xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision 4d7a0abae8b40482a44c22257b2e86c6fa89547c)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "WebAssemblyUtilities.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "wasm-lower"
45 
46 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
47     const TargetMachine &TM, const WebAssemblySubtarget &STI)
48     : TargetLowering(TM), Subtarget(&STI) {
49   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
50 
51   // Booleans always contain 0 or 1.
52   setBooleanContents(ZeroOrOneBooleanContent);
53   // Except in SIMD vectors
54   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
55   // We don't know the microarchitecture here, so just reduce register pressure.
56   setSchedulingPreference(Sched::RegPressure);
57   // Tell ISel that we have a stack pointer.
58   setStackPointerRegisterToSaveRestore(
59       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
60   // Set up the register classes.
61   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
62   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
63   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
64   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
65   if (Subtarget->hasSIMD128()) {
66     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
70     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
71     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
72   }
73   if (Subtarget->hasFP16()) {
74     addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass);
75   }
76   if (Subtarget->hasReferenceTypes()) {
77     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
78     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
79     if (Subtarget->hasExceptionHandling()) {
80       addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass);
81     }
82   }
83   // Compute derived properties from the register classes.
84   computeRegisterProperties(Subtarget->getRegisterInfo());
85 
86   // Transform loads and stores to pointers in address space 1 to loads and
87   // stores to WebAssembly global variables, outside linear memory.
88   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
89     setOperationAction(ISD::LOAD, T, Custom);
90     setOperationAction(ISD::STORE, T, Custom);
91   }
92   if (Subtarget->hasSIMD128()) {
93     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
94                    MVT::v2f64}) {
95       setOperationAction(ISD::LOAD, T, Custom);
96       setOperationAction(ISD::STORE, T, Custom);
97     }
98   }
99   if (Subtarget->hasReferenceTypes()) {
100     // We need custom load and store lowering for both externref, funcref and
101     // Other. The MVT::Other here represents tables of reference types.
102     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
103       setOperationAction(ISD::LOAD, T, Custom);
104       setOperationAction(ISD::STORE, T, Custom);
105     }
106   }
107 
108   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
109   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
110   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
111   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
112   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
113   setOperationAction(ISD::BRIND, MVT::Other, Custom);
114   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom);
115 
116   // Take the default expansion for va_arg, va_copy, and va_end. There is no
117   // default action for va_start, so we do that custom.
118   setOperationAction(ISD::VASTART, MVT::Other, Custom);
119   setOperationAction(ISD::VAARG, MVT::Other, Expand);
120   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
121   setOperationAction(ISD::VAEND, MVT::Other, Expand);
122 
123   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
124     // Don't expand the floating-point types to constant pools.
125     setOperationAction(ISD::ConstantFP, T, Legal);
126     // Expand floating-point comparisons.
127     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
128                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
129       setCondCodeAction(CC, T, Expand);
130     // Expand floating-point library function operators.
131     for (auto Op :
132          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
133       setOperationAction(Op, T, Expand);
134     // Note supported floating-point library function operators that otherwise
135     // default to expand.
136     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
137                     ISD::FRINT, ISD::FROUNDEVEN})
138       setOperationAction(Op, T, Legal);
139     // Support minimum and maximum, which otherwise default to expand.
140     setOperationAction(ISD::FMINIMUM, T, Legal);
141     setOperationAction(ISD::FMAXIMUM, T, Legal);
142     // WebAssembly currently has no builtin f16 support.
143     setOperationAction(ISD::FP16_TO_FP, T, Expand);
144     setOperationAction(ISD::FP_TO_FP16, T, Expand);
145     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
146     setTruncStoreAction(T, MVT::f16, Expand);
147   }
148 
149   if (Subtarget->hasFP16()) {
150     setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
151     setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
152   }
153 
154   // Expand unavailable integer operations.
155   for (auto Op :
156        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
157         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
158         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
159     for (auto T : {MVT::i32, MVT::i64})
160       setOperationAction(Op, T, Expand);
161     if (Subtarget->hasSIMD128())
162       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
163         setOperationAction(Op, T, Expand);
164   }
165 
166   if (Subtarget->hasNontrappingFPToInt())
167     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
168       for (auto T : {MVT::i32, MVT::i64})
169         setOperationAction(Op, T, Custom);
170 
171   // SIMD-specific configuration
172   if (Subtarget->hasSIMD128()) {
173     // Combine vector mask reductions into alltrue/anytrue
174     setTargetDAGCombine(ISD::SETCC);
175 
176     // Convert vector to integer bitcasts to bitmask
177     setTargetDAGCombine(ISD::BITCAST);
178 
179     // Hoist bitcasts out of shuffles
180     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
181 
182     // Combine extends of extract_subvectors into widening ops
183     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
184 
185     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
186     // conversions ops
187     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
188                          ISD::EXTRACT_SUBVECTOR});
189 
190     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
191     // into conversion ops
192     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
193                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
194 
195     setTargetDAGCombine(ISD::TRUNCATE);
196 
197     // Support saturating add for i8x16 and i16x8
198     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
199       for (auto T : {MVT::v16i8, MVT::v8i16})
200         setOperationAction(Op, T, Legal);
201 
202     // Support integer abs
203     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
204       setOperationAction(ISD::ABS, T, Legal);
205 
206     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
207     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
208                    MVT::v2f64})
209       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
210 
211     // We have custom shuffle lowering to expose the shuffle mask
212     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
213                    MVT::v2f64})
214       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
215 
216     // Support splatting
217     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
218                    MVT::v2f64})
219       setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
220 
221     // Custom lowering since wasm shifts must have a scalar shift amount
222     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
223       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
224         setOperationAction(Op, T, Custom);
225 
226     // Custom lower lane accesses to expand out variable indices
227     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
228       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
229                      MVT::v2f64})
230         setOperationAction(Op, T, Custom);
231 
232     // There is no i8x16.mul instruction
233     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
234 
235     // There is no vector conditional select instruction
236     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
237                    MVT::v2f64})
238       setOperationAction(ISD::SELECT_CC, T, Expand);
239 
240     // Expand integer operations supported for scalars but not SIMD
241     for (auto Op :
242          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
243       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
244         setOperationAction(Op, T, Expand);
245 
246     // But we do have integer min and max operations
247     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
248       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
249         setOperationAction(Op, T, Legal);
250 
251     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
252     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
253     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
254     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
255 
256     // Custom lower bit counting operations for other types to scalarize them.
257     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
258       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
259         setOperationAction(Op, T, Custom);
260 
261     // Expand float operations supported for scalars but not SIMD
262     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
263                     ISD::FEXP, ISD::FEXP2})
264       for (auto T : {MVT::v4f32, MVT::v2f64})
265         setOperationAction(Op, T, Expand);
266 
267     // Unsigned comparison operations are unavailable for i64x2 vectors.
268     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
269       setCondCodeAction(CC, MVT::v2i64, Custom);
270 
271     // 64x2 conversions are not in the spec
272     for (auto Op :
273          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
274       for (auto T : {MVT::v2i64, MVT::v2f64})
275         setOperationAction(Op, T, Expand);
276 
277     // But saturating fp_to_int converstions are
278     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
279       setOperationAction(Op, MVT::v4i32, Custom);
280 
281     // Support vector extending
282     for (auto T : MVT::integer_fixedlen_vector_valuetypes()) {
283       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom);
284       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom);
285     }
286   }
287 
288   // As a special case, these operators use the type to mean the type to
289   // sign-extend from.
290   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
291   if (!Subtarget->hasSignExt()) {
292     // Sign extends are legal only when extending a vector extract
293     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
294     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
295       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
296   }
297   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
298     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
299 
300   // Dynamic stack allocation: use the default expansion.
301   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
302   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
303   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
304 
305   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
306   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
307   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
308 
309   // Expand these forms; we pattern-match the forms that we can handle in isel.
310   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
311     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
312       setOperationAction(Op, T, Expand);
313 
314   // We have custom switch handling.
315   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
316 
317   // WebAssembly doesn't have:
318   //  - Floating-point extending loads.
319   //  - Floating-point truncating stores.
320   //  - i1 extending loads.
321   //  - truncating SIMD stores and most extending loads
322   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
323   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
324   for (auto T : MVT::integer_valuetypes())
325     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
326       setLoadExtAction(Ext, T, MVT::i1, Promote);
327   if (Subtarget->hasSIMD128()) {
328     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
329                    MVT::v2f64}) {
330       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
331         if (MVT(T) != MemT) {
332           setTruncStoreAction(T, MemT, Expand);
333           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
334             setLoadExtAction(Ext, T, MemT, Expand);
335         }
336       }
337     }
338     // But some vector extending loads are legal
339     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
340       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
341       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
342       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
343     }
344     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
345   }
346 
347   // Don't do anything clever with build_pairs
348   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
349 
350   // Trap lowers to wasm unreachable
351   setOperationAction(ISD::TRAP, MVT::Other, Legal);
352   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
353 
354   // Exception handling intrinsics
355   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
356   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
357   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
358 
359   setMaxAtomicSizeInBitsSupported(64);
360 
361   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
362   // consistent with the f64 and f128 names.
363   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
364   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
365 
366   // Define the emscripten name for return address helper.
367   // TODO: when implementing other Wasm backends, make this generic or only do
368   // this on emscripten depending on what they end up doing.
369   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
370 
371   // Always convert switches to br_tables unless there is only one case, which
372   // is equivalent to a simple branch. This reduces code size for wasm, and we
373   // defer possible jump table optimizations to the VM.
374   setMinimumJumpTableEntries(2);
375 }
376 
377 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
378                                             uint32_t AS) const {
379   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
380     return MVT::externref;
381   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
382     return MVT::funcref;
383   return TargetLowering::getPointerTy(DL, AS);
384 }
385 
386 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
387                                                uint32_t AS) const {
388   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
389     return MVT::externref;
390   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
391     return MVT::funcref;
392   return TargetLowering::getPointerMemTy(DL, AS);
393 }
394 
395 TargetLowering::AtomicExpansionKind
396 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
397   // We have wasm instructions for these
398   switch (AI->getOperation()) {
399   case AtomicRMWInst::Add:
400   case AtomicRMWInst::Sub:
401   case AtomicRMWInst::And:
402   case AtomicRMWInst::Or:
403   case AtomicRMWInst::Xor:
404   case AtomicRMWInst::Xchg:
405     return AtomicExpansionKind::None;
406   default:
407     break;
408   }
409   return AtomicExpansionKind::CmpXChg;
410 }
411 
412 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
413   // Implementation copied from X86TargetLowering.
414   unsigned Opc = VecOp.getOpcode();
415 
416   // Assume target opcodes can't be scalarized.
417   // TODO - do we have any exceptions?
418   if (Opc >= ISD::BUILTIN_OP_END)
419     return false;
420 
421   // If the vector op is not supported, try to convert to scalar.
422   EVT VecVT = VecOp.getValueType();
423   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
424     return true;
425 
426   // If the vector op is supported, but the scalar op is not, the transform may
427   // not be worthwhile.
428   EVT ScalarVT = VecVT.getScalarType();
429   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
430 }
431 
432 FastISel *WebAssemblyTargetLowering::createFastISel(
433     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
434   return WebAssembly::createFastISel(FuncInfo, LibInfo);
435 }
436 
437 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
438                                                       EVT VT) const {
439   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
440   if (BitWidth > 1 && BitWidth < 8)
441     BitWidth = 8;
442 
443   if (BitWidth > 64) {
444     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
445     // the count to be an i32.
