // when we split the BB 1479 ToErase.push_back(BB->getTerminator()); 1480 1481 // Generate rethrow.exn BB once and share it within the function 1482 if (!RethrowExnBB) { 1483 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1484 IRB.SetInsertPoint(RethrowExnBB); 1485 CallInst *Exn = 1486 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1487 IRB.CreateCall(ResumeF, {Exn}); 1488 IRB.CreateUnreachable(); 1489 } 1490 1491 IRB.SetInsertPoint(CI); 1492 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1493 Value *CmpEqOne = 1494 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1495 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1496 1497 IRB.SetInsertPoint(NormalBB); 1498 IRB.CreateBr(Tail); 1499 BB = NormalBB; // New insertion point to insert __wasm_setjmp_test() 1500 } 1501 } 1502 1503 // We need to replace the terminator in Tail - SplitBlock makes BB go 1504 // straight to Tail, we need to check if a longjmp occurred, and go to the 1505 // right setjmp-tail if so 1506 ToErase.push_back(BB->getTerminator()); 1507 1508 // Generate a function call to __wasm_setjmp_test function and 1509 // preamble/postamble code to figure out (1) whether longjmp 1510 // occurred (2) if longjmp occurred, which setjmp it corresponds to 1511 Value *Label = nullptr; 1512 Value *LongjmpResult = nullptr; 1513 BasicBlock *EndBB = nullptr; 1514 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, FunctionInvocationId, Label, 1515 LongjmpResult, CallEmLongjmpBB, CallEmLongjmpBBThrewPHI, 1516 CallEmLongjmpBBThrewValuePHI, EndBB); 1517 assert(Label && LongjmpResult && EndBB); 1518 1519 // Create switch instruction 1520 IRB.SetInsertPoint(EndBB); 1521 IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc()); 1522 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1523 // -1 means no longjmp happened, continue normally (will hit the default 1524 // switch case). 0 means a longjmp that is not ours to handle, needs a 1525 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1526 // 0). 1527 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1528 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1529 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1530 } 1531 1532 // We are splitting the block here, and must continue to find other calls 1533 // in the block - which is now split. so continue to traverse in the Tail 1534 BBs.push_back(Tail); 1535 } 1536 } 1537 1538 for (Instruction *I : ToErase) 1539 I->eraseFromParent(); 1540 } 1541 1542 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) { 1543 for (const User *U : CPI->users()) 1544 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 1545 return CRI->getUnwindDest(); 1546 return nullptr; 1547 } 1548 1549 // Create a catchpad in which we catch a longjmp's env and val arguments, test 1550 // if the longjmp corresponds to one of setjmps in the current function, and if 1551 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp 1552 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at 1553 // top of the file for details. 1554 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj( 1555 Function &F, Instruction *FunctionInvocationId, 1556 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1557 Module &M = *F.getParent(); 1558 LLVMContext &C = F.getContext(); 1559 IRBuilder<> IRB(C); 1560 1561 // A function with catchswitch/catchpad instruction should have a personality 1562 // function attached to it. Search for the wasm personality function, and if 1563 // it exists, use it, and if it doesn't, create a dummy personality function. 1564 // (SjLj is not going to call it anyway.) 1565 if (!F.hasPersonalityFn()) { 1566 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX); 1567 FunctionType *PersType = 1568 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true); 1569 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee(); 1570 F.setPersonalityFn( 1571 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy()))); 1572 } 1573 1574 // Use the entry BB's debugloc as a fallback 1575 BasicBlock *Entry = &F.getEntryBlock(); 1576 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1577 IRB.SetCurrentDebugLocation(FirstDL); 1578 1579 // Add setjmp.dispatch BB right after the entry block. Because we have 1580 // initialized functionInvocationId in the entry block and split the 1581 // rest into another BB, here 'OrigEntry' is the function's original entry 1582 // block before the transformation. 