1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "Utils/WebAssemblyTypeUtilities.h" 17 #include "WebAssemblyMachineFunctionInfo.h" 18 #include "WebAssemblySubtarget.h" 19 #include "WebAssemblyTargetMachine.h" 20 #include "WebAssemblyUtilities.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsWebAssembly.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "wasm-lower" 45 46 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 47 const TargetMachine &TM, const WebAssemblySubtarget &STI) 48 : TargetLowering(TM), Subtarget(&STI) { 49 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 50 51 // Booleans always contain 0 or 1. 52 setBooleanContents(ZeroOrOneBooleanContent); 53 // Except in SIMD vectors 54 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 55 // We don't know the microarchitecture here, so just reduce register pressure. 56 setSchedulingPreference(Sched::RegPressure); 57 // Tell ISel that we have a stack pointer. 58 setStackPointerRegisterToSaveRestore( 59 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 60 // Set up the register classes. 61 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 62 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 63 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 64 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 65 if (Subtarget->hasSIMD128()) { 66 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 68 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 69 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 70 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 71 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 72 } 73 if (Subtarget->hasFP16()) { 74 addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass); 75 } 76 if (Subtarget->hasReferenceTypes()) { 77 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); 78 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); 79 if (Subtarget->hasExceptionHandling()) { 80 addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass); 81 } 82 } 83 // Compute derived properties from the register classes. 84 computeRegisterProperties(Subtarget->getRegisterInfo()); 85 86 // Transform loads and stores to pointers in address space 1 to loads and 87 // stores to WebAssembly global variables, outside linear memory. 88 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { 89 setOperationAction(ISD::LOAD, T, Custom); 90 setOperationAction(ISD::STORE, T, Custom); 91 } 92 if (Subtarget->hasSIMD128()) { 93 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 94 MVT::v2f64}) { 95 setOperationAction(ISD::LOAD, T, Custom); 96 setOperationAction(ISD::STORE, T, Custom); 97 } 98 } 99 if (Subtarget->hasFP16()) { 100 setOperationAction(ISD::LOAD, MVT::v8f16, Custom); 101 setOperationAction(ISD::STORE, MVT::v8f16, Custom); 102 } 103 if (Subtarget->hasReferenceTypes()) { 104 // We need custom load and store lowering for both externref, funcref and 105 // Other. The MVT::Other here represents tables of reference types. 106 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { 107 setOperationAction(ISD::LOAD, T, Custom); 108 setOperationAction(ISD::STORE, T, Custom); 109 } 110 } 111 112 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 113 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 114 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 115 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 116 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 117 setOperationAction(ISD::BRIND, MVT::Other, Custom); 118 setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom); 119 120 // Take the default expansion for va_arg, va_copy, and va_end. There is no 121 // default action for va_start, so we do that custom. 122 setOperationAction(ISD::VASTART, MVT::Other, Custom); 123 setOperationAction(ISD::VAARG, MVT::Other, Expand); 124 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 125 setOperationAction(ISD::VAEND, MVT::Other, Expand); 126 127 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 128 // Don't expand the floating-point types to constant pools. 129 setOperationAction(ISD::ConstantFP, T, Legal); 130 // Expand floating-point comparisons. 131 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 132 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 133 setCondCodeAction(CC, T, Expand); 134 // Expand floating-point library function operators. 135 for (auto Op : 136 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 137 setOperationAction(Op, T, Expand); 138 // Note supported floating-point library function operators that otherwise 139 // default to expand. 140 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 141 ISD::FRINT, ISD::FROUNDEVEN}) 142 setOperationAction(Op, T, Legal); 143 // Support minimum and maximum, which otherwise default to expand. 144 setOperationAction(ISD::FMINIMUM, T, Legal); 145 setOperationAction(ISD::FMAXIMUM, T, Legal); 146 // WebAssembly currently has no builtin f16 support. 147 setOperationAction(ISD::FP16_TO_FP, T, Expand); 148 setOperationAction(ISD::FP_TO_FP16, T, Expand); 149 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 150 setTruncStoreAction(T, MVT::f16, Expand); 151 } 152 153 if (Subtarget->hasFP16()) { 154 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal); 155 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal); 156 } 157 158 // Expand unavailable integer operations. 159 for (auto Op : 160 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 161 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 162 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 163 for (auto T : {MVT::i32, MVT::i64}) 164 setOperationAction(Op, T, Expand); 165 if (Subtarget->hasSIMD128()) 166 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 167 setOperationAction(Op, T, Expand); 168 } 169 170 if (Subtarget->hasWideArithmetic()) { 171 setOperationAction(ISD::ADD, MVT::i128, Custom); 172 setOperationAction(ISD::SUB, MVT::i128, Custom); 173 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom); 174 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); 175 } 176 177 if (Subtarget->hasNontrappingFPToInt()) 178 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) 179 for (auto T : {MVT::i32, MVT::i64}) 180 setOperationAction(Op, T, Custom); 181 182 // SIMD-specific configuration 183 if (Subtarget->hasSIMD128()) { 184 // Combine vector mask reductions into alltrue/anytrue 185 setTargetDAGCombine(ISD::SETCC); 186 187 // Convert vector to integer bitcasts to bitmask 188 setTargetDAGCombine(ISD::BITCAST); 189 190 // Hoist bitcasts out of shuffles 191 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 192 193 // Combine extends of extract_subvectors into widening ops 194 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}); 195 196 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into 197 // conversions ops 198 setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND, 199 ISD::EXTRACT_SUBVECTOR}); 200 201 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa 202 // into conversion ops 203 setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 204 ISD::FP_ROUND, ISD::CONCAT_VECTORS}); 205 206 setTargetDAGCombine(ISD::TRUNCATE); 207 208 // Support saturating add/sub for i8x16 and i16x8 209 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}) 210 for (auto T : {MVT::v16i8, MVT::v8i16}) 211 setOperationAction(Op, T, Legal); 212 213 // Support integer abs 214 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 215 setOperationAction(ISD::ABS, T, Legal); 216 217 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 218 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 219 MVT::v2f64}) 220 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 221 222 if (Subtarget->hasFP16()) 223 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); 224 225 // We have custom shuffle lowering to expose the shuffle mask 226 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 227 MVT::v2f64}) 228 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 229 230 // Support splatting 231 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 232 MVT::v2f64}) 233 setOperationAction(ISD::SPLAT_VECTOR, T, Legal); 234 235 // Custom lowering since wasm shifts must have a scalar shift amount 236 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 237 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 238 setOperationAction(Op, T, Custom); 239 240 // Custom lower lane accesses to expand out variable indices 241 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 242 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 243 MVT::v2f64}) 244 setOperationAction(Op, T, Custom); 245 246 // There is no i8x16.mul instruction 247 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 248 249 // There is no vector conditional select instruction 250 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 251 MVT::v2f64}) 252 setOperationAction(ISD::SELECT_CC, T, Expand); 253 254 // Expand integer operations supported for scalars but not SIMD 255 for (auto Op : 256 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 257 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 258 setOperationAction(Op, T, Expand); 259 260 // But we do have integer min and max operations 261 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 262 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 263 setOperationAction(Op, T, Legal); 264 265 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. 266 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); 267 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); 268 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); 269 270 // Custom lower bit counting operations for other types to scalarize them. 271 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) 272 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) 273 setOperationAction(Op, T, Custom); 274 275 // Expand float operations supported for scalars but not SIMD 276 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 277 ISD::FEXP, ISD::FEXP2}) 278 for (auto T : {MVT::v4f32, MVT::v2f64}) 279 setOperationAction(Op, T, Expand); 280 281 // Unsigned comparison operations are unavailable for i64x2 vectors. 282 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) 283 setCondCodeAction(CC, MVT::v2i64, Custom); 284 285 // 64x2 conversions are not in the spec 286 for (auto Op : 287 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 288 for (auto T : {MVT::v2i64, MVT::v2f64}) 289 setOperationAction(Op, T, Expand); 290 291 // But saturating fp_to_int converstions are 292 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) { 293 setOperationAction(Op, MVT::v4i32, Custom); 294 if (Subtarget->hasFP16()) { 295 setOperationAction(Op, MVT::v8i16, Custom); 296 } 297 } 298 299 // Support vector extending 300 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) { 301 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom); 302 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom); 303 } 304 } 305 306 // As a special case, these operators use the type to mean the type to 307 // sign-extend from. 308 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 309 if (!Subtarget->hasSignExt()) { 310 // Sign extends are legal only when extending a vector extract 311 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 312 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 313 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 314 } 315 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 316 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 317 318 // Dynamic stack allocation: use the default expansion. 