446     BitWidth = 32;
447     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
448            "32-bit shift counts ought to be enough for anyone");
449   }
450 
451   MVT Result = MVT::getIntegerVT(BitWidth);
452   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
453          "Unable to represent scalar shift amount type");
454   return Result;
455 }
456 
457 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
458 // undefined result on invalid/overflow, to the WebAssembly opcode, which
459 // traps on invalid/overflow.
460 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
461                                        MachineBasicBlock *BB,
462                                        const TargetInstrInfo &TII,
463                                        bool IsUnsigned, bool Int64,
464                                        bool Float64, unsigned LoweredOpcode) {
465   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
466 
467   Register OutReg = MI.getOperand(0).getReg();
468   Register InReg = MI.getOperand(1).getReg();
469 
470   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
471   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
472   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
473   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
474   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
475   unsigned Eqz = WebAssembly::EQZ_I32;
476   unsigned And = WebAssembly::AND_I32;
477   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
478   int64_t Substitute = IsUnsigned ? 0 : Limit;
479   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
480   auto &Context = BB->getParent()->getFunction().getContext();
481   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
482 
483   const BasicBlock *LLVMBB = BB->getBasicBlock();
484   MachineFunction *F = BB->getParent();
485   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
486   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
487   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
488 
489   MachineFunction::iterator It = ++BB->getIterator();
490   F->insert(It, FalseMBB);
491   F->insert(It, TrueMBB);
492   F->insert(It, DoneMBB);
493 
494   // Transfer the remainder of BB and its successor edges to DoneMBB.
495   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
496   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
497 
498   BB->addSuccessor(TrueMBB);
499   BB->addSuccessor(FalseMBB);
500   TrueMBB->addSuccessor(DoneMBB);
501   FalseMBB->addSuccessor(DoneMBB);
502 
503   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
504   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
505   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
506   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
507   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
508   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
509   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
510 
511   MI.eraseFromParent();
512   // For signed numbers, we can do a single comparison to determine whether
513   // fabs(x) is within range.
514   if (IsUnsigned) {
515     Tmp0 = InReg;
516   } else {
517     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
518   }
519   BuildMI(BB, DL, TII.get(FConst), Tmp1)
520       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
521   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
522 
523   // For unsigned numbers, we have to do a separate comparison with zero.
524   if (IsUnsigned) {
525     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
526     Register SecondCmpReg =
527         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
528     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
529     BuildMI(BB, DL, TII.get(FConst), Tmp1)
530         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
531     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
532     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
533     CmpReg = AndReg;
534   }
535 
536   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
537 
538   // Create the CFG diamond to select between doing the conversion or using
539   // the substitute value.
540   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
541   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
542   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
543   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
544   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
545       .addReg(FalseReg)
546       .addMBB(FalseMBB)
547       .addReg(TrueReg)
548       .addMBB(TrueMBB);
549 
550   return DoneMBB;
551 }
552 
553 static MachineBasicBlock *
554 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
555                  const WebAssemblySubtarget *Subtarget,
556                  const TargetInstrInfo &TII) {
557   MachineInstr &CallParams = *CallResults.getPrevNode();
558   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
559   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
560          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
561 
562   bool IsIndirect =
563       CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI();
564   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
565 
566   bool IsFuncrefCall = false;
567   if (IsIndirect && CallParams.getOperand(0).isReg()) {
568     Register Reg = CallParams.getOperand(0).getReg();
569     const MachineFunction *MF = BB->getParent();
570     const MachineRegisterInfo &MRI = MF->getRegInfo();
571     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
572     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
573     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
574   }
575 
576   unsigned CallOp;
577   if (IsIndirect && IsRetCall) {
578     CallOp = WebAssembly::RET_CALL_INDIRECT;
579   } else if (IsIndirect) {
580     CallOp = WebAssembly::CALL_INDIRECT;
581   } else if (IsRetCall) {
582     CallOp = WebAssembly::RET_CALL;
583   } else {
584     CallOp = WebAssembly::CALL;
585   }
586 
587   MachineFunction &MF = *BB->getParent();
588   const MCInstrDesc &MCID = TII.get(CallOp);
589   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
590 
591   // Move the function pointer to the end of the arguments for indirect calls
592   if (IsIndirect) {
593     auto FnPtr = CallParams.getOperand(0);
594     CallParams.removeOperand(0);
595 
596     // For funcrefs, call_indirect is done through __funcref_call_table and the
597     // funcref is always installed in slot 0 of the table, therefore instead of
598     // having the function pointer added at the end of the params list, a zero
599     // (the index in
600     // __funcref_call_table is added).
601     if (IsFuncrefCall) {
602       Register RegZero =
603           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
604       MachineInstrBuilder MIBC0 =
605           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
606 
607       BB->insert(CallResults.getIterator(), MIBC0);
608       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
609     } else
610       CallParams.addOperand(FnPtr);
611   }
612 
613   for (auto Def : CallResults.defs())
614     MIB.add(Def);
615 
616   if (IsIndirect) {
617     // Placeholder for the type index.
618     MIB.addImm(0);
619     // The table into which this call_indirect indexes.
620     MCSymbolWasm *Table = IsFuncrefCall
621                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
622                                     MF.getContext(), Subtarget)
623                               : WebAssembly::getOrCreateFunctionTableSymbol(
624                                     MF.getContext(), Subtarget);
625     if (Subtarget->hasReferenceTypes()) {
626       MIB.addSym(Table);
627     } else {
628       // For the MVP there is at most one table whose number is 0, but we can't
629       // write a table symbol or issue relocations.  Instead we just ensure the
630       // table is live and write a zero.
631       Table->setNoStrip();
632       MIB.addImm(0);
633     }
634   }
635 
636   for (auto Use : CallParams.uses())
637     MIB.add(Use);
638 
639   BB->insert(CallResults.getIterator(), MIB);
640   CallParams.eraseFromParent();
641   CallResults.eraseFromParent();
642 
643   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
644   // table slot with ref.null upon call_indirect return.
645   //
646   // This generates the following code, which comes right after a call_indirect
647   // of a funcref:
648   //
649   //    i32.const 0
650   //    ref.null func
651   //    table.set __funcref_call_table
652   if (IsIndirect && IsFuncrefCall) {
653     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
654         MF.getContext(), Subtarget);
655     Register RegZero =
656         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
657     MachineInstr *Const0 =
658         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
659     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
660 
661     Register RegFuncref =
662         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
663     MachineInstr *RefNull =
664         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
665     BB->insertAfter(Const0->getIterator(), RefNull);
666 
667     MachineInstr *TableSet =
668         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
669             .addSym(Table)
670             .addReg(RegZero)
671             .addReg(RegFuncref);
672     BB->insertAfter(RefNull->getIterator(), TableSet);
673   }
674 
675   return BB;
676 }
677 
678 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
679     MachineInstr &MI, MachineBasicBlock *BB) const {
680   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
681   DebugLoc DL = MI.getDebugLoc();
682 
683   switch (MI.getOpcode()) {
684   default:
685     llvm_unreachable("Unexpected instr type to insert");
686   case WebAssembly::FP_TO_SINT_I32_F32:
687     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
688                         WebAssembly::I32_TRUNC_S_F32);
689   case WebAssembly::FP_TO_UINT_I32_F32:
690     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
691                         WebAssembly::I32_TRUNC_U_F32);
692   case WebAssembly::FP_TO_SINT_I64_F32:
693     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
694                         WebAssembly::I64_TRUNC_S_F32);
695   case WebAssembly::FP_TO_UINT_I64_F32:
696     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
697                         WebAssembly::I64_TRUNC_U_F32);
698   case WebAssembly::FP_TO_SINT_I32_F64:
699     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
700                         WebAssembly::I32_TRUNC_S_F64);
701   case WebAssembly::FP_TO_UINT_I32_F64:
702     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
703                         WebAssembly::I32_TRUNC_U_F64);
704   case WebAssembly::FP_TO_SINT_I64_F64:
705     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
706                         WebAssembly::I64_TRUNC_S_F64);
707   case WebAssembly::FP_TO_UINT_I64_F64:
708     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
709                         WebAssembly::I64_TRUNC_U_F64);
710   case WebAssembly::CALL_RESULTS:
711   case WebAssembly::RET_CALL_RESULTS:
712     return LowerCallResults(MI, DL, BB, Subtarget, TII);
713   }
714 }
715 
716 const char *
717 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
718   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
719   case WebAssemblyISD::FIRST_NUMBER:
720   case WebAssemblyISD::FIRST_MEM_OPCODE:
721     break;
722 #define HANDLE_NODETYPE(NODE)                                                  \
723   case WebAssemblyISD::NODE:                                                   \
724     return "WebAssemblyISD::" #NODE;
725 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
726 #include "WebAssemblyISD.def"
727 #undef HANDLE_MEM_NODETYPE
728 #undef HANDLE_NODETYPE
729   }
730   return nullptr;
731 }
732 
733 std::pair<unsigned, const TargetRegisterClass *>
734 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
735     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
736   // First, see if this is a constraint that directly corresponds to a
737   // WebAssembly register class.
738   if (Constraint.size() == 1) {
739     switch (Constraint[0]) {
740     case 'r':
741       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
742       if (Subtarget->hasSIMD128() && VT.isVector()) {
743         if (VT.getSizeInBits() == 128)
744           return std::make_pair(0U, &WebAssembly::V128RegClass);
745       }
746       if (VT.isInteger() && !VT.isVector()) {
747         if (VT.getSizeInBits() <= 32)
748           return std::make_pair(0U, &WebAssembly::I32RegClass);
749         if (VT.getSizeInBits() <= 64)
750           return std::make_pair(0U, &WebAssembly::I64RegClass);
751       }
752       if (VT.isFloatingPoint() && !VT.isVector()) {
753         switch (VT.getSizeInBits()) {
754         case 32:
755           return std::make_pair(0U, &WebAssembly::F32RegClass);
756         case 64:
757           return std::make_pair(0U, &WebAssembly::F64RegClass);
758         default:
759           break;
760         }
761       }
762       break;
763     default:
764       break;
765     }
766   }
767 
768   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
769 }
770 
771 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
772   // Assume ctz is a relatively cheap operation.
773   return true;
774 }
775 
776 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
777   // Assume clz is a relatively cheap operation.
778   return true;
779 }
780 
781 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
782                                                       const AddrMode &AM,
783                                                       Type *Ty, unsigned AS,
784                                                       Instruction *I) const {
785   // WebAssembly offsets are added as unsigned without wrapping. The
786   // isLegalAddressingMode gives us no way to determine if wrapping could be
787   // happening, so we approximate this by accepting only non-negative offsets.
788   if (AM.BaseOffs < 0)
789     return false;
790 
791   // WebAssembly has no scale register operands.
792   if (AM.Scale != 0)
793     return false;
794 
795   // Everything else is legal.
796   return true;
797 }
798 
799 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
800     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
801     MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
802   // WebAssembly supports unaligned accesses, though it should be declared
803   // with the p2align attribute on loads and stores which do so, and there
804   // may be a performance impact. We tell LLVM they're "fast" because
805   // for the kinds of things that LLVM uses this for (merging adjacent stores
806   // of constants, etc.), WebAssembly implementations will either want the
807   // unaligned access or they'll split anyway.
808   if (Fast)
809     *Fast = 1;
810   return true;
811 }
812 
813 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
814                                               AttributeList Attr) const {
815   // The current thinking is that wasm engines will perform this optimization,
816   // so we can save on code size.
