xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision 9ae92d70561bcc95a7f818920238e764253d9758)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "WebAssemblyUtilities.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsWebAssembly.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetOptions.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-lower"
41 
42 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
43     const TargetMachine &TM, const WebAssemblySubtarget &STI)
44     : TargetLowering(TM), Subtarget(&STI) {
45   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
46 
47   // Booleans always contain 0 or 1.
48   setBooleanContents(ZeroOrOneBooleanContent);
49   // Except in SIMD vectors
50   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51   // We don't know the microarchitecture here, so just reduce register pressure.
52   setSchedulingPreference(Sched::RegPressure);
53   // Tell ISel that we have a stack pointer.
54   setStackPointerRegisterToSaveRestore(
55       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
56   // Set up the register classes.
57   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
58   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
59   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
60   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
61   if (Subtarget->hasSIMD128()) {
62     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
63     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68   }
69   if (Subtarget->hasFP16()) {
70     addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass);
71   }
72   if (Subtarget->hasReferenceTypes()) {
73     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
74     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
75     if (Subtarget->hasExceptionHandling()) {
76       addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass);
77     }
78   }
79   // Compute derived properties from the register classes.
80   computeRegisterProperties(Subtarget->getRegisterInfo());
81 
82   // Transform loads and stores to pointers in address space 1 to loads and
83   // stores to WebAssembly global variables, outside linear memory.
84   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
85     setOperationAction(ISD::LOAD, T, Custom);
86     setOperationAction(ISD::STORE, T, Custom);
87   }
88   if (Subtarget->hasSIMD128()) {
89     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
90                    MVT::v2f64}) {
91       setOperationAction(ISD::LOAD, T, Custom);
92       setOperationAction(ISD::STORE, T, Custom);
93     }
94   }
95   if (Subtarget->hasFP16()) {
96     setOperationAction(ISD::LOAD, MVT::v8f16, Custom);
97     setOperationAction(ISD::STORE, MVT::v8f16, Custom);
98   }
99   if (Subtarget->hasReferenceTypes()) {
100     // We need custom load and store lowering for both externref, funcref and
101     // Other. The MVT::Other here represents tables of reference types.
102     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
103       setOperationAction(ISD::LOAD, T, Custom);
104       setOperationAction(ISD::STORE, T, Custom);
105     }
106   }
107 
108   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
109   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
110   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
111   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
112   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
113   setOperationAction(ISD::BRIND, MVT::Other, Custom);
114   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom);
115 
116   // Take the default expansion for va_arg, va_copy, and va_end. There is no
117   // default action for va_start, so we do that custom.
118   setOperationAction(ISD::VASTART, MVT::Other, Custom);
119   setOperationAction(ISD::VAARG, MVT::Other, Expand);
120   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
121   setOperationAction(ISD::VAEND, MVT::Other, Expand);
122 
123   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
124     // Don't expand the floating-point types to constant pools.
125     setOperationAction(ISD::ConstantFP, T, Legal);
126     // Expand floating-point comparisons.
127     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
128                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
129       setCondCodeAction(CC, T, Expand);
130     // Expand floating-point library function operators.
131     for (auto Op :
132          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
133       setOperationAction(Op, T, Expand);
134     // Note supported floating-point library function operators that otherwise
135     // default to expand.
136     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
137                     ISD::FRINT, ISD::FROUNDEVEN})
138       setOperationAction(Op, T, Legal);
139     // Support minimum and maximum, which otherwise default to expand.
140     setOperationAction(ISD::FMINIMUM, T, Legal);
141     setOperationAction(ISD::FMAXIMUM, T, Legal);
142     // WebAssembly currently has no builtin f16 support.
143     setOperationAction(ISD::FP16_TO_FP, T, Expand);
144     setOperationAction(ISD::FP_TO_FP16, T, Expand);
145     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
146     setTruncStoreAction(T, MVT::f16, Expand);
147   }
148 
149   if (Subtarget->hasFP16()) {
150     setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
151     setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
152   }
153 
154   // Expand unavailable integer operations.
155   for (auto Op :
156        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
157         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
158         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
159     for (auto T : {MVT::i32, MVT::i64})
160       setOperationAction(Op, T, Expand);
161     if (Subtarget->hasSIMD128())
162       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
163         setOperationAction(Op, T, Expand);
164   }
165 
166   if (Subtarget->hasWideArithmetic()) {
167     setOperationAction(ISD::ADD, MVT::i128, Custom);
168     setOperationAction(ISD::SUB, MVT::i128, Custom);
169     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom);
170     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
171   }
172 
173   if (Subtarget->hasNontrappingFPToInt())
174     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
175       for (auto T : {MVT::i32, MVT::i64})
176         setOperationAction(Op, T, Custom);
177 
178   // SIMD-specific configuration
179   if (Subtarget->hasSIMD128()) {
180     // Combine vector mask reductions into alltrue/anytrue
181     setTargetDAGCombine(ISD::SETCC);
182 
183     // Convert vector to integer bitcasts to bitmask
184     setTargetDAGCombine(ISD::BITCAST);
185 
186     // Hoist bitcasts out of shuffles
187     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
188 
189     // Combine extends of extract_subvectors into widening ops
190     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
191 
192     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
193     // conversions ops
194     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
195                          ISD::EXTRACT_SUBVECTOR});
196 
197     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
198     // into conversion ops
199     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
200                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
201 
202     setTargetDAGCombine(ISD::TRUNCATE);
203 
204     // Support saturating add/sub for i8x16 and i16x8
205     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
206       for (auto T : {MVT::v16i8, MVT::v8i16})
207         setOperationAction(Op, T, Legal);
208 
209     // Support integer abs
210     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
211       setOperationAction(ISD::ABS, T, Legal);
212 
213     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
214     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
215                    MVT::v2f64})
216       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
217 
218     if (Subtarget->hasFP16())
219       setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom);
220 
221     // We have custom shuffle lowering to expose the shuffle mask
222     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
223                    MVT::v2f64})
224       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
225 
226     // Support splatting
227     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
228                    MVT::v2f64})
229       setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
230 
231     // Custom lowering since wasm shifts must have a scalar shift amount
232     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
233       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
234         setOperationAction(Op, T, Custom);
235 
236     // Custom lower lane accesses to expand out variable indices
237     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
238       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
239                      MVT::v2f64})
240         setOperationAction(Op, T, Custom);
241 
242     // There is no i8x16.mul instruction
243     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
244 
245     // There is no vector conditional select instruction
246     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
247                    MVT::v2f64})
248       setOperationAction(ISD::SELECT_CC, T, Expand);
249 
250     // Expand integer operations supported for scalars but not SIMD
251     for (auto Op :
252          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
253       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
254         setOperationAction(Op, T, Expand);
255 
256     // But we do have integer min and max operations
257     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
258       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
259         setOperationAction(Op, T, Legal);
260 
261     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
262     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
263     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
264     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
265 
266     // Custom lower bit counting operations for other types to scalarize them.
267     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
268       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
269         setOperationAction(Op, T, Custom);
270 
271     // Expand float operations supported for scalars but not SIMD
272     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
273                     ISD::FEXP, ISD::FEXP2})
274       for (auto T : {MVT::v4f32, MVT::v2f64})
275         setOperationAction(Op, T, Expand);
276 
277     // Unsigned comparison operations are unavailable for i64x2 vectors.
278     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
279       setCondCodeAction(CC, MVT::v2i64, Custom);
280 
281     // 64x2 conversions are not in the spec
282     for (auto Op :
283          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
284       for (auto T : {MVT::v2i64, MVT::v2f64})
285         setOperationAction(Op, T, Expand);
286 
287     // But saturating fp_to_int converstions are
288     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) {
289       setOperationAction(Op, MVT::v4i32, Custom);
290       if (Subtarget->hasFP16()) {
291         setOperationAction(Op, MVT::v8i16, Custom);
292       }
293     }
294 
295     // Support vector extending
296     for (auto T : MVT::integer_fixedlen_vector_valuetypes()) {
297       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom);
298       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom);
299     }
300   }
301 
302   // As a special case, these operators use the type to mean the type to
303   // sign-extend from.
304   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
305   if (!Subtarget->hasSignExt()) {
306     // Sign extends are legal only when extending a vector extract
307     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
308     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
309       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
310   }
311   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
312     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
313 
314   // Dynamic stack allocation: use the default expansion.
315   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
316   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
317   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
318 
319   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
320   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
321   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
322 
323   // Expand these forms; we pattern-match the forms that we can handle in isel.
324   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
325     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
326       setOperationAction(Op, T, Expand);
327 
328   // We have custom switch handling.
329   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
330 
331   // WebAssembly doesn't have:
332   //  - Floating-point extending loads.
333   //  - Floating-point truncating stores.
334   //  - i1 extending loads.
335   //  - truncating SIMD stores and most extending loads
336   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
337   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
338   for (auto T : MVT::integer_valuetypes())
339     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
340       setLoadExtAction(Ext, T, MVT::i1, Promote);
341   if (Subtarget->hasSIMD128()) {
342     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
343                    MVT::v2f64}) {
344       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
345         if (MVT(T) != MemT) {
346           setTruncStoreAction(T, MemT, Expand);
347           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
348             setLoadExtAction(Ext, T, MemT, Expand);
349         }
350       }
351     }
352     // But some vector extending loads are legal
353     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
354       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
355       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
356       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
357     }
358     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
359   }
360 
361   // Don't do anything clever with build_pairs
362   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
363 
364   // Trap lowers to wasm unreachable
365   setOperationAction(ISD::TRAP, MVT::Other, Legal);
366   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
367 
368   // Exception handling intrinsics
369   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
370   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
371   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
372 
373   setMaxAtomicSizeInBitsSupported(64);
374 
375   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
376   // consistent with the f64 and f128 names.
377   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
378   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
379 
380   // Define the emscripten name for return address helper.
381   // TODO: when implementing other Wasm backends, make this generic or only do
382   // this on emscripten depending on what they end up doing.
383   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
384 
385   // Always convert switches to br_tables unless there is only one case, which
386   // is equivalent to a simple branch. This reduces code size for wasm, and we
387   // defer possible jump table optimizations to the VM.
388   setMinimumJumpTableEntries(2);
389 }
390 
391 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
392                                             uint32_t AS) const {
393   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
394     return MVT::externref;
395   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
396     return MVT::funcref;
397   return TargetLowering::getPointerTy(DL, AS);
398 }
399 
400 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
401                                                uint32_t AS) const {
402   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
403     return MVT::externref;
404   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
405     return MVT::funcref;
406   return TargetLowering::getPointerMemTy(DL, AS);
407 }
408 
409 TargetLowering::AtomicExpansionKind
410 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
411   // We have wasm instructions for these
412   switch (AI->getOperation()) {
413   case AtomicRMWInst::Add:
414   case AtomicRMWInst::Sub:
415   case AtomicRMWInst::And:
416   case AtomicRMWInst::Or:
417   case AtomicRMWInst::Xor:
418   case AtomicRMWInst::Xchg:
419     return AtomicExpansionKind::None;
420   default:
421     break;
422   }
423   return AtomicExpansionKind::CmpXChg;
424 }
425 
426 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
427   // Implementation copied from X86TargetLowering.
428   unsigned Opc = VecOp.getOpcode();
429 
430   // Assume target opcodes can't be scalarized.
431   // TODO - do we have any exceptions?
432   if (Opc >= ISD::BUILTIN_OP_END || !isBinOp(Opc))
433     return false;
434 
435   // If the vector op is not supported, try to convert to scalar.
436   EVT VecVT = VecOp.getValueType();
437   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
438     return true;
439 
440   // If the vector op is supported, but the scalar op is not, the transform may
441   // not be worthwhile.
442   EVT ScalarVT = VecVT.getScalarType();
443   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
444 }
445 
446 FastISel *WebAssemblyTargetLowering::createFastISel(
447     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
448   return WebAssembly::createFastISel(FuncInfo, LibInfo);
449 }
450 
451 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
452                                                       EVT VT) const {
453   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
454   if (BitWidth > 1 && BitWidth < 8)
455     BitWidth = 8;
456 
457   if (BitWidth > 64) {
458     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
459     // the count to be an i32.
460     BitWidth = 32;
461     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
462            "32-bit shift counts ought to be enough for anyone");
463   }
464 
465   MVT Result = MVT::getIntegerVT(BitWidth);
466   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
467          "Unable to represent scalar shift amount type");
468   return Result;
469 }
470 
471 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
472 // undefined result on invalid/overflow, to the WebAssembly opcode, which
473 // traps on invalid/overflow.