319 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 320 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 321 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 322 323 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 324 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 325 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 326 327 // Expand these forms; we pattern-match the forms that we can handle in isel. 328 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 329 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 330 setOperationAction(Op, T, Expand); 331 332 // We have custom switch handling. 333 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 334 335 // WebAssembly doesn't have: 336 // - Floating-point extending loads. 337 // - Floating-point truncating stores. 338 // - i1 extending loads. 339 // - truncating SIMD stores and most extending loads 340 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 341 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 342 for (auto T : MVT::integer_valuetypes()) 343 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 344 setLoadExtAction(Ext, T, MVT::i1, Promote); 345 if (Subtarget->hasSIMD128()) { 346 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 347 MVT::v2f64}) { 348 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 349 if (MVT(T) != MemT) { 350 setTruncStoreAction(T, MemT, Expand); 351 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 352 setLoadExtAction(Ext, T, MemT, Expand); 353 } 354 } 355 } 356 // But some vector extending loads are legal 357 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 358 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 359 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 360 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 361 } 362 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); 363 } 364 365 // Don't do anything clever with build_pairs 366 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 367 368 // Trap lowers to wasm unreachable 369 setOperationAction(ISD::TRAP, MVT::Other, Legal); 370 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 371 372 // Exception handling intrinsics 373 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 374 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 375 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 376 377 setMaxAtomicSizeInBitsSupported(64); 378 379 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 380 // consistent with the f64 and f128 names. 381 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 382 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 383 384 // Define the emscripten name for return address helper. 385 // TODO: when implementing other Wasm backends, make this generic or only do 386 // this on emscripten depending on what they end up doing. 387 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 388 389 // Always convert switches to br_tables unless there is only one case, which 390 // is equivalent to a simple branch. This reduces code size for wasm, and we 391 // defer possible jump table optimizations to the VM. 392 setMinimumJumpTableEntries(2); 393 } 394 395 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, 396 uint32_t AS) const { 397 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 398 return MVT::externref; 399 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 400 return MVT::funcref; 401 return TargetLowering::getPointerTy(DL, AS); 402 } 403 404 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, 405 uint32_t AS) const { 406 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) 407 return MVT::externref; 408 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) 409 return MVT::funcref; 410 return TargetLowering::getPointerMemTy(DL, AS); 411 } 412 413 TargetLowering::AtomicExpansionKind 414 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 415 // We have wasm instructions for these 416 switch (AI->getOperation()) { 417 case AtomicRMWInst::Add: 418 case AtomicRMWInst::Sub: 419 case AtomicRMWInst::And: 420 case AtomicRMWInst::Or: 421 case AtomicRMWInst::Xor: 422 case AtomicRMWInst::Xchg: 423 return AtomicExpansionKind::None; 424 default: 425 break; 426 } 427 return AtomicExpansionKind::CmpXChg; 428 } 429 430 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { 431 // Implementation copied from X86TargetLowering. 432 unsigned Opc = VecOp.getOpcode(); 433 434 // Assume target opcodes can't be scalarized. 435 // TODO - do we have any exceptions? 436 if (Opc >= ISD::BUILTIN_OP_END) 437 return false; 438 439 // If the vector op is not supported, try to convert to scalar. 440 EVT VecVT = VecOp.getValueType(); 441 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) 442 return true; 443 444 // If the vector op is supported, but the scalar op is not, the transform may 445 // not be worthwhile. 446 EVT ScalarVT = VecVT.getScalarType(); 447 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); 448 } 449 450 FastISel *WebAssemblyTargetLowering::createFastISel( 451 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 452 return WebAssembly::createFastISel(FuncInfo, LibInfo); 453 } 454 455 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 456 EVT VT) const { 457 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 458 if (BitWidth > 1 && BitWidth < 8) 459 BitWidth = 8; 460 461 if (BitWidth > 64) { 462 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 463 // the count to be an i32. 464 BitWidth = 32; 465 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 466 "32-bit shift counts ought to be enough for anyone"); 467 } 468 469 MVT Result = MVT::getIntegerVT(BitWidth); 470 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 471 "Unable to represent scalar shift amount type"); 472 return Result; 473 } 474 475 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 476 // undefined result on invalid/overflow, to the WebAssembly opcode, which 477 // traps on invalid/overflow. 478 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 479 MachineBasicBlock *BB, 480 const TargetInstrInfo &TII, 481 bool IsUnsigned, bool Int64, 482 bool Float64, unsigned LoweredOpcode) { 483 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 484 485 Register OutReg = MI.getOperand(0).getReg(); 486 Register InReg = MI.getOperand(1).getReg(); 487 488 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 489 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 490 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 491 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 492 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 493 unsigned Eqz = WebAssembly::EQZ_I32; 494 unsigned And = WebAssembly::AND_I32; 495 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 496 int64_t Substitute = IsUnsigned ? 0 : Limit; 497 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 498 auto &Context = BB->getParent()->getFunction().getContext(); 499 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 500 501 const BasicBlock *LLVMBB = BB->getBasicBlock(); 502 MachineFunction *F = BB->getParent(); 503 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 504 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 505 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 506 507 MachineFunction::iterator It = ++BB->getIterator(); 508 F->insert(It, FalseMBB); 509 F->insert(It, TrueMBB); 510 F->insert(It, DoneMBB); 511 512 // Transfer the remainder of BB and its successor edges to DoneMBB. 513 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 514 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 515 516 BB->addSuccessor(TrueMBB); 517 BB->addSuccessor(FalseMBB); 518 TrueMBB->addSuccessor(DoneMBB); 519 FalseMBB->addSuccessor(DoneMBB); 520 521 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 522 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 523 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 524 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 525 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 526 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 527 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 528 529 MI.eraseFromParent(); 530 // For signed numbers, we can do a single comparison to determine whether 531 // fabs(x) is within range. 532 if (IsUnsigned) { 533 Tmp0 = InReg; 534 } else { 535 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 536 } 537 BuildMI(BB, DL, TII.get(FConst), Tmp1) 538 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 539 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 540 541 // For unsigned numbers, we have to do a separate comparison with zero. 542 if (IsUnsigned) { 543 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 544 Register SecondCmpReg = 545 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 546 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 547 BuildMI(BB, DL, TII.get(FConst), Tmp1) 548 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 549 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 550 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 551 CmpReg = AndReg; 552 } 553 554 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 555 556 // Create the CFG diamond to select between doing the conversion or using 557 // the substitute value. 558 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 559 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 560 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 561 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 562 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 563 .addReg(FalseReg) 564 .addMBB(FalseMBB) 565 .addReg(TrueReg) 566 .addMBB(TrueMBB); 567 568 return DoneMBB; 569 } 570 571 // Lower a `MEMCPY` instruction into a CFG triangle around a `MEMORY_COPY` 572 // instuction to handle the zero-length case. 573 static MachineBasicBlock *LowerMemcpy(MachineInstr &MI, DebugLoc DL, 574 MachineBasicBlock *BB, 575 const TargetInstrInfo &TII, bool Int64) { 576 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 577 578 MachineOperand DstMem = MI.getOperand(0); 579 MachineOperand SrcMem = MI.getOperand(1); 580 MachineOperand Dst = MI.getOperand(2); 581 MachineOperand Src = MI.getOperand(3); 582 MachineOperand Len = MI.getOperand(4); 583 584 // We're going to add an extra use to `Len` to test if it's zero; that 585 // use shouldn't be a kill, even if the original use is. 586 MachineOperand NoKillLen = Len; 587 NoKillLen.setIsKill(false); 588 589 // Decide on which `MachineInstr` opcode we're going to use. 590 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32; 591 unsigned MemoryCopy = 592 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32; 593 594 // Create two new basic blocks; one for the new `memory.fill` that we can 595 // branch over, and one for the rest of the instructions after the original 596 // `memory.fill`. 