1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "WebAssemblyUtilities.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicsWebAssembly.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 if (Subtarget->hasFP16()) { 70 addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass); 71 } 72 if (Subtarget->hasReferenceTypes()) { 73 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 74 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 75 if (Subtarget->hasExceptionHandling()) { 76 addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass); 77 } 78 } 79 // Compute derived properties from the register classes. 80 computeRegisterProperties(Subtarget->getRegisterInfo()); 81 82 // Transform loads and stores to pointers in address space 1 to loads and 83 // stores to WebAssembly global variables, outside linear memory. 84 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 85 setOperationAction(ISD::LOAD, T, Custom); 86 setOperationAction(ISD::STORE, T, Custom); 87 } 88 if (Subtarget->hasSIMD128()) { 89 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 90 MVT::v2f64}) { 91 setOperationAction(ISD::LOAD, T, Custom); 92 setOperationAction(ISD::STORE, T, Custom); 93 } 94 } 95 if (Subtarget->hasFP16()) { 96 setOperationAction(ISD::LOAD, MVT::v8f16, Custom); 97 setOperationAction(ISD::STORE, MVT::v8f16, Custom); 98 } 99 if (Subtarget->hasReferenceTypes()) { 100 // We need custom load and store lowering for both externref, funcref and 101 // Other. The MVT::Other here represents tables of reference types. 102 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 103 setOperationAction(ISD::LOAD, T, Custom); 104 setOperationAction(ISD::STORE, T, Custom); 105 } 106 } 107 108 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 109 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 110 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 111 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 112 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 113 setOperationAction(ISD::BRIND, MVT::Other, Custom); 114 setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom); 115 116 // Take the default expansion for va_arg, va_copy, and va_end. There is no 117 // default action for va_start, so we do that custom. 118 setOperationAction(ISD::VASTART, MVT::Other, Custom); 119 setOperationAction(ISD::VAARG, MVT::Other, Expand); 120 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 121 setOperationAction(ISD::VAEND, MVT::Other, Expand); 122 123 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 124 // Don't expand the floating-point types to constant pools. 125 setOperationAction(ISD::ConstantFP, T, Legal); 126 // Expand floating-point comparisons. 127 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 128 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 129 setCondCodeAction(CC, T, Expand); 130 // Expand floating-point library function operators. 131 for (auto Op : 132 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 133 setOperationAction(Op, T, Expand); 134 // Note supported floating-point library function operators that otherwise 135 // default to expand. 136 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 137 ISD::FRINT, ISD::FROUNDEVEN}) 138 setOperationAction(Op, T, Legal); 139 // Support minimum and maximum, which otherwise default to expand. 140 setOperationAction(ISD::FMINIMUM, T, Legal); 141 setOperationAction(ISD::FMAXIMUM, T, Legal); 142 // WebAssembly currently has no builtin f16 support. 143 setOperationAction(ISD::FP16_TO_FP, T, Expand); 144 setOperationAction(ISD::FP_TO_FP16, T, Expand); 145 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 146 setTruncStoreAction(T, MVT::f16, Expand); 147 } 148 149 if (Subtarget->hasFP16()) { 150 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal); 151 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal); 152 } 153 154 // Expand unavailable integer operations. 155 for (auto Op : 156 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 157 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 158 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 159 for (auto T : {MVT::i32, MVT::i64}) 160 setOperationAction(Op, T, Expand); 161 if (Subtarget->hasSIMD128()) 162 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 163 setOperationAction(Op, T, Expand); 164 } 165 166 if (Subtarget->hasWideArithmetic()) { 167 setOperationAction(ISD::ADD, MVT::i128, Custom); 168 setOperationAction(ISD::SUB, MVT::i128, Custom); 169 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom); 170 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); 171 } 172 173 if (Subtarget->hasNontrappingFPToInt()) 174 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 175 for (auto T : {MVT::i32, MVT::i64}) 176 setOperationAction(Op, T, Custom); 177 178 // SIMD-specific configuration 179 if (Subtarget->hasSIMD128()) { 180 // Combine vector mask reductions into alltrue/anytrue 181 setTargetDAGCombine(ISD::SETCC); 182 183 // Convert vector to integer bitcasts to bitmask 184 setTargetDAGCombine(ISD::BITCAST); 185 186 // Hoist bitcasts out of shuffles 187 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 188 189 // Combine extends of extract_subvectors into widening ops 190 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 191 192 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 193 // conversions ops 194 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 195 ISD::EXTRACT_SUBVECTOR}); 196 197 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 198 // into conversion ops 199 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 200 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 201 202 setTargetDAGCombine(ISD::TRUNCATE); 203 204 // Support saturating add/sub for i8x16 and i16x8 205 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}) 206 for (auto T : {MVT::v16i8, MVT::v8i16}) 207 setOperationAction(Op, T, Legal); 208 209 // Support integer abs 210 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 211 setOperationAction(ISD::ABS, T, Legal); 212 213 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 214 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 215 MVT::v2f64}) 216 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 217 218 if (Subtarget->hasFP16()) 219 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); 220 221 // We have custom shuffle lowering to expose the shuffle mask 222 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 223 MVT::v2f64}) 224 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 225 226 // Support splatting 227 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 228 MVT::v2f64}) 229 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 230 231 // Custom lowering since wasm shifts must have a scalar shift amount 232 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 233 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 234 setOperationAction(Op, T, Custom); 235 236 // Custom lower lane accesses to expand out variable indices 237 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 239 MVT::v2f64}) 240 setOperationAction(Op, T, Custom); 241 242 // There is no i8x16.mul instruction 243 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 244 245 // There is no vector conditional select instruction 246 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 247 MVT::v2f64}) 248 setOperationAction(ISD::SELECT_CC, T, Expand); 249 250 // Expand integer operations supported for scalars but not SIMD 251 for (auto Op : 252 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 253 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 254 setOperationAction(Op, T, Expand); 255 256 // But we do have integer min and max operations 257 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 258 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 259 setOperationAction(Op, T, Legal); 260 261 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 262 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 263 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 264 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 265 266 // Custom lower bit counting operations for other types to scalarize them. 267 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 268 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 269 setOperationAction(Op, T, Custom); 270 271 // Expand float operations supported for scalars but not SIMD 272 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 273 ISD::FEXP, ISD::FEXP2}) 274 for (auto T : {MVT::v4f32, MVT::v2f64}) 275 setOperationAction(Op, T, Expand); 276 277 // Unsigned comparison operations are unavailable for i64x2 vectors. 278 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 279 setCondCodeAction(CC, MVT::v2i64, Custom); 280 281 // 64x2 conversions are not in the spec 282 for (auto Op : 283 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 284 for (auto T : {MVT::v2i64, MVT::v2f64}) 285 setOperationAction(Op, T, Expand); 286 287 // But saturating fp_to_int converstions are 288 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) { 289 setOperationAction(Op, MVT::v4i32, Custom); 290 if (Subtarget->hasFP16()) { 291 setOperationAction(Op, MVT::v8i16, Custom); 292 } 293 } 294 295 // Support vector extending 296 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) { 297 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom); 298 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom); 299 } 300 } 301 302 // As a special case, these operators use the type to mean the type to 303 // sign-extend from. 304 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 305 if (!Subtarget->hasSignExt()) { 306 // Sign extends are legal only when extending a vector extract 307 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 308 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 309 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 310 } 311 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 312 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 313 314 // Dynamic stack allocation: use the default expansion. 315 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 316 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 317 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 318 319 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 320 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 321 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 322 323 // Expand these forms; we pattern-match the forms that we can handle in isel. 324 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 325 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 326 setOperationAction(Op, T, Expand); 327 328 // We have custom switch handling. 329 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 330 331 // WebAssembly doesn't have: 332 // - Floating-point extending loads. 333 // - Floating-point truncating stores. 334 // - i1 extending loads. 335 // - truncating SIMD stores and most extending loads 336 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 337 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 338 for (auto T : MVT::integer_valuetypes()) 339 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 340 setLoadExtAction(Ext, T, MVT::i1, Promote); 341 if (Subtarget->hasSIMD128()) { 342 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 343 MVT::v2f64}) { 344 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 345 if (MVT(T) != MemT) { 346 setTruncStoreAction(T, MemT, Expand); 347 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 348 setLoadExtAction(Ext, T, MemT, Expand); 349 } 350 } 351 } 352 // But some vector extending loads are legal 353 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 354 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 355 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 356 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 357 } 358 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 359 } 360 361 // Don't do anything clever with build_pairs 362 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 363 364 // Trap lowers to wasm unreachable 365 setOperationAction(ISD::TRAP, MVT::Other, Legal); 366 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 367 368 // Exception handling intrinsics 369 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 370 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 371 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 372 373 setMaxAtomicSizeInBitsSupported(64); 374 375 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 376 // consistent with the f64 and f128 names. 377 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 378 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 379 380 // Define the emscripten name for return address helper. 381 // TODO: when implementing other Wasm backends, make this generic or only do 382 // this on emscripten depending on what they end up doing. 383 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 384 385 // Always convert switches to br_tables unless there is only one case, which 386 // is equivalent to a simple branch. This reduces code size for wasm, and we 387 // defer possible jump table optimizations to the VM. 388 setMinimumJumpTableEntries(2); 389 } 390 391 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 392 uint32_t AS) const { 393 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 394 return MVT::externref; 395 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 396 return MVT::funcref; 397 return TargetLowering::getPointerTy(DL, AS); 398 } 399 400 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 401 uint32_t AS) const { 402 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 403 return MVT::externref; 404 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 405 return MVT::funcref; 406 return TargetLowering::getPointerMemTy(DL, AS); 407 } 408 409 TargetLowering::AtomicExpansionKind 410 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 411 // We have wasm instructions for these 412 switch (AI->getOperation()) { 413 case AtomicRMWInst::Add: 414 case AtomicRMWInst::Sub: 415 case AtomicRMWInst::And: 416 case AtomicRMWInst::Or: 417 case AtomicRMWInst::Xor: 418 case AtomicRMWInst::Xchg: 419 return AtomicExpansionKind::None; 420 default: 421 break; 422 } 423 return AtomicExpansionKind::CmpXChg; 424 } 425 426 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 427 // Implementation copied from X86TargetLowering. 