817   return true;
818 }
819 
820 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
821   EVT ExtT = ExtVal.getValueType();
822   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
823   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
824          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
825          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
826 }
827 
828 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
829     const GlobalAddressSDNode *GA) const {
830   // Wasm doesn't support function addresses with offsets
831   const GlobalValue *GV = GA->getGlobal();
832   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
833 }
834 
835 bool WebAssemblyTargetLowering::shouldSinkOperands(
836     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
837   using namespace llvm::PatternMatch;
838 
839   if (!I->getType()->isVectorTy() || !I->isShift())
840     return false;
841 
842   Value *V = I->getOperand(1);
843   // We dont need to sink constant splat.
844   if (dyn_cast<Constant>(V))
845     return false;
846 
847   if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()),
848                          m_Value(), m_ZeroMask()))) {
849     // Sink insert
850     Ops.push_back(&cast<Instruction>(V)->getOperandUse(0));
851     // Sink shuffle
852     Ops.push_back(&I->getOperandUse(1));
853     return true;
854   }
855 
856   return false;
857 }
858 
859 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
860                                                   LLVMContext &C,
861                                                   EVT VT) const {
862   if (VT.isVector())
863     return VT.changeVectorElementTypeToInteger();
864 
865   // So far, all branch instructions in Wasm take an I32 condition.
866   // The default TargetLowering::getSetCCResultType returns the pointer size,
867   // which would be useful to reduce instruction counts when testing
868   // against 64-bit pointers/values if at some point Wasm supports that.
869   return EVT::getIntegerVT(C, 32);
870 }
871 
872 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
873                                                    const CallInst &I,
874                                                    MachineFunction &MF,
875                                                    unsigned Intrinsic) const {
876   switch (Intrinsic) {
877   case Intrinsic::wasm_memory_atomic_notify:
878     Info.opc = ISD::INTRINSIC_W_CHAIN;
879     Info.memVT = MVT::i32;
880     Info.ptrVal = I.getArgOperand(0);
881     Info.offset = 0;
882     Info.align = Align(4);
883     // atomic.notify instruction does not really load the memory specified with
884     // this argument, but MachineMemOperand should either be load or store, so
885     // we set this to a load.
886     // FIXME Volatile isn't really correct, but currently all LLVM atomic
887     // instructions are treated as volatiles in the backend, so we should be
888     // consistent. The same applies for wasm_atomic_wait intrinsics too.
889     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
890     return true;
891   case Intrinsic::wasm_memory_atomic_wait32:
892     Info.opc = ISD::INTRINSIC_W_CHAIN;
893     Info.memVT = MVT::i32;
894     Info.ptrVal = I.getArgOperand(0);
895     Info.offset = 0;
896     Info.align = Align(4);
897     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
898     return true;
899   case Intrinsic::wasm_memory_atomic_wait64:
900     Info.opc = ISD::INTRINSIC_W_CHAIN;
901     Info.memVT = MVT::i64;
902     Info.ptrVal = I.getArgOperand(0);
903     Info.offset = 0;
904     Info.align = Align(8);
905     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
906     return true;
907   case Intrinsic::wasm_loadf16_f32:
908     Info.opc = ISD::INTRINSIC_W_CHAIN;
909     Info.memVT = MVT::f16;
910     Info.ptrVal = I.getArgOperand(0);
911     Info.offset = 0;
912     Info.align = Align(2);
913     Info.flags = MachineMemOperand::MOLoad;
914     return true;
915   case Intrinsic::wasm_storef16_f32:
916     Info.opc = ISD::INTRINSIC_VOID;
917     Info.memVT = MVT::f16;
918     Info.ptrVal = I.getArgOperand(1);
919     Info.offset = 0;
920     Info.align = Align(2);
921     Info.flags = MachineMemOperand::MOStore;
922     return true;
923   default:
924     return false;
925   }
926 }
927 
928 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
929     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
930     const SelectionDAG &DAG, unsigned Depth) const {
931   switch (Op.getOpcode()) {
932   default:
933     break;
934   case ISD::INTRINSIC_WO_CHAIN: {
935     unsigned IntNo = Op.getConstantOperandVal(0);
936     switch (IntNo) {
937     default:
938       break;
939     case Intrinsic::wasm_bitmask: {
940       unsigned BitWidth = Known.getBitWidth();
941       EVT VT = Op.getOperand(1).getSimpleValueType();
942       unsigned PossibleBits = VT.getVectorNumElements();
943       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
944       Known.Zero |= ZeroMask;
945       break;
946     }
947     }
948   }
949   }
950 }
951 
952 TargetLoweringBase::LegalizeTypeAction
953 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
954   if (VT.isFixedLengthVector()) {
955     MVT EltVT = VT.getVectorElementType();
956     // We have legal vector types with these lane types, so widening the
957     // vector would let us use some of the lanes directly without having to
958     // extend or truncate values.
959     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
960         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
961       return TypeWidenVector;
962   }
963 
964   return TargetLoweringBase::getPreferredVectorAction(VT);
965 }
966 
967 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
968     SDValue Op, const TargetLoweringOpt &TLO) const {
969   // ISel process runs DAGCombiner after legalization; this step is called
970   // SelectionDAG optimization phase. This post-legalization combining process
971   // runs DAGCombiner on each node, and if there was a change to be made,
972   // re-runs legalization again on it and its user nodes to make sure
973   // everythiing is in a legalized state.
974   //
975   // The legalization calls lowering routines, and we do our custom lowering for
976   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
977   // into zeros. But there is a set of routines in DAGCombiner that turns unused
978   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
979   // turns unused vector elements into undefs. But this routine does not work
980   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
981   // combination can result in a infinite loop, in which undefs are converted to
982   // zeros in legalization and back to undefs in combining.
983   //
984   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
985   // running for build_vectors.
986   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
987     return false;
988   return true;
989 }
990 
991 //===----------------------------------------------------------------------===//
992 // WebAssembly Lowering private implementation.
993 //===----------------------------------------------------------------------===//
994 
995 //===----------------------------------------------------------------------===//
996 // Lowering Code
997 //===----------------------------------------------------------------------===//
998 
999 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
1000   MachineFunction &MF = DAG.getMachineFunction();
1001   DAG.getContext()->diagnose(
1002       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
1003 }
1004 
1005 // Test whether the given calling convention is supported.
1006 static bool callingConvSupported(CallingConv::ID CallConv) {
1007   // We currently support the language-independent target-independent
1008   // conventions. We don't yet have a way to annotate calls with properties like
1009   // "cold", and we don't have any call-clobbered registers, so these are mostly
1010   // all handled the same.
1011   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
1012          CallConv == CallingConv::Cold ||
1013          CallConv == CallingConv::PreserveMost ||
1014          CallConv == CallingConv::PreserveAll ||
1015          CallConv == CallingConv::CXX_FAST_TLS ||
1016          CallConv == CallingConv::WASM_EmscriptenInvoke ||
1017          CallConv == CallingConv::Swift;
1018 }
1019 
1020 SDValue
1021 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1022                                      SmallVectorImpl<SDValue> &InVals) const {
1023   SelectionDAG &DAG = CLI.DAG;
1024   SDLoc DL = CLI.DL;
1025   SDValue Chain = CLI.Chain;
1026   SDValue Callee = CLI.Callee;
1027   MachineFunction &MF = DAG.getMachineFunction();
1028   auto Layout = MF.getDataLayout();
1029 
1030   CallingConv::ID CallConv = CLI.CallConv;
1031   if (!callingConvSupported(CallConv))
1032     fail(DL, DAG,
1033          "WebAssembly doesn't support language-specific or target-specific "
1034          "calling conventions yet");
1035   if (CLI.IsPatchPoint)
1036     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
1037 
1038   if (CLI.IsTailCall) {
1039     auto NoTail = [&](const char *Msg) {
1040       if (CLI.CB && CLI.CB->isMustTailCall())
1041         fail(DL, DAG, Msg);
1042       CLI.IsTailCall = false;
1043     };
1044 
1045     if (!Subtarget->hasTailCall())
1046       NoTail("WebAssembly 'tail-call' feature not enabled");
1047 
1048     // Varargs calls cannot be tail calls because the buffer is on the stack
1049     if (CLI.IsVarArg)
1050       NoTail("WebAssembly does not support varargs tail calls");
1051 
1052     // Do not tail call unless caller and callee return types match
1053     const Function &F = MF.getFunction();
1054     const TargetMachine &TM = getTargetMachine();
1055     Type *RetTy = F.getReturnType();
1056     SmallVector<MVT, 4> CallerRetTys;
1057     SmallVector<MVT, 4> CalleeRetTys;
1058     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1059     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1060     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1061                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1062                                  CalleeRetTys.begin());
1063     if (!TypesMatch)
1064       NoTail("WebAssembly tail call requires caller and callee return types to "
1065              "match");
1066 
1067     // If pointers to local stack values are passed, we cannot tail call
1068     if (CLI.CB) {
1069       for (auto &Arg : CLI.CB->args()) {
1070         Value *Val = Arg.get();
1071         // Trace the value back through pointer operations
1072         while (true) {
1073           Value *Src = Val->stripPointerCastsAndAliases();
1074           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1075             Src = GEP->getPointerOperand();
1076           if (Val == Src)
1077             break;
1078           Val = Src;
1079         }
1080         if (isa<AllocaInst>(Val)) {
1081           NoTail(
1082               "WebAssembly does not support tail calling with stack arguments");
1083           break;
1084         }
1085       }
1086     }
1087   }
1088 
1089   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1090   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1091   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1092 
1093   // The generic code may have added an sret argument. If we're lowering an
1094   // invoke function, the ABI requires that the function pointer be the first
1095   // argument, so we may have to swap the arguments.
1096   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1097       Outs[0].Flags.isSRet()) {
1098     std::swap(Outs[0], Outs[1]);
1099     std::swap(OutVals[0], OutVals[1]);
1100   }
1101 
1102   bool HasSwiftSelfArg = false;
1103   bool HasSwiftErrorArg = false;
1104   unsigned NumFixedArgs = 0;
1105   for (unsigned I = 0; I < Outs.size(); ++I) {
1106     const ISD::OutputArg &Out = Outs[I];
1107     SDValue &OutVal = OutVals[I];
1108     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1109     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1110     if (Out.Flags.isNest())
1111       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1112     if (Out.Flags.isInAlloca())
1113       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1114     if (Out.Flags.isInConsecutiveRegs())
1115       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1116     if (Out.Flags.isInConsecutiveRegsLast())
1117       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1118     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1119       auto &MFI = MF.getFrameInfo();
1120       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1121                                      Out.Flags.getNonZeroByValAlign(),
1122                                      /*isSS=*/false);
1123       SDValue SizeNode =
1124           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1125       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1126       Chain = DAG.getMemcpy(Chain, DL, FINode, OutVal, SizeNode,
1127                             Out.Flags.getNonZeroByValAlign(),
1128                             /*isVolatile*/ false, /*AlwaysInline=*/false,
1129                             /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
1130                             MachinePointerInfo());
1131       OutVal = FINode;
1132     }
1133     // Count the number of fixed args *after* legalization.
1134     NumFixedArgs += Out.IsFixed;
1135   }
1136 
1137   bool IsVarArg = CLI.IsVarArg;
1138   auto PtrVT = getPointerTy(Layout);
1139 
1140   // For swiftcc, emit additional swiftself and swifterror arguments
1141   // if there aren't. These additional arguments are also added for callee
1142   // signature They are necessary to match callee and caller signature for
1143   // indirect call.