597 const BasicBlock *LLVMBB = BB->getBasicBlock(); 598 MachineFunction *F = BB->getParent(); 599 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 600 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 601 602 MachineFunction::iterator It = ++BB->getIterator(); 603 F->insert(It, TrueMBB); 604 F->insert(It, DoneMBB); 605 606 // Transfer the remainder of BB and its successor edges to DoneMBB. 607 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 608 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 609 610 // Connect the CFG edges. 611 BB->addSuccessor(TrueMBB); 612 BB->addSuccessor(DoneMBB); 613 TrueMBB->addSuccessor(DoneMBB); 614 615 // Create a virtual register for the `Eqz` result. 616 unsigned EqzReg; 617 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 618 619 // Erase the original `memory.copy`. 620 MI.eraseFromParent(); 621 622 // Test if `Len` is zero. 623 BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen); 624 625 // Insert a new `memory.copy`. 626 BuildMI(TrueMBB, DL, TII.get(MemoryCopy)) 627 .add(DstMem) 628 .add(SrcMem) 629 .add(Dst) 630 .add(Src) 631 .add(Len); 632 633 // Create the CFG triangle. 634 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg); 635 BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 636 637 return DoneMBB; 638 } 639 640 // Lower a `MEMSET` instruction into a CFG triangle around a `MEMORY_FILL` 641 // instuction to handle the zero-length case. 642 static MachineBasicBlock *LowerMemset(MachineInstr &MI, DebugLoc DL, 643 MachineBasicBlock *BB, 644 const TargetInstrInfo &TII, bool Int64) { 645 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 646 647 MachineOperand Mem = MI.getOperand(0); 648 MachineOperand Dst = MI.getOperand(1); 649 MachineOperand Val = MI.getOperand(2); 650 MachineOperand Len = MI.getOperand(3); 651 652 // We're going to add an extra use to `Len` to test if it's zero; that 653 // use shouldn't be a kill, even if the original use is. 654 MachineOperand NoKillLen = Len; 655 NoKillLen.setIsKill(false); 656 657 // Decide on which `MachineInstr` opcode we're going to use. 658 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32; 659 unsigned MemoryFill = 660 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32; 661 662 // Create two new basic blocks; one for the new `memory.fill` that we can 663 // branch over, and one for the rest of the instructions after the original 664 // `memory.fill`. 665 const BasicBlock *LLVMBB = BB->getBasicBlock(); 666 MachineFunction *F = BB->getParent(); 667 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 668 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 669 670 MachineFunction::iterator It = ++BB->getIterator(); 671 F->insert(It, TrueMBB); 672 F->insert(It, DoneMBB); 673 674 // Transfer the remainder of BB and its successor edges to DoneMBB. 675 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 676 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 677 678 // Connect the CFG edges. 679 BB->addSuccessor(TrueMBB); 680 BB->addSuccessor(DoneMBB); 681 TrueMBB->addSuccessor(DoneMBB); 682 683 // Create a virtual register for the `Eqz` result. 684 unsigned EqzReg; 685 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 686 687 // Erase the original `memory.fill`. 688 MI.eraseFromParent(); 689 690 // Test if `Len` is zero. 691 BuildMI(BB, DL, TII.get(Eqz), EqzReg).add(NoKillLen); 692 693 // Insert a new `memory.copy`. 694 BuildMI(TrueMBB, DL, TII.get(MemoryFill)).add(Mem).add(Dst).add(Val).add(Len); 695 696 // Create the CFG triangle. 697 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(DoneMBB).addReg(EqzReg); 698 BuildMI(TrueMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 699 700 return DoneMBB; 701 } 702 703 static MachineBasicBlock * 704 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, 705 const WebAssemblySubtarget *Subtarget, 706 const TargetInstrInfo &TII) { 707 MachineInstr &CallParams = *CallResults.getPrevNode(); 708 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 709 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 710 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 711 712 bool IsIndirect = 713 CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI(); 714 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 715 716 bool IsFuncrefCall = false; 717 if (IsIndirect && CallParams.getOperand(0).isReg()) { 718 Register Reg = CallParams.getOperand(0).getReg(); 719 const MachineFunction *MF = BB->getParent(); 720 const MachineRegisterInfo &MRI = MF->getRegInfo(); 721 const TargetRegisterClass *TRC = MRI.getRegClass(Reg); 722 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); 723 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); 724 } 725 726 unsigned CallOp; 727 if (IsIndirect && IsRetCall) { 728 CallOp = WebAssembly::RET_CALL_INDIRECT; 729 } else if (IsIndirect) { 730 CallOp = WebAssembly::CALL_INDIRECT; 731 } else if (IsRetCall) { 732 CallOp = WebAssembly::RET_CALL; 733 } else { 734 CallOp = WebAssembly::CALL; 735 } 736 737 MachineFunction &MF = *BB->getParent(); 738 const MCInstrDesc &MCID = TII.get(CallOp); 739 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 740 741 // Move the function pointer to the end of the arguments for indirect calls 742 if (IsIndirect) { 743 auto FnPtr = CallParams.getOperand(0); 744 CallParams.removeOperand(0); 745 746 // For funcrefs, call_indirect is done through __funcref_call_table and the 747 // funcref is always installed in slot 0 of the table, therefore instead of 748 // having the function pointer added at the end of the params list, a zero 749 // (the index in 750 // __funcref_call_table is added). 751 if (IsFuncrefCall) { 752 Register RegZero = 753 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 754 MachineInstrBuilder MIBC0 = 755 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 756 757 BB->insert(CallResults.getIterator(), MIBC0); 758 MachineInstrBuilder(MF, CallParams).addReg(RegZero); 759 } else 760 CallParams.addOperand(FnPtr); 761 } 762 763 for (auto Def : CallResults.defs()) 764 MIB.add(Def); 765 766 if (IsIndirect) { 767 // Placeholder for the type index. 768 MIB.addImm(0); 769 // The table into which this call_indirect indexes. 770 MCSymbolWasm *Table = IsFuncrefCall 771 ? WebAssembly::getOrCreateFuncrefCallTableSymbol( 772 MF.getContext(), Subtarget) 773 : WebAssembly::getOrCreateFunctionTableSymbol( 774 MF.getContext(), Subtarget); 775 if (Subtarget->hasReferenceTypes()) { 776 MIB.addSym(Table); 777 } else { 778 // For the MVP there is at most one table whose number is 0, but we can't 779 // write a table symbol or issue relocations. Instead we just ensure the 780 // table is live and write a zero. 781 Table->setNoStrip(); 782 MIB.addImm(0); 783 } 784 } 785 786 for (auto Use : CallParams.uses()) 787 MIB.add(Use); 788 789 BB->insert(CallResults.getIterator(), MIB); 790 CallParams.eraseFromParent(); 791 CallResults.eraseFromParent(); 792 793 // If this is a funcref call, to avoid hidden GC roots, we need to clear the 794 // table slot with ref.null upon call_indirect return. 795 // 796 // This generates the following code, which comes right after a call_indirect 797 // of a funcref: 798 // 799 // i32.const 0 800 // ref.null func 801 // table.set __funcref_call_table 802 if (IsIndirect && IsFuncrefCall) { 803 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 804 MF.getContext(), Subtarget); 805 Register RegZero = 806 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 807 MachineInstr *Const0 = 808 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); 809 BB->insertAfter(MIB.getInstr()->getIterator(), Const0); 810 811 Register RegFuncref = 812 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); 813 MachineInstr *RefNull = 814 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref); 815 BB->insertAfter(Const0->getIterator(), RefNull); 816 817 MachineInstr *TableSet = 818 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) 819 .addSym(Table) 820 .addReg(RegZero) 821 .addReg(RegFuncref); 822 BB->insertAfter(RefNull->getIterator(), TableSet); 823 } 824 825 return BB; 826 } 827 828 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 829 MachineInstr &MI, MachineBasicBlock *BB) const { 830 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 831 DebugLoc DL = MI.getDebugLoc(); 832 833 switch (MI.getOpcode()) { 834 default: 835 llvm_unreachable("Unexpected instr type to insert"); 836 case WebAssembly::FP_TO_SINT_I32_F32: 837 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 838 WebAssembly::I32_TRUNC_S_F32); 839 case WebAssembly::FP_TO_UINT_I32_F32: 840 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 841 WebAssembly::I32_TRUNC_U_F32); 842 case WebAssembly::FP_TO_SINT_I64_F32: 843 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 844 WebAssembly::I64_TRUNC_S_F32); 845 case WebAssembly::FP_TO_UINT_I64_F32: 846 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 847 WebAssembly::I64_TRUNC_U_F32); 848 case WebAssembly::FP_TO_SINT_I32_F64: 849 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 850 WebAssembly::I32_TRUNC_S_F64); 851 case WebAssembly::FP_TO_UINT_I32_F64: 852 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 853 WebAssembly::I32_TRUNC_U_F64); 854 case WebAssembly::FP_TO_SINT_I64_F64: 855 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 856 WebAssembly::I64_TRUNC_S_F64); 857 case WebAssembly::FP_TO_UINT_I64_F64: 858 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 859 WebAssembly::I64_TRUNC_U_F64); 860 case WebAssembly::MEMCPY_A32: 861 return LowerMemcpy(MI, DL, BB, TII, false); 862 case WebAssembly::MEMCPY_A64: 863 return LowerMemcpy(MI, DL, BB, TII, true); 864 case WebAssembly::MEMSET_A32: 865 return LowerMemset(MI, DL, BB, TII, false); 866 case WebAssembly::MEMSET_A64: 867 return LowerMemset(MI, DL, BB, TII, true); 868 case WebAssembly::CALL_RESULTS: 869 case WebAssembly::RET_CALL_RESULTS: 870 return LowerCallResults(MI, DL, BB, Subtarget, TII); 871 } 872 } 873 874 const char * 875 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 876 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 877 case WebAssemblyISD::FIRST_NUMBER: 878 case WebAssemblyISD::FIRST_MEM_OPCODE: 879 break; 880 #define HANDLE_NODETYPE(NODE) \ 881 case WebAssemblyISD::NODE: \ 882 return "WebAssemblyISD::" #NODE; 883 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 884 #include "WebAssemblyISD.def" 885 #undef HANDLE_MEM_NODETYPE 886 #undef HANDLE_NODETYPE 887 } 888 return nullptr; 889 } 890 891 std::pair<unsigned, const TargetRegisterClass *> 892 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 893 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 894 // First, see if this is a constraint that directly corresponds to a 895 // WebAssembly register class. 896 if (Constraint.size() == 1) { 897 switch (Constraint[0]) { 898 case 'r': 899 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 900 if (Subtarget->hasSIMD128() && VT.isVector()) { 901 if (VT.getSizeInBits() == 128) 902 return std::make_pair(0U, &WebAssembly::V128RegClass); 903 } 904 if (VT.isInteger() && !VT.isVector()) { 905 if (VT.getSizeInBits() <= 32) 906 return std::make_pair(0U, &WebAssembly::I32RegClass); 907 if (VT.getSizeInBits() <= 64) 908 return std::make_pair(0U, &WebAssembly::I64RegClass); 909 } 910 if (VT.isFloatingPoint() && !VT.isVector()) { 911 switch (VT.getSizeInBits()) { 912 case 32: 913 return std::make_pair(0U, &WebAssembly::F32RegClass); 914 case 64: 915 return std::make_pair(0U, &WebAssembly::F64RegClass); 916 default: 917 break; 918 } 919 } 920 break; 921 default: 922 break; 923 } 924 } 925 926 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 927 } 928 929 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 930 // Assume ctz is a relatively cheap operation. 