428 unsigned Opc = VecOp.getOpcode(); 429 430 // Assume target opcodes can't be scalarized. 431 // TODO - do we have any exceptions? 432 if (Opc >= ISD::BUILTIN_OP_END) 433 return false; 434 435 // If the vector op is not supported, try to convert to scalar. 436 EVT VecVT = VecOp.getValueType(); 437 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 438 return true; 439 440 // If the vector op is supported, but the scalar op is not, the transform may 441 // not be worthwhile. 442 EVT ScalarVT = VecVT.getScalarType(); 443 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 444 } 445 446 FastISel *WebAssemblyTargetLowering::createFastISel( 447 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 448 return WebAssembly::createFastISel(FuncInfo, LibInfo); 449 } 450 451 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 452 EVT VT) const { 453 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 454 if (BitWidth > 1 && BitWidth < 8) 455 BitWidth = 8; 456 457 if (BitWidth > 64) { 458 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 459 // the count to be an i32. 460 BitWidth = 32; 461 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 462 "32-bit shift counts ought to be enough for anyone"); 463 } 464 465 MVT Result = MVT::getIntegerVT(BitWidth); 466 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 467 "Unable to represent scalar shift amount type"); 468 return Result; 469 } 470 471 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 472 // undefined result on invalid/overflow, to the WebAssembly opcode, which 473 // traps on invalid/overflow. 474 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 475 MachineBasicBlock *BB, 476 const TargetInstrInfo &TII, 477 bool IsUnsigned, bool Int64, 478 bool Float64, unsigned LoweredOpcode) { 479 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 480 481 Register OutReg = MI.getOperand(0).getReg(); 482 Register InReg = MI.getOperand(1).getReg(); 483 484 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 485 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 486 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 487 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 488 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 489 unsigned Eqz = WebAssembly::EQZ_I32; 490 unsigned And = WebAssembly::AND_I32; 491 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 492 int64_t Substitute = IsUnsigned ? 0 : Limit; 493 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 494 auto &Context = BB->getParent()->getFunction().getContext(); 495 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 496 497 const BasicBlock *LLVMBB = BB->getBasicBlock(); 498 MachineFunction *F = BB->getParent(); 499 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 500 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 501 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 502 503 MachineFunction::iterator It = ++BB->getIterator(); 504 F->insert(It, FalseMBB); 505 F->insert(It, TrueMBB); 506 F->insert(It, DoneMBB); 507 508 // Transfer the remainder of BB and its successor edges to DoneMBB. 509 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 510 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 511 512 BB->addSuccessor(TrueMBB); 513 BB->addSuccessor(FalseMBB); 514 TrueMBB->addSuccessor(DoneMBB); 515 FalseMBB->addSuccessor(DoneMBB); 516 517 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 518 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 519 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 520 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 521 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 522 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 523 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 524 525 MI.eraseFromParent(); 526 // For signed numbers, we can do a single comparison to determine whether 527 // fabs(x) is within range. 528 if (IsUnsigned) { 529 Tmp0 = InReg; 530 } else { 531 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 532 } 533 BuildMI(BB, DL, TII.get(FConst), Tmp1) 534 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 535 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 536 537 // For unsigned numbers, we have to do a separate comparison with zero. 538 if (IsUnsigned) { 539 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 540 Register SecondCmpReg = 541 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 542 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 543 BuildMI(BB, DL, TII.get(FConst), Tmp1) 544 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 545 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 546 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 547 CmpReg = AndReg; 548 } 549 550 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 551 552 // Create the CFG diamond to select between doing the conversion or using 553 // the substitute value. 554 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 555 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 556 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 557 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 558 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 559 .addReg(FalseReg) 560 .addMBB(FalseMBB) 561 .addReg(TrueReg) 562 .addMBB(TrueMBB); 563 564 return DoneMBB; 565 } 566 567 // Lower a `MEMCPY` instruction into a CFG triangle around a `MEMORY_COPY` 568 // instuction to handle the zero-length case. 569 static MachineBasicBlock *LowerMemcpy(MachineInstr &MI, DebugLoc DL, 570 MachineBasicBlock *BB, 571 const TargetInstrInfo &TII, bool Int64) { 572 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 573 574 MachineOperand DstMem = MI.getOperand(0); 575 MachineOperand SrcMem = MI.getOperand(1); 576 MachineOperand Dst = MI.getOperand(2); 577 MachineOperand Src = MI.getOperand(3); 578 MachineOperand Len = MI.getOperand(4); 579 580 // We're going to add an extra use to `Len` to test if it's zero; that 581 // use shouldn't be a kill, even if the original use is. 582 MachineOperand NoKillLen = Len; 583 NoKillLen.setIsKill(false); 584 585 // Decide on which `MachineInstr` opcode we're going to use. 586 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32; 587 unsigned MemoryCopy = 588 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32; 589 590 // Create two new basic blocks; one for the new `memory.fill` that we can 591 // branch over, and one for the rest of the instructions after the original 592 // `memory.fill`. 593 const BasicBlock *LLVMBB = BB->getBasicBlock(); 594 MachineFunction *F = BB->getParent(); 595 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 596 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 597 598 MachineFunction::iterator It = ++BB->getIterator(); 599 F->insert(It, TrueMBB); 600 F->insert(It, DoneMBB); 601 602 // Transfer the remainder of BB and its successor edges to DoneMBB. 603 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 604 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 605 606 // Connect the CFG edges. 607 BB->addSuccessor(TrueMBB); 608 BB->addSuccessor(DoneMBB); 609 TrueMBB->addSuccessor(DoneMBB); 610 611 // Create a virtual register for the `Eqz` result. 612 unsigned EqzReg; 613 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 614 615 // Erase the original `memory.copy`. 616 MI.eraseFromParent(); 617 618 // Test if `Len` is zero. 619 BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen); 620 621 // Insert a new `memory.copy`. 622 BuildMI(TrueMBB, DL, TII.get(MemoryCopy)) 623 .add(DstMem) 624 .add(SrcMem) 625 .add(Dst) 626 .add(Src) 627 .add(Len); 628 629 // Create the CFG triangle. 630 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg); 631 BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 632 633 return DoneMBB; 634 } 635 636 // Lower a `MEMSET` instruction into a CFG triangle around a `MEMORY_FILL` 637 // instuction to handle the zero-length case. 638 static MachineBasicBlock *LowerMemset(MachineInstr &MI, DebugLoc DL, 639 MachineBasicBlock *BB, 640 const TargetInstrInfo &TII, bool Int64) { 641 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 642 643 MachineOperand Mem = MI.getOperand(0); 644 MachineOperand Dst = MI.getOperand(1); 645 MachineOperand Val = MI.getOperand(2); 646 MachineOperand Len = MI.getOperand(3); 647 648 // We're going to add an extra use to `Len` to test if it's zero; that 649 // use shouldn't be a kill, even if the original use is. 650 MachineOperand NoKillLen = Len; 651 NoKillLen.setIsKill(false); 652 653 // Decide on which `MachineInstr` opcode we're going to use. 654 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32; 655 unsigned MemoryFill = 656 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32; 657 658 // Create two new basic blocks; one for the new `memory.fill` that we can 659 // branch over, and one for the rest of the instructions after the original 660 // `memory.fill`. 661 const BasicBlock *LLVMBB = BB->getBasicBlock(); 662 MachineFunction *F = BB->getParent(); 663 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 664 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 665 666 MachineFunction::iterator It = ++BB->getIterator(); 667 F->insert(It, TrueMBB); 668 F->insert(It, DoneMBB); 669 670 // Transfer the remainder of BB and its successor edges to DoneMBB. 671 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 672 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 673 674 // Connect the CFG edges. 675 BB->addSuccessor(TrueMBB); 676 BB->addSuccessor(DoneMBB); 677 TrueMBB->addSuccessor(DoneMBB); 678 679 // Create a virtual register for the `Eqz` result. 680 unsigned EqzReg; 681 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 682 683 // Erase the original `memory.fill`. 684 MI.eraseFromParent(); 685 686 // Test if `Len` is zero. 687 BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen); 688 689 // Insert a new `memory.copy`. 690 BuildMI(TrueMBB, DL, TII.get(MemoryFill)).add(Mem).add(Dst).add(Val).add(Len); 691 692 // Create the CFG triangle. 693 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg); 694 BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 695 696 return DoneMBB; 697 } 698 699 static MachineBasicBlock * 700 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 701 const WebAssemblySubtarget *Subtarget, 702 const TargetInstrInfo &TII) { 703 MachineInstr &CallParams = *CallResults.getPrevNode(); 704 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 705 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 706 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 707 708 bool IsIndirect = 709 CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI(); 710 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 711 712 bool IsFuncrefCall = false; 713 if (IsIndirect && CallParams.getOperand(0).isReg()) { 714 Register Reg = CallParams.getOperand(0).getReg(); 715 const MachineFunction *MF = BB->getParent(); 716 const MachineRegisterInfo &MRI = MF->getRegInfo(); 717 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 718 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 719 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 720 } 721 722 unsigned CallOp; 723 if (IsIndirect && IsRetCall) { 724 CallOp = WebAssembly::RET_CALL_INDIRECT; 725 } else if (IsIndirect) { 726 CallOp = WebAssembly::CALL_INDIRECT; 727 } else if (IsRetCall) { 728 CallOp = WebAssembly::RET_CALL; 729 } else { 730 CallOp = WebAssembly::CALL; 731 } 732 733 MachineFunction &MF = *BB->getParent(); 734 const MCInstrDesc &MCID = TII.get(CallOp); 735 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 736 737 // Move the function pointer to the end of the arguments for indirect calls 738 if (IsIndirect) { 739 auto FnPtr = CallParams.getOperand(0); 740 CallParams.removeOperand(0); 741 742 // For funcrefs, call_indirect is done through __funcref_call_table and the 743 // funcref is always installed in slot 0 of the table, therefore instead of 744 // having the function pointer added at the end of the params list, a zero 745 // (the index in 746 // __funcref_call_table is added). 747 if (IsFuncrefCall) { 748 Register RegZero = 749 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 750 MachineInstrBuilder MIBC0 = 751 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 752 753 BB->insert(CallResults.getIterator(), MIBC0); 754 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 755 } else 756 CallParams.addOperand(FnPtr); 757 } 758 759 for (auto Def : CallResults.defs()) 760 MIB.add(Def); 761 762 if (IsIndirect) { 763 // Placeholder for the type index. 764 MIB.addImm(0); 765 // The table into which this call_indirect indexes. 766 MCSymbolWasm *Table = IsFuncrefCall 767 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 768 MF.getContext(), Subtarget) 769 : WebAssembly::getOrCreateFunctionTableSymbol( 770 MF.getContext(), Subtarget); 771 if (Subtarget->hasCallIndirectOverlong()) { 772 MIB.addSym(Table); 773 } else { 774 // For the MVP there is at most one table whose number is 0, but we can't 775 // write a table symbol or issue relocations. Instead we just ensure the 776 // table is live and write a zero. 777 Table->setNoStrip(); 778 MIB.addImm(0); 779 } 780 } 781 782 for (auto Use : CallParams.uses()) 783 MIB.add(Use); 784 785 BB->insert(CallResults.getIterator(), MIB); 786 CallParams.eraseFromParent(); 787 CallResults.eraseFromParent(); 788 789 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 790 // table slot with ref.null upon call_indirect return. 