1583 // 1584 // entry: 1585 // functionInvocationId initialization 1586 // setjmp.dispatch: 1587 // switch will be inserted here later 1588 // entry.split: (OrigEntry) 1589 // the original function starts here 1590 BasicBlock *OrigEntry = Entry->getNextNode(); 1591 BasicBlock *SetjmpDispatchBB = 1592 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry); 1593 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB); 1594 1595 // Create catch.dispatch.longjmp BB and a catchswitch instruction 1596 BasicBlock *CatchDispatchLongjmpBB = 1597 BasicBlock::Create(C, "catch.dispatch.longjmp", &F); 1598 IRB.SetInsertPoint(CatchDispatchLongjmpBB); 1599 CatchSwitchInst *CatchSwitchLongjmp = 1600 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1); 1601 1602 // Create catch.longjmp BB and a catchpad instruction 1603 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F); 1604 CatchSwitchLongjmp->addHandler(CatchLongjmpBB); 1605 IRB.SetInsertPoint(CatchLongjmpBB); 1606 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {}); 1607 1608 // Wasm throw and catch instructions can throw and catch multiple values, but 1609 // that requires multivalue support in the toolchain, which is currently not 1610 // very reliable. We instead throw and catch a pointer to a struct value of 1611 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten. 1612 Instruction *LongjmpArgs = 1613 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown"); 1614 Value *EnvField = 1615 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep"); 1616 Value *ValField = 1617 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep"); 1618 // void *env = __wasm_longjmp_args.env; 1619 Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env"); 1620 // int val = __wasm_longjmp_args.val; 1621 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val"); 1622 1623 // %label = __wasm_setjmp_test(%env, functionInvocatinoId); 1624 // if (%label == 0) 1625 // __wasm_longjmp(%env, %val) 1626 // catchret to %setjmp.dispatch 1627 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F); 1628 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F); 1629 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p"); 1630 Value *Label = IRB.CreateCall(WasmSetjmpTestF, {EnvP, FunctionInvocationId}, 1631 OperandBundleDef("funclet", CatchPad), "label"); 1632 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0)); 1633 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 1634 1635 IRB.SetInsertPoint(ThenBB); 1636 CallInst *WasmLongjmpCI = IRB.CreateCall( 1637 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad)); 1638 IRB.CreateUnreachable(); 1639 1640 IRB.SetInsertPoint(EndBB); 1641 // Jump to setjmp.dispatch block 1642 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB); 1643 1644 // Go back to setjmp.dispatch BB 1645 // setjmp.dispatch: 1646 // switch %label { 1647 // label 1: goto post-setjmp BB 1 1648 // label 2: goto post-setjmp BB 2 1649 // ... 1650 // default: goto splitted next BB 1651 // } 1652 IRB.SetInsertPoint(SetjmpDispatchBB); 1653 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi"); 1654 LabelPHI->addIncoming(Label, EndBB); 1655 LabelPHI->addIncoming(IRB.getInt32(-1), Entry); 1656 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size()); 1657 // -1 means no longjmp happened, continue normally (will hit the default 1658 // switch case). 0 means a longjmp that is not ours to handle, needs a 1659 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1660 // 0). 1661 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1662 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1663 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB); 1664 } 1665 1666 // Convert all longjmpable call instructions to invokes that unwind to the 1667 // newly created catch.dispatch.longjmp BB. 1668 SmallVector<CallInst *, 64> LongjmpableCalls; 1669 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) { 1670 for (auto &I : *BB) { 1671 auto *CI = dyn_cast<CallInst>(&I); 1672 if (!CI) 1673 continue; 1674 const Value *Callee = CI->getCalledOperand(); 1675 if (!canLongjmp(Callee)) 1676 continue; 1677 if (isEmAsmCall(Callee)) 1678 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1679 F.getName() + 1680 ". Please consider using EM_JS, or move the " 1681 "EM_ASM into another function.", 1682 false); 1683 // This is __wasm_longjmp() call we inserted in this function, which 1684 // rethrows the longjmp when the longjmp does not correspond to one of 1685 // setjmps in this function. We should not convert this call to an invoke. 