931 return true; 932 } 933 934 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 935 // Assume clz is a relatively cheap operation. 936 return true; 937 } 938 939 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 940 const AddrMode &AM, 941 Type *Ty, unsigned AS, 942 Instruction *I) const { 943 // WebAssembly offsets are added as unsigned without wrapping. The 944 // isLegalAddressingMode gives us no way to determine if wrapping could be 945 // happening, so we approximate this by accepting only non-negative offsets. 946 if (AM.BaseOffs < 0) 947 return false; 948 949 // WebAssembly has no scale register operands. 950 if (AM.Scale != 0) 951 return false; 952 953 // Everything else is legal. 954 return true; 955 } 956 957 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 958 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, 959 MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const { 960 // WebAssembly supports unaligned accesses, though it should be declared 961 // with the p2align attribute on loads and stores which do so, and there 962 // may be a performance impact. We tell LLVM they're "fast" because 963 // for the kinds of things that LLVM uses this for (merging adjacent stores 964 // of constants, etc.), WebAssembly implementations will either want the 965 // unaligned access or they'll split anyway. 966 if (Fast) 967 *Fast = 1; 968 return true; 969 } 970 971 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 972 AttributeList Attr) const { 973 // The current thinking is that wasm engines will perform this optimization, 974 // so we can save on code size. 975 return true; 976 } 977 978 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 979 EVT ExtT = ExtVal.getValueType(); 980 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 981 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 982 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 983 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 984 } 985 986 bool WebAssemblyTargetLowering::isOffsetFoldingLegal( 987 const GlobalAddressSDNode *GA) const { 988 // Wasm doesn't support function addresses with offsets 989 const GlobalValue *GV = GA->getGlobal(); 990 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); 991 } 992 993 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 994 LLVMContext &C, 995 EVT VT) const { 996 if (VT.isVector()) 997 return VT.changeVectorElementTypeToInteger(); 998 999 // So far, all branch instructions in Wasm take an I32 condition. 1000 // The default TargetLowering::getSetCCResultType returns the pointer size, 1001 // which would be useful to reduce instruction counts when testing 1002 // against 64-bit pointers/values if at some point Wasm supports that. 1003 return EVT::getIntegerVT(C, 32); 1004 } 1005 1006 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1007 const CallInst &I, 1008 MachineFunction &MF, 1009 unsigned Intrinsic) const { 1010 switch (Intrinsic) { 1011 case Intrinsic::wasm_memory_atomic_notify: 1012 Info.opc = ISD::INTRINSIC_W_CHAIN; 1013 Info.memVT = MVT::i32; 1014 Info.ptrVal = I.getArgOperand(0); 1015 Info.offset = 0; 1016 Info.align = Align(4); 1017 // atomic.notify instruction does not really load the memory specified with 1018 // this argument, but MachineMemOperand should either be load or store, so 1019 // we set this to a load. 1020 // FIXME Volatile isn't really correct, but currently all LLVM atomic 1021 // instructions are treated as volatiles in the backend, so we should be 1022 // consistent. The same applies for wasm_atomic_wait intrinsics too. 1023 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1024 return true; 1025 case Intrinsic::wasm_memory_atomic_wait32: 1026 Info.opc = ISD::INTRINSIC_W_CHAIN; 1027 Info.memVT = MVT::i32; 1028 Info.ptrVal = I.getArgOperand(0); 1029 Info.offset = 0; 1030 Info.align = Align(4); 1031 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1032 return true; 1033 case Intrinsic::wasm_memory_atomic_wait64: 1034 Info.opc = ISD::INTRINSIC_W_CHAIN; 1035 Info.memVT = MVT::i64; 1036 Info.ptrVal = I.getArgOperand(0); 1037 Info.offset = 0; 1038 Info.align = Align(8); 1039 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 1040 return true; 1041 case Intrinsic::wasm_loadf16_f32: 1042 Info.opc = ISD::INTRINSIC_W_CHAIN; 1043 Info.memVT = MVT::f16; 1044 Info.ptrVal = I.getArgOperand(0); 1045 Info.offset = 0; 1046 Info.align = Align(2); 1047 Info.flags = MachineMemOperand::MOLoad; 1048 return true; 1049 case Intrinsic::wasm_storef16_f32: 1050 Info.opc = ISD::INTRINSIC_VOID; 1051 Info.memVT = MVT::f16; 1052 Info.ptrVal = I.getArgOperand(1); 1053 Info.offset = 0; 1054 Info.align = Align(2); 1055 Info.flags = MachineMemOperand::MOStore; 1056 return true; 1057 default: 1058 return false; 1059 } 1060 } 1061 1062 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( 1063 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1064 const SelectionDAG &DAG, unsigned Depth) const { 1065 switch (Op.getOpcode()) { 1066 default: 1067 break; 1068 case ISD::INTRINSIC_WO_CHAIN: { 1069 unsigned IntNo = Op.getConstantOperandVal(0); 1070 switch (IntNo) { 1071 default: 1072 break; 1073 case Intrinsic::wasm_bitmask: { 1074 unsigned BitWidth = Known.getBitWidth(); 1075 EVT VT = Op.getOperand(1).getSimpleValueType(); 1076 unsigned PossibleBits = VT.getVectorNumElements(); 1077 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); 1078 Known.Zero |= ZeroMask; 1079 break; 1080 } 1081 } 1082 } 1083 } 1084 } 1085 1086 TargetLoweringBase::LegalizeTypeAction 1087 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { 1088 if (VT.isFixedLengthVector()) { 1089 MVT EltVT = VT.getVectorElementType(); 1090 // We have legal vector types with these lane types, so widening the 1091 // vector would let us use some of the lanes directly without having to 1092 // extend or truncate values. 1093 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || 1094 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) 1095 return TypeWidenVector; 1096 } 1097 1098 return TargetLoweringBase::getPreferredVectorAction(VT); 1099 } 1100 1101 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts( 1102 SDValue Op, const TargetLoweringOpt &TLO) const { 1103 // ISel process runs DAGCombiner after legalization; this step is called 1104 // SelectionDAG optimization phase. This post-legalization combining process 1105 // runs DAGCombiner on each node, and if there was a change to be made, 1106 // re-runs legalization again on it and its user nodes to make sure 1107 // everythiing is in a legalized state. 1108 // 1109 // The legalization calls lowering routines, and we do our custom lowering for 1110 // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements 1111 // into zeros. But there is a set of routines in DAGCombiner that turns unused 1112 // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts 1113 // turns unused vector elements into undefs. But this routine does not work 1114 // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This 1115 // combination can result in a infinite loop, in which undefs are converted to 1116 // zeros in legalization and back to undefs in combining. 1117 // 1118 // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from 1119 // running for build_vectors. 1120 if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys) 1121 return false; 1122 return true; 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // WebAssembly Lowering private implementation. 1127 //===----------------------------------------------------------------------===// 1128 1129 //===----------------------------------------------------------------------===// 1130 // Lowering Code 1131 //===----------------------------------------------------------------------===// 1132 1133 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 1134 MachineFunction &MF = DAG.getMachineFunction(); 1135 DAG.getContext()->diagnose( 1136 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 1137 } 1138 1139 // Test whether the given calling convention is supported. 1140 static bool callingConvSupported(CallingConv::ID CallConv) { 1141 // We currently support the language-independent target-independent 1142 // conventions. We don't yet have a way to annotate calls with properties like 1143 // "cold", and we don't have any call-clobbered registers, so these are mostly 1144 // all handled the same. 1145 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 1146 CallConv == CallingConv::Cold || 1147 CallConv == CallingConv::PreserveMost || 1148 CallConv == CallingConv::PreserveAll || 1149 CallConv == CallingConv::CXX_FAST_TLS || 1150 CallConv == CallingConv::WASM_EmscriptenInvoke || 1151 CallConv == CallingConv::Swift; 1152 } 1153 1154 SDValue 1155 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 1156 SmallVectorImpl<SDValue> &InVals) const { 1157 SelectionDAG &DAG = CLI.DAG; 1158 SDLoc DL = CLI.DL; 1159 SDValue Chain = CLI.Chain; 1160 SDValue Callee = CLI.Callee; 1161 MachineFunction &MF = DAG.getMachineFunction(); 1162 auto Layout = MF.getDataLayout(); 1163 1164 CallingConv::ID CallConv = CLI.CallConv; 1165 if (!callingConvSupported(CallConv)) 1166 fail(DL, DAG, 1167 "WebAssembly doesn't support language-specific or target-specific " 1168 "calling conventions yet"); 1169 if (CLI.IsPatchPoint) 1170 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 1171 1172 if (CLI.IsTailCall) { 1173 auto NoTail = [&](const char *Msg) { 1174 if (CLI.CB && CLI.CB->isMustTailCall()) 1175 fail(DL, DAG, Msg); 1176 CLI.IsTailCall = false; 1177 }; 1178 1179 if (!Subtarget->hasTailCall()) 1180 NoTail("WebAssembly 'tail-call' feature not enabled"); 1181 1182 // Varargs calls cannot be tail calls because the buffer is on the stack 1183 if (CLI.IsVarArg) 1184 NoTail("WebAssembly does not support varargs tail calls"); 1185 1186 // Do not tail call unless caller and callee return types match 1187 const Function &F = MF.getFunction(); 1188 const TargetMachine &TM = getTargetMachine(); 1189 Type *RetTy = F.getReturnType(); 1190 SmallVector<MVT, 4> CallerRetTys; 1191 SmallVector<MVT, 4> CalleeRetTys; 1192 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 1193 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 1194 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 1195 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 1196 CalleeRetTys.begin()); 1197 if (!TypesMatch) 1198 NoTail("WebAssembly tail call requires caller and callee return types to " 1199 "match"); 1200 1201 // If pointers to local stack values are passed, we cannot tail call 1202 if (CLI.CB) { 1203 for (auto &Arg : CLI.CB->args()) { 1204 Value *Val = Arg.get(); 1205 // Trace the value back through pointer operations 1206 while (true) { 1207 Value *Src = Val->stripPointerCastsAndAliases(); 1208 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 1209 Src = GEP->getPointerOperand(); 1210 if (Val == Src) 1211 break; 1212 Val = Src; 1213 } 1214 if (isa<AllocaInst>(Val)) { 1215 NoTail( 1216 "WebAssembly does not support tail calling with stack arguments"); 1217 break; 1218 } 1219 } 1220 } 1221 } 1222 1223 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1224 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1225 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1226 1227 // The generic code may have added an sret argument. If we're lowering an 1228 // invoke function, the ABI requires that the function pointer be the first 1229 // argument, so we may have to swap the arguments. 