1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "WebAssemblyUtilities.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "wasm-lower" 45 46 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 47 const TargetMachine &TM, const WebAssemblySubtarget &STI) 48 : TargetLowering(TM), Subtarget(&STI) { 49 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 50 51 // Booleans always contain 0 or 1. 52 setBooleanContents(ZeroOrOneBooleanContent); 53 // Except in SIMD vectors 54 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 55 // We don't know the microarchitecture here, so just reduce register pressure. 56 setSchedulingPreference(Sched::RegPressure); 57 // Tell ISel that we have a stack pointer. 58 setStackPointerRegisterToSaveRestore( 59 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 60 // Set up the register classes. 61 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 62 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 63 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 64 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 65 if (Subtarget->hasSIMD128()) { 66 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 71 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 72 } 73 if (Subtarget->hasFP16()) { 74 addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass); 75 } 76 if (Subtarget->hasReferenceTypes()) { 77 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 78 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 79 if (Subtarget->hasExceptionHandling()) { 80 addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass); 81 } 82 } 83 // Compute derived properties from the register classes. 84 computeRegisterProperties(Subtarget->getRegisterInfo()); 85 86 // Transform loads and stores to pointers in address space 1 to loads and 87 // stores to WebAssembly global variables, outside linear memory. 88 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 89 setOperationAction(ISD::LOAD, T, Custom); 90 setOperationAction(ISD::STORE, T, Custom); 91 } 92 if (Subtarget->hasSIMD128()) { 93 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 94 MVT::v2f64}) { 95 setOperationAction(ISD::LOAD, T, Custom); 96 setOperationAction(ISD::STORE, T, Custom); 97 } 98 } 99 if (Subtarget->hasFP16()) { 100 setOperationAction(ISD::LOAD, MVT::v8f16, Custom); 101 setOperationAction(ISD::STORE, MVT::v8f16, Custom); 102 } 103 if (Subtarget->hasReferenceTypes()) { 104 // We need custom load and store lowering for both externref, funcref and 105 // Other. The MVT::Other here represents tables of reference types. 106 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 107 setOperationAction(ISD::LOAD, T, Custom); 108 setOperationAction(ISD::STORE, T, Custom); 109 } 110 } 111 112 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 113 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 114 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 115 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 116 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 117 setOperationAction(ISD::BRIND, MVT::Other, Custom); 118 setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom); 119 120 // Take the default expansion for va_arg, va_copy, and va_end. There is no 121 // default action for va_start, so we do that custom. 122 setOperationAction(ISD::VASTART, MVT::Other, Custom); 123 setOperationAction(ISD::VAARG, MVT::Other, Expand); 124 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 125 setOperationAction(ISD::VAEND, MVT::Other, Expand); 126 127 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 128 // Don't expand the floating-point types to constant pools. 129 setOperationAction(ISD::ConstantFP, T, Legal); 130 // Expand floating-point comparisons. 131 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 132 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 133 setCondCodeAction(CC, T, Expand); 134 // Expand floating-point library function operators. 135 for (auto Op : 136 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 137 setOperationAction(Op, T, Expand); 138 // Note supported floating-point library function operators that otherwise 139 // default to expand. 140 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 141 ISD::FRINT, ISD::FROUNDEVEN}) 142 setOperationAction(Op, T, Legal); 143 // Support minimum and maximum, which otherwise default to expand. 144 setOperationAction(ISD::FMINIMUM, T, Legal); 145 setOperationAction(ISD::FMAXIMUM, T, Legal); 146 // WebAssembly currently has no builtin f16 support. 147 setOperationAction(ISD::FP16_TO_FP, T, Expand); 148 setOperationAction(ISD::FP_TO_FP16, T, Expand); 149 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 150 setTruncStoreAction(T, MVT::f16, Expand); 151 } 152 153 if (Subtarget->hasFP16()) { 154 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal); 155 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal); 156 } 157 158 // Expand unavailable integer operations. 159 for (auto Op : 160 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 161 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 162 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 163 for (auto T : {MVT::i32, MVT::i64}) 164 setOperationAction(Op, T, Expand); 165 if (Subtarget->hasSIMD128()) 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(Op, T, Expand); 168 } 169 170 if (Subtarget->hasNontrappingFPToInt()) 171 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 172 for (auto T : {MVT::i32, MVT::i64}) 173 setOperationAction(Op, T, Custom); 174 175 // SIMD-specific configuration 176 if (Subtarget->hasSIMD128()) { 177 // Combine vector mask reductions into alltrue/anytrue 178 setTargetDAGCombine(ISD::SETCC); 179 180 // Convert vector to integer bitcasts to bitmask 181 setTargetDAGCombine(ISD::BITCAST); 182 183 // Hoist bitcasts out of shuffles 184 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 185 186 // Combine extends of extract_subvectors into widening ops 187 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 188 189 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 190 // conversions ops 191 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 192 ISD::EXTRACT_SUBVECTOR}); 193 194 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 195 // into conversion ops 196 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 197 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 198 199 setTargetDAGCombine(ISD::TRUNCATE); 200 201 // Support saturating add/sub for i8x16 and i16x8 202 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}) 203 for (auto T : {MVT::v16i8, MVT::v8i16}) 204 setOperationAction(Op, T, Legal); 205 206 // Support integer abs 207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 208 setOperationAction(ISD::ABS, T, Legal); 209 210 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 211 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 212 MVT::v2f64}) 213 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 214 215 if (Subtarget->hasFP16()) 216 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); 217 218 // We have custom shuffle lowering to expose the shuffle mask 219 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 220 MVT::v2f64}) 221 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 222 223 // Support splatting 224 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 225 MVT::v2f64}) 226 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 227 228 // Custom lowering since wasm shifts must have a scalar shift amount 229 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 230 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 231 setOperationAction(Op, T, Custom); 232 233 // Custom lower lane accesses to expand out variable indices 234 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 235 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 236 MVT::v2f64}) 237 setOperationAction(Op, T, Custom); 238 239 // There is no i8x16.mul instruction 240 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 241 242 // There is no vector conditional select instruction 243 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 244 MVT::v2f64}) 245 setOperationAction(ISD::SELECT_CC, T, Expand); 246 247 // Expand integer operations supported for scalars but not SIMD 248 for (auto Op : 249 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 250 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 251 setOperationAction(Op, T, Expand); 252 253 // But we do have integer min and max operations 254 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 255 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 256 setOperationAction(Op, T, Legal); 257 258 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 259 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 260 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 261 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 262 263 // Custom lower bit counting operations for other types to scalarize them. 264 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 265 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 266 setOperationAction(Op, T, Custom); 267 268 // Expand float operations supported for scalars but not SIMD 269 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 270 ISD::FEXP, ISD::FEXP2}) 271 for (auto T : {MVT::v4f32, MVT::v2f64}) 272 setOperationAction(Op, T, Expand); 273 274 // Unsigned comparison operations are unavailable for i64x2 vectors. 275 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 276 setCondCodeAction(CC, MVT::v2i64, Custom); 277 278 // 64x2 conversions are not in the spec 279 for (auto Op : 280 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 281 for (auto T : {MVT::v2i64, MVT::v2f64}) 282 setOperationAction(Op, T, Expand); 283 284 // But saturating fp_to_int converstions are 285 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) { 286 setOperationAction(Op, MVT::v4i32, Custom); 287 if (Subtarget->hasFP16()) { 288 setOperationAction(Op, MVT::v8i16, Custom); 289 } 290 } 291 292 // Support vector extending 293 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) { 294 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom); 295 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom); 296 } 297 } 298 299 // As a special case, these operators use the type to mean the type to 300 // sign-extend from. 301 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 302 if (!Subtarget->hasSignExt()) { 303 // Sign extends are legal only when extending a vector extract 304 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 305 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 306 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 307 } 308 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 309 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 310 311 // Dynamic stack allocation: use the default expansion. 312 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 313 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 314 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 315 316 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 317 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 318 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 319 320 // Expand these forms; we pattern-match the forms that we can handle in isel. 321 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 322 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 323 setOperationAction(Op, T, Expand); 324 325 // We have custom switch handling. 326 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 327 328 // WebAssembly doesn't have: 329 // - Floating-point extending loads. 330 // - Floating-point truncating stores. 331 // - i1 extending loads. 332 // - truncating SIMD stores and most extending loads 333 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 334 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 335 for (auto T : MVT::integer_valuetypes()) 336 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 337 setLoadExtAction(Ext, T, MVT::i1, Promote); 338 if (Subtarget->hasSIMD128()) { 339 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 340 MVT::v2f64}) { 341 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 342 if (MVT(T) != MemT) { 343 setTruncStoreAction(T, MemT, Expand); 344 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 345 setLoadExtAction(Ext, T, MemT, Expand); 346 } 347 } 348 } 349 // But some vector extending loads are legal 350 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 351 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 352 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 353 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 354 } 355 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 356 } 357 358 // Don't do anything clever with build_pairs 359 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 360 361 // Trap lowers to wasm unreachable 362 setOperationAction(ISD::TRAP, MVT::Other, Legal); 363 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 364 365 // Exception handling intrinsics 366 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 367 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 368 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 369 370 setMaxAtomicSizeInBitsSupported(64); 371 372 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 373 // consistent with the f64 and f128 names. 