474 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
475                                        MachineBasicBlock *BB,
476                                        const TargetInstrInfo &TII,
477                                        bool IsUnsigned, bool Int64,
478                                        bool Float64, unsigned LoweredOpcode) {
479   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
480 
481   Register OutReg = MI.getOperand(0).getReg();
482   Register InReg = MI.getOperand(1).getReg();
483 
484   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
485   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
486   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
487   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
488   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
489   unsigned Eqz = WebAssembly::EQZ_I32;
490   unsigned And = WebAssembly::AND_I32;
491   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
492   int64_t Substitute = IsUnsigned ? 0 : Limit;
493   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
494   auto &Context = BB->getParent()->getFunction().getContext();
495   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
496 
497   const BasicBlock *LLVMBB = BB->getBasicBlock();
498   MachineFunction *F = BB->getParent();
499   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
500   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
501   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
502 
503   MachineFunction::iterator It = ++BB->getIterator();
504   F->insert(It, FalseMBB);
505   F->insert(It, TrueMBB);
506   F->insert(It, DoneMBB);
507 
508   // Transfer the remainder of BB and its successor edges to DoneMBB.
509   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
510   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
511 
512   BB->addSuccessor(TrueMBB);
513   BB->addSuccessor(FalseMBB);
514   TrueMBB->addSuccessor(DoneMBB);
515   FalseMBB->addSuccessor(DoneMBB);
516 
517   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
518   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
519   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
520   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
521   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
522   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
523   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
524 
525   MI.eraseFromParent();
526   // For signed numbers, we can do a single comparison to determine whether
527   // fabs(x) is within range.
528   if (IsUnsigned) {
529     Tmp0 = InReg;
530   } else {
531     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
532   }
533   BuildMI(BB, DL, TII.get(FConst), Tmp1)
534       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
535   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
536 
537   // For unsigned numbers, we have to do a separate comparison with zero.
538   if (IsUnsigned) {
539     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
540     Register SecondCmpReg =
541         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
542     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
543     BuildMI(BB, DL, TII.get(FConst), Tmp1)
544         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
545     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
546     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
547     CmpReg = AndReg;
548   }
549 
550   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
551 
552   // Create the CFG diamond to select between doing the conversion or using
553   // the substitute value.
554   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
555   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
556   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
557   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
558   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
559       .addReg(FalseReg)
560       .addMBB(FalseMBB)
561       .addReg(TrueReg)
562       .addMBB(TrueMBB);
563 
564   return DoneMBB;
565 }
566 
567 // Lower a `MEMCPY` instruction into a CFG triangle around a `MEMORY_COPY`
568 // instuction to handle the zero-length case.
569 static MachineBasicBlock *LowerMemcpy(MachineInstr &MI, DebugLoc DL,
570                                       MachineBasicBlock *BB,
571                                       const TargetInstrInfo &TII, bool Int64) {
572   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
573 
574   MachineOperand DstMem = MI.getOperand(0);
575   MachineOperand SrcMem = MI.getOperand(1);
576   MachineOperand Dst = MI.getOperand(2);
577   MachineOperand Src = MI.getOperand(3);
578   MachineOperand Len = MI.getOperand(4);
579 
580   // We're going to add an extra use to `Len` to test if it's zero; that
581   // use shouldn't be a kill, even if the original use is.
582   MachineOperand NoKillLen = Len;
583   NoKillLen.setIsKill(false);
584 
585   // Decide on which `MachineInstr` opcode we're going to use.
586   unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
587   unsigned MemoryCopy =
588       Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
589 
590   // Create two new basic blocks; one for the new `memory.fill` that we can
591   // branch over, and one for the rest of the instructions after the original
592   // `memory.fill`.
593   const BasicBlock *LLVMBB = BB->getBasicBlock();
594   MachineFunction *F = BB->getParent();
595   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
596   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
597 
598   MachineFunction::iterator It = ++BB->getIterator();
599   F->insert(It, TrueMBB);
600   F->insert(It, DoneMBB);
601 
602   // Transfer the remainder of BB and its successor edges to DoneMBB.
603   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
604   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
605 
606   // Connect the CFG edges.
607   BB->addSuccessor(TrueMBB);
608   BB->addSuccessor(DoneMBB);
609   TrueMBB->addSuccessor(DoneMBB);
610 
611   // Create a virtual register for the `Eqz` result.
612   unsigned EqzReg;
613   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
614 
615   // Erase the original `memory.copy`.
616   MI.eraseFromParent();
617 
618   // Test if `Len` is zero.
619   BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen);
620 
621   // Insert a new `memory.copy`.
622   BuildMI(TrueMBB, DL, TII.get(MemoryCopy))
623       .add(DstMem)
624       .add(SrcMem)
625       .add(Dst)
626       .add(Src)
627       .add(Len);
628 
629   // Create the CFG triangle.
630   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg);
631   BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
632 
633   return DoneMBB;
634 }
635 
636 // Lower a `MEMSET` instruction into a CFG triangle around a `MEMORY_FILL`
637 // instuction to handle the zero-length case.
638 static MachineBasicBlock *LowerMemset(MachineInstr &MI, DebugLoc DL,
639                                       MachineBasicBlock *BB,
640                                       const TargetInstrInfo &TII, bool Int64) {
641   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
642 
643   MachineOperand Mem = MI.getOperand(0);
644   MachineOperand Dst = MI.getOperand(1);
645   MachineOperand Val = MI.getOperand(2);
646   MachineOperand Len = MI.getOperand(3);
647 
648   // We're going to add an extra use to `Len` to test if it's zero; that
649   // use shouldn't be a kill, even if the original use is.
650   MachineOperand NoKillLen = Len;
651   NoKillLen.setIsKill(false);
652 
653   // Decide on which `MachineInstr` opcode we're going to use.
654   unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
655   unsigned MemoryFill =
656       Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
657 
658   // Create two new basic blocks; one for the new `memory.fill` that we can
659   // branch over, and one for the rest of the instructions after the original
660   // `memory.fill`.
661   const BasicBlock *LLVMBB = BB->getBasicBlock();
662   MachineFunction *F = BB->getParent();
663   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
664   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
665 
666   MachineFunction::iterator It = ++BB->getIterator();
667   F->insert(It, TrueMBB);
668   F->insert(It, DoneMBB);
669 
670   // Transfer the remainder of BB and its successor edges to DoneMBB.
671   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
672   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
673 
674   // Connect the CFG edges.
675   BB->addSuccessor(TrueMBB);
676   BB->addSuccessor(DoneMBB);
677   TrueMBB->addSuccessor(DoneMBB);
678 
679   // Create a virtual register for the `Eqz` result.
680   unsigned EqzReg;
681   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
682 
683   // Erase the original `memory.fill`.
684   MI.eraseFromParent();
685 
686   // Test if `Len` is zero.
687   BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen);
688 
689   // Insert a new `memory.copy`.
690   BuildMI(TrueMBB, DL, TII.get(MemoryFill)).add(Mem).add(Dst).add(Val).add(Len);
691 
692   // Create the CFG triangle.
693   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg);
694   BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
695 
696   return DoneMBB;
697 }
698 
699 static MachineBasicBlock *
700 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
701                  const WebAssemblySubtarget *Subtarget,
702                  const TargetInstrInfo &TII) {
703   MachineInstr &CallParams = *CallResults.getPrevNode();
704   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
705   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
706          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
707 
708   bool IsIndirect =
709       CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI();
710   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
711 
712   bool IsFuncrefCall = false;
713   if (IsIndirect && CallParams.getOperand(0).isReg()) {
714     Register Reg = CallParams.getOperand(0).getReg();
715     const MachineFunction *MF = BB->getParent();
716     const MachineRegisterInfo &MRI = MF->getRegInfo();
717     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
718     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
719     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
720   }
721 
722   unsigned CallOp;
723   if (IsIndirect && IsRetCall) {
724     CallOp = WebAssembly::RET_CALL_INDIRECT;
725   } else if (IsIndirect) {
726     CallOp = WebAssembly::CALL_INDIRECT;
727   } else if (IsRetCall) {
728     CallOp = WebAssembly::RET_CALL;
729   } else {
730     CallOp = WebAssembly::CALL;
731   }
732 
733   MachineFunction &MF = *BB->getParent();
734   const MCInstrDesc &MCID = TII.get(CallOp);
735   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
736 
737   // Move the function pointer to the end of the arguments for indirect calls
738   if (IsIndirect) {
739     auto FnPtr = CallParams.getOperand(0);
740     CallParams.removeOperand(0);
741 
742     // For funcrefs, call_indirect is done through __funcref_call_table and the
743     // funcref is always installed in slot 0 of the table, therefore instead of
744     // having the function pointer added at the end of the params list, a zero
745     // (the index in
746     // __funcref_call_table is added).
747     if (IsFuncrefCall) {
748       Register RegZero =
749           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
750       MachineInstrBuilder MIBC0 =
751           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
752 
753       BB->insert(CallResults.getIterator(), MIBC0);
754       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
755     } else
756       CallParams.addOperand(FnPtr);
757   }
758 
759   for (auto Def : CallResults.defs())
760     MIB.add(Def);
761 
762   if (IsIndirect) {
763     // Placeholder for the type index.
764     MIB.addImm(0);
765     // The table into which this call_indirect indexes.
766     MCSymbolWasm *Table = IsFuncrefCall
767                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
768                                     MF.getContext(), Subtarget)
769                               : WebAssembly::getOrCreateFunctionTableSymbol(
770                                     MF.getContext(), Subtarget);
771     if (Subtarget->hasCallIndirectOverlong()) {
772       MIB.addSym(Table);
773     } else {
774       // For the MVP there is at most one table whose number is 0, but we can't
775       // write a table symbol or issue relocations.  Instead we just ensure the
776       // table is live and write a zero.
777       Table->setNoStrip();
778       MIB.addImm(0);
779     }
780   }
781 
782   for (auto Use : CallParams.uses())
783     MIB.add(Use);
784 
785   BB->insert(CallResults.getIterator(), MIB);
786   CallParams.eraseFromParent();
787   CallResults.eraseFromParent();
788 
789   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
790   // table slot with ref.null upon call_indirect return.
791   //
792   // This generates the following code, which comes right after a call_indirect
793   // of a funcref:
794   //
795   //    i32.const 0
796   //    ref.null func
797   //    table.set __funcref_call_table
798   if (IsIndirect && IsFuncrefCall) {
799     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
800         MF.getContext(), Subtarget);
801     Register RegZero =
802         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
803     MachineInstr *Const0 =
804         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
805     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
806 
807     Register RegFuncref =
808         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
809     MachineInstr *RefNull =
810         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
811     BB->insertAfter(Const0->getIterator(), RefNull);
812 
813     MachineInstr *TableSet =
814         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
815             .addSym(Table)
816             .addReg(RegZero)
817             .addReg(RegFuncref);
818     BB->insertAfter(RefNull->getIterator(), TableSet);
819   }
820 
821   return BB;
822 }
823 
824 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
825     MachineInstr &MI, MachineBasicBlock *BB) const {
826   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
827   DebugLoc DL = MI.getDebugLoc();
828 
829   switch (MI.getOpcode()) {
830   default:
831     llvm_unreachable("Unexpected instr type to insert");
832   case WebAssembly::FP_TO_SINT_I32_F32:
833     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
834                         WebAssembly::I32_TRUNC_S_F32);
835   case WebAssembly::FP_TO_UINT_I32_F32:
836     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
837                         WebAssembly::I32_TRUNC_U_F32);
838   case WebAssembly::FP_TO_SINT_I64_F32:
839     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
840                         WebAssembly::I64_TRUNC_S_F32);
841   case WebAssembly::FP_TO_UINT_I64_F32:
842     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
843                         WebAssembly::I64_TRUNC_U_F32);
844   case WebAssembly::FP_TO_SINT_I32_F64:
845     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
846                         WebAssembly::I32_TRUNC_S_F64);
847   case WebAssembly::FP_TO_UINT_I32_F64:
848     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
849                         WebAssembly::I32_TRUNC_U_F64);
850   case WebAssembly::FP_TO_SINT_I64_F64:
851     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
852                         WebAssembly::I64_TRUNC_S_F64);
853   case WebAssembly::FP_TO_UINT_I64_F64:
854     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
855                         WebAssembly::I64_TRUNC_U_F64);
856   case WebAssembly::MEMCPY_A32:
857     return LowerMemcpy(MI, DL, BB, TII, false);
858   case WebAssembly::MEMCPY_A64:
859     return LowerMemcpy(MI, DL, BB, TII, true);
860   case WebAssembly::MEMSET_A32:
861     return LowerMemset(MI, DL, BB, TII, false);
862   case WebAssembly::MEMSET_A64:
863     return LowerMemset(MI, DL, BB, TII, true);
864   case WebAssembly::CALL_RESULTS:
865   case WebAssembly::RET_CALL_RESULTS:
866     return LowerCallResults(MI, DL, BB, Subtarget, TII);
867   }
868 }
869 
870 const char *
871 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
872   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
873   case WebAssemblyISD::FIRST_NUMBER:
874     break;
875 #define HANDLE_NODETYPE(NODE)                                                  \
876   case WebAssemblyISD::NODE:                                                   \
877     return "WebAssemblyISD::" #NODE;
878 #include "WebAssemblyISD.def"
879 #undef HANDLE_NODETYPE
880   }
881   return nullptr;
882 }
883 
884 std::pair<unsigned, const TargetRegisterClass *>
885 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
886     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
887   // First, see if this is a constraint that directly corresponds to a
888   // WebAssembly register class.