1230 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 1231 Outs[0].Flags.isSRet()) { 1232 std::swap(Outs[0], Outs[1]); 1233 std::swap(OutVals[0], OutVals[1]); 1234 } 1235 1236 bool HasSwiftSelfArg = false; 1237 bool HasSwiftErrorArg = false; 1238 unsigned NumFixedArgs = 0; 1239 for (unsigned I = 0; I < Outs.size(); ++I) { 1240 const ISD::OutputArg &Out = Outs[I]; 1241 SDValue &OutVal = OutVals[I]; 1242 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 1243 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 1244 if (Out.Flags.isNest()) 1245 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1246 if (Out.Flags.isInAlloca()) 1247 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1248 if (Out.Flags.isInConsecutiveRegs()) 1249 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1250 if (Out.Flags.isInConsecutiveRegsLast()) 1251 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1252 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 1253 auto &MFI = MF.getFrameInfo(); 1254 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 1255 Out.Flags.getNonZeroByValAlign(), 1256 /*isSS=*/false); 1257 SDValue SizeNode = 1258 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 1259 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1260 Chain = DAG.getMemcpy(Chain, DL, FINode, OutVal, SizeNode, 1261 Out.Flags.getNonZeroByValAlign(), 1262 /*isVolatile*/ false, /*AlwaysInline=*/false, 1263 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), 1264 MachinePointerInfo()); 1265 OutVal = FINode; 1266 } 1267 // Count the number of fixed args *after* legalization. 1268 NumFixedArgs += Out.IsFixed; 1269 } 1270 1271 bool IsVarArg = CLI.IsVarArg; 1272 auto PtrVT = getPointerTy(Layout); 1273 1274 // For swiftcc, emit additional swiftself and swifterror arguments 1275 // if there aren't. These additional arguments are also added for callee 1276 // signature They are necessary to match callee and caller signature for 1277 // indirect call. 1278 if (CallConv == CallingConv::Swift) { 1279 if (!HasSwiftSelfArg) { 1280 NumFixedArgs++; 1281 ISD::OutputArg Arg; 1282 Arg.Flags.setSwiftSelf(); 1283 CLI.Outs.push_back(Arg); 1284 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1285 CLI.OutVals.push_back(ArgVal); 1286 } 1287 if (!HasSwiftErrorArg) { 1288 NumFixedArgs++; 1289 ISD::OutputArg Arg; 1290 Arg.Flags.setSwiftError(); 1291 CLI.Outs.push_back(Arg); 1292 SDValue ArgVal = DAG.getUNDEF(PtrVT); 1293 CLI.OutVals.push_back(ArgVal); 1294 } 1295 } 1296 1297 // Analyze operands of the call, assigning locations to each operand. 1298 SmallVector<CCValAssign, 16> ArgLocs; 1299 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1300 1301 if (IsVarArg) { 1302 // Outgoing non-fixed arguments are placed in a buffer. First 1303 // compute their offsets and the total amount of buffer space needed. 1304 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 1305 const ISD::OutputArg &Out = Outs[I]; 1306 SDValue &Arg = OutVals[I]; 1307 EVT VT = Arg.getValueType(); 1308 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 1309 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 1310 Align Alignment = 1311 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 1312 unsigned Offset = 1313 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 1314 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 1315 Offset, VT.getSimpleVT(), 1316 CCValAssign::Full)); 1317 } 1318 } 1319 1320 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 1321 1322 SDValue FINode; 1323 if (IsVarArg && NumBytes) { 1324 // For non-fixed arguments, next emit stores to store the argument values 1325 // to the stack buffer at the offsets computed above. 1326 MaybeAlign StackAlign = Layout.getStackAlignment(); 1327 assert(StackAlign && "data layout string is missing stack alignment"); 1328 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, *StackAlign, 1329 /*isSS=*/false); 1330 unsigned ValNo = 0; 1331 SmallVector<SDValue, 8> Chains; 1332 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 1333 assert(ArgLocs[ValNo].getValNo() == ValNo && 1334 "ArgLocs should remain in order and only hold varargs args"); 1335 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 1336 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 1337 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 1338 DAG.getConstant(Offset, DL, PtrVT)); 1339 Chains.push_back( 1340 DAG.getStore(Chain, DL, Arg, Add, 1341 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 1342 } 1343 if (!Chains.empty()) 1344 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 1345 } else if (IsVarArg) { 1346 FINode = DAG.getIntPtrConstant(0, DL); 1347 } 1348 1349 if (Callee->getOpcode() == ISD::GlobalAddress) { 1350 // If the callee is a GlobalAddress node (quite common, every direct call 1351 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1352 // doesn't at MO_GOT which is not needed for direct calls. 1353 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee); 1354 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1355 getPointerTy(DAG.getDataLayout()), 1356 GA->getOffset()); 1357 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1358 getPointerTy(DAG.getDataLayout()), Callee); 1359 } 1360 1361 // Compute the operands for the CALLn node. 1362 SmallVector<SDValue, 16> Ops; 1363 Ops.push_back(Chain); 1364 Ops.push_back(Callee); 1365 1366 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1367 // isn't reliable. 1368 Ops.append(OutVals.begin(), 1369 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1370 // Add a pointer to the vararg buffer. 1371 if (IsVarArg) 1372 Ops.push_back(FINode); 1373 1374 SmallVector<EVT, 8> InTys; 1375 for (const auto &In : Ins) { 1376 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1377 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1378 if (In.Flags.isInAlloca()) 1379 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1380 if (In.Flags.isInConsecutiveRegs()) 1381 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1382 if (In.Flags.isInConsecutiveRegsLast()) 1383 fail(DL, DAG, 1384 "WebAssembly hasn't implemented cons regs last return values"); 1385 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1386 // registers. 1387 InTys.push_back(In.VT); 1388 } 1389 1390 // Lastly, if this is a call to a funcref we need to add an instruction 1391 // table.set to the chain and transform the call. 1392 if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType( 1393 CLI.CB->getCalledOperand()->getType())) { 1394 // In the absence of function references proposal where a funcref call is 1395 // lowered to call_ref, using reference types we generate a table.set to set 1396 // the funcref to a special table used solely for this purpose, followed by 1397 // a call_indirect. Here we just generate the table set, and return the 1398 // SDValue of the table.set so that LowerCall can finalize the lowering by 1399 // generating the call_indirect. 1400 SDValue Chain = Ops[0]; 1401 1402 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( 1403 MF.getContext(), Subtarget); 1404 SDValue Sym = DAG.getMCSymbol(Table, PtrVT); 1405 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); 1406 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; 1407 SDValue TableSet = DAG.getMemIntrinsicNode( 1408 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, 1409 MVT::funcref, 1410 // Machine Mem Operand args 1411 MachinePointerInfo( 1412 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), 1413 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), 1414 MachineMemOperand::MOStore); 1415 1416 Ops[0] = TableSet; // The new chain is the TableSet itself 1417 } 1418 1419 if (CLI.IsTailCall) { 1420 // ret_calls do not return values to the current frame 1421 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1422 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1423 } 1424 1425 InTys.push_back(MVT::Other); 1426 SDVTList InTyList = DAG.getVTList(InTys); 1427 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1428 1429 for (size_t I = 0; I < Ins.size(); ++I) 1430 InVals.push_back(Res.getValue(I)); 1431 1432 // Return the chain 1433 return Res.getValue(Ins.size()); 1434 } 1435 1436 bool WebAssemblyTargetLowering::CanLowerReturn( 1437 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1438 const SmallVectorImpl<ISD::OutputArg> &Outs, 1439 LLVMContext & /*Context*/) const { 1440 // WebAssembly can only handle returning tuples with multivalue enabled 1441 return WebAssembly::canLowerReturn(Outs.size(), Subtarget); 1442 } 1443 1444 SDValue WebAssemblyTargetLowering::LowerReturn( 1445 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1446 const SmallVectorImpl<ISD::OutputArg> &Outs, 1447 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1448 SelectionDAG &DAG) const { 1449 assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) && 1450 "MVP WebAssembly can only return up to one value"); 1451 if (!callingConvSupported(CallConv)) 1452 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1453 1454 SmallVector<SDValue, 4> RetOps(1, Chain); 1455 RetOps.append(OutVals.begin(), OutVals.end()); 1456 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1457 1458 // Record the number and types of the return values. 1459 for (const ISD::OutputArg &Out : Outs) { 1460 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1461 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1462 assert(Out.IsFixed && "non-fixed return value is not valid"); 1463 if (Out.Flags.isInAlloca()) 1464 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1465 if (Out.Flags.isInConsecutiveRegs()) 1466 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1467 if (Out.Flags.isInConsecutiveRegsLast()) 1468 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1469 } 1470 1471 return Chain; 1472 } 1473 1474 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1475 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1476 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1477 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1478 if (!callingConvSupported(CallConv)) 1479 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1480 1481 MachineFunction &MF = DAG.getMachineFunction(); 1482 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1483 1484 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1485 // of the incoming values before they're represented by virtual registers. 