374 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 375 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 376 377 // Define the emscripten name for return address helper. 378 // TODO: when implementing other Wasm backends, make this generic or only do 379 // this on emscripten depending on what they end up doing. 380 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 381 382 // Always convert switches to br_tables unless there is only one case, which 383 // is equivalent to a simple branch. This reduces code size for wasm, and we 384 // defer possible jump table optimizations to the VM. 385 setMinimumJumpTableEntries(2); 386 } 387 388 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 389 uint32_t AS) const { 390 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 391 return MVT::externref; 392 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 393 return MVT::funcref; 394 return TargetLowering::getPointerTy(DL, AS); 395 } 396 397 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 398 uint32_t AS) const { 399 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 400 return MVT::externref; 401 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 402 return MVT::funcref; 403 return TargetLowering::getPointerMemTy(DL, AS); 404 } 405 406 TargetLowering::AtomicExpansionKind 407 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 408 // We have wasm instructions for these 409 switch (AI->getOperation()) { 410 case AtomicRMWInst::Add: 411 case AtomicRMWInst::Sub: 412 case AtomicRMWInst::And: 413 case AtomicRMWInst::Or: 414 case AtomicRMWInst::Xor: 415 case AtomicRMWInst::Xchg: 416 return AtomicExpansionKind::None; 417 default: 418 break; 419 } 420 return AtomicExpansionKind::CmpXChg; 421 } 422 423 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 424 // Implementation copied from X86TargetLowering. 425 unsigned Opc = VecOp.getOpcode(); 426 427 // Assume target opcodes can't be scalarized. 428 // TODO - do we have any exceptions? 429 if (Opc >= ISD::BUILTIN_OP_END) 430 return false; 431 432 // If the vector op is not supported, try to convert to scalar. 433 EVT VecVT = VecOp.getValueType(); 434 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 435 return true; 436 437 // If the vector op is supported, but the scalar op is not, the transform may 438 // not be worthwhile. 439 EVT ScalarVT = VecVT.getScalarType(); 440 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 441 } 442 443 FastISel *WebAssemblyTargetLowering::createFastISel( 444 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 445 return WebAssembly::createFastISel(FuncInfo, LibInfo); 446 } 447 448 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 449 EVT VT) const { 450 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 451 if (BitWidth > 1 && BitWidth < 8) 452 BitWidth = 8; 453 454 if (BitWidth > 64) { 455 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 456 // the count to be an i32. 457 BitWidth = 32; 458 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 459 "32-bit shift counts ought to be enough for anyone"); 460 } 461 462 MVT Result = MVT::getIntegerVT(BitWidth); 463 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 464 "Unable to represent scalar shift amount type"); 465 return Result; 466 } 467 468 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 469 // undefined result on invalid/overflow, to the WebAssembly opcode, which 470 // traps on invalid/overflow. 471 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 472 MachineBasicBlock *BB, 473 const TargetInstrInfo &TII, 474 bool IsUnsigned, bool Int64, 475 bool Float64, unsigned LoweredOpcode) { 476 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 477 478 Register OutReg = MI.getOperand(0).getReg(); 479 Register InReg = MI.getOperand(1).getReg(); 480 481 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 482 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 483 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 484 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 485 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 486 unsigned Eqz = WebAssembly::EQZ_I32; 487 unsigned And = WebAssembly::AND_I32; 488 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 489 int64_t Substitute = IsUnsigned ? 0 : Limit; 490 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 491 auto &Context = BB->getParent()->getFunction().getContext(); 492 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 493 494 const BasicBlock *LLVMBB = BB->getBasicBlock(); 495 MachineFunction *F = BB->getParent(); 496 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 497 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 498 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 499 500 MachineFunction::iterator It = ++BB->getIterator(); 501 F->insert(It, FalseMBB); 502 F->insert(It, TrueMBB); 503 F->insert(It, DoneMBB); 504 505 // Transfer the remainder of BB and its successor edges to DoneMBB. 506 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 507 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 508 509 BB->addSuccessor(TrueMBB); 510 BB->addSuccessor(FalseMBB); 511 TrueMBB->addSuccessor(DoneMBB); 512 FalseMBB->addSuccessor(DoneMBB); 513 514 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 515 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 516 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 517 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 518 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 519 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 520 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 521 522 MI.eraseFromParent(); 523 // For signed numbers, we can do a single comparison to determine whether 524 // fabs(x) is within range. 525 if (IsUnsigned) { 526 Tmp0 = InReg; 527 } else { 528 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 529 } 530 BuildMI(BB, DL, TII.get(FConst), Tmp1) 531 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 532 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 533 534 // For unsigned numbers, we have to do a separate comparison with zero. 535 if (IsUnsigned) { 536 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 537 Register SecondCmpReg = 538 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 539 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 540 BuildMI(BB, DL, TII.get(FConst), Tmp1) 541 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 542 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 543 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 544 CmpReg = AndReg; 545 } 546 547 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 548 549 // Create the CFG diamond to select between doing the conversion or using 550 // the substitute value. 551 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 552 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 553 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 554 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 555 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 556 .addReg(FalseReg) 557 .addMBB(FalseMBB) 558 .addReg(TrueReg) 559 .addMBB(TrueMBB); 560 561 return DoneMBB; 562 } 563 564 static MachineBasicBlock * 565 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 566 const WebAssemblySubtarget *Subtarget, 567 const TargetInstrInfo &TII) { 568 MachineInstr &CallParams = *CallResults.getPrevNode(); 569 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 570 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 571 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 572 573 bool IsIndirect = 574 CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI(); 575 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 576 577 bool IsFuncrefCall = false; 578 if (IsIndirect && CallParams.getOperand(0).isReg()) { 579 Register Reg = CallParams.getOperand(0).getReg(); 580 const MachineFunction *MF = BB->getParent(); 581 const MachineRegisterInfo &MRI = MF->getRegInfo(); 582 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 583 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 584 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 585 } 586 587 unsigned CallOp; 588 if (IsIndirect && IsRetCall) { 589 CallOp = WebAssembly::RET_CALL_INDIRECT; 590 } else if (IsIndirect) { 591 CallOp = WebAssembly::CALL_INDIRECT; 592 } else if (IsRetCall) { 593 CallOp = WebAssembly::RET_CALL; 594 } else { 595 CallOp = WebAssembly::CALL; 596 } 597 598 MachineFunction &MF = *BB->getParent(); 599 const MCInstrDesc &MCID = TII.get(CallOp); 600 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 601 602 // Move the function pointer to the end of the arguments for indirect calls 603 if (IsIndirect) { 604 auto FnPtr = CallParams.getOperand(0); 605 CallParams.removeOperand(0); 606 607 // For funcrefs, call_indirect is done through __funcref_call_table and the 608 // funcref is always installed in slot 0 of the table, therefore instead of 609 // having the function pointer added at the end of the params list, a zero 610 // (the index in 611 // __funcref_call_table is added). 612 if (IsFuncrefCall) { 613 Register RegZero = 614 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 615 MachineInstrBuilder MIBC0 = 616 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 617 618 BB->insert(CallResults.getIterator(), MIBC0); 619 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 620 } else 621 CallParams.addOperand(FnPtr); 622 } 623 624 for (auto Def : CallResults.defs()) 625 MIB.add(Def); 626 627 if (IsIndirect) { 628 // Placeholder for the type index. 629 MIB.addImm(0); 630 // The table into which this call_indirect indexes. 631 MCSymbolWasm *Table = IsFuncrefCall 632 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 633 MF.getContext(), Subtarget) 634 : WebAssembly::getOrCreateFunctionTableSymbol( 635 MF.getContext(), Subtarget); 636 if (Subtarget->hasReferenceTypes()) { 637 MIB.addSym(Table); 638 } else { 639 // For the MVP there is at most one table whose number is 0, but we can't 640 // write a table symbol or issue relocations. Instead we just ensure the 641 // table is live and write a zero. 642 Table->setNoStrip(); 643 MIB.addImm(0); 644 } 645 } 646 647 for (auto Use : CallParams.uses()) 648 MIB.add(Use); 649 650 BB->insert(CallResults.getIterator(), MIB); 651 CallParams.eraseFromParent(); 652 CallResults.eraseFromParent(); 653 654 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 655 // table slot with ref.null upon call_indirect return. 656 // 657 // This generates the following code, which comes right after a call_indirect 658 // of a funcref: 659 // 660 // i32.const 0 661 // ref.null func 662 // table.set __funcref_call_table 663 if (IsIndirect && IsFuncrefCall) { 664 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 665 MF.getContext(), Subtarget); 666 Register RegZero = 667 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 668 MachineInstr *Const0 = 669 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 670 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 671 672 Register RegFuncref = 673 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 674 MachineInstr *RefNull = 675 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 676 BB->insertAfter(Const0->getIterator(), RefNull); 677 678 MachineInstr *TableSet = 679 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 680 .addSym(Table) 681 .addReg(RegZero) 682 .addReg(RegFuncref); 683 BB->insertAfter(RefNull->getIterator(), TableSet); 684 } 685 686 return BB; 687 } 688 689 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 690 MachineInstr &MI, MachineBasicBlock *BB) const { 691 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 692 DebugLoc DL = MI.getDebugLoc(); 693 694 switch (MI.getOpcode()) { 695 default: 696 llvm_unreachable("Unexpected instr type to insert"); 697 case WebAssembly::FP_TO_SINT_I32_F32: 698 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 699 WebAssembly::I32_TRUNC_S_F32); 700 case WebAssembly::FP_TO_UINT_I32_F32: 701 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 702 WebAssembly::I32_TRUNC_U_F32); 703 case WebAssembly::FP_TO_SINT_I64_F32: 704 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 705 WebAssembly::I64_TRUNC_S_F32); 706 case WebAssembly::FP_TO_UINT_I64_F32: 707 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 708 WebAssembly::I64_TRUNC_U_F32); 709 case WebAssembly::FP_TO_SINT_I32_F64: 710 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 711 WebAssembly::I32_TRUNC_S_F64); 712 case WebAssembly::FP_TO_UINT_I32_F64: 713 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 714 WebAssembly::I32_TRUNC_U_F64); 715 case WebAssembly::FP_TO_SINT_I64_F64: 716 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 717 WebAssembly::I64_TRUNC_S_F64); 718 case WebAssembly::FP_TO_UINT_I64_F64: 719 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 720 WebAssembly::I64_TRUNC_U_F64); 721 case WebAssembly::CALL_RESULTS: 722 case WebAssembly::RET_CALL_RESULTS: 723 return LowerCallResults(MI, DL, BB, Subtarget, TII); 724 } 725 } 726 727 const char * 728 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 729 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 730 case WebAssemblyISD::FIRST_NUMBER: 731 case WebAssemblyISD::FIRST_MEM_OPCODE: 732 break; 733 #define HANDLE_NODETYPE(NODE) \ 734 case WebAssemblyISD::NODE: \ 735 return "WebAssemblyISD::" #NODE; 736 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 737 #include "WebAssemblyISD.def" 738 #undef HANDLE_MEM_NODETYPE 739 #undef HANDLE_NODETYPE 740 } 741 return nullptr; 742 } 743 744 std::pair<unsigned, const TargetRegisterClass *> 745 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 746 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 747 // First, see if this is a constraint that directly corresponds to a 748 // WebAssembly register class. 