791 // 792 // This generates the following code, which comes right after a call_indirect 793 // of a funcref: 794 // 795 // i32.const 0 796 // ref.null func 797 // table.set __funcref_call_table 798 if (IsIndirect && IsFuncrefCall) { 799 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 800 MF.getContext(), Subtarget); 801 Register RegZero = 802 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 803 MachineInstr *Const0 = 804 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 805 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 806 807 Register RegFuncref = 808 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 809 MachineInstr *RefNull = 810 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 811 BB->insertAfter(Const0->getIterator(), RefNull); 812 813 MachineInstr *TableSet = 814 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 815 .addSym(Table) 816 .addReg(RegZero) 817 .addReg(RegFuncref); 818 BB->insertAfter(RefNull->getIterator(), TableSet); 819 } 820 821 return BB; 822 } 823 824 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 825 MachineInstr &MI, MachineBasicBlock *BB) const { 826 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 827 DebugLoc DL = MI.getDebugLoc(); 828 829 switch (MI.getOpcode()) { 830 default: 831 llvm_unreachable("Unexpected instr type to insert"); 832 case WebAssembly::FP_TO_SINT_I32_F32: 833 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 834 WebAssembly::I32_TRUNC_S_F32); 835 case WebAssembly::FP_TO_UINT_I32_F32: 836 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 837 WebAssembly::I32_TRUNC_U_F32); 838 case WebAssembly::FP_TO_SINT_I64_F32: 839 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 840 WebAssembly::I64_TRUNC_S_F32); 841 case WebAssembly::FP_TO_UINT_I64_F32: 842 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 843 WebAssembly::I64_TRUNC_U_F32); 844 case WebAssembly::FP_TO_SINT_I32_F64: 845 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 846 WebAssembly::I32_TRUNC_S_F64); 847 case WebAssembly::FP_TO_UINT_I32_F64: 848 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 849 WebAssembly::I32_TRUNC_U_F64); 850 case WebAssembly::FP_TO_SINT_I64_F64: 851 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 852 WebAssembly::I64_TRUNC_S_F64); 853 case WebAssembly::FP_TO_UINT_I64_F64: 854 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 855 WebAssembly::I64_TRUNC_U_F64); 856 case WebAssembly::MEMCPY_A32: 857 return LowerMemcpy(MI, DL, BB, TII, false); 858 case WebAssembly::MEMCPY_A64: 859 return LowerMemcpy(MI, DL, BB, TII, true); 860 case WebAssembly::MEMSET_A32: 861 return LowerMemset(MI, DL, BB, TII, false); 862 case WebAssembly::MEMSET_A64: 863 return LowerMemset(MI, DL, BB, TII, true); 864 case WebAssembly::CALL_RESULTS: 865 case WebAssembly::RET_CALL_RESULTS: 866 return LowerCallResults(MI, DL, BB, Subtarget, TII); 867 } 868 } 869 870 const char * 871 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 872 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 873 case WebAssemblyISD::FIRST_NUMBER: 874 case WebAssemblyISD::FIRST_MEM_OPCODE: 875 break; 876 #define HANDLE_NODETYPE(NODE) \ 877 case WebAssemblyISD::NODE: \ 878 return "WebAssemblyISD::" #NODE; 879 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 880 #include "WebAssemblyISD.def" 881 #undef HANDLE_MEM_NODETYPE 882 #undef HANDLE_NODETYPE 883 } 884 return nullptr; 885 } 886 887 std::pair<unsigned, const TargetRegisterClass *> 888 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 889 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 890 // First, see if this is a constraint that directly corresponds to a 891 // WebAssembly register class. 892 if (Constraint.size() == 1) { 893 switch (Constraint[0]) { 894 case 'r': 895 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 896 if (Subtarget->hasSIMD128() && VT.isVector()) { 897 if (VT.getSizeInBits() == 128) 898 return std::make_pair(0U, &WebAssembly::V128RegClass); 899 } 900 if (VT.isInteger() && !VT.isVector()) { 901 if (VT.getSizeInBits() <= 32) 902 return std::make_pair(0U, &WebAssembly::I32RegClass); 903 if (VT.getSizeInBits() <= 64) 904 return std::make_pair(0U, &WebAssembly::I64RegClass); 905 } 906 if (VT.isFloatingPoint() && !VT.isVector()) { 907 switch (VT.getSizeInBits()) { 908 case 32: 909 return std::make_pair(0U, &WebAssembly::F32RegClass); 910 case 64: 911 return std::make_pair(0U, &WebAssembly::F64RegClass); 912 default: 913 break; 914 } 915 } 916 break; 917 default: 918 break; 919 } 920 } 921 922 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 923 } 924 925 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 926 // Assume ctz is a relatively cheap operation. 927 return true; 928 } 929 930 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 931 // Assume clz is a relatively cheap operation. 932 return true; 933 } 934 935 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 936 const AddrMode &AM, 937 Type *Ty, unsigned AS, 938 Instruction *I) const { 939 // WebAssembly offsets are added as unsigned without wrapping. The 940 // isLegalAddressingMode gives us no way to determine if wrapping could be 941 // happening, so we approximate this by accepting only non-negative offsets. 942 if (AM.BaseOffs < 0) 943 return false; 944 945 // WebAssembly has no scale register operands. 946 if (AM.Scale != 0) 947 return false; 948 949 // Everything else is legal. 950 return true; 951 } 952 953 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 954 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 955 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { 956 // WebAssembly supports unaligned accesses, though it should be declared 957 // with the p2align attribute on loads and stores which do so, and there 958 // may be a performance impact. We tell LLVM they're "fast" because 959 // for the kinds of things that LLVM uses this for (merging adjacent stores 960 // of constants, etc.), WebAssembly implementations will either want the 961 // unaligned access or they'll split anyway. 962 if (Fast) 963 *Fast = 1; 964 return true; 965 } 966 967 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 968 AttributeList Attr) const { 969 // The current thinking is that wasm engines will perform this optimization, 970 // so we can save on code size. 971 return true; 972 } 973 974 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 975 EVT ExtT = ExtVal.getValueType(); 976 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 977 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 978 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 979 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 980 } 981 982 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 983 const GlobalAddressSDNode *GA) const { 984 // Wasm doesn't support function addresses with offsets 985 const GlobalValue *GV = GA->getGlobal(); 986 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 987 } 988 989 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 990 LLVMContext &C, 991 EVT VT) const { 992 if (VT.isVector()) 993 return VT.changeVectorElementTypeToInteger(); 994 995 // So far, all branch instructions in Wasm take an I32 condition. 996 // The default TargetLowering::getSetCCResultType returns the pointer size, 997 // which would be useful to reduce instruction counts when testing 998 // against 64-bit pointers/values if at some point Wasm supports that. 999 return EVT::getIntegerVT(C, 32); 1000 } 1001 1002 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1003 const CallInst &I, 1004 MachineFunction &MF, 1005 unsigned Intrinsic) const { 1006 switch (Intrinsic) { 1007 case Intrinsic::wasm_memory_atomic_notify: 1008 Info.opc = ISD::INTRINSIC_W_CHAIN; 1009 Info.memVT = MVT::i32; 1010 Info.ptrVal = I.getArgOperand(0); 1011 Info.offset = 0; 1012 Info.align = Align(4); 1013 // atomic.notify instruction does not really load the memory specified with 1014 // this argument, but MachineMemOperand should either be load or store, so 1015 // we set this to a load. 1016 // FIXME Volatile isn't really correct, but currently all LLVM atomic 1017 // instructions are treated as volatiles in the backend, so we should be 1018 // consistent. The same applies for wasm_atomic_wait intrinsics too. 1019 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1020 return true; 1021 case Intrinsic::wasm_memory_atomic_wait32: 1022 Info.opc = ISD::INTRINSIC_W_CHAIN; 1023 Info.memVT = MVT::i32; 1024 Info.ptrVal = I.getArgOperand(0); 1025 Info.offset = 0; 1026 Info.align = Align(4); 1027 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1028 return true; 1029 case Intrinsic::wasm_memory_atomic_wait64: 1030 Info.opc = ISD::INTRINSIC_W_CHAIN; 1031 Info.memVT = MVT::i64; 1032 Info.ptrVal = I.getArgOperand(0); 1033 Info.offset = 0; 1034 Info.align = Align(8); 1035 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1036 return true; 1037 case Intrinsic::wasm_loadf16_f32: 1038 Info.opc = ISD::INTRINSIC_W_CHAIN; 1039 Info.memVT = MVT::f16; 1040 Info.ptrVal = I.getArgOperand(0); 1041 Info.offset = 0; 1042 Info.align = Align(2); 1043 Info.flags = MachineMemOperand::MOLoad; 1044 return true; 1045 case Intrinsic::wasm_storef16_f32: 1046 Info.opc = ISD::INTRINSIC_VOID; 1047 Info.memVT = MVT::f16; 1048 Info.ptrVal = I.getArgOperand(1); 1049 Info.offset = 0; 1050 Info.align = Align(2); 1051 Info.flags = MachineMemOperand::MOStore; 1052 return true; 1053 default: 1054 return false; 1055 } 1056 } 1057 1058 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 1059 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1060 const SelectionDAG &DAG, unsigned Depth) const { 1061 switch (Op.getOpcode()) { 1062 default: 1063 break; 1064 case ISD::INTRINSIC_WO_CHAIN: { 1065 unsigned IntNo = Op.getConstantOperandVal(0); 1066 switch (IntNo) { 1067 default: 1068 break; 1069 case Intrinsic::wasm_bitmask: { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 EVT VT = Op.getOperand(1).getSimpleValueType(); 1072 unsigned PossibleBits = VT.getVectorNumElements(); 1073 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 1074 Known.Zero |= ZeroMask; 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 } 1081 1082 TargetLoweringBase::LegalizeTypeAction 1083 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 1084 if (VT.isFixedLengthVector()) { 1085 MVT EltVT = VT.getVectorElementType(); 1086 // We have legal vector types with these lane types, so widening the 1087 // vector would let us use some of the lanes directly without having to 1088 // extend or truncate values. 1089 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 1090 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 1091 return TypeWidenVector; 1092 } 1093 1094 return TargetLoweringBase::getPreferredVectorAction(VT); 1095 } 1096 1097 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 1098 SDValue Op, const TargetLoweringOpt &TLO) const { 1099 // ISel process runs DAGCombiner after legalization; this step is called 1100 // SelectionDAG optimization phase. This post-legalization combining process 1101 // runs DAGCombiner on each node, and if there was a change to be made, 1102 // re-runs legalization again on it and its user nodes to make sure 1103 // everythiing is in a legalized state. 1104 // 1105 // The legalization calls lowering routines, and we do our custom lowering for 1106 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 1107 // into zeros. But there is a set of routines in DAGCombiner that turns unused 1108 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 1109 // turns unused vector elements into undefs. But this routine does not work 1110 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 1111 // combination can result in a infinite loop, in which undefs are converted to 1112 // zeros in legalization and back to undefs in combining. 1113 // 1114 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 1115 // running for build_vectors. 1116 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 1117 return false; 1118 return true; 1119 } 1120 1121 //===----------------------------------------------------------------------===// 1122 // WebAssembly Lowering private implementation. 1123 //===----------------------------------------------------------------------===// 1124 1125 //===----------------------------------------------------------------------===// 1126 // Lowering Code 1127 //===----------------------------------------------------------------------===// 1128 1129 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 1130 MachineFunction &MF = DAG.getMachineFunction(); 1131 DAG.getContext()->diagnose( 1132 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 1133 } 1134 1135 // Test whether the given calling convention is supported. 1136 static bool callingConvSupported(CallingConv::ID CallConv) { 1137 // We currently support the language-independent target-independent 1138 // conventions. We don't yet have a way to annotate calls with properties like 1139 // "cold", and we don't have any call-clobbered registers, so these are mostly 1140 // all handled the same. 1141 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 1142 CallConv == CallingConv::Cold || 1143 CallConv == CallingConv::PreserveMost || 1144 CallConv == CallingConv::PreserveAll || 1145 CallConv == CallingConv::CXX_FAST_TLS || 1146 CallConv == CallingConv::WASM_EmscriptenInvoke || 1147 CallConv == CallingConv::Swift; 1148 } 1149 1150 SDValue 1151 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 1152 SmallVectorImpl<SDValue> &InVals) const { 1153 SelectionDAG &DAG = CLI.DAG; 1154 SDLoc DL = CLI.DL; 1155 SDValue Chain = CLI.Chain; 1156 SDValue Callee = CLI.Callee; 1157 MachineFunction &MF = DAG.getMachineFunction(); 1158 auto Layout = MF.getDataLayout(); 1159 1160 CallingConv::ID CallConv = CLI.CallConv; 1161 if (!callingConvSupported(CallConv)) 1162 fail(DL, DAG, 1163 "WebAssembly doesn't support language-specific or target-specific " 1164 "calling conventions yet"); 1165 if (CLI.IsPatchPoint) 1166 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 1167 1168 if (CLI.IsTailCall) { 1169 auto NoTail = [&](const char *Msg) { 1170 if (CLI.CB && CLI.CB->isMustTailCall()) 1171 fail(DL, DAG, Msg); 1172 CLI.IsTailCall = false; 1173 }; 1174 1175 if (!Subtarget->hasTailCall()) 1176 NoTail("WebAssembly 'tail-call' feature not enabled"); 1177 1178 // Varargs calls cannot be tail calls because the buffer is on the stack 1179 if (CLI.IsVarArg) 1180 NoTail("WebAssembly does not support varargs tail calls"); 1181 1182 // Do not tail call unless caller and callee return types match 1183 const Function &F = MF.getFunction(); 1184 const TargetMachine &TM = getTargetMachine(); 1185 Type *RetTy = F.getReturnType(); 1186 SmallVector<MVT, 4> CallerRetTys; 1187 SmallVector<MVT, 4> CalleeRetTys; 1188 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1189 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1190 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1191 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1192 CalleeRetTys.begin()); 1193 if (!TypesMatch) 1194 NoTail("WebAssembly tail call requires caller and callee return types to " 1195 "match"); 1196 1197 // If pointers to local stack values are passed, we cannot tail call 1198 if (CLI.CB) { 1199 for (auto &Arg : CLI.CB->args()) { 1200 Value *Val = Arg.get(); 1201 // Trace the value back through pointer operations 1202 while (true) { 1203 Value *Src = Val->stripPointerCastsAndAliases(); 1204 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1205 Src = GEP->getPointerOperand(); 1206 if (Val == Src) 1207 break; 1208 Val = Src; 1209 } 1210 if (isa<AllocaInst>(Val)) { 1211 NoTail( 1212 "WebAssembly does not support tail calling with stack arguments"); 1213 break; 1214 } 1215 } 1216 } 1217 } 1218 1219 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1220 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1221 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1222 1223 // The generic code may have added an sret argument. If we're lowering an 1224 // invoke function, the ABI requires that the function pointer be the first 1225 // argument, so we may have to swap the arguments. 