1144   if (CallConv == CallingConv::Swift) {
1145     if (!HasSwiftSelfArg) {
1146       NumFixedArgs++;
1147       ISD::OutputArg Arg;
1148       Arg.Flags.setSwiftSelf();
1149       CLI.Outs.push_back(Arg);
1150       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1151       CLI.OutVals.push_back(ArgVal);
1152     }
1153     if (!HasSwiftErrorArg) {
1154       NumFixedArgs++;
1155       ISD::OutputArg Arg;
1156       Arg.Flags.setSwiftError();
1157       CLI.Outs.push_back(Arg);
1158       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1159       CLI.OutVals.push_back(ArgVal);
1160     }
1161   }
1162 
1163   // Analyze operands of the call, assigning locations to each operand.
1164   SmallVector<CCValAssign, 16> ArgLocs;
1165   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1166 
1167   if (IsVarArg) {
1168     // Outgoing non-fixed arguments are placed in a buffer. First
1169     // compute their offsets and the total amount of buffer space needed.
1170     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1171       const ISD::OutputArg &Out = Outs[I];
1172       SDValue &Arg = OutVals[I];
1173       EVT VT = Arg.getValueType();
1174       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1175       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1176       Align Alignment =
1177           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1178       unsigned Offset =
1179           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1180       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1181                                         Offset, VT.getSimpleVT(),
1182                                         CCValAssign::Full));
1183     }
1184   }
1185 
1186   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1187 
1188   SDValue FINode;
1189   if (IsVarArg && NumBytes) {
1190     // For non-fixed arguments, next emit stores to store the argument values
1191     // to the stack buffer at the offsets computed above.
1192     MaybeAlign StackAlign = Layout.getStackAlignment();
1193     assert(StackAlign && "data layout string is missing stack alignment");
1194     int FI = MF.getFrameInfo().CreateStackObject(NumBytes, *StackAlign,
1195                                                  /*isSS=*/false);
1196     unsigned ValNo = 0;
1197     SmallVector<SDValue, 8> Chains;
1198     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1199       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1200              "ArgLocs should remain in order and only hold varargs args");
1201       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1202       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1203       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1204                                 DAG.getConstant(Offset, DL, PtrVT));
1205       Chains.push_back(
1206           DAG.getStore(Chain, DL, Arg, Add,
1207                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1208     }
1209     if (!Chains.empty())
1210       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1211   } else if (IsVarArg) {
1212     FINode = DAG.getIntPtrConstant(0, DL);
1213   }
1214 
1215   if (Callee->getOpcode() == ISD::GlobalAddress) {
1216     // If the callee is a GlobalAddress node (quite common, every direct call
1217     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1218     // doesn't at MO_GOT which is not needed for direct calls.
1219     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1220     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1221                                         getPointerTy(DAG.getDataLayout()),
1222                                         GA->getOffset());
1223     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1224                          getPointerTy(DAG.getDataLayout()), Callee);
1225   }
1226 
1227   // Compute the operands for the CALLn node.
1228   SmallVector<SDValue, 16> Ops;
1229   Ops.push_back(Chain);
1230   Ops.push_back(Callee);
1231 
1232   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1233   // isn't reliable.
1234   Ops.append(OutVals.begin(),
1235              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1236   // Add a pointer to the vararg buffer.
1237   if (IsVarArg)
1238     Ops.push_back(FINode);
1239 
1240   SmallVector<EVT, 8> InTys;
1241   for (const auto &In : Ins) {
1242     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1243     assert(!In.Flags.isNest() && "nest is not valid for return values");
1244     if (In.Flags.isInAlloca())
1245       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1246     if (In.Flags.isInConsecutiveRegs())
1247       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1248     if (In.Flags.isInConsecutiveRegsLast())
1249       fail(DL, DAG,
1250            "WebAssembly hasn't implemented cons regs last return values");
1251     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1252     // registers.
1253     InTys.push_back(In.VT);
1254   }
1255 
1256   // Lastly, if this is a call to a funcref we need to add an instruction
1257   // table.set to the chain and transform the call.
1258   if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType(
1259                     CLI.CB->getCalledOperand()->getType())) {
1260     // In the absence of function references proposal where a funcref call is
1261     // lowered to call_ref, using reference types we generate a table.set to set
1262     // the funcref to a special table used solely for this purpose, followed by
1263     // a call_indirect. Here we just generate the table set, and return the
1264     // SDValue of the table.set so that LowerCall can finalize the lowering by
1265     // generating the call_indirect.
1266     SDValue Chain = Ops[0];
1267 
1268     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1269         MF.getContext(), Subtarget);
1270     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1271     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1272     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1273     SDValue TableSet = DAG.getMemIntrinsicNode(
1274         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1275         MVT::funcref,
1276         // Machine Mem Operand args
1277         MachinePointerInfo(
1278             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1279         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1280         MachineMemOperand::MOStore);
1281 
1282     Ops[0] = TableSet; // The new chain is the TableSet itself
1283   }
1284 
1285   if (CLI.IsTailCall) {
1286     // ret_calls do not return values to the current frame
1287     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1288     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1289   }
1290 
1291   InTys.push_back(MVT::Other);
1292   SDVTList InTyList = DAG.getVTList(InTys);
1293   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1294 
1295   for (size_t I = 0; I < Ins.size(); ++I)
1296     InVals.push_back(Res.getValue(I));
1297 
1298   // Return the chain
1299   return Res.getValue(Ins.size());
1300 }
1301 
1302 bool WebAssemblyTargetLowering::CanLowerReturn(
1303     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1304     const SmallVectorImpl<ISD::OutputArg> &Outs,
1305     LLVMContext & /*Context*/) const {
1306   // WebAssembly can only handle returning tuples with multivalue enabled
1307   return WebAssembly::canLowerReturn(Outs.size(), Subtarget);
1308 }
1309 
1310 SDValue WebAssemblyTargetLowering::LowerReturn(
1311     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1312     const SmallVectorImpl<ISD::OutputArg> &Outs,
1313     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1314     SelectionDAG &DAG) const {
1315   assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) &&
1316          "MVP WebAssembly can only return up to one value");
1317   if (!callingConvSupported(CallConv))
1318     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1319 
1320   SmallVector<SDValue, 4> RetOps(1, Chain);
1321   RetOps.append(OutVals.begin(), OutVals.end());
1322   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1323 
1324   // Record the number and types of the return values.
1325   for (const ISD::OutputArg &Out : Outs) {
1326     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1327     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1328     assert(Out.IsFixed && "non-fixed return value is not valid");
1329     if (Out.Flags.isInAlloca())
1330       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1331     if (Out.Flags.isInConsecutiveRegs())
1332       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1333     if (Out.Flags.isInConsecutiveRegsLast())
1334       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1335   }
1336 
1337   return Chain;
1338 }
1339 
1340 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1341     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1342     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1343     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1344   if (!callingConvSupported(CallConv))
1345     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1346 
1347   MachineFunction &MF = DAG.getMachineFunction();
1348   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1349 
1350   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1351   // of the incoming values before they're represented by virtual registers.
1352   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1353 
1354   bool HasSwiftErrorArg = false;
1355   bool HasSwiftSelfArg = false;
1356   for (const ISD::InputArg &In : Ins) {
1357     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1358     HasSwiftErrorArg |= In.Flags.isSwiftError();
1359     if (In.Flags.isInAlloca())
1360       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1361     if (In.Flags.isNest())
1362       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1363     if (In.Flags.isInConsecutiveRegs())
1364       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1365     if (In.Flags.isInConsecutiveRegsLast())
1366       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1367     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1368     // registers.
1369     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1370                                            DAG.getTargetConstant(InVals.size(),
1371                                                                  DL, MVT::i32))
1372                              : DAG.getUNDEF(In.VT));
1373 
1374     // Record the number and types of arguments.
1375     MFI->addParam(In.VT);
1376   }
1377 
1378   // For swiftcc, emit additional swiftself and swifterror arguments
1379   // if there aren't. These additional arguments are also added for callee
1380   // signature They are necessary to match callee and caller signature for
1381   // indirect call.
1382   auto PtrVT = getPointerTy(MF.getDataLayout());
1383   if (CallConv == CallingConv::Swift) {
1384     if (!HasSwiftSelfArg) {
1385       MFI->addParam(PtrVT);
1386     }
1387     if (!HasSwiftErrorArg) {
1388       MFI->addParam(PtrVT);
1389     }
1390   }
1391   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1392   // the buffer is passed as an argument.
1393   if (IsVarArg) {
1394     MVT PtrVT = getPointerTy(MF.getDataLayout());
1395     Register VarargVreg =
1396         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1397     MFI->setVarargBufferVreg(VarargVreg);
1398     Chain = DAG.getCopyToReg(
1399         Chain, DL, VarargVreg,
1400         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1401                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1402     MFI->addParam(PtrVT);
1403   }
1404 
1405   // Record the number and types of arguments and results.
1406   SmallVector<MVT, 4> Params;
1407   SmallVector<MVT, 4> Results;
1408   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1409                       MF.getFunction(), DAG.getTarget(), Params, Results);
1410   for (MVT VT : Results)
1411     MFI->addResult(VT);
1412   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1413   // the param logic here with ComputeSignatureVTs
1414   assert(MFI->getParams().size() == Params.size() &&
1415          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1416                     Params.begin()));
1417 
1418   return Chain;
1419 }
1420 
1421 void WebAssemblyTargetLowering::ReplaceNodeResults(
1422     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1423   switch (N->getOpcode()) {
1424   case ISD::SIGN_EXTEND_INREG:
1425     // Do not add any results, signifying that N should not be custom lowered
1426     // after all. This happens because simd128 turns on custom lowering for
1427     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1428     // illegal type.
1429     break;
1430   case ISD::SIGN_EXTEND_VECTOR_INREG:
1431   case ISD::ZERO_EXTEND_VECTOR_INREG:
1432     // Do not add any results, signifying that N should not be custom lowered.
1433     // EXTEND_VECTOR_INREG is implemented for some vectors, but not all.
1434     break;
1435   default:
1436     llvm_unreachable(
1437         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1438   }
1439 }
1440 
1441 //===----------------------------------------------------------------------===//
1442 //  Custom lowering hooks.