749 if (Constraint.size() == 1) { 750 switch (Constraint[0]) { 751 case 'r': 752 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 753 if (Subtarget->hasSIMD128() && VT.isVector()) { 754 if (VT.getSizeInBits() == 128) 755 return std::make_pair(0U, &WebAssembly::V128RegClass); 756 } 757 if (VT.isInteger() && !VT.isVector()) { 758 if (VT.getSizeInBits() <= 32) 759 return std::make_pair(0U, &WebAssembly::I32RegClass); 760 if (VT.getSizeInBits() <= 64) 761 return std::make_pair(0U, &WebAssembly::I64RegClass); 762 } 763 if (VT.isFloatingPoint() && !VT.isVector()) { 764 switch (VT.getSizeInBits()) { 765 case 32: 766 return std::make_pair(0U, &WebAssembly::F32RegClass); 767 case 64: 768 return std::make_pair(0U, &WebAssembly::F64RegClass); 769 default: 770 break; 771 } 772 } 773 break; 774 default: 775 break; 776 } 777 } 778 779 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 780 } 781 782 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 783 // Assume ctz is a relatively cheap operation. 784 return true; 785 } 786 787 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 788 // Assume clz is a relatively cheap operation. 789 return true; 790 } 791 792 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 793 const AddrMode &AM, 794 Type *Ty, unsigned AS, 795 Instruction *I) const { 796 // WebAssembly offsets are added as unsigned without wrapping. The 797 // isLegalAddressingMode gives us no way to determine if wrapping could be 798 // happening, so we approximate this by accepting only non-negative offsets. 799 if (AM.BaseOffs < 0) 800 return false; 801 802 // WebAssembly has no scale register operands. 803 if (AM.Scale != 0) 804 return false; 805 806 // Everything else is legal. 807 return true; 808 } 809 810 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 811 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 812 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { 813 // WebAssembly supports unaligned accesses, though it should be declared 814 // with the p2align attribute on loads and stores which do so, and there 815 // may be a performance impact. We tell LLVM they're "fast" because 816 // for the kinds of things that LLVM uses this for (merging adjacent stores 817 // of constants, etc.), WebAssembly implementations will either want the 818 // unaligned access or they'll split anyway. 819 if (Fast) 820 *Fast = 1; 821 return true; 822 } 823 824 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 825 AttributeList Attr) const { 826 // The current thinking is that wasm engines will perform this optimization, 827 // so we can save on code size. 828 return true; 829 } 830 831 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 832 EVT ExtT = ExtVal.getValueType(); 833 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 834 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 835 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 836 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 837 } 838 839 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 840 const GlobalAddressSDNode *GA) const { 841 // Wasm doesn't support function addresses with offsets 842 const GlobalValue *GV = GA->getGlobal(); 843 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 844 } 845 846 bool WebAssemblyTargetLowering::shouldSinkOperands( 847 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 848 using namespace llvm::PatternMatch; 849 850 if (!I->getType()->isVectorTy() || !I->isShift()) 851 return false; 852 853 Value *V = I->getOperand(1); 854 // We dont need to sink constant splat. 855 if (dyn_cast<Constant>(V)) 856 return false; 857 858 if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()), 859 m_Value(), m_ZeroMask()))) { 860 // Sink insert 861 Ops.push_back(&cast<Instruction>(V)->getOperandUse(0)); 862 // Sink shuffle 863 Ops.push_back(&I->getOperandUse(1)); 864 return true; 865 } 866 867 return false; 868 } 869 870 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 871 LLVMContext &C, 872 EVT VT) const { 873 if (VT.isVector()) 874 return VT.changeVectorElementTypeToInteger(); 875 876 // So far, all branch instructions in Wasm take an I32 condition. 877 // The default TargetLowering::getSetCCResultType returns the pointer size, 878 // which would be useful to reduce instruction counts when testing 879 // against 64-bit pointers/values if at some point Wasm supports that. 880 return EVT::getIntegerVT(C, 32); 881 } 882 883 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 884 const CallInst &I, 885 MachineFunction &MF, 886 unsigned Intrinsic) const { 887 switch (Intrinsic) { 888 case Intrinsic::wasm_memory_atomic_notify: 889 Info.opc = ISD::INTRINSIC_W_CHAIN; 890 Info.memVT = MVT::i32; 891 Info.ptrVal = I.getArgOperand(0); 892 Info.offset = 0; 893 Info.align = Align(4); 894 // atomic.notify instruction does not really load the memory specified with 895 // this argument, but MachineMemOperand should either be load or store, so 896 // we set this to a load. 897 // FIXME Volatile isn't really correct, but currently all LLVM atomic 898 // instructions are treated as volatiles in the backend, so we should be 899 // consistent. The same applies for wasm_atomic_wait intrinsics too. 900 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 901 return true; 902 case Intrinsic::wasm_memory_atomic_wait32: 903 Info.opc = ISD::INTRINSIC_W_CHAIN; 904 Info.memVT = MVT::i32; 905 Info.ptrVal = I.getArgOperand(0); 906 Info.offset = 0; 907 Info.align = Align(4); 908 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 909 return true; 910 case Intrinsic::wasm_memory_atomic_wait64: 911 Info.opc = ISD::INTRINSIC_W_CHAIN; 912 Info.memVT = MVT::i64; 913 Info.ptrVal = I.getArgOperand(0); 914 Info.offset = 0; 915 Info.align = Align(8); 916 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 917 return true; 918 case Intrinsic::wasm_loadf16_f32: 919 Info.opc = ISD::INTRINSIC_W_CHAIN; 920 Info.memVT = MVT::f16; 921 Info.ptrVal = I.getArgOperand(0); 922 Info.offset = 0; 923 Info.align = Align(2); 924 Info.flags = MachineMemOperand::MOLoad; 925 return true; 926 case Intrinsic::wasm_storef16_f32: 927 Info.opc = ISD::INTRINSIC_VOID; 928 Info.memVT = MVT::f16; 929 Info.ptrVal = I.getArgOperand(1); 930 Info.offset = 0; 931 Info.align = Align(2); 932 Info.flags = MachineMemOperand::MOStore; 933 return true; 934 default: 935 return false; 936 } 937 } 938 939 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 940 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 941 const SelectionDAG &DAG, unsigned Depth) const { 942 switch (Op.getOpcode()) { 943 default: 944 break; 945 case ISD::INTRINSIC_WO_CHAIN: { 946 unsigned IntNo = Op.getConstantOperandVal(0); 947 switch (IntNo) { 948 default: 949 break; 950 case Intrinsic::wasm_bitmask: { 951 unsigned BitWidth = Known.getBitWidth(); 952 EVT VT = Op.getOperand(1).getSimpleValueType(); 953 unsigned PossibleBits = VT.getVectorNumElements(); 954 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 955 Known.Zero |= ZeroMask; 956 break; 957 } 958 } 959 } 960 } 961 } 962 963 TargetLoweringBase::LegalizeTypeAction 964 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 965 if (VT.isFixedLengthVector()) { 966 MVT EltVT = VT.getVectorElementType(); 967 // We have legal vector types with these lane types, so widening the 968 // vector would let us use some of the lanes directly without having to 969 // extend or truncate values. 970 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 971 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 972 return TypeWidenVector; 973 } 974 975 return TargetLoweringBase::getPreferredVectorAction(VT); 976 } 977 978 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 979 SDValue Op, const TargetLoweringOpt &TLO) const { 980 // ISel process runs DAGCombiner after legalization; this step is called 981 // SelectionDAG optimization phase. This post-legalization combining process 982 // runs DAGCombiner on each node, and if there was a change to be made, 983 // re-runs legalization again on it and its user nodes to make sure 984 // everythiing is in a legalized state. 985 // 986 // The legalization calls lowering routines, and we do our custom lowering for 987 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 988 // into zeros. But there is a set of routines in DAGCombiner that turns unused 989 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 990 // turns unused vector elements into undefs. But this routine does not work 991 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 992 // combination can result in a infinite loop, in which undefs are converted to 993 // zeros in legalization and back to undefs in combining. 994 // 995 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 996 // running for build_vectors. 997 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 998 return false; 999 return true; 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // WebAssembly Lowering private implementation. 1004 //===----------------------------------------------------------------------===// 1005 1006 //===----------------------------------------------------------------------===// 1007 // Lowering Code 1008 //===----------------------------------------------------------------------===// 1009 1010 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 1011 MachineFunction &MF = DAG.getMachineFunction(); 1012 DAG.getContext()->diagnose( 1013 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 1014 } 1015 1016 // Test whether the given calling convention is supported. 1017 static bool callingConvSupported(CallingConv::ID CallConv) { 1018 // We currently support the language-independent target-independent 1019 // conventions. We don't yet have a way to annotate calls with properties like 1020 // "cold", and we don't have any call-clobbered registers, so these are mostly 1021 // all handled the same. 1022 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 1023 CallConv == CallingConv::Cold || 1024 CallConv == CallingConv::PreserveMost || 1025 CallConv == CallingConv::PreserveAll || 1026 CallConv == CallingConv::CXX_FAST_TLS || 1027 CallConv == CallingConv::WASM_EmscriptenInvoke || 1028 CallConv == CallingConv::Swift; 1029 } 1030 1031 SDValue 1032 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 1033 SmallVectorImpl<SDValue> &InVals) const { 1034 SelectionDAG &DAG = CLI.DAG; 1035 SDLoc DL = CLI.DL; 1036 SDValue Chain = CLI.Chain; 1037 SDValue Callee = CLI.Callee; 1038 MachineFunction &MF = DAG.getMachineFunction(); 1039 auto Layout = MF.getDataLayout(); 1040 1041 CallingConv::ID CallConv = CLI.CallConv; 1042 if (!callingConvSupported(CallConv)) 1043 fail(DL, DAG, 1044 "WebAssembly doesn't support language-specific or target-specific " 1045 "calling conventions yet"); 1046 if (CLI.IsPatchPoint) 1047 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 1048 1049 if (CLI.IsTailCall) { 1050 auto NoTail = [&](const char *Msg) { 1051 if (CLI.CB && CLI.CB->isMustTailCall()) 1052 fail(DL, DAG, Msg); 1053 CLI.IsTailCall = false; 1054 }; 1055 1056 if (!Subtarget->hasTailCall()) 1057 NoTail("WebAssembly 'tail-call' feature not enabled"); 1058 1059 // Varargs calls cannot be tail calls because the buffer is on the stack 1060 if (CLI.IsVarArg) 1061 NoTail("WebAssembly does not support varargs tail calls"); 1062 1063 // Do not tail call unless caller and callee return types match 1064 const Function &F = MF.getFunction(); 1065 const TargetMachine &TM = getTargetMachine(); 1066 Type *RetTy = F.getReturnType(); 1067 SmallVector<MVT, 4> CallerRetTys; 1068 SmallVector<MVT, 4> CalleeRetTys; 1069 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1070 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1071 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1072 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1073 CalleeRetTys.begin()); 1074 if (!TypesMatch) 1075 NoTail("WebAssembly tail call requires caller and callee return types to " 1076 "match"); 1077 1078 // If pointers to local stack values are passed, we cannot tail call 1079 if (CLI.CB) { 1080 for (auto &Arg : CLI.CB->args()) { 1081 Value *Val = Arg.get(); 1082 // Trace the value back through pointer operations 1083 while (true) { 1084 Value *Src = Val->stripPointerCastsAndAliases(); 1085 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1086 Src = GEP->getPointerOperand(); 1087 if (Val == Src) 1088 break; 1089 Val = Src; 1090 } 1091 if (isa<AllocaInst>(Val)) { 1092 NoTail( 1093 "WebAssembly does not support tail calling with stack arguments"); 1094 break; 1095 } 1096 } 1097 } 1098 } 1099 1100 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1101 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1102 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1103 1104 // The generic code may have added an sret argument. If we're lowering an 1105 // invoke function, the ABI requires that the function pointer be the first 1106 // argument, so we may have to swap the arguments. 