1226 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1227 Outs[0].Flags.isSRet()) { 1228 std::swap(Outs[0], Outs[1]); 1229 std::swap(OutVals[0], OutVals[1]); 1230 } 1231 1232 bool HasSwiftSelfArg = false; 1233 bool HasSwiftErrorArg = false; 1234 unsigned NumFixedArgs = 0; 1235 for (unsigned I = 0; I < Outs.size(); ++I) { 1236 const ISD::OutputArg &Out = Outs[I]; 1237 SDValue &OutVal = OutVals[I]; 1238 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1239 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1240 if (Out.Flags.isNest()) 1241 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1242 if (Out.Flags.isInAlloca()) 1243 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1244 if (Out.Flags.isInConsecutiveRegs()) 1245 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1246 if (Out.Flags.isInConsecutiveRegsLast()) 1247 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1248 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1249 auto &MFI = MF.getFrameInfo(); 1250 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1251 Out.Flags.getNonZeroByValAlign(), 1252 /*isSS=*/false); 1253 SDValue SizeNode = 1254 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1255 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1256 Chain = DAG.getMemcpy(Chain, DL, FINode, OutVal, SizeNode, 1257 Out.Flags.getNonZeroByValAlign(), 1258 /*isVolatile*/ false, /*AlwaysInline=*/false, 1259 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), 1260 MachinePointerInfo()); 1261 OutVal = FINode; 1262 } 1263 // Count the number of fixed args *after* legalization. 1264 NumFixedArgs += Out.IsFixed; 1265 } 1266 1267 bool IsVarArg = CLI.IsVarArg; 1268 auto PtrVT = getPointerTy(Layout); 1269 1270 // For swiftcc, emit additional swiftself and swifterror arguments 1271 // if there aren't. These additional arguments are also added for callee 1272 // signature They are necessary to match callee and caller signature for 1273 // indirect call. 1274 if (CallConv == CallingConv::Swift) { 1275 if (!HasSwiftSelfArg) { 1276 NumFixedArgs++; 1277 ISD::OutputArg Arg; 1278 Arg.Flags.setSwiftSelf(); 1279 CLI.Outs.push_back(Arg); 1280 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1281 CLI.OutVals.push_back(ArgVal); 1282 } 1283 if (!HasSwiftErrorArg) { 1284 NumFixedArgs++; 1285 ISD::OutputArg Arg; 1286 Arg.Flags.setSwiftError(); 1287 CLI.Outs.push_back(Arg); 1288 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1289 CLI.OutVals.push_back(ArgVal); 1290 } 1291 } 1292 1293 // Analyze operands of the call, assigning locations to each operand. 1294 SmallVector<CCValAssign, 16> ArgLocs; 1295 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1296 1297 if (IsVarArg) { 1298 // Outgoing non-fixed arguments are placed in a buffer. First 1299 // compute their offsets and the total amount of buffer space needed. 1300 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1301 const ISD::OutputArg &Out = Outs[I]; 1302 SDValue &Arg = OutVals[I]; 1303 EVT VT = Arg.getValueType(); 1304 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1305 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1306 Align Alignment = 1307 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1308 unsigned Offset = 1309 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1310 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1311 Offset, VT.getSimpleVT(), 1312 CCValAssign::Full)); 1313 } 1314 } 1315 1316 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1317 1318 SDValue FINode; 1319 if (IsVarArg && NumBytes) { 1320 // For non-fixed arguments, next emit stores to store the argument values 1321 // to the stack buffer at the offsets computed above. 1322 MaybeAlign StackAlign = Layout.getStackAlignment(); 1323 assert(StackAlign && "data layout string is missing stack alignment"); 1324 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, *StackAlign, 1325 /*isSS=*/false); 1326 unsigned ValNo = 0; 1327 SmallVector<SDValue, 8> Chains; 1328 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1329 assert(ArgLocs[ValNo].getValNo() == ValNo && 1330 "ArgLocs should remain in order and only hold varargs args"); 1331 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1332 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1333 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1334 DAG.getConstant(Offset, DL, PtrVT)); 1335 Chains.push_back( 1336 DAG.getStore(Chain, DL, Arg, Add, 1337 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1338 } 1339 if (!Chains.empty()) 1340 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1341 } else if (IsVarArg) { 1342 FINode = DAG.getIntPtrConstant(0, DL); 1343 } 1344 1345 if (Callee->getOpcode() == ISD::GlobalAddress) { 1346 // If the callee is a GlobalAddress node (quite common, every direct call 1347 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1348 // doesn't at MO_GOT which is not needed for direct calls. 1349 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1350 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1351 getPointerTy(DAG.getDataLayout()), 1352 GA->getOffset()); 1353 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1354 getPointerTy(DAG.getDataLayout()), Callee); 1355 } 1356 1357 // Compute the operands for the CALLn node. 1358 SmallVector<SDValue, 16> Ops; 1359 Ops.push_back(Chain); 1360 Ops.push_back(Callee); 1361 1362 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1363 // isn't reliable. 1364 Ops.append(OutVals.begin(), 1365 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1366 // Add a pointer to the vararg buffer. 1367 if (IsVarArg) 1368 Ops.push_back(FINode); 1369 1370 SmallVector<EVT, 8> InTys; 1371 for (const auto &In : Ins) { 1372 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1373 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1374 if (In.Flags.isInAlloca()) 1375 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1376 if (In.Flags.isInConsecutiveRegs()) 1377 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1378 if (In.Flags.isInConsecutiveRegsLast()) 1379 fail(DL, DAG, 1380 "WebAssembly hasn't implemented cons regs last return values"); 1381 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1382 // registers. 1383 InTys.push_back(In.VT); 1384 } 1385 1386 // Lastly, if this is a call to a funcref we need to add an instruction 1387 // table.set to the chain and transform the call. 1388 if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType( 1389 CLI.CB->getCalledOperand()->getType())) { 1390 // In the absence of function references proposal where a funcref call is 1391 // lowered to call_ref, using reference types we generate a table.set to set 1392 // the funcref to a special table used solely for this purpose, followed by 1393 // a call_indirect. Here we just generate the table set, and return the 1394 // SDValue of the table.set so that LowerCall can finalize the lowering by 1395 // generating the call_indirect. 1396 SDValue Chain = Ops[0]; 1397 1398 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1399 MF.getContext(), Subtarget); 1400 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1401 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1402 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1403 SDValue TableSet = DAG.getMemIntrinsicNode( 1404 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1405 MVT::funcref, 1406 // Machine Mem Operand args 1407 MachinePointerInfo( 1408 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1409 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1410 MachineMemOperand::MOStore); 1411 1412 Ops[0] = TableSet; // The new chain is the TableSet itself 1413 } 1414 1415 if (CLI.IsTailCall) { 1416 // ret_calls do not return values to the current frame 1417 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1418 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1419 } 1420 1421 InTys.push_back(MVT::Other); 1422 SDVTList InTyList = DAG.getVTList(InTys); 1423 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1424 1425 for (size_t I = 0; I < Ins.size(); ++I) 1426 InVals.push_back(Res.getValue(I)); 1427 1428 // Return the chain 1429 return Res.getValue(Ins.size()); 1430 } 1431 1432 bool WebAssemblyTargetLowering::CanLowerReturn( 1433 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1434 const SmallVectorImpl<ISD::OutputArg> &Outs, 1435 LLVMContext & /*Context*/) const { 1436 // WebAssembly can only handle returning tuples with multivalue enabled 1437 return WebAssembly::canLowerReturn(Outs.size(), Subtarget); 1438 } 1439 1440 SDValue WebAssemblyTargetLowering::LowerReturn( 1441 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1442 const SmallVectorImpl<ISD::OutputArg> &Outs, 1443 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1444 SelectionDAG &DAG) const { 1445 assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) && 1446 "MVP WebAssembly can only return up to one value"); 1447 if (!callingConvSupported(CallConv)) 1448 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1449 1450 SmallVector<SDValue, 4> RetOps(1, Chain); 1451 RetOps.append(OutVals.begin(), OutVals.end()); 1452 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1453 1454 // Record the number and types of the return values. 1455 for (const ISD::OutputArg &Out : Outs) { 1456 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1457 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1458 assert(Out.IsFixed && "non-fixed return value is not valid"); 1459 if (Out.Flags.isInAlloca()) 1460 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1461 if (Out.Flags.isInConsecutiveRegs()) 1462 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1463 if (Out.Flags.isInConsecutiveRegsLast()) 1464 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1465 } 1466 1467 return Chain; 1468 } 1469 1470 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1471 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1472 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1473 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1474 if (!callingConvSupported(CallConv)) 1475 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1476 1477 MachineFunction &MF = DAG.getMachineFunction(); 1478 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1479 1480 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1481 // of the incoming values before they're represented by virtual registers. 1482 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1483 1484 bool HasSwiftErrorArg = false; 1485 bool HasSwiftSelfArg = false; 1486 for (const ISD::InputArg &In : Ins) { 1487 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1488 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1489 if (In.Flags.isInAlloca()) 1490 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1491 if (In.Flags.isNest()) 1492 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1493 if (In.Flags.isInConsecutiveRegs()) 1494 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1495 if (In.Flags.isInConsecutiveRegsLast()) 1496 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1497 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1498 // registers. 1499 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1500 DAG.getTargetConstant(InVals.size(), 1501 DL, MVT::i32)) 1502 : DAG.getUNDEF(In.VT)); 1503 1504 // Record the number and types of arguments. 1505 MFI->addParam(In.VT); 1506 } 1507 1508 // For swiftcc, emit additional swiftself and swifterror arguments 1509 // if there aren't. These additional arguments are also added for callee 1510 // signature They are necessary to match callee and caller signature for 1511 // indirect call. 1512 auto PtrVT = getPointerTy(MF.getDataLayout()); 1513 if (CallConv == CallingConv::Swift) { 1514 if (!HasSwiftSelfArg) { 1515 MFI->addParam(PtrVT); 1516 } 1517 if (!HasSwiftErrorArg) { 1518 MFI->addParam(PtrVT); 1519 } 1520 } 1521 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1522 // the buffer is passed as an argument. 1523 if (IsVarArg) { 1524 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1525 Register VarargVreg = 1526 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1527 MFI->setVarargBufferVreg(VarargVreg); 1528 Chain = DAG.getCopyToReg( 1529 Chain, DL, VarargVreg, 1530 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1531 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1532 MFI->addParam(PtrVT); 1533 } 1534 1535 // Record the number and types of arguments and results. 