1443 //===----------------------------------------------------------------------===//
1444 
1445 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1446                                                   SelectionDAG &DAG) const {
1447   SDLoc DL(Op);
1448   switch (Op.getOpcode()) {
1449   default:
1450     llvm_unreachable("unimplemented operation lowering");
1451     return SDValue();
1452   case ISD::FrameIndex:
1453     return LowerFrameIndex(Op, DAG);
1454   case ISD::GlobalAddress:
1455     return LowerGlobalAddress(Op, DAG);
1456   case ISD::GlobalTLSAddress:
1457     return LowerGlobalTLSAddress(Op, DAG);
1458   case ISD::ExternalSymbol:
1459     return LowerExternalSymbol(Op, DAG);
1460   case ISD::JumpTable:
1461     return LowerJumpTable(Op, DAG);
1462   case ISD::BR_JT:
1463     return LowerBR_JT(Op, DAG);
1464   case ISD::VASTART:
1465     return LowerVASTART(Op, DAG);
1466   case ISD::BlockAddress:
1467   case ISD::BRIND:
1468     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1469     return SDValue();
1470   case ISD::RETURNADDR:
1471     return LowerRETURNADDR(Op, DAG);
1472   case ISD::FRAMEADDR:
1473     return LowerFRAMEADDR(Op, DAG);
1474   case ISD::CopyToReg:
1475     return LowerCopyToReg(Op, DAG);
1476   case ISD::EXTRACT_VECTOR_ELT:
1477   case ISD::INSERT_VECTOR_ELT:
1478     return LowerAccessVectorElement(Op, DAG);
1479   case ISD::INTRINSIC_VOID:
1480   case ISD::INTRINSIC_WO_CHAIN:
1481   case ISD::INTRINSIC_W_CHAIN:
1482     return LowerIntrinsic(Op, DAG);
1483   case ISD::SIGN_EXTEND_INREG:
1484     return LowerSIGN_EXTEND_INREG(Op, DAG);
1485   case ISD::ZERO_EXTEND_VECTOR_INREG:
1486   case ISD::SIGN_EXTEND_VECTOR_INREG:
1487     return LowerEXTEND_VECTOR_INREG(Op, DAG);
1488   case ISD::BUILD_VECTOR:
1489     return LowerBUILD_VECTOR(Op, DAG);
1490   case ISD::VECTOR_SHUFFLE:
1491     return LowerVECTOR_SHUFFLE(Op, DAG);
1492   case ISD::SETCC:
1493     return LowerSETCC(Op, DAG);
1494   case ISD::SHL:
1495   case ISD::SRA:
1496   case ISD::SRL:
1497     return LowerShift(Op, DAG);
1498   case ISD::FP_TO_SINT_SAT:
1499   case ISD::FP_TO_UINT_SAT:
1500     return LowerFP_TO_INT_SAT(Op, DAG);
1501   case ISD::LOAD:
1502     return LowerLoad(Op, DAG);
1503   case ISD::STORE:
1504     return LowerStore(Op, DAG);
1505   case ISD::CTPOP:
1506   case ISD::CTLZ:
1507   case ISD::CTTZ:
1508     return DAG.UnrollVectorOp(Op.getNode());
1509   case ISD::CLEAR_CACHE:
1510     report_fatal_error("llvm.clear_cache is not supported on wasm");
1511   }
1512 }
1513 
1514 static bool IsWebAssemblyGlobal(SDValue Op) {
1515   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1516     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1517 
1518   return false;
1519 }
1520 
1521 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1522                                                   SelectionDAG &DAG) {
1523   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1524   if (!FI)
1525     return std::nullopt;
1526 
1527   auto &MF = DAG.getMachineFunction();
1528   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1529 }
1530 
1531 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1532                                               SelectionDAG &DAG) const {
1533   SDLoc DL(Op);
1534   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1535   const SDValue &Value = SN->getValue();
1536   const SDValue &Base = SN->getBasePtr();
1537   const SDValue &Offset = SN->getOffset();
1538 
1539   if (IsWebAssemblyGlobal(Base)) {
1540     if (!Offset->isUndef())
1541       report_fatal_error("unexpected offset when storing to webassembly global",
1542                          false);
1543 
1544     SDVTList Tys = DAG.getVTList(MVT::Other);
1545     SDValue Ops[] = {SN->getChain(), Value, Base};
1546     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1547                                    SN->getMemoryVT(), SN->getMemOperand());
1548   }
1549 
1550   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1551     if (!Offset->isUndef())
1552       report_fatal_error("unexpected offset when storing to webassembly local",
1553                          false);
1554 
1555     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1556     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1557     SDValue Ops[] = {SN->getChain(), Idx, Value};
1558     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1559   }
1560 
1561   if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1562     report_fatal_error(
1563         "Encountered an unlowerable store to the wasm_var address space",
1564         false);
1565 
1566   return Op;
1567 }
1568 
1569 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1570                                              SelectionDAG &DAG) const {
1571   SDLoc DL(Op);
1572   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1573   const SDValue &Base = LN->getBasePtr();
1574   const SDValue &Offset = LN->getOffset();
1575 
1576   if (IsWebAssemblyGlobal(Base)) {
1577     if (!Offset->isUndef())
1578       report_fatal_error(
1579           "unexpected offset when loading from webassembly global", false);
1580 
1581     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1582     SDValue Ops[] = {LN->getChain(), Base};
1583     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1584                                    LN->getMemoryVT(), LN->getMemOperand());
1585   }
1586 
1587   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1588     if (!Offset->isUndef())
1589       report_fatal_error(
1590           "unexpected offset when loading from webassembly local", false);
1591 
1592     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1593     EVT LocalVT = LN->getValueType(0);
1594     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1595                                    {LN->getChain(), Idx});
1596     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1597     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1598     return Result;
1599   }
1600 
1601   if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1602     report_fatal_error(
1603         "Encountered an unlowerable load from the wasm_var address space",
1604         false);
1605 
1606   return Op;
1607 }
1608 
1609 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1610                                                   SelectionDAG &DAG) const {
1611   SDValue Src = Op.getOperand(2);
1612   if (isa<FrameIndexSDNode>(Src.getNode())) {
1613     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1614     // the FI to some LEA-like instruction, but since we don't have that, we
1615     // need to insert some kind of instruction that can take an FI operand and
1616     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1617     // local.copy between Op and its FI operand.
1618     SDValue Chain = Op.getOperand(0);
1619     SDLoc DL(Op);
1620     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1621     EVT VT = Src.getValueType();
1622     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1623                                                    : WebAssembly::COPY_I64,
1624                                     DL, VT, Src),
1625                  0);
1626     return Op.getNode()->getNumValues() == 1
1627                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1628                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1629                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1630                                                            : SDValue());
1631   }
1632   return SDValue();
1633 }
1634 
1635 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1636                                                    SelectionDAG &DAG) const {
1637   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1638   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1639 }
1640 
1641 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1642                                                    SelectionDAG &DAG) const {
1643   SDLoc DL(Op);
1644 
1645   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1646     fail(DL, DAG,
1647          "Non-Emscripten WebAssembly hasn't implemented "
1648          "__builtin_return_address");
1649     return SDValue();
1650   }
1651 
1652   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1653     return SDValue();
1654 
1655   unsigned Depth = Op.getConstantOperandVal(0);
1656   MakeLibCallOptions CallOptions;
1657   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1658                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1659       .first;
1660 }
1661 
1662 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1663                                                   SelectionDAG &DAG) const {
1664   // Non-zero depths are not supported by WebAssembly currently. Use the
1665   // legalizer's default expansion, which is to return 0 (what this function is
1666   // documented to do).
1667   if (Op.getConstantOperandVal(0) > 0)
1668     return SDValue();
1669 
1670   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1671   EVT VT = Op.getValueType();
1672   Register FP =
1673       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1674   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1675 }
1676 
1677 SDValue
1678 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1679                                                  SelectionDAG &DAG) const {
1680   SDLoc DL(Op);
1681   const auto *GA = cast<GlobalAddressSDNode>(Op);
1682 
1683   MachineFunction &MF = DAG.getMachineFunction();
1684   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1685     report_fatal_error("cannot use thread-local storage without bulk memory",
1686                        false);
1687 
1688   const GlobalValue *GV = GA->getGlobal();
1689 
1690   // Currently only Emscripten supports dynamic linking with threads. Therefore,
1691   // on other targets, if we have thread-local storage, only the local-exec
1692   // model is possible.
1693   auto model = Subtarget->getTargetTriple().isOSEmscripten()
1694                    ? GV->getThreadLocalMode()
1695                    : GlobalValue::LocalExecTLSModel;
1696 
1697   // Unsupported TLS modes
1698   assert(model != GlobalValue::NotThreadLocal);
1699   assert(model != GlobalValue::InitialExecTLSModel);
1700 
1701   if (model == GlobalValue::LocalExecTLSModel ||
1702       model == GlobalValue::LocalDynamicTLSModel ||
1703       (model == GlobalValue::GeneralDynamicTLSModel &&
1704        getTargetMachine().shouldAssumeDSOLocal(GV))) {
1705     // For DSO-local TLS variables we use offset from __tls_base
1706 
1707     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1708     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1709                                        : WebAssembly::GLOBAL_GET_I32;
1710     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1711 
1712     SDValue BaseAddr(
1713         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1714                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1715         0);
1716 
1717     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1718         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1719     SDValue SymOffset =
1720         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1721 
1722     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1723   }
1724 
1725   assert(model == GlobalValue::GeneralDynamicTLSModel);
1726 
1727   EVT VT = Op.getValueType();
1728   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1729                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1730                                                 GA->getOffset(),
1731                                                 WebAssemblyII::MO_GOT_TLS));
1732 }
1733 
1734 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1735                                                       SelectionDAG &DAG) const {
1736   SDLoc DL(Op);
1737   const auto *GA = cast<GlobalAddressSDNode>(Op);
1738   EVT VT = Op.getValueType();
1739   assert(GA->getTargetFlags() == 0 &&
1740          "Unexpected target flags on generic GlobalAddressSDNode");
1741   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1742     fail(DL, DAG, "Invalid address space for WebAssembly target");
1743 
1744   unsigned OperandFlags = 0;
1745   const GlobalValue *GV = GA->getGlobal();
1746   // Since WebAssembly tables cannot yet be shared accross modules, we don't
1747   // need special treatment for tables in PIC mode.
1748   if (isPositionIndependent() &&
1749       !WebAssembly::isWebAssemblyTableType(GV->getValueType())) {
1750     if (getTargetMachine().shouldAssumeDSOLocal(GV)) {
1751       MachineFunction &MF = DAG.getMachineFunction();
1752       MVT PtrVT = getPointerTy(MF.getDataLayout());
1753       const char *BaseName;
1754       if (GV->getValueType()->isFunctionTy()) {
1755         BaseName = MF.createExternalSymbolName("__table_base");
1756         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1757       } else {
1758         BaseName = MF.createExternalSymbolName("__memory_base");
1759         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1760       }
1761       SDValue BaseAddr =
1762           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1763                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1764 
1765       SDValue SymAddr = DAG.getNode(
1766           WebAssemblyISD::WrapperREL, DL, VT,
1767           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1768                                      OperandFlags));
1769 
1770       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1771     }
1772     OperandFlags = WebAssemblyII::MO_GOT;
1773   }
1774 
1775   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1776                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1777                                                 GA->getOffset(), OperandFlags));
1778 }
1779 
1780 SDValue
1781 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1782                                                SelectionDAG &DAG) const {
1783   SDLoc DL(Op);
1784   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1785   EVT VT = Op.getValueType();
1786   assert(ES->getTargetFlags() == 0 &&
1787          "Unexpected target flags on generic ExternalSymbolSDNode");
1788   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1789                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1790 }
1791 
1792 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1793                                                   SelectionDAG &DAG) const {
1794   // There's no need for a Wrapper node because we always incorporate a jump
1795   // table operand into a BR_TABLE instruction, rather than ever
1796   // materializing it in a register.
1797   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1798   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1799                                 JT->getTargetFlags());
1800 }
1801 
1802 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1803                                               SelectionDAG &DAG) const {
1804   SDLoc DL(Op);
1805   SDValue Chain = Op.getOperand(0);
1806   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1807   SDValue Index = Op.getOperand(2);
1808   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1809 
1810   SmallVector<SDValue, 8> Ops;
1811   Ops.push_back(Chain);
1812   Ops.push_back(Index);
1813 
1814   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1815   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1816 
1817   // Add an operand for each case.
1818   for (auto *MBB : MBBs)
1819     Ops.push_back(DAG.getBasicBlock(MBB));
1820 
1821   // Add the first MBB as a dummy default target for now. This will be replaced
1822   // with the proper default target (and the preceding range check eliminated)
1823   // if possible by WebAssemblyFixBrTableDefaults.