889   if (Constraint.size() == 1) {
890     switch (Constraint[0]) {
891     case 'r':
892       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
893       if (Subtarget->hasSIMD128() && VT.isVector()) {
894         if (VT.getSizeInBits() == 128)
895           return std::make_pair(0U, &WebAssembly::V128RegClass);
896       }
897       if (VT.isInteger() && !VT.isVector()) {
898         if (VT.getSizeInBits() <= 32)
899           return std::make_pair(0U, &WebAssembly::I32RegClass);
900         if (VT.getSizeInBits() <= 64)
901           return std::make_pair(0U, &WebAssembly::I64RegClass);
902       }
903       if (VT.isFloatingPoint() && !VT.isVector()) {
904         switch (VT.getSizeInBits()) {
905         case 32:
906           return std::make_pair(0U, &WebAssembly::F32RegClass);
907         case 64:
908           return std::make_pair(0U, &WebAssembly::F64RegClass);
909         default:
910           break;
911         }
912       }
913       break;
914     default:
915       break;
916     }
917   }
918 
919   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
920 }
921 
922 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
923   // Assume ctz is a relatively cheap operation.
924   return true;
925 }
926 
927 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
928   // Assume clz is a relatively cheap operation.
929   return true;
930 }
931 
932 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
933                                                       const AddrMode &AM,
934                                                       Type *Ty, unsigned AS,
935                                                       Instruction *I) const {
936   // WebAssembly offsets are added as unsigned without wrapping. The
937   // isLegalAddressingMode gives us no way to determine if wrapping could be
938   // happening, so we approximate this by accepting only non-negative offsets.
939   if (AM.BaseOffs < 0)
940     return false;
941 
942   // WebAssembly has no scale register operands.
943   if (AM.Scale != 0)
944     return false;
945 
946   // Everything else is legal.
947   return true;
948 }
949 
950 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
951     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
952     MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
953   // WebAssembly supports unaligned accesses, though it should be declared
954   // with the p2align attribute on loads and stores which do so, and there
955   // may be a performance impact. We tell LLVM they're "fast" because
956   // for the kinds of things that LLVM uses this for (merging adjacent stores
957   // of constants, etc.), WebAssembly implementations will either want the
958   // unaligned access or they'll split anyway.
959   if (Fast)
960     *Fast = 1;
961   return true;
962 }
963 
964 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
965                                               AttributeList Attr) const {
966   // The current thinking is that wasm engines will perform this optimization,
967   // so we can save on code size.
968   return true;
969 }
970 
971 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
972   EVT ExtT = ExtVal.getValueType();
973   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
974   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
975          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
976          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
977 }
978 
979 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
980     const GlobalAddressSDNode *GA) const {
981   // Wasm doesn't support function addresses with offsets
982   const GlobalValue *GV = GA->getGlobal();
983   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
984 }
985 
986 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
987                                                   LLVMContext &C,
988                                                   EVT VT) const {
989   if (VT.isVector())
990     return VT.changeVectorElementTypeToInteger();
991 
992   // So far, all branch instructions in Wasm take an I32 condition.
993   // The default TargetLowering::getSetCCResultType returns the pointer size,
994   // which would be useful to reduce instruction counts when testing
995   // against 64-bit pointers/values if at some point Wasm supports that.
996   return EVT::getIntegerVT(C, 32);
997 }
998 
999 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1000                                                    const CallInst &I,
1001                                                    MachineFunction &MF,
1002                                                    unsigned Intrinsic) const {
1003   switch (Intrinsic) {
1004   case Intrinsic::wasm_memory_atomic_notify:
1005     Info.opc = ISD::INTRINSIC_W_CHAIN;
1006     Info.memVT = MVT::i32;
1007     Info.ptrVal = I.getArgOperand(0);
1008     Info.offset = 0;
1009     Info.align = Align(4);
1010     // atomic.notify instruction does not really load the memory specified with
1011     // this argument, but MachineMemOperand should either be load or store, so
1012     // we set this to a load.
1013     // FIXME Volatile isn't really correct, but currently all LLVM atomic
1014     // instructions are treated as volatiles in the backend, so we should be
1015     // consistent. The same applies for wasm_atomic_wait intrinsics too.
1016     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
1017     return true;
1018   case Intrinsic::wasm_memory_atomic_wait32:
1019     Info.opc = ISD::INTRINSIC_W_CHAIN;
1020     Info.memVT = MVT::i32;
1021     Info.ptrVal = I.getArgOperand(0);
1022     Info.offset = 0;
1023     Info.align = Align(4);
1024     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
1025     return true;
1026   case Intrinsic::wasm_memory_atomic_wait64:
1027     Info.opc = ISD::INTRINSIC_W_CHAIN;
1028     Info.memVT = MVT::i64;
1029     Info.ptrVal = I.getArgOperand(0);
1030     Info.offset = 0;
1031     Info.align = Align(8);
1032     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
1033     return true;
1034   case Intrinsic::wasm_loadf16_f32:
1035     Info.opc = ISD::INTRINSIC_W_CHAIN;
1036     Info.memVT = MVT::f16;
1037     Info.ptrVal = I.getArgOperand(0);
1038     Info.offset = 0;
1039     Info.align = Align(2);
1040     Info.flags = MachineMemOperand::MOLoad;
1041     return true;
1042   case Intrinsic::wasm_storef16_f32:
1043     Info.opc = ISD::INTRINSIC_VOID;
1044     Info.memVT = MVT::f16;
1045     Info.ptrVal = I.getArgOperand(1);
1046     Info.offset = 0;
1047     Info.align = Align(2);
1048     Info.flags = MachineMemOperand::MOStore;
1049     return true;
1050   default:
1051     return false;
1052   }
1053 }
1054 
1055 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
1056     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1057     const SelectionDAG &DAG, unsigned Depth) const {
1058   switch (Op.getOpcode()) {
1059   default:
1060     break;
1061   case ISD::INTRINSIC_WO_CHAIN: {
1062     unsigned IntNo = Op.getConstantOperandVal(0);
1063     switch (IntNo) {
1064     default:
1065       break;
1066     case Intrinsic::wasm_bitmask: {
1067       unsigned BitWidth = Known.getBitWidth();
1068       EVT VT = Op.getOperand(1).getSimpleValueType();
1069       unsigned PossibleBits = VT.getVectorNumElements();
1070       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
1071       Known.Zero |= ZeroMask;
1072       break;
1073     }
1074     }
1075   }
1076   }
1077 }
1078 
1079 TargetLoweringBase::LegalizeTypeAction
1080 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
1081   if (VT.isFixedLengthVector()) {
1082     MVT EltVT = VT.getVectorElementType();
1083     // We have legal vector types with these lane types, so widening the
1084     // vector would let us use some of the lanes directly without having to
1085     // extend or truncate values.
1086     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
1087         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
1088       return TypeWidenVector;
1089   }
1090 
1091   return TargetLoweringBase::getPreferredVectorAction(VT);
1092 }
1093 
1094 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
1095     SDValue Op, const TargetLoweringOpt &TLO) const {
1096   // ISel process runs DAGCombiner after legalization; this step is called
1097   // SelectionDAG optimization phase. This post-legalization combining process
1098   // runs DAGCombiner on each node, and if there was a change to be made,
1099   // re-runs legalization again on it and its user nodes to make sure
1100   // everythiing is in a legalized state.
1101   //
1102   // The legalization calls lowering routines, and we do our custom lowering for
1103   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
1104   // into zeros. But there is a set of routines in DAGCombiner that turns unused
1105   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
1106   // turns unused vector elements into undefs. But this routine does not work
1107   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
1108   // combination can result in a infinite loop, in which undefs are converted to
1109   // zeros in legalization and back to undefs in combining.
1110   //
1111   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
1112   // running for build_vectors.
1113   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
1114     return false;
1115   return true;
1116 }
1117 
1118 //===----------------------------------------------------------------------===//
1119 // WebAssembly Lowering private implementation.
1120 //===----------------------------------------------------------------------===//
1121 
1122 //===----------------------------------------------------------------------===//
1123 // Lowering Code
1124 //===----------------------------------------------------------------------===//
1125 
1126 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
1127   MachineFunction &MF = DAG.getMachineFunction();
1128   DAG.getContext()->diagnose(
1129       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
1130 }
1131 
1132 // Test whether the given calling convention is supported.
1133 static bool callingConvSupported(CallingConv::ID CallConv) {
1134   // We currently support the language-independent target-independent
1135   // conventions. We don't yet have a way to annotate calls with properties like
1136   // "cold", and we don't have any call-clobbered registers, so these are mostly
1137   // all handled the same.
1138   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
1139          CallConv == CallingConv::Cold ||
1140          CallConv == CallingConv::PreserveMost ||
1141          CallConv == CallingConv::PreserveAll ||
1142          CallConv == CallingConv::CXX_FAST_TLS ||
1143          CallConv == CallingConv::WASM_EmscriptenInvoke ||
1144          CallConv == CallingConv::Swift;
1145 }
1146 
1147 SDValue
1148 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1149                                      SmallVectorImpl<SDValue> &InVals) const {
1150   SelectionDAG &DAG = CLI.DAG;
1151   SDLoc DL = CLI.DL;
1152   SDValue Chain = CLI.Chain;
1153   SDValue Callee = CLI.Callee;
1154   MachineFunction &MF = DAG.getMachineFunction();
1155   auto Layout = MF.getDataLayout();
1156 
1157   CallingConv::ID CallConv = CLI.CallConv;
1158   if (!callingConvSupported(CallConv))
1159     fail(DL, DAG,
1160          "WebAssembly doesn't support language-specific or target-specific "
1161          "calling conventions yet");
1162   if (CLI.IsPatchPoint)
1163     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
1164 
1165   if (CLI.IsTailCall) {
1166     auto NoTail = [&](const char *Msg) {
1167       if (CLI.CB && CLI.CB->isMustTailCall())
1168         fail(DL, DAG, Msg);
1169       CLI.IsTailCall = false;
1170     };
1171 
1172     if (!Subtarget->hasTailCall())
1173       NoTail("WebAssembly 'tail-call' feature not enabled");
1174 
1175     // Varargs calls cannot be tail calls because the buffer is on the stack
1176     if (CLI.IsVarArg)
1177       NoTail("WebAssembly does not support varargs tail calls");
1178 
1179     // Do not tail call unless caller and callee return types match
1180     const Function &F = MF.getFunction();
1181     const TargetMachine &TM = getTargetMachine();
1182     Type *RetTy = F.getReturnType();
1183     SmallVector<MVT, 4> CallerRetTys;
1184     SmallVector<MVT, 4> CalleeRetTys;
1185     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1186     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1187     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1188                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1189                                  CalleeRetTys.begin());
1190     if (!TypesMatch)
1191       NoTail("WebAssembly tail call requires caller and callee return types to "
1192              "match");
1193 
1194     // If pointers to local stack values are passed, we cannot tail call
1195     if (CLI.CB) {
1196       for (auto &Arg : CLI.CB->args()) {
1197         Value *Val = Arg.get();
1198         // Trace the value back through pointer operations
1199         while (true) {
1200           Value *Src = Val->stripPointerCastsAndAliases();
1201           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1202             Src = GEP->getPointerOperand();
1203           if (Val == Src)
1204             break;
1205           Val = Src;
1206         }
1207         if (isa<AllocaInst>(Val)) {
1208           NoTail(
1209               "WebAssembly does not support tail calling with stack arguments");
1210           break;
1211         }
1212       }
1213     }
1214   }
1215 
1216   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1217   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1218   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1219 
1220   // The generic code may have added an sret argument. If we're lowering an
1221   // invoke function, the ABI requires that the function pointer be the first
1222   // argument, so we may have to swap the arguments.