1536 SmallVector<MVT, 4> Params; 1537 SmallVector<MVT, 4> Results; 1538 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1539 MF.getFunction(), DAG.getTarget(), Params, Results); 1540 for (MVT VT : Results) 1541 MFI->addResult(VT); 1542 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1543 // the param logic here with ComputeSignatureVTs 1544 assert(MFI->getParams().size() == Params.size() && 1545 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1546 Params.begin())); 1547 1548 return Chain; 1549 } 1550 1551 void WebAssemblyTargetLowering::ReplaceNodeResults( 1552 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1553 switch (N->getOpcode()) { 1554 case ISD::SIGN_EXTEND_INREG: 1555 // Do not add any results, signifying that N should not be custom lowered 1556 // after all. This happens because simd128 turns on custom lowering for 1557 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1558 // illegal type. 1559 break; 1560 case ISD::SIGN_EXTEND_VECTOR_INREG: 1561 case ISD::ZERO_EXTEND_VECTOR_INREG: 1562 // Do not add any results, signifying that N should not be custom lowered. 1563 // EXTEND_VECTOR_INREG is implemented for some vectors, but not all. 1564 break; 1565 case ISD::ADD: 1566 case ISD::SUB: 1567 Results.push_back(Replace128Op(N, DAG)); 1568 break; 1569 default: 1570 llvm_unreachable( 1571 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1572 } 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Custom lowering hooks. 1577 //===----------------------------------------------------------------------===// 1578 1579 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1580 SelectionDAG &DAG) const { 1581 SDLoc DL(Op); 1582 switch (Op.getOpcode()) { 1583 default: 1584 llvm_unreachable("unimplemented operation lowering"); 1585 return SDValue(); 1586 case ISD::FrameIndex: 1587 return LowerFrameIndex(Op, DAG); 1588 case ISD::GlobalAddress: 1589 return LowerGlobalAddress(Op, DAG); 1590 case ISD::GlobalTLSAddress: 1591 return LowerGlobalTLSAddress(Op, DAG); 1592 case ISD::ExternalSymbol: 1593 return LowerExternalSymbol(Op, DAG); 1594 case ISD::JumpTable: 1595 return LowerJumpTable(Op, DAG); 1596 case ISD::BR_JT: 1597 return LowerBR_JT(Op, DAG); 1598 case ISD::VASTART: 1599 return LowerVASTART(Op, DAG); 1600 case ISD::BlockAddress: 1601 case ISD::BRIND: 1602 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1603 return SDValue(); 1604 case ISD::RETURNADDR: 1605 return LowerRETURNADDR(Op, DAG); 1606 case ISD::FRAMEADDR: 1607 return LowerFRAMEADDR(Op, DAG); 1608 case ISD::CopyToReg: 1609 return LowerCopyToReg(Op, DAG); 1610 case ISD::EXTRACT_VECTOR_ELT: 1611 case ISD::INSERT_VECTOR_ELT: 1612 return LowerAccessVectorElement(Op, DAG); 1613 case ISD::INTRINSIC_VOID: 1614 case ISD::INTRINSIC_WO_CHAIN: 1615 case ISD::INTRINSIC_W_CHAIN: 1616 return LowerIntrinsic(Op, DAG); 1617 case ISD::SIGN_EXTEND_INREG: 1618 return LowerSIGN_EXTEND_INREG(Op, DAG); 1619 case ISD::ZERO_EXTEND_VECTOR_INREG: 1620 case ISD::SIGN_EXTEND_VECTOR_INREG: 1621 return LowerEXTEND_VECTOR_INREG(Op, DAG); 1622 case ISD::BUILD_VECTOR: 1623 return LowerBUILD_VECTOR(Op, DAG); 1624 case ISD::VECTOR_SHUFFLE: 1625 return LowerVECTOR_SHUFFLE(Op, DAG); 1626 case ISD::SETCC: 1627 return LowerSETCC(Op, DAG); 1628 case ISD::SHL: 1629 case ISD::SRA: 1630 case ISD::SRL: 1631 return LowerShift(Op, DAG); 1632 case ISD::FP_TO_SINT_SAT: 1633 case ISD::FP_TO_UINT_SAT: 1634 return LowerFP_TO_INT_SAT(Op, DAG); 1635 case ISD::LOAD: 1636 return LowerLoad(Op, DAG); 1637 case ISD::STORE: 1638 return LowerStore(Op, DAG); 1639 case ISD::CTPOP: 1640 case ISD::CTLZ: 1641 case ISD::CTTZ: 1642 return DAG.UnrollVectorOp(Op.getNode()); 1643 case ISD::CLEAR_CACHE: 1644 report_fatal_error("llvm.clear_cache is not supported on wasm"); 1645 case ISD::SMUL_LOHI: 1646 case ISD::UMUL_LOHI: 1647 return LowerMUL_LOHI(Op, DAG); 1648 } 1649 } 1650 1651 static bool IsWebAssemblyGlobal(SDValue Op) { 1652 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1653 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1654 1655 return false; 1656 } 1657 1658 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op, 1659 SelectionDAG &DAG) { 1660 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1661 if (!FI) 1662 return std::nullopt; 1663 1664 auto &MF = DAG.getMachineFunction(); 1665 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1666 } 1667 1668 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1669 SelectionDAG &DAG) const { 1670 SDLoc DL(Op); 1671 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1672 const SDValue &Value = SN->getValue(); 1673 const SDValue &Base = SN->getBasePtr(); 1674 const SDValue &Offset = SN->getOffset(); 1675 1676 if (IsWebAssemblyGlobal(Base)) { 1677 if (!Offset->isUndef()) 1678 report_fatal_error("unexpected offset when storing to webassembly global", 1679 false); 1680 1681 SDVTList Tys = DAG.getVTList(MVT::Other); 1682 SDValue Ops[] = {SN->getChain(), Value, Base}; 1683 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1684 SN->getMemoryVT(), SN->getMemOperand()); 1685 } 1686 1687 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1688 if (!Offset->isUndef()) 1689 report_fatal_error("unexpected offset when storing to webassembly local", 1690 false); 1691 1692 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1693 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1694 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1695 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1696 } 1697 1698 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) 1699 report_fatal_error( 1700 "Encountered an unlowerable store to the wasm_var address space", 1701 false); 1702 1703 return Op; 1704 } 1705 1706 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1707 SelectionDAG &DAG) const { 1708 SDLoc DL(Op); 1709 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1710 const SDValue &Base = LN->getBasePtr(); 1711 const SDValue &Offset = LN->getOffset(); 1712 1713 if (IsWebAssemblyGlobal(Base)) { 1714 if (!Offset->isUndef()) 1715 report_fatal_error( 1716 "unexpected offset when loading from webassembly global", false); 1717 1718 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1719 SDValue Ops[] = {LN->getChain(), Base}; 1720 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1721 LN->getMemoryVT(), LN->getMemOperand()); 1722 } 1723 1724 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1725 if (!Offset->isUndef()) 1726 report_fatal_error( 1727 "unexpected offset when loading from webassembly local", false); 1728 1729 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1730 EVT LocalVT = LN->getValueType(0); 1731 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1732 {LN->getChain(), Idx}); 1733 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1734 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1735 return Result; 1736 } 1737 1738 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) 1739 report_fatal_error( 1740 "Encountered an unlowerable load from the wasm_var address space", 1741 false); 1742 1743 return Op; 1744 } 1745 1746 SDValue WebAssemblyTargetLowering::LowerMUL_LOHI(SDValue Op, 1747 SelectionDAG &DAG) const { 1748 assert(Subtarget->hasWideArithmetic()); 1749 assert(Op.getValueType() == MVT::i64); 1750 SDLoc DL(Op); 1751 unsigned Opcode; 1752 switch (Op.getOpcode()) { 1753 case ISD::UMUL_LOHI: 1754 Opcode = WebAssemblyISD::I64_MUL_WIDE_U; 1755 break; 1756 case ISD::SMUL_LOHI: 1757 Opcode = WebAssemblyISD::I64_MUL_WIDE_S; 1758 break; 1759 default: 1760 llvm_unreachable("unexpected opcode"); 1761 } 1762 SDValue LHS = Op.getOperand(0); 1763 SDValue RHS = Op.getOperand(1); 1764 SDValue Hi = 1765 DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64), LHS, RHS); 1766 SDValue Lo(Hi.getNode(), 1); 1767 SDValue Ops[] = {Hi, Lo}; 1768 return DAG.getMergeValues(Ops, DL); 1769 } 1770 1771 SDValue WebAssemblyTargetLowering::Replace128Op(SDNode *N, 1772 SelectionDAG &DAG) const { 1773 assert(Subtarget->hasWideArithmetic()); 1774 assert(N->getValueType(0) == MVT::i128); 1775 SDLoc DL(N); 1776 unsigned Opcode; 1777 switch (N->getOpcode()) { 1778 case ISD::ADD: 1779 Opcode = WebAssemblyISD::I64_ADD128; 1780 break; 1781 case ISD::SUB: 1782 Opcode = WebAssemblyISD::I64_SUB128; 1783 break; 1784 default: 1785 llvm_unreachable("unexpected opcode"); 1786 } 1787 SDValue LHS = N->getOperand(0); 1788 SDValue RHS = N->getOperand(1); 1789 1790 SDValue C0 = DAG.getConstant(0, DL, MVT::i64); 1791 SDValue C1 = DAG.getConstant(1, DL, MVT::i64); 1792 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C0); 1793 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C1); 1794 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C0); 1795 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C1); 1796 SDValue Result_LO = DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64), 1797 LHS_0, LHS_1, RHS_0, RHS_1); 1798 SDValue Result_HI(Result_LO.getNode(), 1); 1799 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getVTList(), Result_LO, Result_HI); 1800 } 1801 1802 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1803 SelectionDAG &DAG) const { 1804 SDValue Src = Op.getOperand(2); 1805 if (isa<FrameIndexSDNode>(Src.getNode())) { 1806 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1807 // the FI to some LEA-like instruction, but since we don't have that, we 1808 // need to insert some kind of instruction that can take an FI operand and 1809 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1810 // local.copy between Op and its FI operand. 1811 SDValue Chain = Op.getOperand(0); 1812 SDLoc DL(Op); 1813 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1814 EVT VT = Src.getValueType(); 1815 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1816 : WebAssembly::COPY_I64, 1817 DL, VT, Src), 1818 0); 1819 return Op.getNode()->getNumValues() == 1 1820 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1821 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1822 Op.getNumOperands() == 4 ? Op.getOperand(3) 1823 : SDValue()); 1824 } 1825 return SDValue(); 1826 } 1827 1828 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1829 SelectionDAG &DAG) const { 1830 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1831 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1832 } 1833 1834 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1835 SelectionDAG &DAG) const { 1836 SDLoc DL(Op); 1837 1838 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1839 fail(DL, DAG, 1840 "Non-Emscripten WebAssembly hasn't implemented " 1841 "__builtin_return_address"); 1842 return SDValue(); 1843 } 1844 1845 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1846 return SDValue(); 1847 1848 unsigned Depth = Op.getConstantOperandVal(0); 1849 MakeLibCallOptions CallOptions; 1850 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1851 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1852 .first; 1853 } 1854 1855 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1856 SelectionDAG &DAG) const { 1857 // Non-zero depths are not supported by WebAssembly currently. Use the 1858 // legalizer's default expansion, which is to return 0 (what this function is 1859 // documented to do). 1860 if (Op.getConstantOperandVal(0) > 0) 1861 return SDValue(); 1862 1863 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1864 EVT VT = Op.getValueType(); 1865 Register FP = 1866 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1867 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1868 } 1869 1870 SDValue 1871 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1872 SelectionDAG &DAG) const { 1873 SDLoc DL(Op); 1874 const auto *GA = cast<GlobalAddressSDNode>(Op); 1875 1876 MachineFunction &MF = DAG.getMachineFunction(); 1877 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1878 report_fatal_error("cannot use thread-local storage without bulk memory", 1879 false); 1880 1881 const GlobalValue *GV = GA->getGlobal(); 1882 1883 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1884 // on other targets, if we have thread-local storage, only the local-exec 1885 // model is possible. 1886 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1887 ? GV->getThreadLocalMode() 1888 : GlobalValue::LocalExecTLSModel; 1889 1890 // Unsupported TLS modes 1891 assert(model != GlobalValue::NotThreadLocal); 1892 assert(model != GlobalValue::InitialExecTLSModel); 1893 1894 if (model == GlobalValue::LocalExecTLSModel || 1895 model == GlobalValue::LocalDynamicTLSModel || 1896 (model == GlobalValue::GeneralDynamicTLSModel && 1897 getTargetMachine().shouldAssumeDSOLocal(GV))) { 1898 // For DSO-local TLS variables we use offset from __tls_base 1899 1900 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1901 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1902 : WebAssembly::GLOBAL_GET_I32; 1903 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1904 1905 SDValue BaseAddr( 1906 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1907 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1908 0); 1909 1910 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1911 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1912 SDValue SymOffset = 1913 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1914 1915 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1916 } 1917 1918 assert(model == GlobalValue::GeneralDynamicTLSModel); 1919 1920 EVT VT = Op.getValueType(); 1921 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1922 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1923 GA->getOffset(), 1924 WebAssemblyII::MO_GOT_TLS)); 1925 } 1926 1927 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1928 SelectionDAG &DAG) const { 1929 SDLoc DL(Op); 1930 const auto *GA = cast<GlobalAddressSDNode>(Op); 1931 EVT VT = Op.getValueType(); 1932 assert(GA->getTargetFlags() == 0 && 1933 "Unexpected target flags on generic GlobalAddressSDNode"); 1934 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1935 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1936 1937 unsigned OperandFlags = 0; 1938 const GlobalValue *GV = GA->getGlobal(); 1939 // Since WebAssembly tables cannot yet be shared accross modules, we don't 1940 // need special treatment for tables in PIC mode. 1941 if (isPositionIndependent() && 1942 !WebAssembly::isWebAssemblyTableType(GV->getValueType())) { 1943 if (getTargetMachine().shouldAssumeDSOLocal(GV)) { 1944 MachineFunction &MF = DAG.getMachineFunction(); 1945 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1946 const char *BaseName; 1947 if (GV->getValueType()->isFunctionTy()) { 1948 BaseName = MF.createExternalSymbolName("__table_base"); 1949 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1950 } else { 1951 BaseName = MF.createExternalSymbolName("__memory_base"); 1952 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1953 } 1954 SDValue BaseAddr = 1955 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1956 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1957 1958 SDValue SymAddr = DAG.getNode( 1959 WebAssemblyISD::WrapperREL, DL, VT, 1960 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1961 OperandFlags)); 1962 1963 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1964 } 1965 OperandFlags = WebAssemblyII::MO_GOT; 1966 } 1967 1968 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1969 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1970 GA->getOffset(), OperandFlags)); 1971 } 1972 1973 SDValue 1974 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1975 SelectionDAG &DAG) const { 1976 SDLoc DL(Op); 1977 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1978 EVT VT = Op.getValueType(); 1979 assert(ES->getTargetFlags() == 0 && 1980 "Unexpected target flags on generic ExternalSymbolSDNode"); 1981 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1982 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1983 } 1984 1985 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1986 SelectionDAG &DAG) const { 1987 // There's no need for a Wrapper node because we always incorporate a jump 1988 // table operand into a BR_TABLE instruction, rather than ever 1989 // materializing it in a register. 