1824   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1825   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1826 }
1827 
1828 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1829                                                 SelectionDAG &DAG) const {
1830   SDLoc DL(Op);
1831   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1832 
1833   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1834   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1835 
1836   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1837                                     MFI->getVarargBufferVreg(), PtrVT);
1838   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1839                       MachinePointerInfo(SV));
1840 }
1841 
1842 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1843                                                   SelectionDAG &DAG) const {
1844   MachineFunction &MF = DAG.getMachineFunction();
1845   unsigned IntNo;
1846   switch (Op.getOpcode()) {
1847   case ISD::INTRINSIC_VOID:
1848   case ISD::INTRINSIC_W_CHAIN:
1849     IntNo = Op.getConstantOperandVal(1);
1850     break;
1851   case ISD::INTRINSIC_WO_CHAIN:
1852     IntNo = Op.getConstantOperandVal(0);
1853     break;
1854   default:
1855     llvm_unreachable("Invalid intrinsic");
1856   }
1857   SDLoc DL(Op);
1858 
1859   switch (IntNo) {
1860   default:
1861     return SDValue(); // Don't custom lower most intrinsics.
1862 
1863   case Intrinsic::wasm_lsda: {
1864     auto PtrVT = getPointerTy(MF.getDataLayout());
1865     const char *SymName = MF.createExternalSymbolName(
1866         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1867     if (isPositionIndependent()) {
1868       SDValue Node = DAG.getTargetExternalSymbol(
1869           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1870       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1871       SDValue BaseAddr =
1872           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1873                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1874       SDValue SymAddr =
1875           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1876       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1877     }
1878     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1879     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1880   }
1881 
1882   case Intrinsic::wasm_shuffle: {
1883     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1884     SDValue Ops[18];
1885     size_t OpIdx = 0;
1886     Ops[OpIdx++] = Op.getOperand(1);
1887     Ops[OpIdx++] = Op.getOperand(2);
1888     while (OpIdx < 18) {
1889       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1890       if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) {
1891         bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant;
1892         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget);
1893       } else {
1894         Ops[OpIdx++] = MaskIdx;
1895       }
1896     }
1897     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1898   }
1899   }
1900 }
1901 
1902 SDValue
1903 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1904                                                   SelectionDAG &DAG) const {
1905   SDLoc DL(Op);
1906   // If sign extension operations are disabled, allow sext_inreg only if operand
1907   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1908   // extension operations, but allowing sext_inreg in this context lets us have
1909   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1910   // everywhere would be simpler in this file, but would necessitate large and
1911   // brittle patterns to undo the expansion and select extract_lane_s
1912   // instructions.
1913   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1914   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1915     return SDValue();
1916 
1917   const SDValue &Extract = Op.getOperand(0);
1918   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1919   if (VecT.getVectorElementType().getSizeInBits() > 32)
1920     return SDValue();
1921   MVT ExtractedLaneT =
1922       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1923   MVT ExtractedVecT =
1924       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1925   if (ExtractedVecT == VecT)
1926     return Op;
1927 
1928   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1929   const SDNode *Index = Extract.getOperand(1).getNode();
1930   if (!isa<ConstantSDNode>(Index))
1931     return SDValue();
1932   unsigned IndexVal = Index->getAsZExtVal();
1933   unsigned Scale =
1934       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1935   assert(Scale > 1);
1936   SDValue NewIndex =
1937       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1938   SDValue NewExtract = DAG.getNode(
1939       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1940       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1941   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1942                      Op.getOperand(1));
1943 }
1944 
1945 SDValue
1946 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op,
1947                                                     SelectionDAG &DAG) const {
1948   SDLoc DL(Op);
1949   EVT VT = Op.getValueType();
1950   SDValue Src = Op.getOperand(0);
1951   EVT SrcVT = Src.getValueType();
1952 
1953   if (SrcVT.getVectorElementType() == MVT::i1 ||
1954       SrcVT.getVectorElementType() == MVT::i64)
1955     return SDValue();
1956 
1957   assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
1958          "Unexpected extension factor.");
1959   unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
1960 
1961   if (Scale != 2 && Scale != 4 && Scale != 8)
1962     return SDValue();
1963 
1964   unsigned Ext;
1965   switch (Op.getOpcode()) {
1966   case ISD::ZERO_EXTEND_VECTOR_INREG:
1967     Ext = WebAssemblyISD::EXTEND_LOW_U;
1968     break;
1969   case ISD::SIGN_EXTEND_VECTOR_INREG:
1970     Ext = WebAssemblyISD::EXTEND_LOW_S;
1971     break;
1972   }
1973 
1974   SDValue Ret = Src;
1975   while (Scale != 1) {
1976     Ret = DAG.getNode(Ext, DL,
1977                       Ret.getValueType()
1978                           .widenIntegerVectorElementType(*DAG.getContext())
1979                           .getHalfNumVectorElementsVT(*DAG.getContext()),
1980                       Ret);
1981     Scale /= 2;
1982   }
1983   assert(Ret.getValueType() == VT);
1984   return Ret;
1985 }
1986 
1987 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1988   SDLoc DL(Op);
1989   if (Op.getValueType() != MVT::v2f64)
1990     return SDValue();
1991 
1992   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1993                              unsigned &Index) -> bool {
1994     switch (Op.getOpcode()) {
1995     case ISD::SINT_TO_FP:
1996       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1997       break;
1998     case ISD::UINT_TO_FP:
1999       Opcode = WebAssemblyISD::CONVERT_LOW_U;
2000       break;
2001     case ISD::FP_EXTEND:
2002       Opcode = WebAssemblyISD::PROMOTE_LOW;
2003       break;
2004     default:
2005       return false;
2006     }
2007 
2008     auto ExtractVector = Op.getOperand(0);
2009     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2010       return false;
2011 
2012     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2013       return false;
2014 
2015     SrcVec = ExtractVector.getOperand(0);
2016     Index = ExtractVector.getConstantOperandVal(1);
2017     return true;
2018   };
2019 
2020   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2021   SDValue LHSSrcVec, RHSSrcVec;
2022   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2023       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2024     return SDValue();
2025 
2026   if (LHSOpcode != RHSOpcode)
2027     return SDValue();
2028 
2029   MVT ExpectedSrcVT;
2030   switch (LHSOpcode) {
2031   case WebAssemblyISD::CONVERT_LOW_S:
2032   case WebAssemblyISD::CONVERT_LOW_U:
2033     ExpectedSrcVT = MVT::v4i32;
2034     break;
2035   case WebAssemblyISD::PROMOTE_LOW:
2036     ExpectedSrcVT = MVT::v4f32;
2037     break;
2038   }
2039   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2040     return SDValue();
2041 
2042   auto Src = LHSSrcVec;
2043   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2044     // Shuffle the source vector so that the converted lanes are the low lanes.
2045     Src = DAG.getVectorShuffle(
2046         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2047         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2048   }
2049   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2050 }
2051 
2052 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2053                                                      SelectionDAG &DAG) const {
2054   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2055     return ConvertLow;
2056 
2057   SDLoc DL(Op);
2058   const EVT VecT = Op.getValueType();
2059   const EVT LaneT = Op.getOperand(0).getValueType();
2060   const size_t Lanes = Op.getNumOperands();
2061   bool CanSwizzle = VecT == MVT::v16i8;
2062 
2063   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2064   // possible number of lanes at once followed by a sequence of replace_lane
2065   // instructions to individually initialize any remaining lanes.
2066 
2067   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2068   // swizzled lanes should be given greater weight.
2069 
2070   // TODO: Investigate looping rather than always extracting/replacing specific
2071   // lanes to fill gaps.
2072 
2073   auto IsConstant = [](const SDValue &V) {
2074     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2075   };
2076 
2077   // Returns the source vector and index vector pair if they exist. Checks for:
2078   //   (extract_vector_elt
2079   //     $src,
2080   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2081   //   )
2082   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2083     auto Bail = std::make_pair(SDValue(), SDValue());
2084     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2085       return Bail;
2086     const SDValue &SwizzleSrc = Lane->getOperand(0);
2087     const SDValue &IndexExt = Lane->getOperand(1);
2088     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2089       return Bail;
2090     const SDValue &Index = IndexExt->getOperand(0);
2091     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2092       return Bail;
2093     const SDValue &SwizzleIndices = Index->getOperand(0);
2094     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2095         SwizzleIndices.getValueType() != MVT::v16i8 ||
2096         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2097         Index->getConstantOperandVal(1) != I)
2098       return Bail;
2099     return std::make_pair(SwizzleSrc, SwizzleIndices);
2100   };
2101 
2102   // If the lane is extracted from another vector at a constant index, return
2103   // that vector. The source vector must not have more lanes than the dest
2104   // because the shufflevector indices are in terms of the destination lanes and
2105   // would not be able to address the smaller individual source lanes.
2106   auto GetShuffleSrc = [&](const SDValue &Lane) {
2107     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2108       return SDValue();
2109     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2110       return SDValue();
2111     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2112         VecT.getVectorNumElements())
2113       return SDValue();
2114     return Lane->getOperand(0);
2115   };
2116 
2117   using ValueEntry = std::pair<SDValue, size_t>;
2118   SmallVector<ValueEntry, 16> SplatValueCounts;
2119 
2120   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2121   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2122 
2123   using ShuffleEntry = std::pair<SDValue, size_t>;
2124   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2125 
2126   auto AddCount = [](auto &Counts, const auto &Val) {
2127     auto CountIt =
2128         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2129     if (CountIt == Counts.end()) {
2130       Counts.emplace_back(Val, 1);
2131     } else {
2132       CountIt->second++;
2133     }
2134   };
2135 
2136   auto GetMostCommon = [](auto &Counts) {
2137     auto CommonIt =
2138         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2139     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2140     return *CommonIt;
2141   };
2142 
2143   size_t NumConstantLanes = 0;
2144 
2145   // Count eligible lanes for each type of vector creation op
2146   for (size_t I = 0; I < Lanes; ++I) {
2147     const SDValue &Lane = Op->getOperand(I);
2148     if (Lane.isUndef())
2149       continue;
2150 
2151     AddCount(SplatValueCounts, Lane);
2152 
2153     if (IsConstant(Lane))
2154       NumConstantLanes++;
2155     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2156       AddCount(ShuffleCounts, ShuffleSrc);
2157     if (CanSwizzle) {
2158       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2159       if (SwizzleSrcs.first)
2160         AddCount(SwizzleCounts, SwizzleSrcs);
2161     }
2162   }
2163 
2164   SDValue SplatValue;
2165   size_t NumSplatLanes;
2166   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2167 
2168   SDValue SwizzleSrc;
2169   SDValue SwizzleIndices;
2170   size_t NumSwizzleLanes = 0;
2171   if (SwizzleCounts.size())
2172     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2173                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2174 
2175   // Shuffles can draw from up to two vectors, so find the two most common
2176   // sources.