1223   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1224       Outs[0].Flags.isSRet()) {
1225     std::swap(Outs[0], Outs[1]);
1226     std::swap(OutVals[0], OutVals[1]);
1227   }
1228 
1229   bool HasSwiftSelfArg = false;
1230   bool HasSwiftErrorArg = false;
1231   unsigned NumFixedArgs = 0;
1232   for (unsigned I = 0; I < Outs.size(); ++I) {
1233     const ISD::OutputArg &Out = Outs[I];
1234     SDValue &OutVal = OutVals[I];
1235     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1236     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1237     if (Out.Flags.isNest())
1238       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1239     if (Out.Flags.isInAlloca())
1240       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1241     if (Out.Flags.isInConsecutiveRegs())
1242       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1243     if (Out.Flags.isInConsecutiveRegsLast())
1244       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1245     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1246       auto &MFI = MF.getFrameInfo();
1247       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1248                                      Out.Flags.getNonZeroByValAlign(),
1249                                      /*isSS=*/false);
1250       SDValue SizeNode =
1251           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1252       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1253       Chain = DAG.getMemcpy(Chain, DL, FINode, OutVal, SizeNode,
1254                             Out.Flags.getNonZeroByValAlign(),
1255                             /*isVolatile*/ false, /*AlwaysInline=*/false,
1256                             /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
1257                             MachinePointerInfo());
1258       OutVal = FINode;
1259     }
1260     // Count the number of fixed args *after* legalization.
1261     NumFixedArgs += Out.IsFixed;
1262   }
1263 
1264   bool IsVarArg = CLI.IsVarArg;
1265   auto PtrVT = getPointerTy(Layout);
1266 
1267   // For swiftcc, emit additional swiftself and swifterror arguments
1268   // if there aren't. These additional arguments are also added for callee
1269   // signature They are necessary to match callee and caller signature for
1270   // indirect call.
1271   if (CallConv == CallingConv::Swift) {
1272     if (!HasSwiftSelfArg) {
1273       NumFixedArgs++;
1274       ISD::OutputArg Arg;
1275       Arg.Flags.setSwiftSelf();
1276       CLI.Outs.push_back(Arg);
1277       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1278       CLI.OutVals.push_back(ArgVal);
1279     }
1280     if (!HasSwiftErrorArg) {
1281       NumFixedArgs++;
1282       ISD::OutputArg Arg;
1283       Arg.Flags.setSwiftError();
1284       CLI.Outs.push_back(Arg);
1285       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1286       CLI.OutVals.push_back(ArgVal);
1287     }
1288   }
1289 
1290   // Analyze operands of the call, assigning locations to each operand.
1291   SmallVector<CCValAssign, 16> ArgLocs;
1292   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1293 
1294   if (IsVarArg) {
1295     // Outgoing non-fixed arguments are placed in a buffer. First
1296     // compute their offsets and the total amount of buffer space needed.
1297     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1298       const ISD::OutputArg &Out = Outs[I];
1299       SDValue &Arg = OutVals[I];
1300       EVT VT = Arg.getValueType();
1301       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1302       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1303       Align Alignment =
1304           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1305       unsigned Offset =
1306           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1307       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1308                                         Offset, VT.getSimpleVT(),
1309                                         CCValAssign::Full));
1310     }
1311   }
1312 
1313   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1314 
1315   SDValue FINode;
1316   if (IsVarArg && NumBytes) {
1317     // For non-fixed arguments, next emit stores to store the argument values
1318     // to the stack buffer at the offsets computed above.
1319     MaybeAlign StackAlign = Layout.getStackAlignment();
1320     assert(StackAlign && "data layout string is missing stack alignment");
1321     int FI = MF.getFrameInfo().CreateStackObject(NumBytes, *StackAlign,
1322                                                  /*isSS=*/false);
1323     unsigned ValNo = 0;
1324     SmallVector<SDValue, 8> Chains;
1325     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1326       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1327              "ArgLocs should remain in order and only hold varargs args");
1328       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1329       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1330       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1331                                 DAG.getConstant(Offset, DL, PtrVT));
1332       Chains.push_back(
1333           DAG.getStore(Chain, DL, Arg, Add,
1334                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1335     }
1336     if (!Chains.empty())
1337       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1338   } else if (IsVarArg) {
1339     FINode = DAG.getIntPtrConstant(0, DL);
1340   }
1341 
1342   if (Callee->getOpcode() == ISD::GlobalAddress) {
1343     // If the callee is a GlobalAddress node (quite common, every direct call
1344     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1345     // doesn't at MO_GOT which is not needed for direct calls.
1346     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1347     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1348                                         getPointerTy(DAG.getDataLayout()),
1349                                         GA->getOffset());
1350     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1351                          getPointerTy(DAG.getDataLayout()), Callee);
1352   }
1353 
1354   // Compute the operands for the CALLn node.
1355   SmallVector<SDValue, 16> Ops;
1356   Ops.push_back(Chain);
1357   Ops.push_back(Callee);
1358 
1359   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1360   // isn't reliable.
1361   Ops.append(OutVals.begin(),
1362              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1363   // Add a pointer to the vararg buffer.
1364   if (IsVarArg)
1365     Ops.push_back(FINode);
1366 
1367   SmallVector<EVT, 8> InTys;
1368   for (const auto &In : Ins) {
1369     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1370     assert(!In.Flags.isNest() && "nest is not valid for return values");
1371     if (In.Flags.isInAlloca())
1372       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1373     if (In.Flags.isInConsecutiveRegs())
1374       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1375     if (In.Flags.isInConsecutiveRegsLast())
1376       fail(DL, DAG,
1377            "WebAssembly hasn't implemented cons regs last return values");
1378     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1379     // registers.
1380     InTys.push_back(In.VT);
1381   }
1382 
1383   // Lastly, if this is a call to a funcref we need to add an instruction
1384   // table.set to the chain and transform the call.
1385   if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType(
1386                     CLI.CB->getCalledOperand()->getType())) {
1387     // In the absence of function references proposal where a funcref call is
1388     // lowered to call_ref, using reference types we generate a table.set to set
1389     // the funcref to a special table used solely for this purpose, followed by
1390     // a call_indirect. Here we just generate the table set, and return the
1391     // SDValue of the table.set so that LowerCall can finalize the lowering by
1392     // generating the call_indirect.
1393     SDValue Chain = Ops[0];
1394 
1395     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1396         MF.getContext(), Subtarget);
1397     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1398     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1399     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1400     SDValue TableSet = DAG.getMemIntrinsicNode(
1401         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1402         MVT::funcref,
1403         // Machine Mem Operand args
1404         MachinePointerInfo(
1405             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1406         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1407         MachineMemOperand::MOStore);
1408 
1409     Ops[0] = TableSet; // The new chain is the TableSet itself
1410   }
1411 
1412   if (CLI.IsTailCall) {
1413     // ret_calls do not return values to the current frame
1414     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1415     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1416   }
1417 
1418   InTys.push_back(MVT::Other);
1419   SDVTList InTyList = DAG.getVTList(InTys);
1420   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1421 
1422   for (size_t I = 0; I < Ins.size(); ++I)
1423     InVals.push_back(Res.getValue(I));
1424 
1425   // Return the chain
1426   return Res.getValue(Ins.size());
1427 }
1428 
1429 bool WebAssemblyTargetLowering::CanLowerReturn(
1430     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1431     const SmallVectorImpl<ISD::OutputArg> &Outs,
1432     LLVMContext & /*Context*/) const {
1433   // WebAssembly can only handle returning tuples with multivalue enabled
1434   return WebAssembly::canLowerReturn(Outs.size(), Subtarget);
1435 }
1436 
1437 SDValue WebAssemblyTargetLowering::LowerReturn(
1438     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1439     const SmallVectorImpl<ISD::OutputArg> &Outs,
1440     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1441     SelectionDAG &DAG) const {
1442   assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) &&
1443          "MVP WebAssembly can only return up to one value");
1444   if (!callingConvSupported(CallConv))
1445     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1446 
1447   SmallVector<SDValue, 4> RetOps(1, Chain);
1448   RetOps.append(OutVals.begin(), OutVals.end());
1449   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1450 
1451   // Record the number and types of the return values.
1452   for (const ISD::OutputArg &Out : Outs) {
1453     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1454     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1455     assert(Out.IsFixed && "non-fixed return value is not valid");
1456     if (Out.Flags.isInAlloca())
1457       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1458     if (Out.Flags.isInConsecutiveRegs())
1459       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1460     if (Out.Flags.isInConsecutiveRegsLast())
1461       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1462   }
1463 
1464   return Chain;
1465 }
1466 
1467 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1468     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1469     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1470     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1471   if (!callingConvSupported(CallConv))
1472     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1473 
1474   MachineFunction &MF = DAG.getMachineFunction();
1475   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1476 
1477   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1478   // of the incoming values before they're represented by virtual registers.
1479   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1480 
1481   bool HasSwiftErrorArg = false;
1482   bool HasSwiftSelfArg = false;
1483   for (const ISD::InputArg &In : Ins) {
1484     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1485     HasSwiftErrorArg |= In.Flags.isSwiftError();
1486     if (In.Flags.isInAlloca())
1487       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1488     if (In.Flags.isNest())
1489       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1490     if (In.Flags.isInConsecutiveRegs())
1491       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1492     if (In.Flags.isInConsecutiveRegsLast())
1493       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1494     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1495     // registers.
1496     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1497                                            DAG.getTargetConstant(InVals.size(),
1498                                                                  DL, MVT::i32))
1499                              : DAG.getUNDEF(In.VT));
1500 
1501     // Record the number and types of arguments.
1502     MFI->addParam(In.VT);
1503   }
1504 
1505   // For swiftcc, emit additional swiftself and swifterror arguments
1506   // if there aren't. These additional arguments are also added for callee
1507   // signature They are necessary to match callee and caller signature for
1508   // indirect call.
1509   auto PtrVT = getPointerTy(MF.getDataLayout());
1510   if (CallConv == CallingConv::Swift) {
1511     if (!HasSwiftSelfArg) {
1512       MFI->addParam(PtrVT);
1513     }
1514     if (!HasSwiftErrorArg) {
1515       MFI->addParam(PtrVT);
1516     }
1517   }
1518   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1519   // the buffer is passed as an argument.
1520   if (IsVarArg) {
1521     MVT PtrVT = getPointerTy(MF.getDataLayout());
1522     Register VarargVreg =
1523         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1524     MFI->setVarargBufferVreg(VarargVreg);
1525     Chain = DAG.getCopyToReg(
1526         Chain, DL, VarargVreg,
1527         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1528                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1529     MFI->addParam(PtrVT);
1530   }
1531 
1532   // Record the number and types of arguments and results.
1533   SmallVector<MVT, 4> Params;
1534   SmallVector<MVT, 4> Results;
1535   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1536                       MF.getFunction(), DAG.getTarget(), Params, Results);
1537   for (MVT VT : Results)
1538     MFI->addResult(VT);
1539   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1540   // the param logic here with ComputeSignatureVTs
1541   assert(MFI->getParams().size() == Params.size() &&
1542          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1543                     Params.begin()));
1544 
1545   return Chain;
1546 }
1547 
1548 void WebAssemblyTargetLowering::ReplaceNodeResults(
1549     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1550   switch (N->getOpcode()) {
1551   case ISD::SIGN_EXTEND_INREG:
1552     // Do not add any results, signifying that N should not be custom lowered
1553     // after all. This happens because simd128 turns on custom lowering for
1554     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1555     // illegal type.
1556     break;
1557   case ISD::SIGN_EXTEND_VECTOR_INREG:
1558   case ISD::ZERO_EXTEND_VECTOR_INREG:
1559     // Do not add any results, signifying that N should not be custom lowered.
1560     // EXTEND_VECTOR_INREG is implemented for some vectors, but not all.
1561     break;
1562   case ISD::ADD:
1563   case ISD::SUB:
1564     Results.push_back(Replace128Op(N, DAG));
1565     break;
1566   default:
1567     llvm_unreachable(
1568         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1569   }
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 //  Custom lowering hooks.