1486 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1487 1488 bool HasSwiftErrorArg = false; 1489 bool HasSwiftSelfArg = false; 1490 for (const ISD::InputArg &In : Ins) { 1491 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1492 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1493 if (In.Flags.isInAlloca()) 1494 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1495 if (In.Flags.isNest()) 1496 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1497 if (In.Flags.isInConsecutiveRegs()) 1498 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1499 if (In.Flags.isInConsecutiveRegsLast()) 1500 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1501 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1502 // registers. 1503 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1504 DAG.getTargetConstant(InVals.size(), 1505 DL, MVT::i32)) 1506 : DAG.getUNDEF(In.VT)); 1507 1508 // Record the number and types of arguments. 1509 MFI->addParam(In.VT); 1510 } 1511 1512 // For swiftcc, emit additional swiftself and swifterror arguments 1513 // if there aren't. These additional arguments are also added for callee 1514 // signature They are necessary to match callee and caller signature for 1515 // indirect call. 1516 auto PtrVT = getPointerTy(MF.getDataLayout()); 1517 if (CallConv == CallingConv::Swift) { 1518 if (!HasSwiftSelfArg) { 1519 MFI->addParam(PtrVT); 1520 } 1521 if (!HasSwiftErrorArg) { 1522 MFI->addParam(PtrVT); 1523 } 1524 } 1525 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1526 // the buffer is passed as an argument. 1527 if (IsVarArg) { 1528 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1529 Register VarargVreg = 1530 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1531 MFI->setVarargBufferVreg(VarargVreg); 1532 Chain = DAG.getCopyToReg( 1533 Chain, DL, VarargVreg, 1534 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1535 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1536 MFI->addParam(PtrVT); 1537 } 1538 1539 // Record the number and types of arguments and results. 1540 SmallVector<MVT, 4> Params; 1541 SmallVector<MVT, 4> Results; 1542 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1543 MF.getFunction(), DAG.getTarget(), Params, Results); 1544 for (MVT VT : Results) 1545 MFI->addResult(VT); 1546 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1547 // the param logic here with ComputeSignatureVTs 1548 assert(MFI->getParams().size() == Params.size() && 1549 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1550 Params.begin())); 1551 1552 return Chain; 1553 } 1554 1555 void WebAssemblyTargetLowering::ReplaceNodeResults( 1556 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1557 switch (N->getOpcode()) { 1558 case ISD::SIGN_EXTEND_INREG: 1559 // Do not add any results, signifying that N should not be custom lowered 1560 // after all. This happens because simd128 turns on custom lowering for 1561 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1562 // illegal type. 1563 break; 1564 case ISD::SIGN_EXTEND_VECTOR_INREG: 1565 case ISD::ZERO_EXTEND_VECTOR_INREG: 1566 // Do not add any results, signifying that N should not be custom lowered. 1567 // EXTEND_VECTOR_INREG is implemented for some vectors, but not all. 1568 break; 1569 case ISD::ADD: 1570 case ISD::SUB: 1571 Results.push_back(Replace128Op(N, DAG)); 1572 break; 1573 default: 1574 llvm_unreachable( 1575 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1576 } 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // Custom lowering hooks. 1581 //===----------------------------------------------------------------------===// 1582 1583 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1584 SelectionDAG &DAG) const { 1585 SDLoc DL(Op); 1586 switch (Op.getOpcode()) { 1587 default: 1588 llvm_unreachable("unimplemented operation lowering"); 1589 return SDValue(); 1590 case ISD::FrameIndex: 1591 return LowerFrameIndex(Op, DAG); 1592 case ISD::GlobalAddress: 1593 return LowerGlobalAddress(Op, DAG); 1594 case ISD::GlobalTLSAddress: 1595 return LowerGlobalTLSAddress(Op, DAG); 1596 case ISD::ExternalSymbol: 1597 return LowerExternalSymbol(Op, DAG); 1598 case ISD::JumpTable: 1599 return LowerJumpTable(Op, DAG); 1600 case ISD::BR_JT: 1601 return LowerBR_JT(Op, DAG); 1602 case ISD::VASTART: 1603 return LowerVASTART(Op, DAG); 1604 case ISD::BlockAddress: 1605 case ISD::BRIND: 1606 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1607 return SDValue(); 1608 case ISD::RETURNADDR: 1609 return LowerRETURNADDR(Op, DAG); 1610 case ISD::FRAMEADDR: 1611 return LowerFRAMEADDR(Op, DAG); 1612 case ISD::CopyToReg: 1613 return LowerCopyToReg(Op, DAG); 1614 case ISD::EXTRACT_VECTOR_ELT: 1615 case ISD::INSERT_VECTOR_ELT: 1616 return LowerAccessVectorElement(Op, DAG); 1617 case ISD::INTRINSIC_VOID: 1618 case ISD::INTRINSIC_WO_CHAIN: 1619 case ISD::INTRINSIC_W_CHAIN: 1620 return LowerIntrinsic(Op, DAG); 1621 case ISD::SIGN_EXTEND_INREG: 1622 return LowerSIGN_EXTEND_INREG(Op, DAG); 1623 case ISD::ZERO_EXTEND_VECTOR_INREG: 1624 case ISD::SIGN_EXTEND_VECTOR_INREG: 1625 return LowerEXTEND_VECTOR_INREG(Op, DAG); 1626 case ISD::BUILD_VECTOR: 1627 return LowerBUILD_VECTOR(Op, DAG); 1628 case ISD::VECTOR_SHUFFLE: 1629 return LowerVECTOR_SHUFFLE(Op, DAG); 1630 case ISD::SETCC: 1631 return LowerSETCC(Op, DAG); 1632 case ISD::SHL: 1633 case ISD::SRA: 1634 case ISD::SRL: 1635 return LowerShift(Op, DAG); 1636 case ISD::FP_TO_SINT_SAT: 1637 case ISD::FP_TO_UINT_SAT: 1638 return LowerFP_TO_INT_SAT(Op, DAG); 1639 case ISD::LOAD: 1640 return LowerLoad(Op, DAG); 1641 case ISD::STORE: 1642 return LowerStore(Op, DAG); 1643 case ISD::CTPOP: 1644 case ISD::CTLZ: 1645 case ISD::CTTZ: 1646 return DAG.UnrollVectorOp(Op.getNode()); 1647 case ISD::CLEAR_CACHE: 1648 report_fatal_error("llvm.clear_cache is not supported on wasm"); 1649 case ISD::SMUL_LOHI: 1650 case ISD::UMUL_LOHI: 1651 return LowerMUL_LOHI(Op, DAG); 1652 } 1653 } 1654 1655 static bool IsWebAssemblyGlobal(SDValue Op) { 1656 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1657 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); 1658 1659 return false; 1660 } 1661 1662 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op, 1663 SelectionDAG &DAG) { 1664 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); 1665 if (!FI) 1666 return std::nullopt; 1667 1668 auto &MF = DAG.getMachineFunction(); 1669 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); 1670 } 1671 1672 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, 1673 SelectionDAG &DAG) const { 1674 SDLoc DL(Op); 1675 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 1676 const SDValue &Value = SN->getValue(); 1677 const SDValue &Base = SN->getBasePtr(); 1678 const SDValue &Offset = SN->getOffset(); 1679 1680 if (IsWebAssemblyGlobal(Base)) { 1681 if (!Offset->isUndef()) 1682 report_fatal_error("unexpected offset when storing to webassembly global", 1683 false); 1684 1685 SDVTList Tys = DAG.getVTList(MVT::Other); 1686 SDValue Ops[] = {SN->getChain(), Value, Base}; 1687 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, 1688 SN->getMemoryVT(), SN->getMemOperand()); 1689 } 1690 1691 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1692 if (!Offset->isUndef()) 1693 report_fatal_error("unexpected offset when storing to webassembly local", 1694 false); 1695 1696 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1697 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. 1698 SDValue Ops[] = {SN->getChain(), Idx, Value}; 1699 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); 1700 } 1701 1702 if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace())) 1703 report_fatal_error( 1704 "Encountered an unlowerable store to the wasm_var address space", 1705 false); 1706 1707 return Op; 1708 } 1709 1710 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, 1711 SelectionDAG &DAG) const { 1712 SDLoc DL(Op); 1713 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 1714 const SDValue &Base = LN->getBasePtr(); 1715 const SDValue &Offset = LN->getOffset(); 1716 1717 if (IsWebAssemblyGlobal(Base)) { 1718 if (!Offset->isUndef()) 1719 report_fatal_error( 1720 "unexpected offset when loading from webassembly global", false); 1721 1722 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); 1723 SDValue Ops[] = {LN->getChain(), Base}; 1724 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, 1725 LN->getMemoryVT(), LN->getMemOperand()); 1726 } 1727 1728 if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { 1729 if (!Offset->isUndef()) 1730 report_fatal_error( 1731 "unexpected offset when loading from webassembly local", false); 1732 1733 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); 1734 EVT LocalVT = LN->getValueType(0); 1735 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, 1736 {LN->getChain(), Idx}); 1737 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); 1738 assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); 1739 return Result; 1740 } 1741 1742 if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace())) 1743 report_fatal_error( 1744 "Encountered an unlowerable load from the wasm_var address space", 1745 false); 1746 1747 return Op; 1748 } 1749 1750 SDValue WebAssemblyTargetLowering::LowerMUL_LOHI(SDValue Op, 1751 SelectionDAG &DAG) const { 1752 assert(Subtarget->hasWideArithmetic()); 1753 assert(Op.getValueType() == MVT::i64); 1754 SDLoc DL(Op); 1755 unsigned Opcode; 1756 switch (Op.getOpcode()) { 1757 case ISD::UMUL_LOHI: 1758 Opcode = WebAssemblyISD::I64_MUL_WIDE_U; 1759 break; 1760 case ISD::SMUL_LOHI: 1761 Opcode = WebAssemblyISD::I64_MUL_WIDE_S; 1762 break; 1763 default: 1764 llvm_unreachable("unexpected opcode"); 1765 } 1766 SDValue LHS = Op.getOperand(0); 1767 SDValue RHS = Op.getOperand(1); 1768 SDValue Hi = 1769 DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64), LHS, RHS); 1770 SDValue Lo(Hi.getNode(), 1); 1771 SDValue Ops[] = {Hi, Lo}; 1772 return DAG.getMergeValues(Ops, DL); 1773 } 1774 1775 SDValue WebAssemblyTargetLowering::Replace128Op(SDNode *N, 1776 SelectionDAG &DAG) const { 1777 assert(Subtarget->hasWideArithmetic()); 1778 assert(N->getValueType(0) == MVT::i128); 1779 SDLoc DL(N); 1780 unsigned Opcode; 1781 switch (N->getOpcode()) { 1782 case ISD::ADD: 1783 Opcode = WebAssemblyISD::I64_ADD128; 1784 break; 1785 case ISD::SUB: 1786 Opcode = WebAssemblyISD::I64_SUB128; 1787 break; 1788 default: 1789 llvm_unreachable("unexpected opcode"); 1790 } 1791 SDValue LHS = N->getOperand(0); 1792 SDValue RHS = N->getOperand(1); 1793 1794 SDValue C0 = DAG.getConstant(0, DL, MVT::i64); 1795 SDValue C1 = DAG.getConstant(1, DL, MVT::i64); 1796 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C0); 1797 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, LHS, C1); 1798 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C0); 1799 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, RHS, C1); 1800 SDValue Result_LO = DAG.getNode(Opcode, DL, DAG.getVTList(MVT::i64, MVT::i64), 1801 LHS_0, LHS_1, RHS_0, RHS_1); 1802 SDValue Result_HI(Result_LO.getNode(), 1); 1803 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getVTList(), Result_LO, Result_HI); 1804 } 1805 1806 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1807 SelectionDAG &DAG) const { 1808 SDValue Src = Op.getOperand(2); 1809 if (isa<FrameIndexSDNode>(Src.getNode())) { 1810 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1811 // the FI to some LEA-like instruction, but since we don't have that, we 1812 // need to insert some kind of instruction that can take an FI operand and 1813 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1814 // local.copy between Op and its FI operand. 