1990 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1991 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1992 JT->getTargetFlags()); 1993 } 1994 1995 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1996 SelectionDAG &DAG) const { 1997 SDLoc DL(Op); 1998 SDValue Chain = Op.getOperand(0); 1999 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 2000 SDValue Index = Op.getOperand(2); 2001 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 2002 2003 SmallVector<SDValue, 8> Ops; 2004 Ops.push_back(Chain); 2005 Ops.push_back(Index); 2006 2007 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 2008 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 2009 2010 // Add an operand for each case. 2011 for (auto *MBB : MBBs) 2012 Ops.push_back(DAG.getBasicBlock(MBB)); 2013 2014 // Add the first MBB as a dummy default target for now. This will be replaced 2015 // with the proper default target (and the preceding range check eliminated) 2016 // if possible by WebAssemblyFixBrTableDefaults. 2017 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 2018 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 2019 } 2020 2021 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 2022 SelectionDAG &DAG) const { 2023 SDLoc DL(Op); 2024 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 2025 2026 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 2027 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2028 2029 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 2030 MFI->getVarargBufferVreg(), PtrVT); 2031 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 2032 MachinePointerInfo(SV)); 2033 } 2034 2035 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 2036 SelectionDAG &DAG) const { 2037 MachineFunction &MF = DAG.getMachineFunction(); 2038 unsigned IntNo; 2039 switch (Op.getOpcode()) { 2040 case ISD::INTRINSIC_VOID: 2041 case ISD::INTRINSIC_W_CHAIN: 2042 IntNo = Op.getConstantOperandVal(1); 2043 break; 2044 case ISD::INTRINSIC_WO_CHAIN: 2045 IntNo = Op.getConstantOperandVal(0); 2046 break; 2047 default: 2048 llvm_unreachable("Invalid intrinsic"); 2049 } 2050 SDLoc DL(Op); 2051 2052 switch (IntNo) { 2053 default: 2054 return SDValue(); // Don't custom lower most intrinsics. 2055 2056 case Intrinsic::wasm_lsda: { 2057 auto PtrVT = getPointerTy(MF.getDataLayout()); 2058 const char *SymName = MF.createExternalSymbolName( 2059 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 2060 if (isPositionIndependent()) { 2061 SDValue Node = DAG.getTargetExternalSymbol( 2062 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 2063 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 2064 SDValue BaseAddr = 2065 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 2066 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 2067 SDValue SymAddr = 2068 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 2069 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 2070 } 2071 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 2072 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 2073 } 2074 2075 case Intrinsic::wasm_shuffle: { 2076 // Drop in-chain and replace undefs, but otherwise pass through unchanged 2077 SDValue Ops[18]; 2078 size_t OpIdx = 0; 2079 Ops[OpIdx++] = Op.getOperand(1); 2080 Ops[OpIdx++] = Op.getOperand(2); 2081 while (OpIdx < 18) { 2082 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 2083 if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) { 2084 bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant; 2085 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget); 2086 } else { 2087 Ops[OpIdx++] = MaskIdx; 2088 } 2089 } 2090 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2091 } 2092 2093 case Intrinsic::thread_pointer: { 2094 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 2095 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 2096 : WebAssembly::GLOBAL_GET_I32; 2097 const char *TlsBase = MF.createExternalSymbolName("__tls_base"); 2098 return SDValue( 2099 DAG.getMachineNode(GlobalGet, DL, PtrVT, 2100 DAG.getTargetExternalSymbol(TlsBase, PtrVT)), 2101 0); 2102 } 2103 } 2104 } 2105 2106 SDValue 2107 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2108 SelectionDAG &DAG) const { 2109 SDLoc DL(Op); 2110 // If sign extension operations are disabled, allow sext_inreg only if operand 2111 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 2112 // extension operations, but allowing sext_inreg in this context lets us have 2113 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 2114 // everywhere would be simpler in this file, but would necessitate large and 2115 // brittle patterns to undo the expansion and select extract_lane_s 2116 // instructions. 2117 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 2118 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2119 return SDValue(); 2120 2121 const SDValue &Extract = Op.getOperand(0); 2122 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 2123 if (VecT.getVectorElementType().getSizeInBits() > 32) 2124 return SDValue(); 2125 MVT ExtractedLaneT = 2126 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 2127 MVT ExtractedVecT = 2128 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 2129 if (ExtractedVecT == VecT) 2130 return Op; 2131 2132 // Bitcast vector to appropriate type to ensure ISel pattern coverage 2133 const SDNode *Index = Extract.getOperand(1).getNode(); 2134 if (!isa<ConstantSDNode>(Index)) 2135 return SDValue(); 2136 unsigned IndexVal = Index->getAsZExtVal(); 2137 unsigned Scale = 2138 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 2139 assert(Scale > 1); 2140 SDValue NewIndex = 2141 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 2142 SDValue NewExtract = DAG.getNode( 2143 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 2144 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 2145 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 2146 Op.getOperand(1)); 2147 } 2148 2149 SDValue 2150 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op, 2151 SelectionDAG &DAG) const { 2152 SDLoc DL(Op); 2153 EVT VT = Op.getValueType(); 2154 SDValue Src = Op.getOperand(0); 2155 EVT SrcVT = Src.getValueType(); 2156 2157 if (SrcVT.getVectorElementType() == MVT::i1 || 2158 SrcVT.getVectorElementType() == MVT::i64) 2159 return SDValue(); 2160 2161 assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && 2162 "Unexpected extension factor."); 2163 unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); 2164 2165 if (Scale != 2 && Scale != 4 && Scale != 8) 2166 return SDValue(); 2167 2168 unsigned Ext; 2169 switch (Op.getOpcode()) { 2170 case ISD::ZERO_EXTEND_VECTOR_INREG: 2171 Ext = WebAssemblyISD::EXTEND_LOW_U; 2172 break; 2173 case ISD::SIGN_EXTEND_VECTOR_INREG: 2174 Ext = WebAssemblyISD::EXTEND_LOW_S; 2175 break; 2176 } 2177 2178 SDValue Ret = Src; 2179 while (Scale != 1) { 2180 Ret = DAG.getNode(Ext, DL, 2181 Ret.getValueType() 2182 .widenIntegerVectorElementType(*DAG.getContext()) 2183 .getHalfNumVectorElementsVT(*DAG.getContext()), 2184 Ret); 2185 Scale /= 2; 2186 } 2187 assert(Ret.getValueType() == VT); 2188 return Ret; 2189 } 2190 2191 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 2192 SDLoc DL(Op); 2193 if (Op.getValueType() != MVT::v2f64) 2194 return SDValue(); 2195 2196 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 2197 unsigned &Index) -> bool { 2198 switch (Op.getOpcode()) { 2199 case ISD::SINT_TO_FP: 2200 Opcode = WebAssemblyISD::CONVERT_LOW_S; 2201 break; 2202 case ISD::UINT_TO_FP: 2203 Opcode = WebAssemblyISD::CONVERT_LOW_U; 2204 break; 2205 case ISD::FP_EXTEND: 2206 Opcode = WebAssemblyISD::PROMOTE_LOW; 2207 break; 2208 default: 2209 return false; 2210 } 2211 2212 auto ExtractVector = Op.getOperand(0); 2213 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2214 return false; 2215 2216 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2217 return false; 2218 2219 SrcVec = ExtractVector.getOperand(0); 2220 Index = ExtractVector.getConstantOperandVal(1); 2221 return true; 2222 }; 2223 2224 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2225 SDValue LHSSrcVec, RHSSrcVec; 2226 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2227 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2228 return SDValue(); 2229 2230 if (LHSOpcode != RHSOpcode) 2231 return SDValue(); 2232 2233 MVT ExpectedSrcVT; 2234 switch (LHSOpcode) { 2235 case WebAssemblyISD::CONVERT_LOW_S: 2236 case WebAssemblyISD::CONVERT_LOW_U: 2237 ExpectedSrcVT = MVT::v4i32; 2238 break; 2239 case WebAssemblyISD::PROMOTE_LOW: 2240 ExpectedSrcVT = MVT::v4f32; 2241 break; 2242 } 2243 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2244 return SDValue(); 2245 2246 auto Src = LHSSrcVec; 2247 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2248 // Shuffle the source vector so that the converted lanes are the low lanes. 2249 Src = DAG.getVectorShuffle( 2250 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2251 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2252 } 2253 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2254 } 2255 2256 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2257 SelectionDAG &DAG) const { 2258 MVT VT = Op.getSimpleValueType(); 2259 if (VT == MVT::v8f16) { 2260 // BUILD_VECTOR can't handle FP16 operands since Wasm doesn't have a scaler 2261 // FP16 type, so cast them to I16s. 2262 MVT IVT = VT.changeVectorElementType(MVT::i16); 2263 SmallVector<SDValue, 8> NewOps; 2264 for (unsigned I = 0, E = Op.getNumOperands(); I < E; ++I) 2265 NewOps.push_back(DAG.getBitcast(MVT::i16, Op.getOperand(I))); 2266 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(), IVT, NewOps); 2267 return DAG.getBitcast(VT, Res); 2268 } 2269 2270 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2271 return ConvertLow; 2272 2273 SDLoc DL(Op); 2274 const EVT VecT = Op.getValueType(); 2275 const EVT LaneT = Op.getOperand(0).getValueType(); 2276 const size_t Lanes = Op.getNumOperands(); 2277 bool CanSwizzle = VecT == MVT::v16i8; 2278 2279 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2280 // possible number of lanes at once followed by a sequence of replace_lane 2281 // instructions to individually initialize any remaining lanes. 2282 2283 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2284 // swizzled lanes should be given greater weight. 2285 2286 // TODO: Investigate looping rather than always extracting/replacing specific 2287 // lanes to fill gaps. 2288 2289 auto IsConstant = [](const SDValue &V) { 2290 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2291 }; 2292 2293 // Returns the source vector and index vector pair if they exist. Checks for: 2294 // (extract_vector_elt 2295 // $src, 2296 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2297 // ) 2298 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2299 auto Bail = std::make_pair(SDValue(), SDValue()); 2300 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2301 return Bail; 2302 const SDValue &SwizzleSrc = Lane->getOperand(0); 2303 const SDValue &IndexExt = Lane->getOperand(1); 2304 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2305 return Bail; 2306 const SDValue &Index = IndexExt->getOperand(0); 2307 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2308 return Bail; 2309 const SDValue &SwizzleIndices = Index->getOperand(0); 2310 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2311 SwizzleIndices.getValueType() != MVT::v16i8 || 2312 Index->getOperand(1)->getOpcode() != ISD::Constant || 2313 Index->getConstantOperandVal(1) != I) 2314 return Bail; 2315 return std::make_pair(SwizzleSrc, SwizzleIndices); 2316 }; 2317 2318 // If the lane is extracted from another vector at a constant index, return 2319 // that vector. The source vector must not have more lanes than the dest 2320 // because the shufflevector indices are in terms of the destination lanes and 2321 // would not be able to address the smaller individual source lanes. 