1574 //===----------------------------------------------------------------------===//
1575 
1576 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1577                                                   SelectionDAG &DAG) const {
1578   SDLoc DL(Op);
1579   switch (Op.getOpcode()) {
1580   default:
1581     llvm_unreachable("unimplemented operation lowering");
1582     return SDValue();
1583   case ISD::FrameIndex:
1584     return LowerFrameIndex(Op, DAG);
1585   case ISD::GlobalAddress:
1586     return LowerGlobalAddress(Op, DAG);
1587   case ISD::GlobalTLSAddress:
1588     return LowerGlobalTLSAddress(Op, DAG);
1589   case ISD::ExternalSymbol:
1590     return LowerExternalSymbol(Op, DAG);
1591   case ISD::JumpTable:
1592     return LowerJumpTable(Op, DAG);
1593   case ISD::BR_JT:
1594     return LowerBR_JT(Op, DAG);
1595   case ISD::VASTART:
1596     return LowerVASTART(Op, DAG);
1597   case ISD::BlockAddress:
1598   case ISD::BRIND:
1599     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1600     return SDValue();
1601   case ISD::RETURNADDR:
1602     return LowerRETURNADDR(Op, DAG);
1603   case ISD::FRAMEADDR:
1604     return LowerFRAMEADDR(Op, DAG);
1605   case ISD::CopyToReg:
1606     return LowerCopyToReg(Op, DAG);
1607   case ISD::EXTRACT_VECTOR_ELT:
1608   case ISD::INSERT_VECTOR_ELT:
1609     return LowerAccessVectorElement(Op, DAG);
1610   case ISD::INTRINSIC_VOID:
1611   case ISD::INTRINSIC_WO_CHAIN:
1612   case ISD::INTRINSIC_W_CHAIN:
1613     return LowerIntrinsic(Op, DAG);
1614   case ISD::SIGN_EXTEND_INREG:
1615     return LowerSIGN_EXTEND_INREG(Op, DAG);
1616   case ISD::ZERO_EXTEND_VECTOR_INREG:
1617   case ISD::SIGN_EXTEND_VECTOR_INREG:
1618     return LowerEXTEND_VECTOR_INREG(Op, DAG);
1619   case ISD::BUILD_VECTOR:
1620     return LowerBUILD_VECTOR(Op, DAG);
1621   case ISD::VECTOR_SHUFFLE:
1622     return LowerVECTOR_SHUFFLE(Op, DAG);
1623   case ISD::SETCC:
1624     return LowerSETCC(Op, DAG);
1625   case ISD::SHL:
1626   case ISD::SRA:
1627   case ISD::SRL:
1628     return LowerShift(Op, DAG);
1629   case ISD::FP_TO_SINT_SAT:
1630   case ISD::FP_TO_UINT_SAT:
1631     return LowerFP_TO_INT_SAT(Op, DAG);
1632   case ISD::LOAD:
1633     return LowerLoad(Op, DAG);
1634   case ISD::STORE:
1635     return LowerStore(Op, DAG);
1636   case ISD::CTPOP:
1637   case ISD::CTLZ:
1638   case ISD::CTTZ:
1639     return DAG.UnrollVectorOp(Op.getNode());
1640   case ISD::CLEAR_CACHE:
1641     report_fatal_error("llvm.clear_cache is not supported on wasm");
1642   case ISD::SMUL_LOHI:
1643   case ISD::UMUL_LOHI:
1644     return LowerMUL_LOHI(Op, DAG);
1645   }
1646 }
1647 
1648 static bool IsWebAssemblyGlobal(SDValue Op) {
1649   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1650     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1651 
1652   return false;
1653 }
1654 
1655 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1656                                                   SelectionDAG &DAG) {
1657   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1658   if (!FI)
1659     return std::nullopt;
1660 
1661   auto &MF = DAG.getMachineFunction();
1662   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1663 }
1664 
1665 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1666                                               SelectionDAG &DAG) const {
1667   SDLoc DL(Op);
1668   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1669   const SDValue &Value = SN->getValue();
1670   const SDValue &Base = SN->getBasePtr();
1671   const SDValue &Offset = SN->getOffset();
1672 
1673   if (IsWebAssemblyGlobal(Base)) {
1674     if (!Offset->isUndef())
1675       report_fatal_error("unexpected offset when storing to webassembly global",
1676                          false);
1677 
1678     SDVTList Tys = DAG.getVTList(MVT::Other);
1679     SDValue Ops[] = {SN->getChain(), Value, Base};
1680     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1681                                    SN->getMemoryVT(), SN->getMemOperand());
1682   }
1683 
1684   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1685     if (!Offset->isUndef())
1686       report_fatal_error("unexpected offset when storing to webassembly local",
1687                          false);
1688 
1689     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1690     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1691     SDValue Ops[] = {SN->getChain(), Idx, Value};
1692     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1693   }
1694 
1695   if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1696     report_fatal_error(
1697         "Encountered an unlowerable store to the wasm_var address space",
1698         false);
1699 
1700   return Op;
1701 }
1702 
1703 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1704                                              SelectionDAG &DAG) const {
1705   SDLoc DL(Op);
1706   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1707   const SDValue &Base = LN->getBasePtr();
1708   const SDValue &Offset = LN->getOffset();
1709 
1710   if (IsWebAssemblyGlobal(Base)) {
1711     if (!Offset->isUndef())
1712       report_fatal_error(
1713           "unexpected offset when loading from webassembly global", false);
1714 
1715     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1716     SDValue Ops[] = {LN->getChain(), Base};
1717     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1718                                    LN->getMemoryVT(), LN->getMemOperand());
1719   }
1720 
1721   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1722     if (!Offset->isUndef())
1723       report_fatal_error(
1724           "unexpected offset when loading from webassembly local", false);
1725 
1726     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1727     EVT LocalVT = LN->getValueType(0);
1728     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1729                                    {LN->getChain(), Idx});
1730     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1731     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1732     return Result;
1733   }
1734 
1735   if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1736     report_fatal_error(
1737         "Encountered an unlowerable load from the wasm_var address space",
1738         false);
1739 
1740   return Op;
1741 }
1742 
1743 SDValue WebAssemblyTargetLowering::LowerMUL_LOHI(SDValue Op,
1744                                                  SelectionDAG &DAG) const {
1745   assert(Subtarget->hasWideArithmetic());
1746   assert(Op.getValueType() == MVT::i64);
1747   SDLoc DL(Op);
1748   unsigned Opcode;
1749   switch (Op.getOpcode()) {
1750   case ISD::UMUL_LOHI:
1751     Opcode = WebAssemblyISD::I64_MUL_WIDE_U;
1752     break;
1753   case ISD::SMUL_LOHI:
1754     Opcode = WebAssemblyISD::I64_MUL_WIDE_S;
1755     break;
1756   default:
1757     llvm_unreachable("unexpected opcode");
1758   }
1759   SDValue LHS = Op.getOperand(0);
1760   SDValue RHS = Op.getOperand(1);
1761   SDValue Hi =
1762       DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64), LHS, RHS);
1763   SDValue Lo(Hi.getNode(), 1);
1764   SDValue Ops[] = {Hi, Lo};
1765   return DAG.getMergeValues(Ops, DL);
1766 }
1767 
1768 SDValue WebAssemblyTargetLowering::Replace128Op(SDNode *N,
1769                                                 SelectionDAG &DAG) const {
1770   assert(Subtarget->hasWideArithmetic());
1771   assert(N->getValueType(0) == MVT::i128);
1772   SDLoc DL(N);
1773   unsigned Opcode;
1774   switch (N->getOpcode()) {
1775   case ISD::ADD:
1776     Opcode = WebAssemblyISD::I64_ADD128;
1777     break;
1778   case ISD::SUB:
1779     Opcode = WebAssemblyISD::I64_SUB128;
1780     break;
1781   default:
1782     llvm_unreachable("unexpected opcode");
1783   }
1784   SDValue LHS = N->getOperand(0);
1785   SDValue RHS = N->getOperand(1);
1786 
1787   SDValue C0 = DAG.getConstant(0, DL, MVT::i64);
1788   SDValue C1 = DAG.getConstant(1, DL, MVT::i64);
1789   SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C0);
1790   SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C1);
1791   SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C0);
1792   SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C1);
1793   SDValue Result_LO = DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64),
1794                                   LHS_0, LHS_1, RHS_0, RHS_1);
1795   SDValue Result_HI(Result_LO.getNode(), 1);
1796   return DAG.getNode(ISD::BUILD_PAIR, DL, N->getVTList(), Result_LO, Result_HI);
1797 }
1798 
1799 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1800                                                   SelectionDAG &DAG) const {
1801   SDValue Src = Op.getOperand(2);
1802   if (isa<FrameIndexSDNode>(Src.getNode())) {
1803     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1804     // the FI to some LEA-like instruction, but since we don't have that, we
1805     // need to insert some kind of instruction that can take an FI operand and
1806     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1807     // local.copy between Op and its FI operand.
1808     SDValue Chain = Op.getOperand(0);
1809     SDLoc DL(Op);
1810     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1811     EVT VT = Src.getValueType();
1812     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1813                                                    : WebAssembly::COPY_I64,
1814                                     DL, VT, Src),
1815                  0);
1816     return Op.getNode()->getNumValues() == 1
1817                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1818                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1819                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1820                                                            : SDValue());
1821   }
1822   return SDValue();
1823 }
1824 
1825 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1826                                                    SelectionDAG &DAG) const {
1827   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1828   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1829 }
1830 
1831 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1832                                                    SelectionDAG &DAG) const {
1833   SDLoc DL(Op);
1834 
1835   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1836     fail(DL, DAG,
1837          "Non-Emscripten WebAssembly hasn't implemented "
1838          "__builtin_return_address");
1839     return SDValue();
1840   }
1841 
1842   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1843     return SDValue();
1844 
1845   unsigned Depth = Op.getConstantOperandVal(0);
1846   MakeLibCallOptions CallOptions;
1847   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1848                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1849       .first;
1850 }
1851 
1852 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1853                                                   SelectionDAG &DAG) const {
1854   // Non-zero depths are not supported by WebAssembly currently. Use the
1855   // legalizer's default expansion, which is to return 0 (what this function is
1856   // documented to do).
1857   if (Op.getConstantOperandVal(0) > 0)
1858     return SDValue();
1859 
1860   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1861   EVT VT = Op.getValueType();
1862   Register FP =
1863       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1864   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1865 }
1866 
1867 SDValue
1868 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1869                                                  SelectionDAG &DAG) const {
1870   SDLoc DL(Op);
1871   const auto *GA = cast<GlobalAddressSDNode>(Op);
1872 
1873   MachineFunction &MF = DAG.getMachineFunction();
1874   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1875     report_fatal_error("cannot use thread-local storage without bulk memory",
1876                        false);
1877 
1878   const GlobalValue *GV = GA->getGlobal();
1879 
1880   // Currently only Emscripten supports dynamic linking with threads. Therefore,
1881   // on other targets, if we have thread-local storage, only the local-exec
1882   // model is possible.
1883   auto model = Subtarget->getTargetTriple().isOSEmscripten()
1884                    ? GV->getThreadLocalMode()
1885                    : GlobalValue::LocalExecTLSModel;
1886 
1887   // Unsupported TLS modes
1888   assert(model != GlobalValue::NotThreadLocal);
1889   assert(model != GlobalValue::InitialExecTLSModel);
1890 
1891   if (model == GlobalValue::LocalExecTLSModel ||
1892       model == GlobalValue::LocalDynamicTLSModel ||
1893       (model == GlobalValue::GeneralDynamicTLSModel &&
1894        getTargetMachine().shouldAssumeDSOLocal(GV))) {
1895     // For DSO-local TLS variables we use offset from __tls_base
1896 
1897     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1898     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1899                                        : WebAssembly::GLOBAL_GET_I32;
1900     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1901 
1902     SDValue BaseAddr(
1903         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1904                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1905         0);
1906 
1907     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1908         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1909     SDValue SymOffset =
1910         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1911 
1912     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1913   }
1914 
1915   assert(model == GlobalValue::GeneralDynamicTLSModel);
1916 
1917   EVT VT = Op.getValueType();
1918   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1919                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1920                                                 GA->getOffset(),
1921                                                 WebAssemblyII::MO_GOT_TLS));
1922 }
1923 
1924 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1925                                                       SelectionDAG &DAG) const {
1926   SDLoc DL(Op);
1927   const auto *GA = cast<GlobalAddressSDNode>(Op);
1928   EVT VT = Op.getValueType();
1929   assert(GA->getTargetFlags() == 0 &&
1930          "Unexpected target flags on generic GlobalAddressSDNode");
1931   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1932     fail(DL, DAG, "Invalid address space for WebAssembly target");
1933 
1934   unsigned OperandFlags = 0;
1935   const GlobalValue *GV = GA->getGlobal();
1936   // Since WebAssembly tables cannot yet be shared accross modules, we don't
1937   // need special treatment for tables in PIC mode.
1938   if (isPositionIndependent() &&
1939       !WebAssembly::isWebAssemblyTableType(GV->getValueType())) {
1940     if (getTargetMachine().shouldAssumeDSOLocal(GV)) {
1941       MachineFunction &MF = DAG.getMachineFunction();
1942       MVT PtrVT = getPointerTy(MF.getDataLayout());
1943       const char *BaseName;
1944       if (GV->getValueType()->isFunctionTy()) {
1945         BaseName = MF.createExternalSymbolName("__table_base");
1946         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1947       } else {
1948         BaseName = MF.createExternalSymbolName("__memory_base");
1949         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1950       }
1951       SDValue BaseAddr =
1952           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1953                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1954 
1955       SDValue SymAddr = DAG.getNode(
1956           WebAssemblyISD::WrapperREL, DL, VT,
1957           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1958                                      OperandFlags));
1959 
1960       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1961     }
1962     OperandFlags = WebAssemblyII::MO_GOT;
1963   }
1964 
1965   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1966                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1967                                                 GA->getOffset(), OperandFlags));
1968 }
1969 
1970 SDValue
1971 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1972                                                SelectionDAG &DAG) const {
1973   SDLoc DL(Op);
1974   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1975   EVT VT = Op.getValueType();
1976   assert(ES->getTargetFlags() == 0 &&
1977          "Unexpected target flags on generic ExternalSymbolSDNode");
1978   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1979                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1980 }
1981 
1982 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1983                                                   SelectionDAG &DAG) const {
1984   // There's no need for a Wrapper node because we always incorporate a jump
1985   // table operand into a BR_TABLE instruction, rather than ever
1986   // materializing it in a register.