1815 SDValue Chain = Op.getOperand(0); 1816 SDLoc DL(Op); 1817 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1818 EVT VT = Src.getValueType(); 1819 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1820 : WebAssembly::COPY_I64, 1821 DL, VT, Src), 1822 0); 1823 return Op.getNode()->getNumValues() == 1 1824 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1825 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1826 Op.getNumOperands() == 4 ? Op.getOperand(3) 1827 : SDValue()); 1828 } 1829 return SDValue(); 1830 } 1831 1832 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1833 SelectionDAG &DAG) const { 1834 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1835 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1836 } 1837 1838 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1839 SelectionDAG &DAG) const { 1840 SDLoc DL(Op); 1841 1842 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1843 fail(DL, DAG, 1844 "Non-Emscripten WebAssembly hasn't implemented " 1845 "__builtin_return_address"); 1846 return SDValue(); 1847 } 1848 1849 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1850 return SDValue(); 1851 1852 unsigned Depth = Op.getConstantOperandVal(0); 1853 MakeLibCallOptions CallOptions; 1854 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1855 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1856 .first; 1857 } 1858 1859 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1860 SelectionDAG &DAG) const { 1861 // Non-zero depths are not supported by WebAssembly currently. Use the 1862 // legalizer's default expansion, which is to return 0 (what this function is 1863 // documented to do). 1864 if (Op.getConstantOperandVal(0) > 0) 1865 return SDValue(); 1866 1867 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1868 EVT VT = Op.getValueType(); 1869 Register FP = 1870 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1871 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1872 } 1873 1874 SDValue 1875 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1876 SelectionDAG &DAG) const { 1877 SDLoc DL(Op); 1878 const auto *GA = cast<GlobalAddressSDNode>(Op); 1879 1880 MachineFunction &MF = DAG.getMachineFunction(); 1881 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1882 report_fatal_error("cannot use thread-local storage without bulk memory", 1883 false); 1884 1885 const GlobalValue *GV = GA->getGlobal(); 1886 1887 // Currently only Emscripten supports dynamic linking with threads. Therefore, 1888 // on other targets, if we have thread-local storage, only the local-exec 1889 // model is possible. 1890 auto model = Subtarget->getTargetTriple().isOSEmscripten() 1891 ? GV->getThreadLocalMode() 1892 : GlobalValue::LocalExecTLSModel; 1893 1894 // Unsupported TLS modes 1895 assert(model != GlobalValue::NotThreadLocal); 1896 assert(model != GlobalValue::InitialExecTLSModel); 1897 1898 if (model == GlobalValue::LocalExecTLSModel || 1899 model == GlobalValue::LocalDynamicTLSModel || 1900 (model == GlobalValue::GeneralDynamicTLSModel && 1901 getTargetMachine().shouldAssumeDSOLocal(GV))) { 1902 // For DSO-local TLS variables we use offset from __tls_base 1903 1904 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1905 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1906 : WebAssembly::GLOBAL_GET_I32; 1907 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1908 1909 SDValue BaseAddr( 1910 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1911 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1912 0); 1913 1914 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1915 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1916 SDValue SymOffset = 1917 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); 1918 1919 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); 1920 } 1921 1922 assert(model == GlobalValue::GeneralDynamicTLSModel); 1923 1924 EVT VT = Op.getValueType(); 1925 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1926 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1927 GA->getOffset(), 1928 WebAssemblyII::MO_GOT_TLS)); 1929 } 1930 1931 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1932 SelectionDAG &DAG) const { 1933 SDLoc DL(Op); 1934 const auto *GA = cast<GlobalAddressSDNode>(Op); 1935 EVT VT = Op.getValueType(); 1936 assert(GA->getTargetFlags() == 0 && 1937 "Unexpected target flags on generic GlobalAddressSDNode"); 1938 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) 1939 fail(DL, DAG, "Invalid address space for WebAssembly target"); 1940 1941 unsigned OperandFlags = 0; 1942 const GlobalValue *GV = GA->getGlobal(); 1943 // Since WebAssembly tables cannot yet be shared accross modules, we don't 1944 // need special treatment for tables in PIC mode. 1945 if (isPositionIndependent() && 1946 !WebAssembly::isWebAssemblyTableType(GV->getValueType())) { 1947 if (getTargetMachine().shouldAssumeDSOLocal(GV)) { 1948 MachineFunction &MF = DAG.getMachineFunction(); 1949 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1950 const char *BaseName; 1951 if (GV->getValueType()->isFunctionTy()) { 1952 BaseName = MF.createExternalSymbolName("__table_base"); 1953 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1954 } else { 1955 BaseName = MF.createExternalSymbolName("__memory_base"); 1956 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1957 } 1958 SDValue BaseAddr = 1959 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1960 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1961 1962 SDValue SymAddr = DAG.getNode( 1963 WebAssemblyISD::WrapperREL, DL, VT, 1964 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1965 OperandFlags)); 1966 1967 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1968 } 1969 OperandFlags = WebAssemblyII::MO_GOT; 1970 } 1971 1972 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1973 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1974 GA->getOffset(), OperandFlags)); 1975 } 1976 1977 SDValue 1978 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1979 SelectionDAG &DAG) const { 1980 SDLoc DL(Op); 1981 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1982 EVT VT = Op.getValueType(); 1983 assert(ES->getTargetFlags() == 0 && 1984 "Unexpected target flags on generic ExternalSymbolSDNode"); 1985 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1986 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1987 } 1988 1989 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1990 SelectionDAG &DAG) const { 1991 // There's no need for a Wrapper node because we always incorporate a jump 1992 // table operand into a BR_TABLE instruction, rather than ever 1993 // materializing it in a register. 1994 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1995 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1996 JT->getTargetFlags()); 1997 } 1998 1999 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 2000 SelectionDAG &DAG) const { 2001 SDLoc DL(Op); 2002 SDValue Chain = Op.getOperand(0); 2003 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 2004 SDValue Index = Op.getOperand(2); 2005 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 2006 2007 SmallVector<SDValue, 8> Ops; 2008 Ops.push_back(Chain); 2009 Ops.push_back(Index); 2010 2011 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 2012 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 2013 2014 // Add an operand for each case. 2015 for (auto *MBB : MBBs) 2016 Ops.push_back(DAG.getBasicBlock(MBB)); 2017 2018 // Add the first MBB as a dummy default target for now. This will be replaced 2019 // with the proper default target (and the preceding range check eliminated) 2020 // if possible by WebAssemblyFixBrTableDefaults. 2021 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 2022 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 2023 } 2024 2025 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 2026 SelectionDAG &DAG) const { 2027 SDLoc DL(Op); 2028 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 2029 2030 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 2031 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2032 2033 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 2034 MFI->getVarargBufferVreg(), PtrVT); 2035 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 2036 MachinePointerInfo(SV)); 2037 } 2038 2039 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 2040 SelectionDAG &DAG) const { 2041 MachineFunction &MF = DAG.getMachineFunction(); 2042 unsigned IntNo; 2043 switch (Op.getOpcode()) { 2044 case ISD::INTRINSIC_VOID: 2045 case ISD::INTRINSIC_W_CHAIN: 2046 IntNo = Op.getConstantOperandVal(1); 2047 break; 2048 case ISD::INTRINSIC_WO_CHAIN: 2049 IntNo = Op.getConstantOperandVal(0); 2050 break; 2051 default: 2052 llvm_unreachable("Invalid intrinsic"); 2053 } 2054 SDLoc DL(Op); 2055 2056 switch (IntNo) { 2057 default: 2058 return SDValue(); // Don't custom lower most intrinsics. 2059 2060 case Intrinsic::wasm_lsda: { 2061 auto PtrVT = getPointerTy(MF.getDataLayout()); 2062 const char *SymName = MF.createExternalSymbolName( 2063 "GCC_except_table" + std::to_string(MF.getFunctionNumber())); 2064 if (isPositionIndependent()) { 2065 SDValue Node = DAG.getTargetExternalSymbol( 2066 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); 2067 const char *BaseName = MF.createExternalSymbolName("__memory_base"); 2068 SDValue BaseAddr = 2069 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 2070 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 2071 SDValue SymAddr = 2072 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); 2073 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 2074 } 2075 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); 2076 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); 2077 } 2078 2079 case Intrinsic::wasm_shuffle: { 2080 // Drop in-chain and replace undefs, but otherwise pass through unchanged 2081 SDValue Ops[18]; 2082 size_t OpIdx = 0; 2083 Ops[OpIdx++] = Op.getOperand(1); 2084 Ops[OpIdx++] = Op.getOperand(2); 2085 while (OpIdx < 18) { 2086 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 2087 if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) { 2088 bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant; 2089 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget); 2090 } else { 2091 Ops[OpIdx++] = MaskIdx; 2092 } 2093 } 2094 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2095 } 2096 } 2097 } 2098 2099 SDValue 2100 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2101 SelectionDAG &DAG) const { 2102 SDLoc DL(Op); 2103 // If sign extension operations are disabled, allow sext_inreg only if operand 2104 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 2105 // extension operations, but allowing sext_inreg in this context lets us have 2106 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 2107 // everywhere would be simpler in this file, but would necessitate large and 2108 // brittle patterns to undo the expansion and select extract_lane_s 2109 // instructions. 