2322 auto GetShuffleSrc = [&](const SDValue &Lane) { 2323 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2324 return SDValue(); 2325 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2326 return SDValue(); 2327 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2328 VecT.getVectorNumElements()) 2329 return SDValue(); 2330 return Lane->getOperand(0); 2331 }; 2332 2333 using ValueEntry = std::pair<SDValue, size_t>; 2334 SmallVector<ValueEntry, 16> SplatValueCounts; 2335 2336 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2337 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2338 2339 using ShuffleEntry = std::pair<SDValue, size_t>; 2340 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2341 2342 auto AddCount = [](auto &Counts, const auto &Val) { 2343 auto CountIt = 2344 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2345 if (CountIt == Counts.end()) { 2346 Counts.emplace_back(Val, 1); 2347 } else { 2348 CountIt->second++; 2349 } 2350 }; 2351 2352 auto GetMostCommon = [](auto &Counts) { 2353 auto CommonIt = 2354 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2355 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2356 return *CommonIt; 2357 }; 2358 2359 size_t NumConstantLanes = 0; 2360 2361 // Count eligible lanes for each type of vector creation op 2362 for (size_t I = 0; I < Lanes; ++I) { 2363 const SDValue &Lane = Op->getOperand(I); 2364 if (Lane.isUndef()) 2365 continue; 2366 2367 AddCount(SplatValueCounts, Lane); 2368 2369 if (IsConstant(Lane)) 2370 NumConstantLanes++; 2371 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2372 AddCount(ShuffleCounts, ShuffleSrc); 2373 if (CanSwizzle) { 2374 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2375 if (SwizzleSrcs.first) 2376 AddCount(SwizzleCounts, SwizzleSrcs); 2377 } 2378 } 2379 2380 SDValue SplatValue; 2381 size_t NumSplatLanes; 2382 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2383 2384 SDValue SwizzleSrc; 2385 SDValue SwizzleIndices; 2386 size_t NumSwizzleLanes = 0; 2387 if (SwizzleCounts.size()) 2388 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2389 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2390 2391 // Shuffles can draw from up to two vectors, so find the two most common 2392 // sources. 2393 SDValue ShuffleSrc1, ShuffleSrc2; 2394 size_t NumShuffleLanes = 0; 2395 if (ShuffleCounts.size()) { 2396 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2397 llvm::erase_if(ShuffleCounts, 2398 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2399 } 2400 if (ShuffleCounts.size()) { 2401 size_t AdditionalShuffleLanes; 2402 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2403 GetMostCommon(ShuffleCounts); 2404 NumShuffleLanes += AdditionalShuffleLanes; 2405 } 2406 2407 // Predicate returning true if the lane is properly initialized by the 2408 // original instruction 2409 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2410 SDValue Result; 2411 // Prefer swizzles over shuffles over vector consts over splats 2412 if (NumSwizzleLanes >= NumShuffleLanes && 2413 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2414 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2415 SwizzleIndices); 2416 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2417 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2418 return Swizzled == GetSwizzleSrcs(I, Lane); 2419 }; 2420 } else if (NumShuffleLanes >= NumConstantLanes && 2421 NumShuffleLanes >= NumSplatLanes) { 2422 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2423 size_t DestLaneCount = VecT.getVectorNumElements(); 2424 size_t Scale1 = 1; 2425 size_t Scale2 = 1; 2426 SDValue Src1 = ShuffleSrc1; 2427 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2428 if (Src1.getValueType() != VecT) { 2429 size_t LaneSize = 2430 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2431 assert(LaneSize > DestLaneSize); 2432 Scale1 = LaneSize / DestLaneSize; 2433 Src1 = DAG.getBitcast(VecT, Src1); 2434 } 2435 if (Src2.getValueType() != VecT) { 2436 size_t LaneSize = 2437 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2438 assert(LaneSize > DestLaneSize); 2439 Scale2 = LaneSize / DestLaneSize; 2440 Src2 = DAG.getBitcast(VecT, Src2); 2441 } 2442 2443 int Mask[16]; 2444 assert(DestLaneCount <= 16); 2445 for (size_t I = 0; I < DestLaneCount; ++I) { 2446 const SDValue &Lane = Op->getOperand(I); 2447 SDValue Src = GetShuffleSrc(Lane); 2448 if (Src == ShuffleSrc1) { 2449 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2450 } else if (Src && Src == ShuffleSrc2) { 2451 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2452 } else { 2453 Mask[I] = -1; 2454 } 2455 } 2456 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2457 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2458 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2459 auto Src = GetShuffleSrc(Lane); 2460 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2461 }; 2462 } else if (NumConstantLanes >= NumSplatLanes) { 2463 SmallVector<SDValue, 16> ConstLanes; 2464 for (const SDValue &Lane : Op->op_values()) { 2465 if (IsConstant(Lane)) { 2466 // Values may need to be fixed so that they will sign extend to be 2467 // within the expected range during ISel. Check whether the value is in 2468 // bounds based on the lane bit width and if it is out of bounds, lop 2469 // off the extra bits and subtract 2^n to reflect giving the high bit 2470 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2471 // cannot possibly be out of range. 2472 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2473 int64_t Val = Const ? Const->getSExtValue() : 0; 2474 uint64_t LaneBits = 128 / Lanes; 2475 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2476 "Unexpected out of bounds negative value"); 2477 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2478 uint64_t Mask = (1ll << LaneBits) - 1; 2479 auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask; 2480 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2481 } else { 2482 ConstLanes.push_back(Lane); 2483 } 2484 } else if (LaneT.isFloatingPoint()) { 2485 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2486 } else { 2487 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2488 } 2489 } 2490 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2491 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2492 return IsConstant(Lane); 2493 }; 2494 } else { 2495 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits(); 2496 if (NumSplatLanes == 1 && Op->getOperand(0) == SplatValue && 2497 (DestLaneSize == 32 || DestLaneSize == 64)) { 2498 // Could be selected to load_zero. 2499 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecT, SplatValue); 2500 } else { 2501 // Use a splat (which might be selected as a load splat) 2502 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2503 } 2504 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2505 return Lane == SplatValue; 2506 }; 2507 } 2508 2509 assert(Result); 2510 assert(IsLaneConstructed); 2511 2512 // Add replace_lane instructions for any unhandled values 2513 for (size_t I = 0; I < Lanes; ++I) { 2514 const SDValue &Lane = Op->getOperand(I); 2515 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2516 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2517 DAG.getConstant(I, DL, MVT::i32)); 2518 } 2519 2520 return Result; 2521 } 2522 2523 SDValue 2524 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2525 SelectionDAG &DAG) const { 2526 SDLoc DL(Op); 2527 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2528 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2529 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2530 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2531 2532 // Space for two vector args and sixteen mask indices 2533 SDValue Ops[18]; 2534 size_t OpIdx = 0; 2535 Ops[OpIdx++] = Op.getOperand(0); 2536 Ops[OpIdx++] = Op.getOperand(1); 2537 2538 // Expand mask indices to byte indices and materialize them as operands 2539 for (int M : Mask) { 2540 for (size_t J = 0; J < LaneBytes; ++J) { 2541 // Lower undefs (represented by -1 in mask) to {0..J}, which use a 2542 // whole lane of vector input, to allow further reduction at VM. E.g. 2543 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. 2544 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; 2545 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2546 } 2547 } 2548 2549 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2550 } 2551 2552 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2553 SelectionDAG &DAG) const { 2554 SDLoc DL(Op); 2555 // The legalizer does not know how to expand the unsupported comparison modes 2556 // of i64x2 vectors, so we manually unroll them here. 2557 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2558 SmallVector<SDValue, 2> LHS, RHS; 2559 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2560 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2561 const SDValue &CC = Op->getOperand(2); 2562 auto MakeLane = [&](unsigned I) { 2563 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2564 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2565 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2566 }; 2567 return DAG.getBuildVector(Op->getValueType(0), DL, 2568 {MakeLane(0), MakeLane(1)}); 2569 } 2570 2571 SDValue 2572 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2573 SelectionDAG &DAG) const { 2574 // Allow constant lane indices, expand variable lane indices 2575 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2576 if (isa<ConstantSDNode>(IdxNode)) { 2577 // Ensure the index type is i32 to match the tablegen patterns 2578 uint64_t Idx = IdxNode->getAsZExtVal(); 2579 SmallVector<SDValue, 3> Ops(Op.getNode()->ops()); 2580 Ops[Op.getNumOperands() - 1] = 2581 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); 2582 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); 2583 } 2584 // Perform default expansion 2585 return SDValue(); 2586 } 2587 2588 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2589 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2590 // 32-bit and 64-bit unrolled shifts will have proper semantics 2591 if (LaneT.bitsGE(MVT::i32)) 2592 return DAG.UnrollVectorOp(Op.getNode()); 2593 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2594 SDLoc DL(Op); 2595 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2596 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2597 unsigned ShiftOpcode = Op.getOpcode(); 2598 SmallVector<SDValue, 16> ShiftedElements; 2599 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2600 SmallVector<SDValue, 16> ShiftElements; 2601 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2602 SmallVector<SDValue, 16> UnrolledOps; 2603 for (size_t i = 0; i < NumLanes; ++i) { 2604 SDValue MaskedShiftValue = 2605 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2606 SDValue ShiftedValue = ShiftedElements[i]; 2607 if (ShiftOpcode == ISD::SRA) 2608 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2609 ShiftedValue, DAG.getValueType(LaneT)); 2610 UnrolledOps.push_back( 2611 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2612 } 2613 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2614 } 2615 2616 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2617 SelectionDAG &DAG) const { 2618 SDLoc DL(Op); 2619 2620 // Only manually lower vector shifts 2621 assert(Op.getSimpleValueType().isVector()); 2622 2623 uint64_t LaneBits = Op.getValueType().getScalarSizeInBits(); 2624 auto ShiftVal = Op.getOperand(1); 2625 2626 // Try to skip bitmask operation since it is implied inside shift instruction 2627 auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) { 2628 if (MaskOp.getOpcode() != ISD::AND) 2629 return MaskOp; 2630 SDValue LHS = MaskOp.getOperand(0); 2631 SDValue RHS = MaskOp.getOperand(1); 2632 if (MaskOp.getValueType().isVector()) { 2633 APInt MaskVal; 2634 if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal)) 2635 std::swap(LHS, RHS); 2636 2637 if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) && 2638 MaskVal == MaskBits) 2639 MaskOp = LHS; 2640 } else { 2641 if (!isa<ConstantSDNode>(RHS.getNode())) 2642 std::swap(LHS, RHS); 2643 2644 auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode()); 2645 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits) 2646 MaskOp = LHS; 2647 } 2648 2649 return MaskOp; 2650 }; 2651 2652 // Skip vector and operation 2653 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2654 ShiftVal = DAG.getSplatValue(ShiftVal); 2655 if (!ShiftVal) 2656 return unrollVectorShift(Op, DAG); 2657 2658 // Skip scalar and operation 2659 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2660 // Use anyext because none of the high bits can affect the shift 2661 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2662 2663 unsigned Opcode; 2664 switch (Op.getOpcode()) { 2665 case ISD::SHL: 2666 Opcode = WebAssemblyISD::VEC_SHL; 2667 break; 2668 case ISD::SRA: 2669 Opcode = WebAssemblyISD::VEC_SHR_S; 2670 break; 2671 case ISD::SRL: 2672 Opcode = WebAssemblyISD::VEC_SHR_U; 2673 break; 2674 default: 2675 llvm_unreachable("unexpected opcode"); 2676 } 2677 2678 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2679 } 2680 2681 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2682 SelectionDAG &DAG) const { 2683 SDLoc DL(Op); 2684 EVT ResT = Op.getValueType(); 2685 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2686 2687 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2688 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2689 return Op; 2690 2691 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2692 return Op; 2693 2694 if (ResT == MVT::v8i16 && SatVT == MVT::i16) 2695 return Op; 2696 2697 return SDValue(); 2698 } 2699 2700 //===----------------------------------------------------------------------===// 2701 // Custom DAG combine hooks 2702 //===----------------------------------------------------------------------===// 2703 static SDValue 2704 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2705 auto &DAG = DCI.DAG; 2706 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2707 2708 // Hoist vector bitcasts that don't change the number of lanes out of unary 2709 // shuffles, where they are less likely to get in the way of other combines. 2710 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2711 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2712 SDValue Bitcast = N->getOperand(0); 2713 if (Bitcast.getOpcode() != ISD::BITCAST) 2714 return SDValue(); 2715 if (!N->getOperand(1).isUndef()) 2716 return SDValue(); 2717 SDValue CastOp = Bitcast.getOperand(0); 2718 EVT SrcType = CastOp.getValueType(); 2719 EVT DstType = Bitcast.getValueType(); 2720 if (!SrcType.is128BitVector() || 2721 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2722 return SDValue(); 2723 SDValue NewShuffle = DAG.getVectorShuffle( 2724 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2725 return DAG.getBitcast(DstType, NewShuffle); 2726 } 2727 2728 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get 2729 /// split up into scalar instructions during legalization, and the vector 2730 /// extending instructions are selected in performVectorExtendCombine below. 