1987   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1988   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1989                                 JT->getTargetFlags());
1990 }
1991 
1992 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1993                                               SelectionDAG &DAG) const {
1994   SDLoc DL(Op);
1995   SDValue Chain = Op.getOperand(0);
1996   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1997   SDValue Index = Op.getOperand(2);
1998   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1999 
2000   SmallVector<SDValue, 8> Ops;
2001   Ops.push_back(Chain);
2002   Ops.push_back(Index);
2003 
2004   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
2005   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
2006 
2007   // Add an operand for each case.
2008   for (auto *MBB : MBBs)
2009     Ops.push_back(DAG.getBasicBlock(MBB));
2010 
2011   // Add the first MBB as a dummy default target for now. This will be replaced
2012   // with the proper default target (and the preceding range check eliminated)
2013   // if possible by WebAssemblyFixBrTableDefaults.
2014   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
2015   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
2016 }
2017 
2018 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
2019                                                 SelectionDAG &DAG) const {
2020   SDLoc DL(Op);
2021   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
2022 
2023   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
2024   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2025 
2026   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
2027                                     MFI->getVarargBufferVreg(), PtrVT);
2028   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
2029                       MachinePointerInfo(SV));
2030 }
2031 
2032 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
2033                                                   SelectionDAG &DAG) const {
2034   MachineFunction &MF = DAG.getMachineFunction();
2035   unsigned IntNo;
2036   switch (Op.getOpcode()) {
2037   case ISD::INTRINSIC_VOID:
2038   case ISD::INTRINSIC_W_CHAIN:
2039     IntNo = Op.getConstantOperandVal(1);
2040     break;
2041   case ISD::INTRINSIC_WO_CHAIN:
2042     IntNo = Op.getConstantOperandVal(0);
2043     break;
2044   default:
2045     llvm_unreachable("Invalid intrinsic");
2046   }
2047   SDLoc DL(Op);
2048 
2049   switch (IntNo) {
2050   default:
2051     return SDValue(); // Don't custom lower most intrinsics.
2052 
2053   case Intrinsic::wasm_lsda: {
2054     auto PtrVT = getPointerTy(MF.getDataLayout());
2055     const char *SymName = MF.createExternalSymbolName(
2056         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
2057     if (isPositionIndependent()) {
2058       SDValue Node = DAG.getTargetExternalSymbol(
2059           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
2060       const char *BaseName = MF.createExternalSymbolName("__memory_base");
2061       SDValue BaseAddr =
2062           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
2063                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
2064       SDValue SymAddr =
2065           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
2066       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
2067     }
2068     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
2069     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
2070   }
2071 
2072   case Intrinsic::wasm_shuffle: {
2073     // Drop in-chain and replace undefs, but otherwise pass through unchanged
2074     SDValue Ops[18];
2075     size_t OpIdx = 0;
2076     Ops[OpIdx++] = Op.getOperand(1);
2077     Ops[OpIdx++] = Op.getOperand(2);
2078     while (OpIdx < 18) {
2079       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
2080       if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) {
2081         bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant;
2082         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget);
2083       } else {
2084         Ops[OpIdx++] = MaskIdx;
2085       }
2086     }
2087     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2088   }
2089 
2090   case Intrinsic::thread_pointer: {
2091     MVT PtrVT = getPointerTy(DAG.getDataLayout());
2092     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2093                                        : WebAssembly::GLOBAL_GET_I32;
2094     const char *TlsBase = MF.createExternalSymbolName("__tls_base");
2095     return SDValue(
2096         DAG.getMachineNode(GlobalGet, DL, PtrVT,
2097                            DAG.getTargetExternalSymbol(TlsBase, PtrVT)),
2098         0);
2099   }
2100   }
2101 }
2102 
2103 SDValue
2104 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2105                                                   SelectionDAG &DAG) const {
2106   SDLoc DL(Op);
2107   // If sign extension operations are disabled, allow sext_inreg only if operand
2108   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
2109   // extension operations, but allowing sext_inreg in this context lets us have
2110   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
2111   // everywhere would be simpler in this file, but would necessitate large and
2112   // brittle patterns to undo the expansion and select extract_lane_s
2113   // instructions.
2114   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
2115   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2116     return SDValue();
2117 
2118   const SDValue &Extract = Op.getOperand(0);
2119   MVT VecT = Extract.getOperand(0).getSimpleValueType();
2120   if (VecT.getVectorElementType().getSizeInBits() > 32)
2121     return SDValue();
2122   MVT ExtractedLaneT =
2123       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
2124   MVT ExtractedVecT =
2125       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
2126   if (ExtractedVecT == VecT)
2127     return Op;
2128 
2129   // Bitcast vector to appropriate type to ensure ISel pattern coverage
2130   const SDNode *Index = Extract.getOperand(1).getNode();
2131   if (!isa<ConstantSDNode>(Index))
2132     return SDValue();
2133   unsigned IndexVal = Index->getAsZExtVal();
2134   unsigned Scale =
2135       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
2136   assert(Scale > 1);
2137   SDValue NewIndex =
2138       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
2139   SDValue NewExtract = DAG.getNode(
2140       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
2141       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
2142   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
2143                      Op.getOperand(1));
2144 }
2145 
2146 SDValue
2147 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op,
2148                                                     SelectionDAG &DAG) const {
2149   SDLoc DL(Op);
2150   EVT VT = Op.getValueType();
2151   SDValue Src = Op.getOperand(0);
2152   EVT SrcVT = Src.getValueType();
2153 
2154   if (SrcVT.getVectorElementType() == MVT::i1 ||
2155       SrcVT.getVectorElementType() == MVT::i64)
2156     return SDValue();
2157 
2158   assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
2159          "Unexpected extension factor.");
2160   unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
2161 
2162   if (Scale != 2 && Scale != 4 && Scale != 8)
2163     return SDValue();
2164 
2165   unsigned Ext;
2166   switch (Op.getOpcode()) {
2167   case ISD::ZERO_EXTEND_VECTOR_INREG:
2168     Ext = WebAssemblyISD::EXTEND_LOW_U;
2169     break;
2170   case ISD::SIGN_EXTEND_VECTOR_INREG:
2171     Ext = WebAssemblyISD::EXTEND_LOW_S;
2172     break;
2173   }
2174 
2175   SDValue Ret = Src;
2176   while (Scale != 1) {
2177     Ret = DAG.getNode(Ext, DL,
2178                       Ret.getValueType()
2179                           .widenIntegerVectorElementType(*DAG.getContext())
2180                           .getHalfNumVectorElementsVT(*DAG.getContext()),
2181                       Ret);
2182     Scale /= 2;
2183   }
2184   assert(Ret.getValueType() == VT);
2185   return Ret;
2186 }
2187 
2188 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
2189   SDLoc DL(Op);
2190   if (Op.getValueType() != MVT::v2f64)
2191     return SDValue();
2192 
2193   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
2194                              unsigned &Index) -> bool {
2195     switch (Op.getOpcode()) {
2196     case ISD::SINT_TO_FP:
2197       Opcode = WebAssemblyISD::CONVERT_LOW_S;
2198       break;
2199     case ISD::UINT_TO_FP:
2200       Opcode = WebAssemblyISD::CONVERT_LOW_U;
2201       break;
2202     case ISD::FP_EXTEND:
2203       Opcode = WebAssemblyISD::PROMOTE_LOW;
2204       break;
2205     default:
2206       return false;
2207     }
2208 
2209     auto ExtractVector = Op.getOperand(0);
2210     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2211       return false;
2212 
2213     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2214       return false;
2215 
2216     SrcVec = ExtractVector.getOperand(0);
2217     Index = ExtractVector.getConstantOperandVal(1);
2218     return true;
2219   };
2220 
2221   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2222   SDValue LHSSrcVec, RHSSrcVec;
2223   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2224       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2225     return SDValue();
2226 
2227   if (LHSOpcode != RHSOpcode)
2228     return SDValue();
2229 
2230   MVT ExpectedSrcVT;
2231   switch (LHSOpcode) {
2232   case WebAssemblyISD::CONVERT_LOW_S:
2233   case WebAssemblyISD::CONVERT_LOW_U:
2234     ExpectedSrcVT = MVT::v4i32;
2235     break;
2236   case WebAssemblyISD::PROMOTE_LOW:
2237     ExpectedSrcVT = MVT::v4f32;
2238     break;
2239   }
2240   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2241     return SDValue();
2242 
2243   auto Src = LHSSrcVec;
2244   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2245     // Shuffle the source vector so that the converted lanes are the low lanes.
2246     Src = DAG.getVectorShuffle(
2247         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2248         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2249   }
2250   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2251 }
2252 
2253 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2254                                                      SelectionDAG &DAG) const {
2255   MVT VT = Op.getSimpleValueType();
2256   if (VT == MVT::v8f16) {
2257     // BUILD_VECTOR can't handle FP16 operands since Wasm doesn't have a scaler
2258     // FP16 type, so cast them to I16s.
2259     MVT IVT = VT.changeVectorElementType(MVT::i16);
2260     SmallVector<SDValue, 8> NewOps;
2261     for (unsigned I = 0, E = Op.getNumOperands(); I < E; ++I)
2262       NewOps.push_back(DAG.getBitcast(MVT::i16, Op.getOperand(I)));
2263     SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(), IVT, NewOps);
2264     return DAG.getBitcast(VT, Res);
2265   }
2266 
2267   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2268     return ConvertLow;
2269 
2270   SDLoc DL(Op);
2271   const EVT VecT = Op.getValueType();
2272   const EVT LaneT = Op.getOperand(0).getValueType();
2273   const size_t Lanes = Op.getNumOperands();
2274   bool CanSwizzle = VecT == MVT::v16i8;
2275 
2276   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2277   // possible number of lanes at once followed by a sequence of replace_lane
2278   // instructions to individually initialize any remaining lanes.
2279 
2280   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2281   // swizzled lanes should be given greater weight.
2282 
2283   // TODO: Investigate looping rather than always extracting/replacing specific
2284   // lanes to fill gaps.
2285 
2286   auto IsConstant = [](const SDValue &V) {
2287     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2288   };
2289 
2290   // Returns the source vector and index vector pair if they exist. Checks for:
2291   //   (extract_vector_elt
2292   //     $src,
2293   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2294   //   )
2295   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2296     auto Bail = std::make_pair(SDValue(), SDValue());
2297     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2298       return Bail;
2299     const SDValue &SwizzleSrc = Lane->getOperand(0);
2300     const SDValue &IndexExt = Lane->getOperand(1);
2301     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2302       return Bail;
2303     const SDValue &Index = IndexExt->getOperand(0);
2304     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2305       return Bail;
2306     const SDValue &SwizzleIndices = Index->getOperand(0);
2307     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2308         SwizzleIndices.getValueType() != MVT::v16i8 ||
2309         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2310         Index->getConstantOperandVal(1) != I)
2311       return Bail;
2312     return std::make_pair(SwizzleSrc, SwizzleIndices);
2313   };
2314 
2315   // If the lane is extracted from another vector at a constant index, return
2316   // that vector. The source vector must not have more lanes than the dest
2317   // because the shufflevector indices are in terms of the destination lanes and
2318   // would not be able to address the smaller individual source lanes.