1107 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1108 Outs[0].Flags.isSRet()) { 1109 std::swap(Outs[0], Outs[1]); 1110 std::swap(OutVals[0], OutVals[1]); 1111 } 1112 1113 bool HasSwiftSelfArg = false; 1114 bool HasSwiftErrorArg = false; 1115 unsigned NumFixedArgs = 0; 1116 for (unsigned I = 0; I < Outs.size(); ++I) { 1117 const ISD::OutputArg &Out = Outs[I]; 1118 SDValue &OutVal = OutVals[I]; 1119 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1120 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1121 if (Out.Flags.isNest()) 1122 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1123 if (Out.Flags.isInAlloca()) 1124 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1125 if (Out.Flags.isInConsecutiveRegs()) 1126 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1127 if (Out.Flags.isInConsecutiveRegsLast()) 1128 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1129 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1130 auto &MFI = MF.getFrameInfo(); 1131 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1132 Out.Flags.getNonZeroByValAlign(), 1133 /*isSS=*/false); 1134 SDValue SizeNode = 1135 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1136 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1137 Chain = DAG.getMemcpy(Chain, DL, FINode, OutVal, SizeNode, 1138 Out.Flags.getNonZeroByValAlign(), 1139 /*isVolatile*/ false, /*AlwaysInline=*/false, 1140 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), 1141 MachinePointerInfo()); 1142 OutVal = FINode; 1143 } 1144 // Count the number of fixed args *after* legalization. 1145 NumFixedArgs += Out.IsFixed; 1146 } 1147 1148 bool IsVarArg = CLI.IsVarArg; 1149 auto PtrVT = getPointerTy(Layout); 1150 1151 // For swiftcc, emit additional swiftself and swifterror arguments 1152 // if there aren't. These additional arguments are also added for callee 1153 // signature They are necessary to match callee and caller signature for 1154 // indirect call. 1155 if (CallConv == CallingConv::Swift) { 1156 if (!HasSwiftSelfArg) { 1157 NumFixedArgs++; 1158 ISD::OutputArg Arg; 1159 Arg.Flags.setSwiftSelf(); 1160 CLI.Outs.push_back(Arg); 1161 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1162 CLI.OutVals.push_back(ArgVal); 1163 } 1164 if (!HasSwiftErrorArg) { 1165 NumFixedArgs++; 1166 ISD::OutputArg Arg; 1167 Arg.Flags.setSwiftError(); 1168 CLI.Outs.push_back(Arg); 1169 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1170 CLI.OutVals.push_back(ArgVal); 1171 } 1172 } 1173 1174 // Analyze operands of the call, assigning locations to each operand. 1175 SmallVector<CCValAssign, 16> ArgLocs; 1176 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1177 1178 if (IsVarArg) { 1179 // Outgoing non-fixed arguments are placed in a buffer. First 1180 // compute their offsets and the total amount of buffer space needed. 1181 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1182 const ISD::OutputArg &Out = Outs[I]; 1183 SDValue &Arg = OutVals[I]; 1184 EVT VT = Arg.getValueType(); 1185 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1186 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1187 Align Alignment = 1188 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1189 unsigned Offset = 1190 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1191 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1192 Offset, VT.getSimpleVT(), 1193 CCValAssign::Full)); 1194 } 1195 } 1196 1197 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1198 1199 SDValue FINode; 1200 if (IsVarArg && NumBytes) { 1201 // For non-fixed arguments, next emit stores to store the argument values 1202 // to the stack buffer at the offsets computed above. 1203 MaybeAlign StackAlign = Layout.getStackAlignment(); 1204 assert(StackAlign && "data layout string is missing stack alignment"); 1205 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, *StackAlign, 1206 /*isSS=*/false); 1207 unsigned ValNo = 0; 1208 SmallVector<SDValue, 8> Chains; 1209 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1210 assert(ArgLocs[ValNo].getValNo() == ValNo && 1211 "ArgLocs should remain in order and only hold varargs args"); 1212 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1213 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1214 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1215 DAG.getConstant(Offset, DL, PtrVT)); 1216 Chains.push_back( 1217 DAG.getStore(Chain, DL, Arg, Add, 1218 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1219 } 1220 if (!Chains.empty()) 1221 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1222 } else if (IsVarArg) { 1223 FINode = DAG.getIntPtrConstant(0, DL); 1224 } 1225 1226 if (Callee->getOpcode() == ISD::GlobalAddress) { 1227 // If the callee is a GlobalAddress node (quite common, every direct call 1228 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1229 // doesn't at MO_GOT which is not needed for direct calls. 1230 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1231 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1232 getPointerTy(DAG.getDataLayout()), 1233 GA->getOffset()); 1234 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1235 getPointerTy(DAG.getDataLayout()), Callee); 1236 } 1237 1238 // Compute the operands for the CALLn node. 1239 SmallVector<SDValue, 16> Ops; 1240 Ops.push_back(Chain); 1241 Ops.push_back(Callee); 1242 1243 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1244 // isn't reliable. 1245 Ops.append(OutVals.begin(), 1246 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1247 // Add a pointer to the vararg buffer. 1248 if (IsVarArg) 1249 Ops.push_back(FINode); 1250 1251 SmallVector<EVT, 8> InTys; 1252 for (const auto &In : Ins) { 1253 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1254 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1255 if (In.Flags.isInAlloca()) 1256 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1257 if (In.Flags.isInConsecutiveRegs()) 1258 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1259 if (In.Flags.isInConsecutiveRegsLast()) 1260 fail(DL, DAG, 1261 "WebAssembly hasn't implemented cons regs last return values"); 1262 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1263 // registers. 1264 InTys.push_back(In.VT); 1265 } 1266 1267 // Lastly, if this is a call to a funcref we need to add an instruction 1268 // table.set to the chain and transform the call. 1269 if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType( 1270 CLI.CB->getCalledOperand()->getType())) { 1271 // In the absence of function references proposal where a funcref call is 1272 // lowered to call_ref, using reference types we generate a table.set to set 1273 // the funcref to a special table used solely for this purpose, followed by 1274 // a call_indirect. Here we just generate the table set, and return the 1275 // SDValue of the table.set so that LowerCall can finalize the lowering by 1276 // generating the call_indirect. 1277 SDValue Chain = Ops[0]; 1278 1279 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1280 MF.getContext(), Subtarget); 1281 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1282 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1283 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1284 SDValue TableSet = DAG.getMemIntrinsicNode( 1285 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1286 MVT::funcref, 1287 // Machine Mem Operand args 1288 MachinePointerInfo( 1289 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1290 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1291 MachineMemOperand::MOStore); 1292 1293 Ops[0] = TableSet; // The new chain is the TableSet itself 1294 } 1295 1296 if (CLI.IsTailCall) { 1297 // ret_calls do not return values to the current frame 1298 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1299 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1300 } 1301 1302 InTys.push_back(MVT::Other); 1303 SDVTList InTyList = DAG.getVTList(InTys); 1304 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1305 1306 for (size_t I = 0; I < Ins.size(); ++I) 1307 InVals.push_back(Res.getValue(I)); 1308 1309 // Return the chain 1310 return Res.getValue(Ins.size()); 1311 } 1312 1313 bool WebAssemblyTargetLowering::CanLowerReturn( 1314 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1315 const SmallVectorImpl<ISD::OutputArg> &Outs, 1316 LLVMContext & /*Context*/) const { 1317 // WebAssembly can only handle returning tuples with multivalue enabled 1318 return WebAssembly::canLowerReturn(Outs.size(), Subtarget); 1319 } 1320 1321 SDValue WebAssemblyTargetLowering::LowerReturn( 1322 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1323 const SmallVectorImpl<ISD::OutputArg> &Outs, 1324 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1325 SelectionDAG &DAG) const { 1326 assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) && 1327 "MVP WebAssembly can only return up to one value"); 1328 if (!callingConvSupported(CallConv)) 1329 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1330 1331 SmallVector<SDValue, 4> RetOps(1, Chain); 1332 RetOps.append(OutVals.begin(), OutVals.end()); 1333 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1334 1335 // Record the number and types of the return values. 1336 for (const ISD::OutputArg &Out : Outs) { 1337 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1338 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1339 assert(Out.IsFixed && "non-fixed return value is not valid"); 1340 if (Out.Flags.isInAlloca()) 1341 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1342 if (Out.Flags.isInConsecutiveRegs()) 1343 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1344 if (Out.Flags.isInConsecutiveRegsLast()) 1345 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1346 } 1347 1348 return Chain; 1349 } 1350 1351 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1352 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1353 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1354 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1355 if (!callingConvSupported(CallConv)) 1356 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1357 1358 MachineFunction &MF = DAG.getMachineFunction(); 1359 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1360 1361 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1362 // of the incoming values before they're represented by virtual registers. 1363 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1364 1365 bool HasSwiftErrorArg = false; 1366 bool HasSwiftSelfArg = false; 1367 for (const ISD::InputArg &In : Ins) { 1368 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1369 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1370 if (In.Flags.isInAlloca()) 1371 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1372 if (In.Flags.isNest()) 1373 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1374 if (In.Flags.isInConsecutiveRegs()) 1375 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1376 if (In.Flags.isInConsecutiveRegsLast()) 1377 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1378 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1379 // registers. 1380 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1381 DAG.getTargetConstant(InVals.size(), 1382 DL, MVT::i32)) 1383 : DAG.getUNDEF(In.VT)); 1384 1385 // Record the number and types of arguments. 1386 MFI->addParam(In.VT); 1387 } 1388 1389 // For swiftcc, emit additional swiftself and swifterror arguments 1390 // if there aren't. These additional arguments are also added for callee 1391 // signature They are necessary to match callee and caller signature for 1392 // indirect call. 1393 auto PtrVT = getPointerTy(MF.getDataLayout()); 1394 if (CallConv == CallingConv::Swift) { 1395 if (!HasSwiftSelfArg) { 1396 MFI->addParam(PtrVT); 1397 } 1398 if (!HasSwiftErrorArg) { 1399 MFI->addParam(PtrVT); 1400 } 1401 } 1402 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1403 // the buffer is passed as an argument. 1404 if (IsVarArg) { 1405 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1406 Register VarargVreg = 1407 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1408 MFI->setVarargBufferVreg(VarargVreg); 1409 Chain = DAG.getCopyToReg( 1410 Chain, DL, VarargVreg, 1411 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1412 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1413 MFI->addParam(PtrVT); 1414 } 1415 1416 // Record the number and types of arguments and results. 1417 SmallVector<MVT, 4> Params; 1418 SmallVector<MVT, 4> Results; 1419 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1420 MF.getFunction(), DAG.getTarget(), Params, Results); 1421 for (MVT VT : Results) 1422 MFI->addResult(VT); 1423 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1424 // the param logic here with ComputeSignatureVTs 1425 assert(MFI->getParams().size() == Params.size() && 1426 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1427 Params.begin())); 1428 1429 return Chain; 1430 } 1431 1432 void WebAssemblyTargetLowering::ReplaceNodeResults( 1433 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1434 switch (N->getOpcode()) { 1435 case ISD::SIGN_EXTEND_INREG: 1436 // Do not add any results, signifying that N should not be custom lowered 1437 // after all. This happens because simd128 turns on custom lowering for 1438 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1439 // illegal type. 1440 break; 1441 case ISD::SIGN_EXTEND_VECTOR_INREG: 1442 case ISD::ZERO_EXTEND_VECTOR_INREG: 1443 // Do not add any results, signifying that N should not be custom lowered. 