2177   SDValue ShuffleSrc1, ShuffleSrc2;
2178   size_t NumShuffleLanes = 0;
2179   if (ShuffleCounts.size()) {
2180     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2181     llvm::erase_if(ShuffleCounts,
2182                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2183   }
2184   if (ShuffleCounts.size()) {
2185     size_t AdditionalShuffleLanes;
2186     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2187         GetMostCommon(ShuffleCounts);
2188     NumShuffleLanes += AdditionalShuffleLanes;
2189   }
2190 
2191   // Predicate returning true if the lane is properly initialized by the
2192   // original instruction
2193   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2194   SDValue Result;
2195   // Prefer swizzles over shuffles over vector consts over splats
2196   if (NumSwizzleLanes >= NumShuffleLanes &&
2197       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2198     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2199                          SwizzleIndices);
2200     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2201     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2202       return Swizzled == GetSwizzleSrcs(I, Lane);
2203     };
2204   } else if (NumShuffleLanes >= NumConstantLanes &&
2205              NumShuffleLanes >= NumSplatLanes) {
2206     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2207     size_t DestLaneCount = VecT.getVectorNumElements();
2208     size_t Scale1 = 1;
2209     size_t Scale2 = 1;
2210     SDValue Src1 = ShuffleSrc1;
2211     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2212     if (Src1.getValueType() != VecT) {
2213       size_t LaneSize =
2214           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2215       assert(LaneSize > DestLaneSize);
2216       Scale1 = LaneSize / DestLaneSize;
2217       Src1 = DAG.getBitcast(VecT, Src1);
2218     }
2219     if (Src2.getValueType() != VecT) {
2220       size_t LaneSize =
2221           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2222       assert(LaneSize > DestLaneSize);
2223       Scale2 = LaneSize / DestLaneSize;
2224       Src2 = DAG.getBitcast(VecT, Src2);
2225     }
2226 
2227     int Mask[16];
2228     assert(DestLaneCount <= 16);
2229     for (size_t I = 0; I < DestLaneCount; ++I) {
2230       const SDValue &Lane = Op->getOperand(I);
2231       SDValue Src = GetShuffleSrc(Lane);
2232       if (Src == ShuffleSrc1) {
2233         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2234       } else if (Src && Src == ShuffleSrc2) {
2235         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2236       } else {
2237         Mask[I] = -1;
2238       }
2239     }
2240     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2241     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2242     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2243       auto Src = GetShuffleSrc(Lane);
2244       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2245     };
2246   } else if (NumConstantLanes >= NumSplatLanes) {
2247     SmallVector<SDValue, 16> ConstLanes;
2248     for (const SDValue &Lane : Op->op_values()) {
2249       if (IsConstant(Lane)) {
2250         // Values may need to be fixed so that they will sign extend to be
2251         // within the expected range during ISel. Check whether the value is in
2252         // bounds based on the lane bit width and if it is out of bounds, lop
2253         // off the extra bits and subtract 2^n to reflect giving the high bit
2254         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2255         // cannot possibly be out of range.
2256         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2257         int64_t Val = Const ? Const->getSExtValue() : 0;
2258         uint64_t LaneBits = 128 / Lanes;
2259         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2260                "Unexpected out of bounds negative value");
2261         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2262           uint64_t Mask = (1ll << LaneBits) - 1;
2263           auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask;
2264           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2265         } else {
2266           ConstLanes.push_back(Lane);
2267         }
2268       } else if (LaneT.isFloatingPoint()) {
2269         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2270       } else {
2271         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2272       }
2273     }
2274     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2275     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2276       return IsConstant(Lane);
2277     };
2278   } else {
2279     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits();
2280     if (NumSplatLanes == 1 && Op->getOperand(0) == SplatValue &&
2281         (DestLaneSize == 32 || DestLaneSize == 64)) {
2282       // Could be selected to load_zero.
2283       Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecT, SplatValue);
2284     } else {
2285       // Use a splat (which might be selected as a load splat)
2286       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2287     }
2288     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2289       return Lane == SplatValue;
2290     };
2291   }
2292 
2293   assert(Result);
2294   assert(IsLaneConstructed);
2295 
2296   // Add replace_lane instructions for any unhandled values
2297   for (size_t I = 0; I < Lanes; ++I) {
2298     const SDValue &Lane = Op->getOperand(I);
2299     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2300       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2301                            DAG.getConstant(I, DL, MVT::i32));
2302   }
2303 
2304   return Result;
2305 }
2306 
2307 SDValue
2308 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2309                                                SelectionDAG &DAG) const {
2310   SDLoc DL(Op);
2311   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2312   MVT VecType = Op.getOperand(0).getSimpleValueType();
2313   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2314   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2315 
2316   // Space for two vector args and sixteen mask indices
2317   SDValue Ops[18];
2318   size_t OpIdx = 0;
2319   Ops[OpIdx++] = Op.getOperand(0);
2320   Ops[OpIdx++] = Op.getOperand(1);
2321 
2322   // Expand mask indices to byte indices and materialize them as operands
2323   for (int M : Mask) {
2324     for (size_t J = 0; J < LaneBytes; ++J) {
2325       // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2326       // whole lane of vector input, to allow further reduction at VM. E.g.
2327       // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2328       uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2329       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2330     }
2331   }
2332 
2333   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2334 }
2335 
2336 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2337                                               SelectionDAG &DAG) const {
2338   SDLoc DL(Op);
2339   // The legalizer does not know how to expand the unsupported comparison modes
2340   // of i64x2 vectors, so we manually unroll them here.
2341   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2342   SmallVector<SDValue, 2> LHS, RHS;
2343   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2344   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2345   const SDValue &CC = Op->getOperand(2);
2346   auto MakeLane = [&](unsigned I) {
2347     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2348                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2349                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2350   };
2351   return DAG.getBuildVector(Op->getValueType(0), DL,
2352                             {MakeLane(0), MakeLane(1)});
2353 }
2354 
2355 SDValue
2356 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2357                                                     SelectionDAG &DAG) const {
2358   // Allow constant lane indices, expand variable lane indices
2359   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2360   if (isa<ConstantSDNode>(IdxNode)) {
2361     // Ensure the index type is i32 to match the tablegen patterns
2362     uint64_t Idx = IdxNode->getAsZExtVal();
2363     SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2364     Ops[Op.getNumOperands() - 1] =
2365         DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2366     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2367   }
2368   // Perform default expansion
2369   return SDValue();
2370 }
2371 
2372 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2373   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2374   // 32-bit and 64-bit unrolled shifts will have proper semantics
2375   if (LaneT.bitsGE(MVT::i32))
2376     return DAG.UnrollVectorOp(Op.getNode());
2377   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2378   SDLoc DL(Op);
2379   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2380   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2381   unsigned ShiftOpcode = Op.getOpcode();
2382   SmallVector<SDValue, 16> ShiftedElements;
2383   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2384   SmallVector<SDValue, 16> ShiftElements;
2385   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2386   SmallVector<SDValue, 16> UnrolledOps;
2387   for (size_t i = 0; i < NumLanes; ++i) {
2388     SDValue MaskedShiftValue =
2389         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2390     SDValue ShiftedValue = ShiftedElements[i];
2391     if (ShiftOpcode == ISD::SRA)
2392       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2393                                  ShiftedValue, DAG.getValueType(LaneT));
2394     UnrolledOps.push_back(
2395         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2396   }
2397   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2398 }
2399 
2400 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2401                                               SelectionDAG &DAG) const {
2402   SDLoc DL(Op);
2403 
2404   // Only manually lower vector shifts
2405   assert(Op.getSimpleValueType().isVector());
2406 
2407   uint64_t LaneBits = Op.getValueType().getScalarSizeInBits();
2408   auto ShiftVal = Op.getOperand(1);
2409 
2410   // Try to skip bitmask operation since it is implied inside shift instruction
2411   auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) {
2412     if (MaskOp.getOpcode() != ISD::AND)
2413       return MaskOp;
2414     SDValue LHS = MaskOp.getOperand(0);
2415     SDValue RHS = MaskOp.getOperand(1);
2416     if (MaskOp.getValueType().isVector()) {
2417       APInt MaskVal;
2418       if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal))
2419         std::swap(LHS, RHS);
2420 
2421       if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) &&
2422           MaskVal == MaskBits)
2423         MaskOp = LHS;
2424     } else {
2425       if (!isa<ConstantSDNode>(RHS.getNode()))
2426         std::swap(LHS, RHS);
2427 
2428       auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode());
2429       if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2430         MaskOp = LHS;
2431     }
2432 
2433     return MaskOp;
2434   };
2435 
2436   // Skip vector and operation
2437   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2438   ShiftVal = DAG.getSplatValue(ShiftVal);
2439   if (!ShiftVal)
2440     return unrollVectorShift(Op, DAG);
2441 
2442   // Skip scalar and operation
2443   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2444   // Use anyext because none of the high bits can affect the shift
2445   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2446 
2447   unsigned Opcode;
2448   switch (Op.getOpcode()) {
2449   case ISD::SHL:
2450     Opcode = WebAssemblyISD::VEC_SHL;
2451     break;
2452   case ISD::SRA:
2453     Opcode = WebAssemblyISD::VEC_SHR_S;
2454     break;
2455   case ISD::SRL:
2456     Opcode = WebAssemblyISD::VEC_SHR_U;
2457     break;
2458   default:
2459     llvm_unreachable("unexpected opcode");
2460   }
2461 
2462   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2463 }
2464 
2465 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2466                                                       SelectionDAG &DAG) const {
2467   SDLoc DL(Op);
2468   EVT ResT = Op.getValueType();
2469   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2470 
2471   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2472       (SatVT == MVT::i32 || SatVT == MVT::i64))
2473     return Op;
2474 
2475   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2476     return Op;
2477 
2478   return SDValue();
2479 }
2480 
2481 //===----------------------------------------------------------------------===//
2482 //   Custom DAG combine hooks
2483 //===----------------------------------------------------------------------===//
2484 static SDValue
2485 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2486   auto &DAG = DCI.DAG;
2487   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2488 
2489   // Hoist vector bitcasts that don't change the number of lanes out of unary
2490   // shuffles, where they are less likely to get in the way of other combines.
2491   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2492   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2493   SDValue Bitcast = N->getOperand(0);
2494   if (Bitcast.getOpcode() != ISD::BITCAST)
2495     return SDValue();
2496   if (!N->getOperand(1).isUndef())
2497     return SDValue();
2498   SDValue CastOp = Bitcast.getOperand(0);
2499   EVT SrcType = CastOp.getValueType();
2500   EVT DstType = Bitcast.getValueType();
2501   if (!SrcType.is128BitVector() ||
2502       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2503     return SDValue();
2504   SDValue NewShuffle = DAG.getVectorShuffle(
2505       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2506   return DAG.getBitcast(DstType, NewShuffle);
2507 }
2508 
2509 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2510 /// split up into scalar instructions during legalization, and the vector
2511 /// extending instructions are selected in performVectorExtendCombine below.
2512 static SDValue
2513 performVectorExtendToFPCombine(SDNode *N,
2514                                TargetLowering::DAGCombinerInfo &DCI) {
2515   auto &DAG = DCI.DAG;
2516   assert(N->getOpcode() == ISD::UINT_TO_FP ||
2517          N->getOpcode() == ISD::SINT_TO_FP);
2518 
2519   EVT InVT = N->getOperand(0)->getValueType(0);
2520   EVT ResVT = N->getValueType(0);
2521   MVT ExtVT;
2522   if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2523     ExtVT = MVT::v4i32;
2524   else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2525     ExtVT = MVT::v2i32;
2526   else
2527     return SDValue();
2528 
2529   unsigned Op =
2530       N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2531   SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2532   return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2533 }
2534 
2535 static SDValue
2536 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2537   auto &DAG = DCI.DAG;
2538   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2539          N->getOpcode() == ISD::ZERO_EXTEND);
2540 
2541   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2542   // possible before the extract_subvector can be expanded.
2543   auto Extract = N->getOperand(0);
2544   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2545     return SDValue();
2546   auto Source = Extract.getOperand(0);
2547   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2548   if (IndexNode == nullptr)
2549     return SDValue();
2550   auto Index = IndexNode->getZExtValue();
2551 
2552   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2553   // extracted subvector is the low or high half of its source.