2319   auto GetShuffleSrc = [&](const SDValue &Lane) {
2320     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2321       return SDValue();
2322     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2323       return SDValue();
2324     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2325         VecT.getVectorNumElements())
2326       return SDValue();
2327     return Lane->getOperand(0);
2328   };
2329 
2330   using ValueEntry = std::pair<SDValue, size_t>;
2331   SmallVector<ValueEntry, 16> SplatValueCounts;
2332 
2333   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2334   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2335 
2336   using ShuffleEntry = std::pair<SDValue, size_t>;
2337   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2338 
2339   auto AddCount = [](auto &Counts, const auto &Val) {
2340     auto CountIt =
2341         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2342     if (CountIt == Counts.end()) {
2343       Counts.emplace_back(Val, 1);
2344     } else {
2345       CountIt->second++;
2346     }
2347   };
2348 
2349   auto GetMostCommon = [](auto &Counts) {
2350     auto CommonIt =
2351         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2352     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2353     return *CommonIt;
2354   };
2355 
2356   size_t NumConstantLanes = 0;
2357 
2358   // Count eligible lanes for each type of vector creation op
2359   for (size_t I = 0; I < Lanes; ++I) {
2360     const SDValue &Lane = Op->getOperand(I);
2361     if (Lane.isUndef())
2362       continue;
2363 
2364     AddCount(SplatValueCounts, Lane);
2365 
2366     if (IsConstant(Lane))
2367       NumConstantLanes++;
2368     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2369       AddCount(ShuffleCounts, ShuffleSrc);
2370     if (CanSwizzle) {
2371       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2372       if (SwizzleSrcs.first)
2373         AddCount(SwizzleCounts, SwizzleSrcs);
2374     }
2375   }
2376 
2377   SDValue SplatValue;
2378   size_t NumSplatLanes;
2379   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2380 
2381   SDValue SwizzleSrc;
2382   SDValue SwizzleIndices;
2383   size_t NumSwizzleLanes = 0;
2384   if (SwizzleCounts.size())
2385     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2386                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2387 
2388   // Shuffles can draw from up to two vectors, so find the two most common
2389   // sources.
2390   SDValue ShuffleSrc1, ShuffleSrc2;
2391   size_t NumShuffleLanes = 0;
2392   if (ShuffleCounts.size()) {
2393     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2394     llvm::erase_if(ShuffleCounts,
2395                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2396   }
2397   if (ShuffleCounts.size()) {
2398     size_t AdditionalShuffleLanes;
2399     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2400         GetMostCommon(ShuffleCounts);
2401     NumShuffleLanes += AdditionalShuffleLanes;
2402   }
2403 
2404   // Predicate returning true if the lane is properly initialized by the
2405   // original instruction
2406   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2407   SDValue Result;
2408   // Prefer swizzles over shuffles over vector consts over splats
2409   if (NumSwizzleLanes >= NumShuffleLanes &&
2410       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2411     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2412                          SwizzleIndices);
2413     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2414     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2415       return Swizzled == GetSwizzleSrcs(I, Lane);
2416     };
2417   } else if (NumShuffleLanes >= NumConstantLanes &&
2418              NumShuffleLanes >= NumSplatLanes) {
2419     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2420     size_t DestLaneCount = VecT.getVectorNumElements();
2421     size_t Scale1 = 1;
2422     size_t Scale2 = 1;
2423     SDValue Src1 = ShuffleSrc1;
2424     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2425     if (Src1.getValueType() != VecT) {
2426       size_t LaneSize =
2427           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2428       assert(LaneSize > DestLaneSize);
2429       Scale1 = LaneSize / DestLaneSize;
2430       Src1 = DAG.getBitcast(VecT, Src1);
2431     }
2432     if (Src2.getValueType() != VecT) {
2433       size_t LaneSize =
2434           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2435       assert(LaneSize > DestLaneSize);
2436       Scale2 = LaneSize / DestLaneSize;
2437       Src2 = DAG.getBitcast(VecT, Src2);
2438     }
2439 
2440     int Mask[16];
2441     assert(DestLaneCount <= 16);
2442     for (size_t I = 0; I < DestLaneCount; ++I) {
2443       const SDValue &Lane = Op->getOperand(I);
2444       SDValue Src = GetShuffleSrc(Lane);
2445       if (Src == ShuffleSrc1) {
2446         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2447       } else if (Src && Src == ShuffleSrc2) {
2448         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2449       } else {
2450         Mask[I] = -1;
2451       }
2452     }
2453     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2454     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2455     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2456       auto Src = GetShuffleSrc(Lane);
2457       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2458     };
2459   } else if (NumConstantLanes >= NumSplatLanes) {
2460     SmallVector<SDValue, 16> ConstLanes;
2461     for (const SDValue &Lane : Op->op_values()) {
2462       if (IsConstant(Lane)) {
2463         // Values may need to be fixed so that they will sign extend to be
2464         // within the expected range during ISel. Check whether the value is in
2465         // bounds based on the lane bit width and if it is out of bounds, lop
2466         // off the extra bits and subtract 2^n to reflect giving the high bit
2467         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2468         // cannot possibly be out of range.
2469         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2470         int64_t Val = Const ? Const->getSExtValue() : 0;
2471         uint64_t LaneBits = 128 / Lanes;
2472         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2473                "Unexpected out of bounds negative value");
2474         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2475           uint64_t Mask = (1ll << LaneBits) - 1;
2476           auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask;
2477           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2478         } else {
2479           ConstLanes.push_back(Lane);
2480         }
2481       } else if (LaneT.isFloatingPoint()) {
2482         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2483       } else {
2484         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2485       }
2486     }
2487     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2488     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2489       return IsConstant(Lane);
2490     };
2491   } else {
2492     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits();
2493     if (NumSplatLanes == 1 && Op->getOperand(0) == SplatValue &&
2494         (DestLaneSize == 32 || DestLaneSize == 64)) {
2495       // Could be selected to load_zero.
2496       Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecT, SplatValue);
2497     } else {
2498       // Use a splat (which might be selected as a load splat)
2499       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2500     }
2501     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2502       return Lane == SplatValue;
2503     };
2504   }
2505 
2506   assert(Result);
2507   assert(IsLaneConstructed);
2508 
2509   // Add replace_lane instructions for any unhandled values
2510   for (size_t I = 0; I < Lanes; ++I) {
2511     const SDValue &Lane = Op->getOperand(I);
2512     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2513       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2514                            DAG.getConstant(I, DL, MVT::i32));
2515   }
2516 
2517   return Result;
2518 }
2519 
2520 SDValue
2521 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2522                                                SelectionDAG &DAG) const {
2523   SDLoc DL(Op);
2524   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2525   MVT VecType = Op.getOperand(0).getSimpleValueType();
2526   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2527   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2528 
2529   // Space for two vector args and sixteen mask indices
2530   SDValue Ops[18];
2531   size_t OpIdx = 0;
2532   Ops[OpIdx++] = Op.getOperand(0);
2533   Ops[OpIdx++] = Op.getOperand(1);
2534 
2535   // Expand mask indices to byte indices and materialize them as operands
2536   for (int M : Mask) {
2537     for (size_t J = 0; J < LaneBytes; ++J) {
2538       // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2539       // whole lane of vector input, to allow further reduction at VM. E.g.
2540       // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2541       uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2542       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2543     }
2544   }
2545 
2546   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2547 }
2548 
2549 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2550                                               SelectionDAG &DAG) const {
2551   SDLoc DL(Op);
2552   // The legalizer does not know how to expand the unsupported comparison modes
2553   // of i64x2 vectors, so we manually unroll them here.
2554   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2555   SmallVector<SDValue, 2> LHS, RHS;
2556   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2557   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2558   const SDValue &CC = Op->getOperand(2);
2559   auto MakeLane = [&](unsigned I) {
2560     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2561                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2562                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2563   };
2564   return DAG.getBuildVector(Op->getValueType(0), DL,
2565                             {MakeLane(0), MakeLane(1)});
2566 }
2567 
2568 SDValue
2569 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2570                                                     SelectionDAG &DAG) const {
2571   // Allow constant lane indices, expand variable lane indices
2572   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2573   if (isa<ConstantSDNode>(IdxNode)) {
2574     // Ensure the index type is i32 to match the tablegen patterns
2575     uint64_t Idx = IdxNode->getAsZExtVal();
2576     SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2577     Ops[Op.getNumOperands() - 1] =
2578         DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2579     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2580   }
2581   // Perform default expansion
2582   return SDValue();
2583 }
2584 
2585 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2586   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2587   // 32-bit and 64-bit unrolled shifts will have proper semantics
2588   if (LaneT.bitsGE(MVT::i32))
2589     return DAG.UnrollVectorOp(Op.getNode());
2590   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2591   SDLoc DL(Op);
2592   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2593   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2594   unsigned ShiftOpcode = Op.getOpcode();
2595   SmallVector<SDValue, 16> ShiftedElements;
2596   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2597   SmallVector<SDValue, 16> ShiftElements;
2598   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2599   SmallVector<SDValue, 16> UnrolledOps;
2600   for (size_t i = 0; i < NumLanes; ++i) {
2601     SDValue MaskedShiftValue =
2602         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2603     SDValue ShiftedValue = ShiftedElements[i];
2604     if (ShiftOpcode == ISD::SRA)
2605       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2606                                  ShiftedValue, DAG.getValueType(LaneT));
2607     UnrolledOps.push_back(
2608         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2609   }
2610   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2611 }
2612 
2613 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2614                                               SelectionDAG &DAG) const {
2615   SDLoc DL(Op);
2616 
2617   // Only manually lower vector shifts
2618   assert(Op.getSimpleValueType().isVector());
2619 
2620   uint64_t LaneBits = Op.getValueType().getScalarSizeInBits();
2621   auto ShiftVal = Op.getOperand(1);
2622 
2623   // Try to skip bitmask operation since it is implied inside shift instruction
2624   auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) {
2625     if (MaskOp.getOpcode() != ISD::AND)
2626       return MaskOp;
2627     SDValue LHS = MaskOp.getOperand(0);
2628     SDValue RHS = MaskOp.getOperand(1);
2629     if (MaskOp.getValueType().isVector()) {
2630       APInt MaskVal;
2631       if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal))
2632         std::swap(LHS, RHS);
2633 
2634       if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) &&
2635           MaskVal == MaskBits)
2636         MaskOp = LHS;
2637     } else {
2638       if (!isa<ConstantSDNode>(RHS.getNode()))
2639         std::swap(LHS, RHS);
2640 
2641       auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode());
2642       if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2643         MaskOp = LHS;
2644     }
2645 
2646     return MaskOp;
2647   };
2648 
2649   // Skip vector and operation
2650   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2651   ShiftVal = DAG.getSplatValue(ShiftVal);
2652   if (!ShiftVal)
2653     return unrollVectorShift(Op, DAG);
2654 
2655   // Skip scalar and operation
2656   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2657   // Use anyext because none of the high bits can affect the shift
2658   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2659 
2660   unsigned Opcode;
2661   switch (Op.getOpcode()) {
2662   case ISD::SHL:
2663     Opcode = WebAssemblyISD::VEC_SHL;
2664     break;
2665   case ISD::SRA:
2666     Opcode = WebAssemblyISD::VEC_SHR_S;
2667     break;
2668   case ISD::SRL:
2669     Opcode = WebAssemblyISD::VEC_SHR_U;
2670     break;
2671   default:
2672     llvm_unreachable("unexpected opcode");
2673   }
2674 
2675   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2676 }
2677 
2678 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2679                                                       SelectionDAG &DAG) const {
2680   SDLoc DL(Op);
2681   EVT ResT = Op.getValueType();
2682   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2683 
2684   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2685       (SatVT == MVT::i32 || SatVT == MVT::i64))
2686     return Op;
2687 
2688   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2689     return Op;
2690 
2691   if (ResT == MVT::v8i16 && SatVT == MVT::i16)
2692     return Op;
2693 
2694   return SDValue();
2695 }
2696 
2697 //===----------------------------------------------------------------------===//
2698 //   Custom DAG combine hooks
2699 //===----------------------------------------------------------------------===//
2700 static SDValue
2701 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2702   auto &DAG = DCI.DAG;
2703   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2704 
2705   // Hoist vector bitcasts that don't change the number of lanes out of unary
2706   // shuffles, where they are less likely to get in the way of other combines.
2707   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2708   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2709   SDValue Bitcast = N->getOperand(0);
2710   if (Bitcast.getOpcode() != ISD::BITCAST)
2711     return SDValue();
2712   if (!N->getOperand(1).isUndef())
2713     return SDValue();
2714   SDValue CastOp = Bitcast.getOperand(0);
2715   EVT SrcType = CastOp.getValueType();
2716   EVT DstType = Bitcast.getValueType();
2717   if (!SrcType.is128BitVector() ||
2718       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2719     return SDValue();
2720   SDValue NewShuffle = DAG.getVectorShuffle(
2721       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2722   return DAG.getBitcast(DstType, NewShuffle);
2723 }
2724 
2725 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2726 /// split up into scalar instructions during legalization, and the vector
2727 /// extending instructions are selected in performVectorExtendCombine below.