1444 // EXTEND_VECTOR_INREG is implemented for some vectors, but not all. 1445 break; 1446 default: 1447 llvm_unreachable( 1448 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1449 } 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // Custom lowering hooks. 1454 //===----------------------------------------------------------------------===// 1455 1456 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1457 SelectionDAG &DAG) const { 1458 SDLoc DL(Op); 1459 switch (Op.getOpcode()) { 1460 default: 1461 llvm_unreachable("unimplemented operation lowering"); 1462 return SDValue(); 1463 case ISD::FrameIndex: 1464 return LowerFrameIndex(Op, DAG); 1465 case ISD::GlobalAddress: 1466 return LowerGlobalAddress(Op, DAG); 1467 case ISD::GlobalTLSAddress: 1468 return LowerGlobalTLSAddress(Op, DAG); 1469 case ISD::ExternalSymbol: 1470 return LowerExternalSymbol(Op, DAG); 1471 case ISD::JumpTable: 1472 return LowerJumpTable(Op, DAG); 1473 case ISD::BR_JT: 1474 return LowerBR_JT(Op, DAG); 1475 case ISD::VASTART: 1476 return LowerVASTART(Op, DAG); 1477 case ISD::BlockAddress: 1478 case ISD::BRIND: 1479 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1480 return SDValue(); 1481 case ISD::RETURNADDR: 1482 return LowerRETURNADDR(Op, DAG); 1483 case ISD::FRAMEADDR: 1484 return LowerFRAMEADDR(Op, DAG); 1485 case ISD::CopyToReg: 1486 return LowerCopyToReg(Op, DAG); 1487 case ISD::EXTRACT_VECTOR_ELT: 1488 case ISD::INSERT_VECTOR_ELT: 1489 return LowerAccessVectorElement(Op, DAG); 1490 case ISD::INTRINSIC_VOID: 1491 case ISD::INTRINSIC_WO_CHAIN: 1492 case ISD::INTRINSIC_W_CHAIN: 1493 return LowerIntrinsic(Op, DAG); 1494 case ISD::SIGN_EXTEND_INREG: 1495 return LowerSIGN_EXTEND_INREG(Op, DAG); 1496 case ISD::ZERO_EXTEND_VECTOR_INREG: 1497 case ISD::SIGN_EXTEND_VECTOR_INREG: 1498 return LowerEXTEND_VECTOR_INREG(Op, DAG); 1499 case ISD::BUILD_VECTOR: 1500 return LowerBUILD_VECTOR(Op, DAG); 1501 case ISD::VECTOR_SHUFFLE: 1502 return LowerVECTOR_SHUFFLE(Op, DAG); 1503 case ISD::SETCC: 1504 return LowerSETCC(Op, DAG); 1505 case ISD::SHL: 1506 case ISD::SRA: 1507 case ISD::SRL: 1508 return LowerShift(Op, DAG); 1509 case ISD::FP_TO_SINT_SAT: 1510 case ISD::FP_TO_UINT_SAT: 1511 return LowerFP_TO_INT_SAT(Op, DAG); 1512 case ISD::LOAD: 1513 return LowerLoad(Op, DAG); 1514 case ISD::STORE: 1515 return LowerStore(Op, DAG); 1516 case ISD::CTPOP: 1517 case ISD::CTLZ: 1518 case ISD::CTTZ: 1519 return DAG.UnrollVectorOp(Op.getNode()); 1520 case ISD::CLEAR_CACHE: 1521 report_fatal_error("llvm.clear_cache is not supported on wasm"); 1522 } 1523 } 1524 1525 static bool IsWebAssemblyGlobal(SDValue Op) { 1526 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1527 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1528 1529 return false; 1530 } 1531 1532 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op, 1533 SelectionDAG &DAG) { 1534 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1535 if (!FI) 1536 return std::nullopt; 1537 1538 auto &MF = DAG.getMachineFunction(); 1539 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1540 } 1541 1542 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1543 SelectionDAG &DAG) const { 1544 SDLoc DL(Op); 1545 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1546 const SDValue &Value = SN->getValue(); 1547 const SDValue &Base = SN->getBasePtr(); 1548 const SDValue &Offset = SN->getOffset(); 1549 1550 if (IsWebAssemblyGlobal(Base)) { 1551 if (!Offset->isUndef()) 1552 report_fatal_error("unexpected offset when storing to webassembly global", 1553 false); 1554 1555 SDVTList Tys = DAG.getVTList(MVT::Other); 1556 SDValue Ops[] = {SN->getChain(), Value, Base}; 1557 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1558 SN->getMemoryVT(), SN->getMemOperand()); 1559 } 1560 1561 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1562 if (!Offset->isUndef()) 1563 report_fatal_error("unexpected offset when storing to webassembly local", 1564 false); 1565 1566 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1567 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1568 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1569 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1570 } 1571 1572 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) 1573 report_fatal_error( 1574 "Encountered an unlowerable store to the wasm_var address space", 1575 false); 1576 1577 return Op; 1578 } 1579 1580 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1581 SelectionDAG &DAG) const { 1582 SDLoc DL(Op); 1583 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1584 const SDValue &Base = LN->getBasePtr(); 1585 const SDValue &Offset = LN->getOffset(); 1586 1587 if (IsWebAssemblyGlobal(Base)) { 1588 if (!Offset->isUndef()) 1589 report_fatal_error( 1590 "unexpected offset when loading from webassembly global", false); 1591 1592 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1593 SDValue Ops[] = {LN->getChain(), Base}; 1594 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1595 LN->getMemoryVT(), LN->getMemOperand()); 1596 } 1597 1598 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1599 if (!Offset->isUndef()) 1600 report_fatal_error( 1601 "unexpected offset when loading from webassembly local", false); 1602 1603 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1604 EVT LocalVT = LN->getValueType(0); 1605 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1606 {LN->getChain(), Idx}); 1607 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1608 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1609 return Result; 1610 } 1611 1612 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) 1613 report_fatal_error( 1614 "Encountered an unlowerable load from the wasm_var address space", 1615 false); 1616 1617 return Op; 1618 } 1619 1620 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1621 SelectionDAG &DAG) const { 1622 SDValue Src = Op.getOperand(2); 1623 if (isa<FrameIndexSDNode>(Src.getNode())) { 1624 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1625 // the FI to some LEA-like instruction, but since we don't have that, we 1626 // need to insert some kind of instruction that can take an FI operand and 1627 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1628 // local.copy between Op and its FI operand. 1629 SDValue Chain = Op.getOperand(0); 1630 SDLoc DL(Op); 1631 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1632 EVT VT = Src.getValueType(); 1633 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1634 : WebAssembly::COPY_I64, 1635 DL, VT, Src), 1636 0); 1637 return Op.getNode()->getNumValues() == 1 1638 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1639 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1640 Op.getNumOperands() == 4 ? Op.getOperand(3) 1641 : SDValue()); 1642 } 1643 return SDValue(); 1644 } 1645 1646 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1647 SelectionDAG &DAG) const { 1648 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1649 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1650 } 1651 1652 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1653 SelectionDAG &DAG) const { 1654 SDLoc DL(Op); 1655 1656 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1657 fail(DL, DAG, 1658 "Non-Emscripten WebAssembly hasn't implemented " 1659 "__builtin_return_address"); 1660 return SDValue(); 1661 } 1662 1663 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1664 return SDValue(); 1665 1666 unsigned Depth = Op.getConstantOperandVal(0); 1667 MakeLibCallOptions CallOptions; 1668 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1669 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1670 .first; 1671 } 1672 1673 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1674 SelectionDAG &DAG) const { 1675 // Non-zero depths are not supported by WebAssembly currently. Use the 1676 // legalizer's default expansion, which is to return 0 (what this function is 1677 // documented to do). 1678 if (Op.getConstantOperandVal(0) > 0) 1679 return SDValue(); 1680 1681 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1682 EVT VT = Op.getValueType(); 1683 Register FP = 1684 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1685 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1686 } 1687 1688 SDValue 1689 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1690 SelectionDAG &DAG) const { 1691 SDLoc DL(Op); 1692 const auto *GA = cast<GlobalAddressSDNode>(Op); 1693 1694 MachineFunction &MF = DAG.getMachineFunction(); 1695 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1696 report_fatal_error("cannot use thread-local storage without bulk memory", 1697 false); 1698 1699 const GlobalValue *GV = GA->getGlobal(); 1700 1701 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1702 // on other targets, if we have thread-local storage, only the local-exec 1703 // model is possible. 1704 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1705 ? GV->getThreadLocalMode() 1706 : GlobalValue::LocalExecTLSModel; 1707 1708 // Unsupported TLS modes 1709 assert(model != GlobalValue::NotThreadLocal); 1710 assert(model != GlobalValue::InitialExecTLSModel); 1711 1712 if (model == GlobalValue::LocalExecTLSModel || 1713 model == GlobalValue::LocalDynamicTLSModel || 1714 (model == GlobalValue::GeneralDynamicTLSModel && 1715 getTargetMachine().shouldAssumeDSOLocal(GV))) { 1716 // For DSO-local TLS variables we use offset from __tls_base 1717 1718 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1719 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1720 : WebAssembly::GLOBAL_GET_I32; 1721 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1722 1723 SDValue BaseAddr( 1724 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1725 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1726 0); 1727 1728 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1729 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1730 SDValue SymOffset = 1731 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1732 1733 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1734 } 1735 1736 assert(model == GlobalValue::GeneralDynamicTLSModel); 1737 1738 EVT VT = Op.getValueType(); 1739 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1740 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1741 GA->getOffset(), 1742 WebAssemblyII::MO_GOT_TLS)); 1743 } 1744 1745 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1746 SelectionDAG &DAG) const { 1747 SDLoc DL(Op); 1748 const auto *GA = cast<GlobalAddressSDNode>(Op); 1749 EVT VT = Op.getValueType(); 1750 assert(GA->getTargetFlags() == 0 && 1751 "Unexpected target flags on generic GlobalAddressSDNode"); 1752 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1753 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1754 1755 unsigned OperandFlags = 0; 1756 const GlobalValue *GV = GA->getGlobal(); 1757 // Since WebAssembly tables cannot yet be shared accross modules, we don't 1758 // need special treatment for tables in PIC mode. 1759 if (isPositionIndependent() && 1760 !WebAssembly::isWebAssemblyTableType(GV->getValueType())) { 1761 if (getTargetMachine().shouldAssumeDSOLocal(GV)) { 1762 MachineFunction &MF = DAG.getMachineFunction(); 1763 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1764 const char *BaseName; 1765 if (GV->getValueType()->isFunctionTy()) { 1766 BaseName = MF.createExternalSymbolName("__table_base"); 1767 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1768 } else { 1769 BaseName = MF.createExternalSymbolName("__memory_base"); 1770 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1771 } 1772 SDValue BaseAddr = 1773 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1774 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1775 1776 SDValue SymAddr = DAG.getNode( 1777 WebAssemblyISD::WrapperREL, DL, VT, 1778 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1779 OperandFlags)); 1780 1781 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1782 } 1783 OperandFlags = WebAssemblyII::MO_GOT; 1784 } 1785 1786 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1787 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1788 GA->getOffset(), OperandFlags)); 1789 } 1790 1791 SDValue 1792 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1793 SelectionDAG &DAG) const { 1794 SDLoc DL(Op); 1795 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1796 EVT VT = Op.getValueType(); 1797 assert(ES->getTargetFlags() == 0 && 1798 "Unexpected target flags on generic ExternalSymbolSDNode"); 1799 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1800 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1801 } 1802 1803 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1804 SelectionDAG &DAG) const { 1805 // There's no need for a Wrapper node because we always incorporate a jump 1806 // table operand into a BR_TABLE instruction, rather than ever 1807 // materializing it in a register. 