1686 if (CI == WasmLongjmpCI) 1687 continue; 1688 LongjmpableCalls.push_back(CI); 1689 } 1690 } 1691 1692 SmallDenseMap<BasicBlock *, SmallPtrSet<BasicBlock *, 4>, 4> 1693 UnwindDestToNewPreds; 1694 for (auto *CI : LongjmpableCalls) { 1695 // Even if the callee function has attribute 'nounwind', which is true for 1696 // all C functions, it can longjmp, which means it can throw a Wasm 1697 // exception now. 1698 CI->removeFnAttr(Attribute::NoUnwind); 1699 if (Function *CalleeF = CI->getCalledFunction()) 1700 CalleeF->removeFnAttr(Attribute::NoUnwind); 1701 1702 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp 1703 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind 1704 // to its parent pad's unwind destination instead to preserve the scope 1705 // structure. It will eventually unwind to the catch.dispatch.longjmp. 1706 SmallVector<OperandBundleDef, 1> Bundles; 1707 BasicBlock *UnwindDest = nullptr; 1708 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 1709 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]); 1710 while (!UnwindDest) { 1711 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) { 1712 UnwindDest = CPI->getCatchSwitch()->getUnwindDest(); 1713 break; 1714 } 1715 if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) { 1716 // getCleanupRetUnwindDest() can return nullptr when 1717 // 1. This cleanuppad's matching cleanupret uwninds to caller 1718 // 2. There is no matching cleanupret because it ends with 1719 // unreachable. 1720 // In case of 2, we need to traverse the parent pad chain. 1721 UnwindDest = getCleanupRetUnwindDest(CPI); 1722 Value *ParentPad = CPI->getParentPad(); 1723 if (isa<ConstantTokenNone>(ParentPad)) 1724 break; 1725 FromPad = cast<Instruction>(ParentPad); 1726 } 1727 } 1728 } 1729 if (!UnwindDest) 1730 UnwindDest = CatchDispatchLongjmpBB; 1731 // Because we are changing a longjmpable call to an invoke, its unwind 1732 // destination can be an existing EH pad that already have phis, and the BB 1733 // with the newly created invoke will become a new predecessor of that EH 1734 // pad. In this case we need to add the new predecessor to those phis. 1735 UnwindDestToNewPreds[UnwindDest].insert(CI->getParent()); 1736 changeToInvokeAndSplitBasicBlock(CI, UnwindDest); 1737 } 1738 1739 SmallVector<Instruction *, 16> ToErase; 1740 for (auto &BB : F) { 1741 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) { 1742 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) { 1743 IRB.SetInsertPoint(CSI); 1744 ToErase.push_back(CSI); 1745 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(), 1746 CatchDispatchLongjmpBB, 1); 1747 NewCSI->addHandler(*CSI->handler_begin()); 1748 NewCSI->takeName(CSI); 1749 CSI->replaceAllUsesWith(NewCSI); 1750 } 1751 } 1752 1753 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) { 1754 if (CRI->unwindsToCaller()) { 1755 IRB.SetInsertPoint(CRI); 1756 ToErase.push_back(CRI); 1757 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB); 1758 } 1759 } 1760 } 1761 1762 for (Instruction *I : ToErase) 1763 I->eraseFromParent(); 1764 1765 // Add entries for new predecessors to phis in unwind destinations. We use 1766 // 'undef' as a placeholder value. We should make sure the phis have a valid 1767 // set of predecessors before running SSAUpdater, because SSAUpdater 1768 // internally can use existing phis to gather predecessor info rather than 1769 // scanning the actual CFG (See FindPredecessorBlocks in SSAUpdater.cpp for 1770 // details). 1771 for (auto &[UnwindDest, NewPreds] : UnwindDestToNewPreds) { 1772 for (PHINode &PN : UnwindDest->phis()) { 1773 for (auto *NewPred : NewPreds) { 1774 assert(PN.getBasicBlockIndex(NewPred) == -1); 1775 PN.addIncoming(UndefValue::get(PN.getType()), NewPred); 1776 } 1777 } 1778 } 1779 1780 // For unwind destinations for newly added invokes to longjmpable functions, 1781 // calculate incoming values for the newly added predecessors using 1782 // SSAUpdater. We add existing values in the phis to SSAUpdater as available 1783 // values and let it calculate what the value should be at the end of new 1784 // incoming blocks. 1785 for (auto &[UnwindDest, NewPreds] : UnwindDestToNewPreds) { 1786 for (PHINode &PN : UnwindDest->phis()) { 1787 SSAUpdater SSA; 1788 SSA.Initialize(PN.getType(), PN.getName()); 1789 for (unsigned Idx = 0, E = PN.getNumIncomingValues(); Idx != E; ++Idx) { 1790 if (NewPreds.contains(PN.getIncomingBlock(Idx))) 1791 continue; 1792 Value *V = PN.getIncomingValue(Idx); 1793 if (auto *II = dyn_cast<InvokeInst>(V)) 1794 SSA.AddAvailableValue(II->getNormalDest(), II); 1795 else if (auto *I = dyn_cast<Instruction>(V)) 1796 SSA.AddAvailableValue(I->getParent(), I); 1797 else 1798 SSA.AddAvailableValue(PN.getIncomingBlock(Idx), V); 1799 } 1800 for (auto *NewPred : NewPreds) 1801 PN.setIncomingValueForBlock(NewPred, SSA.GetValueAtEndOfBlock(NewPred)); 1802 assert(PN.isComplete()); 1803 } 1804 } 1805 } 1806