2728 static SDValue
2729 performVectorExtendToFPCombine(SDNode *N,
2730                                TargetLowering::DAGCombinerInfo &DCI) {
2731   auto &DAG = DCI.DAG;
2732   assert(N->getOpcode() == ISD::UINT_TO_FP ||
2733          N->getOpcode() == ISD::SINT_TO_FP);
2734 
2735   EVT InVT = N->getOperand(0)->getValueType(0);
2736   EVT ResVT = N->getValueType(0);
2737   MVT ExtVT;
2738   if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2739     ExtVT = MVT::v4i32;
2740   else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2741     ExtVT = MVT::v2i32;
2742   else
2743     return SDValue();
2744 
2745   unsigned Op =
2746       N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2747   SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2748   return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2749 }
2750 
2751 static SDValue
2752 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2753   auto &DAG = DCI.DAG;
2754   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2755          N->getOpcode() == ISD::ZERO_EXTEND);
2756 
2757   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2758   // possible before the extract_subvector can be expanded.
2759   auto Extract = N->getOperand(0);
2760   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2761     return SDValue();
2762   auto Source = Extract.getOperand(0);
2763   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2764   if (IndexNode == nullptr)
2765     return SDValue();
2766   auto Index = IndexNode->getZExtValue();
2767 
2768   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2769   // extracted subvector is the low or high half of its source.
2770   EVT ResVT = N->getValueType(0);
2771   if (ResVT == MVT::v8i16) {
2772     if (Extract.getValueType() != MVT::v8i8 ||
2773         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2774       return SDValue();
2775   } else if (ResVT == MVT::v4i32) {
2776     if (Extract.getValueType() != MVT::v4i16 ||
2777         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2778       return SDValue();
2779   } else if (ResVT == MVT::v2i64) {
2780     if (Extract.getValueType() != MVT::v2i32 ||
2781         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2782       return SDValue();
2783   } else {
2784     return SDValue();
2785   }
2786 
2787   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2788   bool IsLow = Index == 0;
2789 
2790   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2791                                 : WebAssemblyISD::EXTEND_HIGH_S)
2792                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2793                                 : WebAssemblyISD::EXTEND_HIGH_U);
2794 
2795   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2796 }
2797 
2798 static SDValue
2799 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2800   auto &DAG = DCI.DAG;
2801 
2802   auto GetWasmConversionOp = [](unsigned Op) {
2803     switch (Op) {
2804     case ISD::FP_TO_SINT_SAT:
2805       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2806     case ISD::FP_TO_UINT_SAT:
2807       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2808     case ISD::FP_ROUND:
2809       return WebAssemblyISD::DEMOTE_ZERO;
2810     }
2811     llvm_unreachable("unexpected op");
2812   };
2813 
2814   auto IsZeroSplat = [](SDValue SplatVal) {
2815     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2816     APInt SplatValue, SplatUndef;
2817     unsigned SplatBitSize;
2818     bool HasAnyUndefs;
2819     // Endianness doesn't matter in this context because we are looking for
2820     // an all-zero value.
2821     return Splat &&
2822            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2823                                   HasAnyUndefs) &&
2824            SplatValue == 0;
2825   };
2826 
2827   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2828     // Combine this:
2829     //
2830     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2831     //
2832     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2833     //
2834     // Or this:
2835     //
2836     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2837     //
2838     // into (f32x4.demote_zero_f64x2 $x).
2839     EVT ResVT;
2840     EVT ExpectedConversionType;
2841     auto Conversion = N->getOperand(0);
2842     auto ConversionOp = Conversion.getOpcode();
2843     switch (ConversionOp) {
2844     case ISD::FP_TO_SINT_SAT:
2845     case ISD::FP_TO_UINT_SAT:
2846       ResVT = MVT::v4i32;
2847       ExpectedConversionType = MVT::v2i32;
2848       break;
2849     case ISD::FP_ROUND:
2850       ResVT = MVT::v4f32;
2851       ExpectedConversionType = MVT::v2f32;
2852       break;
2853     default:
2854       return SDValue();
2855     }
2856 
2857     if (N->getValueType(0) != ResVT)
2858       return SDValue();
2859 
2860     if (Conversion.getValueType() != ExpectedConversionType)
2861       return SDValue();
2862 
2863     auto Source = Conversion.getOperand(0);
2864     if (Source.getValueType() != MVT::v2f64)
2865       return SDValue();
2866 
2867     if (!IsZeroSplat(N->getOperand(1)) ||
2868         N->getOperand(1).getValueType() != ExpectedConversionType)
2869       return SDValue();
2870 
2871     unsigned Op = GetWasmConversionOp(ConversionOp);
2872     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2873   }
2874 
2875   // Combine this:
2876   //
2877   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2878   //
2879   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2880   //
2881   // Or this:
2882   //
2883   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2884   //
2885   // into (f32x4.demote_zero_f64x2 $x).
2886   EVT ResVT;
2887   auto ConversionOp = N->getOpcode();
2888   switch (ConversionOp) {
2889   case ISD::FP_TO_SINT_SAT:
2890   case ISD::FP_TO_UINT_SAT:
2891     ResVT = MVT::v4i32;
2892     break;
2893   case ISD::FP_ROUND:
2894     ResVT = MVT::v4f32;
2895     break;
2896   default:
2897     llvm_unreachable("unexpected op");
2898   }
2899 
2900   if (N->getValueType(0) != ResVT)
2901     return SDValue();
2902 
2903   auto Concat = N->getOperand(0);
2904   if (Concat.getValueType() != MVT::v4f64)
2905     return SDValue();
2906 
2907   auto Source = Concat.getOperand(0);
2908   if (Source.getValueType() != MVT::v2f64)
2909     return SDValue();
2910 
2911   if (!IsZeroSplat(Concat.getOperand(1)) ||
2912       Concat.getOperand(1).getValueType() != MVT::v2f64)
2913     return SDValue();
2914 
2915   unsigned Op = GetWasmConversionOp(ConversionOp);
2916   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2917 }
2918 
2919 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2920 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2921                                 const SDLoc &DL, unsigned VectorWidth) {
2922   EVT VT = Vec.getValueType();
2923   EVT ElVT = VT.getVectorElementType();
2924   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2925   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2926                                   VT.getVectorNumElements() / Factor);
2927 
2928   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2929   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2930   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2931 
2932   // This is the index of the first element of the VectorWidth-bit chunk
2933   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2934   IdxVal &= ~(ElemsPerChunk - 1);
2935 
2936   // If the input is a buildvector just emit a smaller one.
2937   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2938     return DAG.getBuildVector(ResultVT, DL,
2939                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2940 
2941   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2942   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2943 }
2944 
2945 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2946 // is the expected destination value type after recursion. In is the initial
2947 // input. Note that the input should have enough leading zero bits to prevent
2948 // NARROW_U from saturating results.
2949 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2950                                         SelectionDAG &DAG) {
2951   EVT SrcVT = In.getValueType();
2952 
2953   // No truncation required, we might get here due to recursive calls.
2954   if (SrcVT == DstVT)
2955     return In;
2956 
2957   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2958   unsigned NumElems = SrcVT.getVectorNumElements();
2959   if (!isPowerOf2_32(NumElems))
2960     return SDValue();
2961   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2962   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2963 
2964   LLVMContext &Ctx = *DAG.getContext();
2965   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2966 
2967   // Narrow to the largest type possible:
2968   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2969   EVT InVT = MVT::i16, OutVT = MVT::i8;
2970   if (SrcVT.getScalarSizeInBits() > 16) {
2971     InVT = MVT::i32;
2972     OutVT = MVT::i16;
2973   }
2974   unsigned SubSizeInBits = SrcSizeInBits / 2;
2975   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2976   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2977 
2978   // Split lower/upper subvectors.
2979   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2980   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2981 
2982   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2983   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2984     Lo = DAG.getBitcast(InVT, Lo);
2985     Hi = DAG.getBitcast(InVT, Hi);
2986     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2987     return DAG.getBitcast(DstVT, Res);
2988   }
2989 
2990   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2991   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2992   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2993   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2994 
2995   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2996   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2997   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2998 }
2999 
3000 static SDValue performTruncateCombine(SDNode *N,
3001                                       TargetLowering::DAGCombinerInfo &DCI) {
3002   auto &DAG = DCI.DAG;
3003 
3004   SDValue In = N->getOperand(0);
3005   EVT InVT = In.getValueType();
3006   if (!InVT.isSimple())
3007     return SDValue();
3008 
3009   EVT OutVT = N->getValueType(0);
3010   if (!OutVT.isVector())
3011     return SDValue();
3012 
3013   EVT OutSVT = OutVT.getVectorElementType();
3014   EVT InSVT = InVT.getVectorElementType();
3015   // Currently only cover truncate to v16i8 or v8i16.
3016   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
3017         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
3018     return SDValue();
3019 
3020   SDLoc DL(N);
3021   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
3022                                     OutVT.getScalarSizeInBits());
3023   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
3024   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
3025 }
3026 
3027 static SDValue performBitcastCombine(SDNode *N,
3028                                      TargetLowering::DAGCombinerInfo &DCI) {
3029   auto &DAG = DCI.DAG;
3030   SDLoc DL(N);
3031   SDValue Src = N->getOperand(0);
3032   EVT VT = N->getValueType(0);
3033   EVT SrcVT = Src.getValueType();
3034 
3035   // bitcast <N x i1> to iN
3036   //   ==> bitmask
3037   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
3038       SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) {
3039     unsigned NumElts = SrcVT.getVectorNumElements();
3040     if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3041       return SDValue();
3042     EVT Width = MVT::getIntegerVT(128 / NumElts);
3043     return DAG.getZExtOrTrunc(
3044         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3045                     {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
3046                      DAG.getSExtOrTrunc(N->getOperand(0), DL,
3047                                         SrcVT.changeVectorElementType(Width))}),
3048         DL, VT);
3049   }
3050 
3051   return SDValue();
3052 }
3053 
3054 static SDValue performSETCCCombine(SDNode *N,
3055                                    TargetLowering::DAGCombinerInfo &DCI) {
3056   auto &DAG = DCI.DAG;
3057 
3058   SDValue LHS = N->getOperand(0);
3059   SDValue RHS = N->getOperand(1);
3060   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
3061   SDLoc DL(N);
3062   EVT VT = N->getValueType(0);
3063 
3064   // setcc (iN (bitcast (vNi1 X))), 0, ne
3065   //   ==> any_true (vNi1 X)
3066   // setcc (iN (bitcast (vNi1 X))), 0, eq
3067   //   ==> xor (any_true (vNi1 X)), -1
3068   // setcc (iN (bitcast (vNi1 X))), -1, eq
3069   //   ==> all_true (vNi1 X)
3070   // setcc (iN (bitcast (vNi1 X))), -1, ne
3071   //   ==> xor (all_true (vNi1 X)), -1
3072   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
3073       (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3074       (isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
3075       LHS->getOpcode() == ISD::BITCAST) {
3076     EVT FromVT = LHS->getOperand(0).getValueType();
3077     if (FromVT.isFixedLengthVector() &&
3078         FromVT.getVectorElementType() == MVT::i1) {
3079       int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue
3080                                        : Intrinsic::wasm_alltrue;
3081       unsigned NumElts = FromVT.getVectorNumElements();
3082       if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3083         return SDValue();
3084       EVT Width = MVT::getIntegerVT(128 / NumElts);
3085       SDValue Ret = DAG.getZExtOrTrunc(
3086           DAG.getNode(
3087               ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3088               {DAG.getConstant(Intrin, DL, MVT::i32),
3089                DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
3090                                   FromVT.changeVectorElementType(Width))}),
3091           DL, MVT::i1);
3092       if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) ||
3093           (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) {
3094         Ret = DAG.getNOT(DL, Ret, MVT::i1);
3095       }
3096       return DAG.getZExtOrTrunc(Ret, DL, VT);
3097     }
3098   }
3099 
3100   return SDValue();
3101 }
3102 
3103 SDValue
3104 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
3105                                              DAGCombinerInfo &DCI) const {
3106   switch (N->getOpcode()) {
3107   default:
3108     return SDValue();
3109   case ISD::BITCAST:
3110     return performBitcastCombine(N, DCI);
3111   case ISD::SETCC:
3112     return performSETCCCombine(N, DCI);
3113   case ISD::VECTOR_SHUFFLE:
3114     return performVECTOR_SHUFFLECombine(N, DCI);
3115   case ISD::SIGN_EXTEND:
3116   case ISD::ZERO_EXTEND:
3117     return performVectorExtendCombine(N, DCI);
3118   case ISD::UINT_TO_FP:
3119   case ISD::SINT_TO_FP:
3120     return performVectorExtendToFPCombine(N, DCI);
3121   case ISD::FP_TO_SINT_SAT:
3122   case ISD::FP_TO_UINT_SAT:
3123   case ISD::FP_ROUND:
3124   case ISD::CONCAT_VECTORS:
3125     return performVectorTruncZeroCombine(N, DCI);
3126   case ISD::TRUNCATE:
3127     return performTruncateCombine(N, DCI);
3128   }
3129 }
3130