1808 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1809 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1810 JT->getTargetFlags()); 1811 } 1812 1813 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1814 SelectionDAG &DAG) const { 1815 SDLoc DL(Op); 1816 SDValue Chain = Op.getOperand(0); 1817 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1818 SDValue Index = Op.getOperand(2); 1819 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1820 1821 SmallVector<SDValue, 8> Ops; 1822 Ops.push_back(Chain); 1823 Ops.push_back(Index); 1824 1825 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1826 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1827 1828 // Add an operand for each case. 1829 for (auto *MBB : MBBs) 1830 Ops.push_back(DAG.getBasicBlock(MBB)); 1831 1832 // Add the first MBB as a dummy default target for now. This will be replaced 1833 // with the proper default target (and the preceding range check eliminated) 1834 // if possible by WebAssemblyFixBrTableDefaults. 1835 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1836 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1837 } 1838 1839 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1840 SelectionDAG &DAG) const { 1841 SDLoc DL(Op); 1842 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1843 1844 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1845 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1846 1847 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1848 MFI->getVarargBufferVreg(), PtrVT); 1849 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1850 MachinePointerInfo(SV)); 1851 } 1852 1853 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1854 SelectionDAG &DAG) const { 1855 MachineFunction &MF = DAG.getMachineFunction(); 1856 unsigned IntNo; 1857 switch (Op.getOpcode()) { 1858 case ISD::INTRINSIC_VOID: 1859 case ISD::INTRINSIC_W_CHAIN: 1860 IntNo = Op.getConstantOperandVal(1); 1861 break; 1862 case ISD::INTRINSIC_WO_CHAIN: 1863 IntNo = Op.getConstantOperandVal(0); 1864 break; 1865 default: 1866 llvm_unreachable("Invalid intrinsic"); 1867 } 1868 SDLoc DL(Op); 1869 1870 switch (IntNo) { 1871 default: 1872 return SDValue(); // Don't custom lower most intrinsics. 1873 1874 case Intrinsic::wasm_lsda: { 1875 auto PtrVT = getPointerTy(MF.getDataLayout()); 1876 const char *SymName = MF.createExternalSymbolName( 1877 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 1878 if (isPositionIndependent()) { 1879 SDValue Node = DAG.getTargetExternalSymbol( 1880 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 1881 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 1882 SDValue BaseAddr = 1883 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1884 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1885 SDValue SymAddr = 1886 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 1887 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1888 } 1889 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 1890 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 1891 } 1892 1893 case Intrinsic::wasm_shuffle: { 1894 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1895 SDValue Ops[18]; 1896 size_t OpIdx = 0; 1897 Ops[OpIdx++] = Op.getOperand(1); 1898 Ops[OpIdx++] = Op.getOperand(2); 1899 while (OpIdx < 18) { 1900 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1901 if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) { 1902 bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant; 1903 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget); 1904 } else { 1905 Ops[OpIdx++] = MaskIdx; 1906 } 1907 } 1908 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1909 } 1910 } 1911 } 1912 1913 SDValue 1914 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1915 SelectionDAG &DAG) const { 1916 SDLoc DL(Op); 1917 // If sign extension operations are disabled, allow sext_inreg only if operand 1918 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1919 // extension operations, but allowing sext_inreg in this context lets us have 1920 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1921 // everywhere would be simpler in this file, but would necessitate large and 1922 // brittle patterns to undo the expansion and select extract_lane_s 1923 // instructions. 1924 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1925 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1926 return SDValue(); 1927 1928 const SDValue &Extract = Op.getOperand(0); 1929 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1930 if (VecT.getVectorElementType().getSizeInBits() > 32) 1931 return SDValue(); 1932 MVT ExtractedLaneT = 1933 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1934 MVT ExtractedVecT = 1935 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1936 if (ExtractedVecT == VecT) 1937 return Op; 1938 1939 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1940 const SDNode *Index = Extract.getOperand(1).getNode(); 1941 if (!isa<ConstantSDNode>(Index)) 1942 return SDValue(); 1943 unsigned IndexVal = Index->getAsZExtVal(); 1944 unsigned Scale = 1945 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1946 assert(Scale > 1); 1947 SDValue NewIndex = 1948 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1949 SDValue NewExtract = DAG.getNode( 1950 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1951 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1952 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1953 Op.getOperand(1)); 1954 } 1955 1956 SDValue 1957 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op, 1958 SelectionDAG &DAG) const { 1959 SDLoc DL(Op); 1960 EVT VT = Op.getValueType(); 1961 SDValue Src = Op.getOperand(0); 1962 EVT SrcVT = Src.getValueType(); 1963 1964 if (SrcVT.getVectorElementType() == MVT::i1 || 1965 SrcVT.getVectorElementType() == MVT::i64) 1966 return SDValue(); 1967 1968 assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && 1969 "Unexpected extension factor."); 1970 unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); 1971 1972 if (Scale != 2 && Scale != 4 && Scale != 8) 1973 return SDValue(); 1974 1975 unsigned Ext; 1976 switch (Op.getOpcode()) { 1977 case ISD::ZERO_EXTEND_VECTOR_INREG: 1978 Ext = WebAssemblyISD::EXTEND_LOW_U; 1979 break; 1980 case ISD::SIGN_EXTEND_VECTOR_INREG: 1981 Ext = WebAssemblyISD::EXTEND_LOW_S; 1982 break; 1983 } 1984 1985 SDValue Ret = Src; 1986 while (Scale != 1) { 1987 Ret = DAG.getNode(Ext, DL, 1988 Ret.getValueType() 1989 .widenIntegerVectorElementType(*DAG.getContext()) 1990 .getHalfNumVectorElementsVT(*DAG.getContext()), 1991 Ret); 1992 Scale /= 2; 1993 } 1994 assert(Ret.getValueType() == VT); 1995 return Ret; 1996 } 1997 1998 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 1999 SDLoc DL(Op); 2000 if (Op.getValueType() != MVT::v2f64) 2001 return SDValue(); 2002 2003 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 2004 unsigned &Index) -> bool { 2005 switch (Op.getOpcode()) { 2006 case ISD::SINT_TO_FP: 2007 Opcode = WebAssemblyISD::CONVERT_LOW_S; 2008 break; 2009 case ISD::UINT_TO_FP: 2010 Opcode = WebAssemblyISD::CONVERT_LOW_U; 2011 break; 2012 case ISD::FP_EXTEND: 2013 Opcode = WebAssemblyISD::PROMOTE_LOW; 2014 break; 2015 default: 2016 return false; 2017 } 2018 2019 auto ExtractVector = Op.getOperand(0); 2020 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2021 return false; 2022 2023 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2024 return false; 2025 2026 SrcVec = ExtractVector.getOperand(0); 2027 Index = ExtractVector.getConstantOperandVal(1); 2028 return true; 2029 }; 2030 2031 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2032 SDValue LHSSrcVec, RHSSrcVec; 2033 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2034 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2035 return SDValue(); 2036 2037 if (LHSOpcode != RHSOpcode) 2038 return SDValue(); 2039 2040 MVT ExpectedSrcVT; 2041 switch (LHSOpcode) { 2042 case WebAssemblyISD::CONVERT_LOW_S: 2043 case WebAssemblyISD::CONVERT_LOW_U: 2044 ExpectedSrcVT = MVT::v4i32; 2045 break; 2046 case WebAssemblyISD::PROMOTE_LOW: 2047 ExpectedSrcVT = MVT::v4f32; 2048 break; 2049 } 2050 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2051 return SDValue(); 2052 2053 auto Src = LHSSrcVec; 2054 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2055 // Shuffle the source vector so that the converted lanes are the low lanes. 2056 Src = DAG.getVectorShuffle( 2057 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2058 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2059 } 2060 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2061 } 2062 2063 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2064 SelectionDAG &DAG) const { 2065 MVT VT = Op.getSimpleValueType(); 2066 if (VT == MVT::v8f16) { 2067 // BUILD_VECTOR can't handle FP16 operands since Wasm doesn't have a scaler 2068 // FP16 type, so cast them to I16s. 2069 MVT IVT = VT.changeVectorElementType(MVT::i16); 2070 SmallVector<SDValue, 8> NewOps; 2071 for (unsigned I = 0, E = Op.getNumOperands(); I < E; ++I) 2072 NewOps.push_back(DAG.getBitcast(MVT::i16, Op.getOperand(I))); 2073 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(), IVT, NewOps); 2074 return DAG.getBitcast(VT, Res); 2075 } 2076 2077 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2078 return ConvertLow; 2079 2080 SDLoc DL(Op); 2081 const EVT VecT = Op.getValueType(); 2082 const EVT LaneT = Op.getOperand(0).getValueType(); 2083 const size_t Lanes = Op.getNumOperands(); 2084 bool CanSwizzle = VecT == MVT::v16i8; 2085 2086 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2087 // possible number of lanes at once followed by a sequence of replace_lane 2088 // instructions to individually initialize any remaining lanes. 2089 2090 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2091 // swizzled lanes should be given greater weight. 2092 2093 // TODO: Investigate looping rather than always extracting/replacing specific 2094 // lanes to fill gaps. 2095 2096 auto IsConstant = [](const SDValue &V) { 2097 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2098 }; 2099 2100 // Returns the source vector and index vector pair if they exist. Checks for: 2101 // (extract_vector_elt 2102 // $src, 2103 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2104 // ) 2105 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2106 auto Bail = std::make_pair(SDValue(), SDValue()); 2107 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2108 return Bail; 2109 const SDValue &SwizzleSrc = Lane->getOperand(0); 2110 const SDValue &IndexExt = Lane->getOperand(1); 2111 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2112 return Bail; 2113 const SDValue &Index = IndexExt->getOperand(0); 2114 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2115 return Bail; 2116 const SDValue &SwizzleIndices = Index->getOperand(0); 2117 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2118 SwizzleIndices.getValueType() != MVT::v16i8 || 2119 Index->getOperand(1)->getOpcode() != ISD::Constant || 2120 Index->getConstantOperandVal(1) != I) 2121 return Bail; 2122 return std::make_pair(SwizzleSrc, SwizzleIndices); 2123 }; 2124 2125 // If the lane is extracted from another vector at a constant index, return 2126 // that vector. The source vector must not have more lanes than the dest 2127 // because the shufflevector indices are in terms of the destination lanes and 2128 // would not be able to address the smaller individual source lanes. 2129 auto GetShuffleSrc = [&](const SDValue &Lane) { 2130 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2131 return SDValue(); 2132 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2133 return SDValue(); 2134 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2135 VecT.getVectorNumElements()) 2136 return SDValue(); 2137 return Lane->getOperand(0); 2138 }; 2139 2140 using ValueEntry = std::pair<SDValue, size_t>; 2141 SmallVector<ValueEntry, 16> SplatValueCounts; 2142 2143 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2144 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2145 2146 using ShuffleEntry = std::pair<SDValue, size_t>; 2147 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2148 2149 auto AddCount = [](auto &Counts, const auto &Val) { 2150 auto CountIt = 2151 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2152 if (CountIt == Counts.end()) { 2153 Counts.emplace_back(Val, 1); 2154 } else { 2155 CountIt->second++; 2156 } 2157 }; 2158 2159 auto GetMostCommon = [](auto &Counts) { 2160 auto CommonIt = 2161 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2162 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2163 return *CommonIt; 2164 }; 2165 2166 size_t NumConstantLanes = 0; 2167 2168 // Count eligible lanes for each type of vector creation op 2169 for (size_t I = 0; I < Lanes; ++I) { 2170 const SDValue &Lane = Op->getOperand(I); 2171 if (Lane.isUndef()) 2172 continue; 2173 2174 AddCount(SplatValueCounts, Lane); 2175 2176 if (IsConstant(Lane)) 2177 NumConstantLanes++; 2178 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2179 AddCount(ShuffleCounts, ShuffleSrc); 2180 if (CanSwizzle) { 2181 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2182 if (SwizzleSrcs.first) 2183 AddCount(SwizzleCounts, SwizzleSrcs); 2184 } 2185 } 2186 2187 SDValue SplatValue; 2188 size_t NumSplatLanes; 2189 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2190 2191 SDValue SwizzleSrc; 2192 SDValue SwizzleIndices; 2193 size_t NumSwizzleLanes = 0; 2194 if (SwizzleCounts.size()) 2195 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2196 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2197 2198 // Shuffles can draw from up to two vectors, so find the two most common 2199 // sources. 