2731 static SDValue 2732 performVectorExtendToFPCombine(SDNode *N, 2733 TargetLowering::DAGCombinerInfo &DCI) { 2734 auto &DAG = DCI.DAG; 2735 assert(N->getOpcode() == ISD::UINT_TO_FP || 2736 N->getOpcode() == ISD::SINT_TO_FP); 2737 2738 EVT InVT = N->getOperand(0)->getValueType(0); 2739 EVT ResVT = N->getValueType(0); 2740 MVT ExtVT; 2741 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) 2742 ExtVT = MVT::v4i32; 2743 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) 2744 ExtVT = MVT::v2i32; 2745 else 2746 return SDValue(); 2747 2748 unsigned Op = 2749 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2750 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); 2751 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); 2752 } 2753 2754 static SDValue 2755 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2756 auto &DAG = DCI.DAG; 2757 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2758 N->getOpcode() == ISD::ZERO_EXTEND); 2759 2760 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2761 // possible before the extract_subvector can be expanded. 2762 auto Extract = N->getOperand(0); 2763 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2764 return SDValue(); 2765 auto Source = Extract.getOperand(0); 2766 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2767 if (IndexNode == nullptr) 2768 return SDValue(); 2769 auto Index = IndexNode->getZExtValue(); 2770 2771 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2772 // extracted subvector is the low or high half of its source. 2773 EVT ResVT = N->getValueType(0); 2774 if (ResVT == MVT::v8i16) { 2775 if (Extract.getValueType() != MVT::v8i8 || 2776 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2777 return SDValue(); 2778 } else if (ResVT == MVT::v4i32) { 2779 if (Extract.getValueType() != MVT::v4i16 || 2780 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2781 return SDValue(); 2782 } else if (ResVT == MVT::v2i64) { 2783 if (Extract.getValueType() != MVT::v2i32 || 2784 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2785 return SDValue(); 2786 } else { 2787 return SDValue(); 2788 } 2789 2790 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2791 bool IsLow = Index == 0; 2792 2793 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2794 : WebAssemblyISD::EXTEND_HIGH_S) 2795 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2796 : WebAssemblyISD::EXTEND_HIGH_U); 2797 2798 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2799 } 2800 2801 static SDValue 2802 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2803 auto &DAG = DCI.DAG; 2804 2805 auto GetWasmConversionOp = [](unsigned Op) { 2806 switch (Op) { 2807 case ISD::FP_TO_SINT_SAT: 2808 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2809 case ISD::FP_TO_UINT_SAT: 2810 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2811 case ISD::FP_ROUND: 2812 return WebAssemblyISD::DEMOTE_ZERO; 2813 } 2814 llvm_unreachable("unexpected op"); 2815 }; 2816 2817 auto IsZeroSplat = [](SDValue SplatVal) { 2818 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2819 APInt SplatValue, SplatUndef; 2820 unsigned SplatBitSize; 2821 bool HasAnyUndefs; 2822 // Endianness doesn't matter in this context because we are looking for 2823 // an all-zero value. 2824 return Splat && 2825 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2826 HasAnyUndefs) && 2827 SplatValue == 0; 2828 }; 2829 2830 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2831 // Combine this: 2832 // 2833 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2834 // 2835 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2836 // 2837 // Or this: 2838 // 2839 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2840 // 2841 // into (f32x4.demote_zero_f64x2 $x). 2842 EVT ResVT; 2843 EVT ExpectedConversionType; 2844 auto Conversion = N->getOperand(0); 2845 auto ConversionOp = Conversion.getOpcode(); 2846 switch (ConversionOp) { 2847 case ISD::FP_TO_SINT_SAT: 2848 case ISD::FP_TO_UINT_SAT: 2849 ResVT = MVT::v4i32; 2850 ExpectedConversionType = MVT::v2i32; 2851 break; 2852 case ISD::FP_ROUND: 2853 ResVT = MVT::v4f32; 2854 ExpectedConversionType = MVT::v2f32; 2855 break; 2856 default: 2857 return SDValue(); 2858 } 2859 2860 if (N->getValueType(0) != ResVT) 2861 return SDValue(); 2862 2863 if (Conversion.getValueType() != ExpectedConversionType) 2864 return SDValue(); 2865 2866 auto Source = Conversion.getOperand(0); 2867 if (Source.getValueType() != MVT::v2f64) 2868 return SDValue(); 2869 2870 if (!IsZeroSplat(N->getOperand(1)) || 2871 N->getOperand(1).getValueType() != ExpectedConversionType) 2872 return SDValue(); 2873 2874 unsigned Op = GetWasmConversionOp(ConversionOp); 2875 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2876 } 2877 2878 // Combine this: 2879 // 2880 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2881 // 2882 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2883 // 2884 // Or this: 2885 // 2886 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2887 // 2888 // into (f32x4.demote_zero_f64x2 $x). 2889 EVT ResVT; 2890 auto ConversionOp = N->getOpcode(); 2891 switch (ConversionOp) { 2892 case ISD::FP_TO_SINT_SAT: 2893 case ISD::FP_TO_UINT_SAT: 2894 ResVT = MVT::v4i32; 2895 break; 2896 case ISD::FP_ROUND: 2897 ResVT = MVT::v4f32; 2898 break; 2899 default: 2900 llvm_unreachable("unexpected op"); 2901 } 2902 2903 if (N->getValueType(0) != ResVT) 2904 return SDValue(); 2905 2906 auto Concat = N->getOperand(0); 2907 if (Concat.getValueType() != MVT::v4f64) 2908 return SDValue(); 2909 2910 auto Source = Concat.getOperand(0); 2911 if (Source.getValueType() != MVT::v2f64) 2912 return SDValue(); 2913 2914 if (!IsZeroSplat(Concat.getOperand(1)) || 2915 Concat.getOperand(1).getValueType() != MVT::v2f64) 2916 return SDValue(); 2917 2918 unsigned Op = GetWasmConversionOp(ConversionOp); 2919 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2920 } 2921 2922 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2923 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2924 const SDLoc &DL, unsigned VectorWidth) { 2925 EVT VT = Vec.getValueType(); 2926 EVT ElVT = VT.getVectorElementType(); 2927 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2928 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2929 VT.getVectorNumElements() / Factor); 2930 2931 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2932 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2933 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2934 2935 // This is the index of the first element of the VectorWidth-bit chunk 2936 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2937 IdxVal &= ~(ElemsPerChunk - 1); 2938 2939 // If the input is a buildvector just emit a smaller one. 2940 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2941 return DAG.getBuildVector(ResultVT, DL, 2942 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2943 2944 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2945 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2946 } 2947 2948 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2949 // is the expected destination value type after recursion. In is the initial 2950 // input. Note that the input should have enough leading zero bits to prevent 2951 // NARROW_U from saturating results. 2952 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2953 SelectionDAG &DAG) { 2954 EVT SrcVT = In.getValueType(); 2955 2956 // No truncation required, we might get here due to recursive calls. 2957 if (SrcVT == DstVT) 2958 return In; 2959 2960 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2961 unsigned NumElems = SrcVT.getVectorNumElements(); 2962 if (!isPowerOf2_32(NumElems)) 2963 return SDValue(); 2964 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2965 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2966 2967 LLVMContext &Ctx = *DAG.getContext(); 2968 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2969 2970 // Narrow to the largest type possible: 2971 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2972 EVT InVT = MVT::i16, OutVT = MVT::i8; 2973 if (SrcVT.getScalarSizeInBits() > 16) { 2974 InVT = MVT::i32; 2975 OutVT = MVT::i16; 2976 } 2977 unsigned SubSizeInBits = SrcSizeInBits / 2; 2978 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2979 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2980 2981 // Split lower/upper subvectors. 2982 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2983 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2984 2985 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2986 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2987 Lo = DAG.getBitcast(InVT, Lo); 2988 Hi = DAG.getBitcast(InVT, Hi); 2989 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2990 return DAG.getBitcast(DstVT, Res); 2991 } 2992 2993 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2994 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2995 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2996 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2997 2998 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2999 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 3000 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 3001 } 3002 3003 static SDValue performTruncateCombine(SDNode *N, 3004 TargetLowering::DAGCombinerInfo &DCI) { 3005 auto &DAG = DCI.DAG; 3006 3007 SDValue In = N->getOperand(0); 3008 EVT InVT = In.getValueType(); 3009 if (!InVT.isSimple()) 3010 return SDValue(); 3011 3012 EVT OutVT = N->getValueType(0); 3013 if (!OutVT.isVector()) 3014 return SDValue(); 3015 3016 EVT OutSVT = OutVT.getVectorElementType(); 3017 EVT InSVT = InVT.getVectorElementType(); 3018 // Currently only cover truncate to v16i8 or v8i16. 3019 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 3020 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 3021 return SDValue(); 3022 3023 SDLoc DL(N); 3024 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 3025 OutVT.getScalarSizeInBits()); 3026 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 3027 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 3028 } 3029 3030 static SDValue performBitcastCombine(SDNode *N, 3031 TargetLowering::DAGCombinerInfo &DCI) { 3032 auto &DAG = DCI.DAG; 3033 SDLoc DL(N); 3034 SDValue Src = N->getOperand(0); 3035 EVT VT = N->getValueType(0); 3036 EVT SrcVT = Src.getValueType(); 3037 3038 // bitcast <N x i1> to iN 3039 // ==> bitmask 3040 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 3041 SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) { 3042 unsigned NumElts = SrcVT.getVectorNumElements(); 3043 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3044 return SDValue(); 3045 EVT Width = MVT::getIntegerVT(128 / NumElts); 3046 return DAG.getZExtOrTrunc( 3047 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 3048 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32), 3049 DAG.getSExtOrTrunc(N->getOperand(0), DL, 3050 SrcVT.changeVectorElementType(Width))}), 3051 DL, VT); 3052 } 3053 3054 return SDValue(); 3055 } 3056 3057 static SDValue performSETCCCombine(SDNode *N, 3058 TargetLowering::DAGCombinerInfo &DCI) { 3059 auto &DAG = DCI.DAG; 3060 3061 SDValue LHS = N->getOperand(0); 3062 SDValue RHS = N->getOperand(1); 3063 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 3064 SDLoc DL(N); 3065 EVT VT = N->getValueType(0); 3066 3067 // setcc (iN (bitcast (vNi1 X))), 0, ne 3068 // ==> any_true (vNi1 X) 3069 // setcc (iN (bitcast (vNi1 X))), 0, eq 3070 // ==> xor (any_true (vNi1 X)), -1 3071 // setcc (iN (bitcast (vNi1 X))), -1, eq 3072 // ==> all_true (vNi1 X) 3073 // setcc (iN (bitcast (vNi1 X))), -1, ne 3074 // ==> xor (all_true (vNi1 X)), -1 3075 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 3076 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3077 (isNullConstant(RHS) || isAllOnesConstant(RHS)) && 3078 LHS->getOpcode() == ISD::BITCAST) { 3079 EVT FromVT = LHS->getOperand(0).getValueType(); 3080 if (FromVT.isFixedLengthVector() && 3081 FromVT.getVectorElementType() == MVT::i1) { 3082 int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue 3083 : Intrinsic::wasm_alltrue; 3084 unsigned NumElts = FromVT.getVectorNumElements(); 3085 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3086 return SDValue(); 3087 EVT Width = MVT::getIntegerVT(128 / NumElts); 3088 SDValue Ret = DAG.getZExtOrTrunc( 3089 DAG.getNode( 3090 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 3091 {DAG.getConstant(Intrin, DL, MVT::i32), 3092 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, 3093 FromVT.changeVectorElementType(Width))}), 3094 DL, MVT::i1); 3095 if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) || 3096 (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) { 3097 Ret = DAG.getNOT(DL, Ret, MVT::i1); 3098 } 3099 return DAG.getZExtOrTrunc(Ret, DL, VT); 3100 } 3101 } 3102 3103 return SDValue(); 3104 } 3105 3106 SDValue 3107 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 3108 DAGCombinerInfo &DCI) const { 3109 switch (N->getOpcode()) { 3110 default: 3111 return SDValue(); 3112 case ISD::BITCAST: 3113 return performBitcastCombine(N, DCI); 3114 case ISD::SETCC: 3115 return performSETCCCombine(N, DCI); 3116 case ISD::VECTOR_SHUFFLE: 3117 return performVECTOR_SHUFFLECombine(N, DCI); 3118 case ISD::SIGN_EXTEND: 3119 case ISD::ZERO_EXTEND: 3120 return performVectorExtendCombine(N, DCI); 3121 case ISD::UINT_TO_FP: 3122 case ISD::SINT_TO_FP: 3123 return performVectorExtendToFPCombine(N, DCI); 3124 case ISD::FP_TO_SINT_SAT: 3125 case ISD::FP_TO_UINT_SAT: 3126 case ISD::FP_ROUND: 3127 case ISD::CONCAT_VECTORS: 3128 return performVectorTruncZeroCombine(N, DCI); 3129 case ISD::TRUNCATE: 3130 return performTruncateCombine(N, DCI); 3131 } 3132 } 3133