2554   EVT ResVT = N->getValueType(0);
2555   if (ResVT == MVT::v8i16) {
2556     if (Extract.getValueType() != MVT::v8i8 ||
2557         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2558       return SDValue();
2559   } else if (ResVT == MVT::v4i32) {
2560     if (Extract.getValueType() != MVT::v4i16 ||
2561         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2562       return SDValue();
2563   } else if (ResVT == MVT::v2i64) {
2564     if (Extract.getValueType() != MVT::v2i32 ||
2565         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2566       return SDValue();
2567   } else {
2568     return SDValue();
2569   }
2570 
2571   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2572   bool IsLow = Index == 0;
2573 
2574   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2575                                 : WebAssemblyISD::EXTEND_HIGH_S)
2576                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2577                                 : WebAssemblyISD::EXTEND_HIGH_U);
2578 
2579   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2580 }
2581 
2582 static SDValue
2583 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2584   auto &DAG = DCI.DAG;
2585 
2586   auto GetWasmConversionOp = [](unsigned Op) {
2587     switch (Op) {
2588     case ISD::FP_TO_SINT_SAT:
2589       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2590     case ISD::FP_TO_UINT_SAT:
2591       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2592     case ISD::FP_ROUND:
2593       return WebAssemblyISD::DEMOTE_ZERO;
2594     }
2595     llvm_unreachable("unexpected op");
2596   };
2597 
2598   auto IsZeroSplat = [](SDValue SplatVal) {
2599     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2600     APInt SplatValue, SplatUndef;
2601     unsigned SplatBitSize;
2602     bool HasAnyUndefs;
2603     // Endianness doesn't matter in this context because we are looking for
2604     // an all-zero value.
2605     return Splat &&
2606            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2607                                   HasAnyUndefs) &&
2608            SplatValue == 0;
2609   };
2610 
2611   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2612     // Combine this:
2613     //
2614     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2615     //
2616     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2617     //
2618     // Or this:
2619     //
2620     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2621     //
2622     // into (f32x4.demote_zero_f64x2 $x).
2623     EVT ResVT;
2624     EVT ExpectedConversionType;
2625     auto Conversion = N->getOperand(0);
2626     auto ConversionOp = Conversion.getOpcode();
2627     switch (ConversionOp) {
2628     case ISD::FP_TO_SINT_SAT:
2629     case ISD::FP_TO_UINT_SAT:
2630       ResVT = MVT::v4i32;
2631       ExpectedConversionType = MVT::v2i32;
2632       break;
2633     case ISD::FP_ROUND:
2634       ResVT = MVT::v4f32;
2635       ExpectedConversionType = MVT::v2f32;
2636       break;
2637     default:
2638       return SDValue();
2639     }
2640 
2641     if (N->getValueType(0) != ResVT)
2642       return SDValue();
2643 
2644     if (Conversion.getValueType() != ExpectedConversionType)
2645       return SDValue();
2646 
2647     auto Source = Conversion.getOperand(0);
2648     if (Source.getValueType() != MVT::v2f64)
2649       return SDValue();
2650 
2651     if (!IsZeroSplat(N->getOperand(1)) ||
2652         N->getOperand(1).getValueType() != ExpectedConversionType)
2653       return SDValue();
2654 
2655     unsigned Op = GetWasmConversionOp(ConversionOp);
2656     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2657   }
2658 
2659   // Combine this:
2660   //
2661   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2662   //
2663   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2664   //
2665   // Or this:
2666   //
2667   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2668   //
2669   // into (f32x4.demote_zero_f64x2 $x).
2670   EVT ResVT;
2671   auto ConversionOp = N->getOpcode();
2672   switch (ConversionOp) {
2673   case ISD::FP_TO_SINT_SAT:
2674   case ISD::FP_TO_UINT_SAT:
2675     ResVT = MVT::v4i32;
2676     break;
2677   case ISD::FP_ROUND:
2678     ResVT = MVT::v4f32;
2679     break;
2680   default:
2681     llvm_unreachable("unexpected op");
2682   }
2683 
2684   if (N->getValueType(0) != ResVT)
2685     return SDValue();
2686 
2687   auto Concat = N->getOperand(0);
2688   if (Concat.getValueType() != MVT::v4f64)
2689     return SDValue();
2690 
2691   auto Source = Concat.getOperand(0);
2692   if (Source.getValueType() != MVT::v2f64)
2693     return SDValue();
2694 
2695   if (!IsZeroSplat(Concat.getOperand(1)) ||
2696       Concat.getOperand(1).getValueType() != MVT::v2f64)
2697     return SDValue();
2698 
2699   unsigned Op = GetWasmConversionOp(ConversionOp);
2700   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2701 }
2702 
2703 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2704 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2705                                 const SDLoc &DL, unsigned VectorWidth) {
2706   EVT VT = Vec.getValueType();
2707   EVT ElVT = VT.getVectorElementType();
2708   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2709   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2710                                   VT.getVectorNumElements() / Factor);
2711 
2712   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2713   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2714   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2715 
2716   // This is the index of the first element of the VectorWidth-bit chunk
2717   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2718   IdxVal &= ~(ElemsPerChunk - 1);
2719 
2720   // If the input is a buildvector just emit a smaller one.
2721   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2722     return DAG.getBuildVector(ResultVT, DL,
2723                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2724 
2725   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2726   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2727 }
2728 
2729 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2730 // is the expected destination value type after recursion. In is the initial
2731 // input. Note that the input should have enough leading zero bits to prevent
2732 // NARROW_U from saturating results.
2733 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2734                                         SelectionDAG &DAG) {
2735   EVT SrcVT = In.getValueType();
2736 
2737   // No truncation required, we might get here due to recursive calls.
2738   if (SrcVT == DstVT)
2739     return In;
2740 
2741   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2742   unsigned NumElems = SrcVT.getVectorNumElements();
2743   if (!isPowerOf2_32(NumElems))
2744     return SDValue();
2745   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2746   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2747 
2748   LLVMContext &Ctx = *DAG.getContext();
2749   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2750 
2751   // Narrow to the largest type possible:
2752   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2753   EVT InVT = MVT::i16, OutVT = MVT::i8;
2754   if (SrcVT.getScalarSizeInBits() > 16) {
2755     InVT = MVT::i32;
2756     OutVT = MVT::i16;
2757   }
2758   unsigned SubSizeInBits = SrcSizeInBits / 2;
2759   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2760   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2761 
2762   // Split lower/upper subvectors.
2763   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2764   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2765 
2766   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2767   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2768     Lo = DAG.getBitcast(InVT, Lo);
2769     Hi = DAG.getBitcast(InVT, Hi);
2770     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2771     return DAG.getBitcast(DstVT, Res);
2772   }
2773 
2774   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2775   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2776   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2777   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2778 
2779   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2780   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2781   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2782 }
2783 
2784 static SDValue performTruncateCombine(SDNode *N,
2785                                       TargetLowering::DAGCombinerInfo &DCI) {
2786   auto &DAG = DCI.DAG;
2787 
2788   SDValue In = N->getOperand(0);
2789   EVT InVT = In.getValueType();
2790   if (!InVT.isSimple())
2791     return SDValue();
2792 
2793   EVT OutVT = N->getValueType(0);
2794   if (!OutVT.isVector())
2795     return SDValue();
2796 
2797   EVT OutSVT = OutVT.getVectorElementType();
2798   EVT InSVT = InVT.getVectorElementType();
2799   // Currently only cover truncate to v16i8 or v8i16.
2800   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2801         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2802     return SDValue();
2803 
2804   SDLoc DL(N);
2805   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2806                                     OutVT.getScalarSizeInBits());
2807   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2808   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2809 }
2810 
2811 static SDValue performBitcastCombine(SDNode *N,
2812                                      TargetLowering::DAGCombinerInfo &DCI) {
2813   auto &DAG = DCI.DAG;
2814   SDLoc DL(N);
2815   SDValue Src = N->getOperand(0);
2816   EVT VT = N->getValueType(0);
2817   EVT SrcVT = Src.getValueType();
2818 
2819   // bitcast <N x i1> to iN
2820   //   ==> bitmask
2821   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2822       SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) {
2823     unsigned NumElts = SrcVT.getVectorNumElements();
2824     if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2825       return SDValue();
2826     EVT Width = MVT::getIntegerVT(128 / NumElts);
2827     return DAG.getZExtOrTrunc(
2828         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2829                     {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
2830                      DAG.getSExtOrTrunc(N->getOperand(0), DL,
2831                                         SrcVT.changeVectorElementType(Width))}),
2832         DL, VT);
2833   }
2834 
2835   return SDValue();
2836 }
2837 
2838 static SDValue performSETCCCombine(SDNode *N,
2839                                    TargetLowering::DAGCombinerInfo &DCI) {
2840   auto &DAG = DCI.DAG;
2841 
2842   SDValue LHS = N->getOperand(0);
2843   SDValue RHS = N->getOperand(1);
2844   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
2845   SDLoc DL(N);
2846   EVT VT = N->getValueType(0);
2847 
2848   // setcc (iN (bitcast (vNi1 X))), 0, ne
2849   //   ==> any_true (vNi1 X)
2850   // setcc (iN (bitcast (vNi1 X))), 0, eq
2851   //   ==> xor (any_true (vNi1 X)), -1
2852   // setcc (iN (bitcast (vNi1 X))), -1, eq
2853   //   ==> all_true (vNi1 X)
2854   // setcc (iN (bitcast (vNi1 X))), -1, ne
2855   //   ==> xor (all_true (vNi1 X)), -1
2856   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2857       (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2858       (isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
2859       LHS->getOpcode() == ISD::BITCAST) {
2860     EVT FromVT = LHS->getOperand(0).getValueType();
2861     if (FromVT.isFixedLengthVector() &&
2862         FromVT.getVectorElementType() == MVT::i1) {
2863       int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue
2864                                        : Intrinsic::wasm_alltrue;
2865       unsigned NumElts = FromVT.getVectorNumElements();
2866       if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2867         return SDValue();
2868       EVT Width = MVT::getIntegerVT(128 / NumElts);
2869       SDValue Ret = DAG.getZExtOrTrunc(
2870           DAG.getNode(
2871               ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2872               {DAG.getConstant(Intrin, DL, MVT::i32),
2873                DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
2874                                   FromVT.changeVectorElementType(Width))}),
2875           DL, MVT::i1);
2876       if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) ||
2877           (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) {
2878         Ret = DAG.getNOT(DL, Ret, MVT::i1);
2879       }
2880       return DAG.getZExtOrTrunc(Ret, DL, VT);
2881     }
2882   }
2883 
2884   return SDValue();
2885 }
2886 
2887 SDValue
2888 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2889                                              DAGCombinerInfo &DCI) const {
2890   switch (N->getOpcode()) {
2891   default:
2892     return SDValue();
2893   case ISD::BITCAST:
2894     return performBitcastCombine(N, DCI);
2895   case ISD::SETCC:
2896     return performSETCCCombine(N, DCI);
2897   case ISD::VECTOR_SHUFFLE:
2898     return performVECTOR_SHUFFLECombine(N, DCI);
2899   case ISD::SIGN_EXTEND:
2900   case ISD::ZERO_EXTEND:
2901     return performVectorExtendCombine(N, DCI);
2902   case ISD::UINT_TO_FP:
2903   case ISD::SINT_TO_FP:
2904     return performVectorExtendToFPCombine(N, DCI);
2905   case ISD::FP_TO_SINT_SAT:
2906   case ISD::FP_TO_UINT_SAT:
2907   case ISD::FP_ROUND:
2908   case ISD::CONCAT_VECTORS:
2909     return performVectorTruncZeroCombine(N, DCI);
2910   case ISD::TRUNCATE:
2911     return performTruncateCombine(N, DCI);
2912   }
2913 }
2914