2200 SDValue ShuffleSrc1, ShuffleSrc2; 2201 size_t NumShuffleLanes = 0; 2202 if (ShuffleCounts.size()) { 2203 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2204 llvm::erase_if(ShuffleCounts, 2205 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2206 } 2207 if (ShuffleCounts.size()) { 2208 size_t AdditionalShuffleLanes; 2209 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2210 GetMostCommon(ShuffleCounts); 2211 NumShuffleLanes += AdditionalShuffleLanes; 2212 } 2213 2214 // Predicate returning true if the lane is properly initialized by the 2215 // original instruction 2216 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2217 SDValue Result; 2218 // Prefer swizzles over shuffles over vector consts over splats 2219 if (NumSwizzleLanes >= NumShuffleLanes && 2220 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2221 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2222 SwizzleIndices); 2223 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2224 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2225 return Swizzled == GetSwizzleSrcs(I, Lane); 2226 }; 2227 } else if (NumShuffleLanes >= NumConstantLanes && 2228 NumShuffleLanes >= NumSplatLanes) { 2229 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2230 size_t DestLaneCount = VecT.getVectorNumElements(); 2231 size_t Scale1 = 1; 2232 size_t Scale2 = 1; 2233 SDValue Src1 = ShuffleSrc1; 2234 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2235 if (Src1.getValueType() != VecT) { 2236 size_t LaneSize = 2237 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2238 assert(LaneSize > DestLaneSize); 2239 Scale1 = LaneSize / DestLaneSize; 2240 Src1 = DAG.getBitcast(VecT, Src1); 2241 } 2242 if (Src2.getValueType() != VecT) { 2243 size_t LaneSize = 2244 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2245 assert(LaneSize > DestLaneSize); 2246 Scale2 = LaneSize / DestLaneSize; 2247 Src2 = DAG.getBitcast(VecT, Src2); 2248 } 2249 2250 int Mask[16]; 2251 assert(DestLaneCount <= 16); 2252 for (size_t I = 0; I < DestLaneCount; ++I) { 2253 const SDValue &Lane = Op->getOperand(I); 2254 SDValue Src = GetShuffleSrc(Lane); 2255 if (Src == ShuffleSrc1) { 2256 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2257 } else if (Src && Src == ShuffleSrc2) { 2258 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2259 } else { 2260 Mask[I] = -1; 2261 } 2262 } 2263 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2264 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2265 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2266 auto Src = GetShuffleSrc(Lane); 2267 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2268 }; 2269 } else if (NumConstantLanes >= NumSplatLanes) { 2270 SmallVector<SDValue, 16> ConstLanes; 2271 for (const SDValue &Lane : Op->op_values()) { 2272 if (IsConstant(Lane)) { 2273 // Values may need to be fixed so that they will sign extend to be 2274 // within the expected range during ISel. Check whether the value is in 2275 // bounds based on the lane bit width and if it is out of bounds, lop 2276 // off the extra bits and subtract 2^n to reflect giving the high bit 2277 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2278 // cannot possibly be out of range. 2279 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2280 int64_t Val = Const ? Const->getSExtValue() : 0; 2281 uint64_t LaneBits = 128 / Lanes; 2282 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2283 "Unexpected out of bounds negative value"); 2284 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2285 uint64_t Mask = (1ll << LaneBits) - 1; 2286 auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask; 2287 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2288 } else { 2289 ConstLanes.push_back(Lane); 2290 } 2291 } else if (LaneT.isFloatingPoint()) { 2292 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2293 } else { 2294 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2295 } 2296 } 2297 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2298 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2299 return IsConstant(Lane); 2300 }; 2301 } else { 2302 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits(); 2303 if (NumSplatLanes == 1 && Op->getOperand(0) == SplatValue && 2304 (DestLaneSize == 32 || DestLaneSize == 64)) { 2305 // Could be selected to load_zero. 2306 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecT, SplatValue); 2307 } else { 2308 // Use a splat (which might be selected as a load splat) 2309 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2310 } 2311 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2312 return Lane == SplatValue; 2313 }; 2314 } 2315 2316 assert(Result); 2317 assert(IsLaneConstructed); 2318 2319 // Add replace_lane instructions for any unhandled values 2320 for (size_t I = 0; I < Lanes; ++I) { 2321 const SDValue &Lane = Op->getOperand(I); 2322 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2323 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2324 DAG.getConstant(I, DL, MVT::i32)); 2325 } 2326 2327 return Result; 2328 } 2329 2330 SDValue 2331 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2332 SelectionDAG &DAG) const { 2333 SDLoc DL(Op); 2334 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2335 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2336 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2337 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2338 2339 // Space for two vector args and sixteen mask indices 2340 SDValue Ops[18]; 2341 size_t OpIdx = 0; 2342 Ops[OpIdx++] = Op.getOperand(0); 2343 Ops[OpIdx++] = Op.getOperand(1); 2344 2345 // Expand mask indices to byte indices and materialize them as operands 2346 for (int M : Mask) { 2347 for (size_t J = 0; J < LaneBytes; ++J) { 2348 // Lower undefs (represented by -1 in mask) to {0..J}, which use a 2349 // whole lane of vector input, to allow further reduction at VM. E.g. 2350 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. 2351 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; 2352 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2353 } 2354 } 2355 2356 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2357 } 2358 2359 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2360 SelectionDAG &DAG) const { 2361 SDLoc DL(Op); 2362 // The legalizer does not know how to expand the unsupported comparison modes 2363 // of i64x2 vectors, so we manually unroll them here. 2364 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2365 SmallVector<SDValue, 2> LHS, RHS; 2366 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2367 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2368 const SDValue &CC = Op->getOperand(2); 2369 auto MakeLane = [&](unsigned I) { 2370 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2371 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2372 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2373 }; 2374 return DAG.getBuildVector(Op->getValueType(0), DL, 2375 {MakeLane(0), MakeLane(1)}); 2376 } 2377 2378 SDValue 2379 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2380 SelectionDAG &DAG) const { 2381 // Allow constant lane indices, expand variable lane indices 2382 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2383 if (isa<ConstantSDNode>(IdxNode)) { 2384 // Ensure the index type is i32 to match the tablegen patterns 2385 uint64_t Idx = IdxNode->getAsZExtVal(); 2386 SmallVector<SDValue, 3> Ops(Op.getNode()->ops()); 2387 Ops[Op.getNumOperands() - 1] = 2388 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); 2389 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); 2390 } 2391 // Perform default expansion 2392 return SDValue(); 2393 } 2394 2395 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2396 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2397 // 32-bit and 64-bit unrolled shifts will have proper semantics 2398 if (LaneT.bitsGE(MVT::i32)) 2399 return DAG.UnrollVectorOp(Op.getNode()); 2400 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2401 SDLoc DL(Op); 2402 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2403 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2404 unsigned ShiftOpcode = Op.getOpcode(); 2405 SmallVector<SDValue, 16> ShiftedElements; 2406 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2407 SmallVector<SDValue, 16> ShiftElements; 2408 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2409 SmallVector<SDValue, 16> UnrolledOps; 2410 for (size_t i = 0; i < NumLanes; ++i) { 2411 SDValue MaskedShiftValue = 2412 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2413 SDValue ShiftedValue = ShiftedElements[i]; 2414 if (ShiftOpcode == ISD::SRA) 2415 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2416 ShiftedValue, DAG.getValueType(LaneT)); 2417 UnrolledOps.push_back( 2418 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2419 } 2420 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2421 } 2422 2423 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2424 SelectionDAG &DAG) const { 2425 SDLoc DL(Op); 2426 2427 // Only manually lower vector shifts 2428 assert(Op.getSimpleValueType().isVector()); 2429 2430 uint64_t LaneBits = Op.getValueType().getScalarSizeInBits(); 2431 auto ShiftVal = Op.getOperand(1); 2432 2433 // Try to skip bitmask operation since it is implied inside shift instruction 2434 auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) { 2435 if (MaskOp.getOpcode() != ISD::AND) 2436 return MaskOp; 2437 SDValue LHS = MaskOp.getOperand(0); 2438 SDValue RHS = MaskOp.getOperand(1); 2439 if (MaskOp.getValueType().isVector()) { 2440 APInt MaskVal; 2441 if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal)) 2442 std::swap(LHS, RHS); 2443 2444 if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) && 2445 MaskVal == MaskBits) 2446 MaskOp = LHS; 2447 } else { 2448 if (!isa<ConstantSDNode>(RHS.getNode())) 2449 std::swap(LHS, RHS); 2450 2451 auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode()); 2452 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits) 2453 MaskOp = LHS; 2454 } 2455 2456 return MaskOp; 2457 }; 2458 2459 // Skip vector and operation 2460 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2461 ShiftVal = DAG.getSplatValue(ShiftVal); 2462 if (!ShiftVal) 2463 return unrollVectorShift(Op, DAG); 2464 2465 // Skip scalar and operation 2466 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2467 // Use anyext because none of the high bits can affect the shift 2468 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2469 2470 unsigned Opcode; 2471 switch (Op.getOpcode()) { 2472 case ISD::SHL: 2473 Opcode = WebAssemblyISD::VEC_SHL; 2474 break; 2475 case ISD::SRA: 2476 Opcode = WebAssemblyISD::VEC_SHR_S; 2477 break; 2478 case ISD::SRL: 2479 Opcode = WebAssemblyISD::VEC_SHR_U; 2480 break; 2481 default: 2482 llvm_unreachable("unexpected opcode"); 2483 } 2484 2485 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2486 } 2487 2488 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2489 SelectionDAG &DAG) const { 2490 SDLoc DL(Op); 2491 EVT ResT = Op.getValueType(); 2492 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2493 2494 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2495 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2496 return Op; 2497 2498 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2499 return Op; 2500 2501 if (ResT == MVT::v8i16 && SatVT == MVT::i16) 2502 return Op; 2503 2504 return SDValue(); 2505 } 2506 2507 //===----------------------------------------------------------------------===// 2508 // Custom DAG combine hooks 2509 //===----------------------------------------------------------------------===// 2510 static SDValue 2511 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2512 auto &DAG = DCI.DAG; 2513 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2514 2515 // Hoist vector bitcasts that don't change the number of lanes out of unary 2516 // shuffles, where they are less likely to get in the way of other combines. 2517 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2518 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2519 SDValue Bitcast = N->getOperand(0); 2520 if (Bitcast.getOpcode() != ISD::BITCAST) 2521 return SDValue(); 2522 if (!N->getOperand(1).isUndef()) 2523 return SDValue(); 2524 SDValue CastOp = Bitcast.getOperand(0); 2525 EVT SrcType = CastOp.getValueType(); 2526 EVT DstType = Bitcast.getValueType(); 2527 if (!SrcType.is128BitVector() || 2528 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2529 return SDValue(); 2530 SDValue NewShuffle = DAG.getVectorShuffle( 2531 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2532 return DAG.getBitcast(DstType, NewShuffle); 2533 } 2534 2535 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get 2536 /// split up into scalar instructions during legalization, and the vector 2537 /// extending instructions are selected in performVectorExtendCombine below. 2538 static SDValue 2539 performVectorExtendToFPCombine(SDNode *N, 2540 TargetLowering::DAGCombinerInfo &DCI) { 2541 auto &DAG = DCI.DAG; 2542 assert(N->getOpcode() == ISD::UINT_TO_FP || 2543 N->getOpcode() == ISD::SINT_TO_FP); 2544 2545 EVT InVT = N->getOperand(0)->getValueType(0); 2546 EVT ResVT = N->getValueType(0); 2547 MVT ExtVT; 2548 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) 2549 ExtVT = MVT::v4i32; 2550 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) 2551 ExtVT = MVT::v2i32; 2552 else 2553 return SDValue(); 2554 2555 unsigned Op = 2556 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2557 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); 2558 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); 2559 } 2560 2561 static SDValue 2562 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2563 auto &DAG = DCI.DAG; 2564 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2565 N->getOpcode() == ISD::ZERO_EXTEND); 2566 2567 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2568 // possible before the extract_subvector can be expanded. 2569 auto Extract = N->getOperand(0); 2570 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2571 return SDValue(); 2572 auto Source = Extract.getOperand(0); 2573 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2574 if (IndexNode == nullptr) 2575 return SDValue(); 2576 auto Index = IndexNode->getZExtValue(); 2577 2578 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2579 // extracted subvector is the low or high half of its source. 2580 EVT ResVT = N->getValueType(0); 2581 if (ResVT == MVT::v8i16) { 2582 if (Extract.getValueType() != MVT::v8i8 || 2583 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2584 return SDValue(); 2585 } else if (ResVT == MVT::v4i32) { 2586 if (Extract.getValueType() != MVT::v4i16 || 2587 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2588 return SDValue(); 2589 } else if (ResVT == MVT::v2i64) { 2590 if (Extract.getValueType() != MVT::v2i32 || 2591 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2592 return SDValue(); 2593 } else { 2594 return SDValue(); 2595 } 2596 2597 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2598 bool IsLow = Index == 0; 2599 2600 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2601 : WebAssemblyISD::EXTEND_HIGH_S) 2602 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2603 : WebAssemblyISD::EXTEND_HIGH_U); 2604 2605 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2606 } 2607 2608 static SDValue 2609 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2610 auto &DAG = DCI.DAG; 2611 2612 auto GetWasmConversionOp = [](unsigned Op) { 2613 switch (Op) { 2614 case ISD::FP_TO_SINT_SAT: 2615 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2616 case ISD::FP_TO_UINT_SAT: 2617 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2618 case ISD::FP_ROUND: 2619 return WebAssemblyISD::DEMOTE_ZERO; 2620 } 2621 llvm_unreachable("unexpected op"); 2622 }; 2623 2624 auto IsZeroSplat = [](SDValue SplatVal) { 2625 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2626 APInt SplatValue, SplatUndef; 2627 unsigned SplatBitSize; 2628 bool HasAnyUndefs; 2629 // Endianness doesn't matter in this context because we are looking for 2630 // an all-zero value. 2631 return Splat && 2632 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2633 HasAnyUndefs) && 2634 SplatValue == 0; 2635 }; 2636 2637 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2638 // Combine this: 2639 // 2640 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2641 // 2642 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2643 // 2644 // Or this: 2645 // 2646 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2647 // 2648 // into (f32x4.demote_zero_f64x2 $x). 2649 EVT ResVT; 2650 EVT ExpectedConversionType; 2651 auto Conversion = N->getOperand(0); 2652 auto ConversionOp = Conversion.getOpcode(); 2653 switch (ConversionOp) { 2654 case ISD::FP_TO_SINT_SAT: 2655 case ISD::FP_TO_UINT_SAT: 2656 ResVT = MVT::v4i32; 2657 ExpectedConversionType = MVT::v2i32; 2658 break; 2659 case ISD::FP_ROUND: 2660 ResVT = MVT::v4f32; 2661 ExpectedConversionType = MVT::v2f32; 2662 break; 2663 default: 2664 return SDValue(); 2665 } 2666 2667 if (N->getValueType(0) != ResVT) 2668 return SDValue(); 2669 2670 if (Conversion.getValueType() != ExpectedConversionType) 2671 return SDValue(); 2672 2673 auto Source = Conversion.getOperand(0); 2674 if (Source.getValueType() != MVT::v2f64) 2675 return SDValue(); 2676 2677 if (!IsZeroSplat(N->getOperand(1)) || 2678 N->getOperand(1).getValueType() != ExpectedConversionType) 2679 return SDValue(); 2680 2681 unsigned Op = GetWasmConversionOp(ConversionOp); 2682 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2683 } 2684 2685 // Combine this: 2686 // 2687 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2688 // 2689 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2690 // 2691 // Or this: 2692 // 2693 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2694 // 2695 // into (f32x4.demote_zero_f64x2 $x). 2696 EVT ResVT; 2697 auto ConversionOp = N->getOpcode(); 2698 switch (ConversionOp) { 2699 case ISD::FP_TO_SINT_SAT: 2700 case ISD::FP_TO_UINT_SAT: 2701 ResVT = MVT::v4i32; 2702 break; 2703 case ISD::FP_ROUND: 2704 ResVT = MVT::v4f32; 2705 break; 2706 default: 2707 llvm_unreachable("unexpected op"); 2708 } 2709 2710 if (N->getValueType(0) != ResVT) 2711 return SDValue(); 2712 2713 auto Concat = N->getOperand(0); 2714 if (Concat.getValueType() != MVT::v4f64) 2715 return SDValue(); 2716 2717 auto Source = Concat.getOperand(0); 2718 if (Source.getValueType() != MVT::v2f64) 2719 return SDValue(); 2720 2721 if (!IsZeroSplat(Concat.getOperand(1)) || 2722 Concat.getOperand(1).getValueType() != MVT::v2f64) 2723 return SDValue(); 2724 2725 unsigned Op = GetWasmConversionOp(ConversionOp); 2726 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2727 } 2728 2729 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2730 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2731 const SDLoc &DL, unsigned VectorWidth) { 2732 EVT VT = Vec.getValueType(); 2733 EVT ElVT = VT.getVectorElementType(); 2734 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2735 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2736 VT.getVectorNumElements() / Factor); 2737 2738 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2739 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2740 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2741 2742 // This is the index of the first element of the VectorWidth-bit chunk 2743 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2744 IdxVal &= ~(ElemsPerChunk - 1); 2745 2746 // If the input is a buildvector just emit a smaller one. 2747 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2748 return DAG.getBuildVector(ResultVT, DL, 2749 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2750 2751 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2752 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2753 } 2754 2755 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2756 // is the expected destination value type after recursion. In is the initial 2757 // input. Note that the input should have enough leading zero bits to prevent 2758 // NARROW_U from saturating results. 2759 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2760 SelectionDAG &DAG) { 2761 EVT SrcVT = In.getValueType(); 2762 2763 // No truncation required, we might get here due to recursive calls. 2764 if (SrcVT == DstVT) 2765 return In; 2766 2767 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2768 unsigned NumElems = SrcVT.getVectorNumElements(); 2769 if (!isPowerOf2_32(NumElems)) 2770 return SDValue(); 2771 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2772 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2773 2774 LLVMContext &Ctx = *DAG.getContext(); 2775 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2776 2777 // Narrow to the largest type possible: 2778 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2779 EVT InVT = MVT::i16, OutVT = MVT::i8; 2780 if (SrcVT.getScalarSizeInBits() > 16) { 2781 InVT = MVT::i32; 2782 OutVT = MVT::i16; 2783 } 2784 unsigned SubSizeInBits = SrcSizeInBits / 2; 2785 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2786 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2787 2788 // Split lower/upper subvectors. 2789 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2790 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2791 2792 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2793 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2794 Lo = DAG.getBitcast(InVT, Lo); 2795 Hi = DAG.getBitcast(InVT, Hi); 2796 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2797 return DAG.getBitcast(DstVT, Res); 2798 } 2799 2800 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2801 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2802 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2803 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2804 2805 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2806 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2807 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2808 } 2809 2810 static SDValue performTruncateCombine(SDNode *N, 2811 TargetLowering::DAGCombinerInfo &DCI) { 2812 auto &DAG = DCI.DAG; 2813 2814 SDValue In = N->getOperand(0); 2815 EVT InVT = In.getValueType(); 2816 if (!InVT.isSimple()) 2817 return SDValue(); 2818 2819 EVT OutVT = N->getValueType(0); 2820 if (!OutVT.isVector()) 2821 return SDValue(); 2822 2823 EVT OutSVT = OutVT.getVectorElementType(); 2824 EVT InSVT = InVT.getVectorElementType(); 2825 // Currently only cover truncate to v16i8 or v8i16. 2826 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 2827 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 2828 return SDValue(); 2829 2830 SDLoc DL(N); 2831 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 2832 OutVT.getScalarSizeInBits()); 2833 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 2834 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 2835 } 2836 2837 static SDValue performBitcastCombine(SDNode *N, 2838 TargetLowering::DAGCombinerInfo &DCI) { 2839 auto &DAG = DCI.DAG; 2840 SDLoc DL(N); 2841 SDValue Src = N->getOperand(0); 2842 EVT VT = N->getValueType(0); 2843 EVT SrcVT = Src.getValueType(); 2844 2845 // bitcast <N x i1> to iN 2846 // ==> bitmask 2847 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2848 SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) { 2849 unsigned NumElts = SrcVT.getVectorNumElements(); 2850 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2851 return SDValue(); 2852 EVT Width = MVT::getIntegerVT(128 / NumElts); 2853 return DAG.getZExtOrTrunc( 2854 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2855 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32), 2856 DAG.getSExtOrTrunc(N->getOperand(0), DL, 2857 SrcVT.changeVectorElementType(Width))}), 2858 DL, VT); 2859 } 2860 2861 return SDValue(); 2862 } 2863 2864 static SDValue performSETCCCombine(SDNode *N, 2865 TargetLowering::DAGCombinerInfo &DCI) { 2866 auto &DAG = DCI.DAG; 2867 2868 SDValue LHS = N->getOperand(0); 2869 SDValue RHS = N->getOperand(1); 2870 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2871 SDLoc DL(N); 2872 EVT VT = N->getValueType(0); 2873 2874 // setcc (iN (bitcast (vNi1 X))), 0, ne 2875 // ==> any_true (vNi1 X) 2876 // setcc (iN (bitcast (vNi1 X))), 0, eq 2877 // ==> xor (any_true (vNi1 X)), -1 2878 // setcc (iN (bitcast (vNi1 X))), -1, eq 2879 // ==> all_true (vNi1 X) 2880 // setcc (iN (bitcast (vNi1 X))), -1, ne 2881 // ==> xor (all_true (vNi1 X)), -1 2882 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 2883 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2884 (isNullConstant(RHS) || isAllOnesConstant(RHS)) && 2885 LHS->getOpcode() == ISD::BITCAST) { 2886 EVT FromVT = LHS->getOperand(0).getValueType(); 2887 if (FromVT.isFixedLengthVector() && 2888 FromVT.getVectorElementType() == MVT::i1) { 2889 int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue 2890 : Intrinsic::wasm_alltrue; 2891 unsigned NumElts = FromVT.getVectorNumElements(); 2892 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2893 return SDValue(); 2894 EVT Width = MVT::getIntegerVT(128 / NumElts); 2895 SDValue Ret = DAG.getZExtOrTrunc( 2896 DAG.getNode( 2897 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 2898 {DAG.getConstant(Intrin, DL, MVT::i32), 2899 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, 2900 FromVT.changeVectorElementType(Width))}), 2901 DL, MVT::i1); 2902 if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) || 2903 (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) { 2904 Ret = DAG.getNOT(DL, Ret, MVT::i1); 2905 } 2906 return DAG.getZExtOrTrunc(Ret, DL, VT); 2907 } 2908 } 2909 2910 return SDValue(); 2911 } 2912 2913 SDValue 2914 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2915 DAGCombinerInfo &DCI) const { 2916 switch (N->getOpcode()) { 2917 default: 2918 return SDValue(); 2919 case ISD::BITCAST: 2920 return performBitcastCombine(N, DCI); 2921 case ISD::SETCC: 2922 return performSETCCCombine(N, DCI); 2923 case ISD::VECTOR_SHUFFLE: 2924 return performVECTOR_SHUFFLECombine(N, DCI); 2925 case ISD::SIGN_EXTEND: 2926 case ISD::ZERO_EXTEND: 2927 return performVectorExtendCombine(N, DCI); 2928 case ISD::UINT_TO_FP: 2929 case ISD::SINT_TO_FP: 2930 return performVectorExtendToFPCombine(N, DCI); 2931 case ISD::FP_TO_SINT_SAT: 2932 case ISD::FP_TO_UINT_SAT: 2933 case ISD::FP_ROUND: 2934 case ISD::CONCAT_VECTORS: 2935 return performVectorTruncZeroCombine(N, DCI); 2936 case ISD::TRUNCATE: 2937 return performTruncateCombine(N, DCI); 2938 } 2939 } 2940