2110 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 2111 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2112 return SDValue(); 2113 2114 const SDValue &Extract = Op.getOperand(0); 2115 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 2116 if (VecT.getVectorElementType().getSizeInBits() > 32) 2117 return SDValue(); 2118 MVT ExtractedLaneT = 2119 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 2120 MVT ExtractedVecT = 2121 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 2122 if (ExtractedVecT == VecT) 2123 return Op; 2124 2125 // Bitcast vector to appropriate type to ensure ISel pattern coverage 2126 const SDNode *Index = Extract.getOperand(1).getNode(); 2127 if (!isa<ConstantSDNode>(Index)) 2128 return SDValue(); 2129 unsigned IndexVal = Index->getAsZExtVal(); 2130 unsigned Scale = 2131 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 2132 assert(Scale > 1); 2133 SDValue NewIndex = 2134 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 2135 SDValue NewExtract = DAG.getNode( 2136 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 2137 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 2138 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 2139 Op.getOperand(1)); 2140 } 2141 2142 SDValue 2143 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op, 2144 SelectionDAG &DAG) const { 2145 SDLoc DL(Op); 2146 EVT VT = Op.getValueType(); 2147 SDValue Src = Op.getOperand(0); 2148 EVT SrcVT = Src.getValueType(); 2149 2150 if (SrcVT.getVectorElementType() == MVT::i1 || 2151 SrcVT.getVectorElementType() == MVT::i64) 2152 return SDValue(); 2153 2154 assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && 2155 "Unexpected extension factor."); 2156 unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); 2157 2158 if (Scale != 2 && Scale != 4 && Scale != 8) 2159 return SDValue(); 2160 2161 unsigned Ext; 2162 switch (Op.getOpcode()) { 2163 case ISD::ZERO_EXTEND_VECTOR_INREG: 2164 Ext = WebAssemblyISD::EXTEND_LOW_U; 2165 break; 2166 case ISD::SIGN_EXTEND_VECTOR_INREG: 2167 Ext = WebAssemblyISD::EXTEND_LOW_S; 2168 break; 2169 } 2170 2171 SDValue Ret = Src; 2172 while (Scale != 1) { 2173 Ret = DAG.getNode(Ext, DL, 2174 Ret.getValueType() 2175 .widenIntegerVectorElementType(*DAG.getContext()) 2176 .getHalfNumVectorElementsVT(*DAG.getContext()), 2177 Ret); 2178 Scale /= 2; 2179 } 2180 assert(Ret.getValueType() == VT); 2181 return Ret; 2182 } 2183 2184 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { 2185 SDLoc DL(Op); 2186 if (Op.getValueType() != MVT::v2f64) 2187 return SDValue(); 2188 2189 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, 2190 unsigned &Index) -> bool { 2191 switch (Op.getOpcode()) { 2192 case ISD::SINT_TO_FP: 2193 Opcode = WebAssemblyISD::CONVERT_LOW_S; 2194 break; 2195 case ISD::UINT_TO_FP: 2196 Opcode = WebAssemblyISD::CONVERT_LOW_U; 2197 break; 2198 case ISD::FP_EXTEND: 2199 Opcode = WebAssemblyISD::PROMOTE_LOW; 2200 break; 2201 default: 2202 return false; 2203 } 2204 2205 auto ExtractVector = Op.getOperand(0); 2206 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2207 return false; 2208 2209 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) 2210 return false; 2211 2212 SrcVec = ExtractVector.getOperand(0); 2213 Index = ExtractVector.getConstantOperandVal(1); 2214 return true; 2215 }; 2216 2217 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; 2218 SDValue LHSSrcVec, RHSSrcVec; 2219 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || 2220 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) 2221 return SDValue(); 2222 2223 if (LHSOpcode != RHSOpcode) 2224 return SDValue(); 2225 2226 MVT ExpectedSrcVT; 2227 switch (LHSOpcode) { 2228 case WebAssemblyISD::CONVERT_LOW_S: 2229 case WebAssemblyISD::CONVERT_LOW_U: 2230 ExpectedSrcVT = MVT::v4i32; 2231 break; 2232 case WebAssemblyISD::PROMOTE_LOW: 2233 ExpectedSrcVT = MVT::v4f32; 2234 break; 2235 } 2236 if (LHSSrcVec.getValueType() != ExpectedSrcVT) 2237 return SDValue(); 2238 2239 auto Src = LHSSrcVec; 2240 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { 2241 // Shuffle the source vector so that the converted lanes are the low lanes. 2242 Src = DAG.getVectorShuffle( 2243 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, 2244 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); 2245 } 2246 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); 2247 } 2248 2249 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 2250 SelectionDAG &DAG) const { 2251 MVT VT = Op.getSimpleValueType(); 2252 if (VT == MVT::v8f16) { 2253 // BUILD_VECTOR can't handle FP16 operands since Wasm doesn't have a scaler 2254 // FP16 type, so cast them to I16s. 2255 MVT IVT = VT.changeVectorElementType(MVT::i16); 2256 SmallVector<SDValue, 8> NewOps; 2257 for (unsigned I = 0, E = Op.getNumOperands(); I < E; ++I) 2258 NewOps.push_back(DAG.getBitcast(MVT::i16, Op.getOperand(I))); 2259 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(), IVT, NewOps); 2260 return DAG.getBitcast(VT, Res); 2261 } 2262 2263 if (auto ConvertLow = LowerConvertLow(Op, DAG)) 2264 return ConvertLow; 2265 2266 SDLoc DL(Op); 2267 const EVT VecT = Op.getValueType(); 2268 const EVT LaneT = Op.getOperand(0).getValueType(); 2269 const size_t Lanes = Op.getNumOperands(); 2270 bool CanSwizzle = VecT == MVT::v16i8; 2271 2272 // BUILD_VECTORs are lowered to the instruction that initializes the highest 2273 // possible number of lanes at once followed by a sequence of replace_lane 2274 // instructions to individually initialize any remaining lanes. 2275 2276 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 2277 // swizzled lanes should be given greater weight. 2278 2279 // TODO: Investigate looping rather than always extracting/replacing specific 2280 // lanes to fill gaps. 2281 2282 auto IsConstant = [](const SDValue &V) { 2283 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 2284 }; 2285 2286 // Returns the source vector and index vector pair if they exist. Checks for: 2287 // (extract_vector_elt 2288 // $src, 2289 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 2290 // ) 2291 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 2292 auto Bail = std::make_pair(SDValue(), SDValue()); 2293 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2294 return Bail; 2295 const SDValue &SwizzleSrc = Lane->getOperand(0); 2296 const SDValue &IndexExt = Lane->getOperand(1); 2297 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 2298 return Bail; 2299 const SDValue &Index = IndexExt->getOperand(0); 2300 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2301 return Bail; 2302 const SDValue &SwizzleIndices = Index->getOperand(0); 2303 if (SwizzleSrc.getValueType() != MVT::v16i8 || 2304 SwizzleIndices.getValueType() != MVT::v16i8 || 2305 Index->getOperand(1)->getOpcode() != ISD::Constant || 2306 Index->getConstantOperandVal(1) != I) 2307 return Bail; 2308 return std::make_pair(SwizzleSrc, SwizzleIndices); 2309 }; 2310 2311 // If the lane is extracted from another vector at a constant index, return 2312 // that vector. The source vector must not have more lanes than the dest 2313 // because the shufflevector indices are in terms of the destination lanes and 2314 // would not be able to address the smaller individual source lanes. 2315 auto GetShuffleSrc = [&](const SDValue &Lane) { 2316 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 2317 return SDValue(); 2318 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) 2319 return SDValue(); 2320 if (Lane->getOperand(0).getValueType().getVectorNumElements() > 2321 VecT.getVectorNumElements()) 2322 return SDValue(); 2323 return Lane->getOperand(0); 2324 }; 2325 2326 using ValueEntry = std::pair<SDValue, size_t>; 2327 SmallVector<ValueEntry, 16> SplatValueCounts; 2328 2329 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 2330 SmallVector<SwizzleEntry, 16> SwizzleCounts; 2331 2332 using ShuffleEntry = std::pair<SDValue, size_t>; 2333 SmallVector<ShuffleEntry, 16> ShuffleCounts; 2334 2335 auto AddCount = [](auto &Counts, const auto &Val) { 2336 auto CountIt = 2337 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 2338 if (CountIt == Counts.end()) { 2339 Counts.emplace_back(Val, 1); 2340 } else { 2341 CountIt->second++; 2342 } 2343 }; 2344 2345 auto GetMostCommon = [](auto &Counts) { 2346 auto CommonIt = 2347 std::max_element(Counts.begin(), Counts.end(), llvm::less_second()); 2348 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 2349 return *CommonIt; 2350 }; 2351 2352 size_t NumConstantLanes = 0; 2353 2354 // Count eligible lanes for each type of vector creation op 2355 for (size_t I = 0; I < Lanes; ++I) { 2356 const SDValue &Lane = Op->getOperand(I); 2357 if (Lane.isUndef()) 2358 continue; 2359 2360 AddCount(SplatValueCounts, Lane); 2361 2362 if (IsConstant(Lane)) 2363 NumConstantLanes++; 2364 if (auto ShuffleSrc = GetShuffleSrc(Lane)) 2365 AddCount(ShuffleCounts, ShuffleSrc); 2366 if (CanSwizzle) { 2367 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 2368 if (SwizzleSrcs.first) 2369 AddCount(SwizzleCounts, SwizzleSrcs); 2370 } 2371 } 2372 2373 SDValue SplatValue; 2374 size_t NumSplatLanes; 2375 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 2376 2377 SDValue SwizzleSrc; 2378 SDValue SwizzleIndices; 2379 size_t NumSwizzleLanes = 0; 2380 if (SwizzleCounts.size()) 2381 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 2382 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 2383 2384 // Shuffles can draw from up to two vectors, so find the two most common 2385 // sources. 2386 SDValue ShuffleSrc1, ShuffleSrc2; 2387 size_t NumShuffleLanes = 0; 2388 if (ShuffleCounts.size()) { 2389 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); 2390 llvm::erase_if(ShuffleCounts, 2391 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); 2392 } 2393 if (ShuffleCounts.size()) { 2394 size_t AdditionalShuffleLanes; 2395 std::tie(ShuffleSrc2, AdditionalShuffleLanes) = 2396 GetMostCommon(ShuffleCounts); 2397 NumShuffleLanes += AdditionalShuffleLanes; 2398 } 2399 2400 // Predicate returning true if the lane is properly initialized by the 2401 // original instruction 2402 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 2403 SDValue Result; 2404 // Prefer swizzles over shuffles over vector consts over splats 2405 if (NumSwizzleLanes >= NumShuffleLanes && 2406 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { 2407 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 2408 SwizzleIndices); 2409 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 2410 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 2411 return Swizzled == GetSwizzleSrcs(I, Lane); 2412 }; 2413 } else if (NumShuffleLanes >= NumConstantLanes && 2414 NumShuffleLanes >= NumSplatLanes) { 2415 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; 2416 size_t DestLaneCount = VecT.getVectorNumElements(); 2417 size_t Scale1 = 1; 2418 size_t Scale2 = 1; 2419 SDValue Src1 = ShuffleSrc1; 2420 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); 2421 if (Src1.getValueType() != VecT) { 2422 size_t LaneSize = 2423 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2424 assert(LaneSize > DestLaneSize); 2425 Scale1 = LaneSize / DestLaneSize; 2426 Src1 = DAG.getBitcast(VecT, Src1); 2427 } 2428 if (Src2.getValueType() != VecT) { 2429 size_t LaneSize = 2430 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; 2431 assert(LaneSize > DestLaneSize); 2432 Scale2 = LaneSize / DestLaneSize; 2433 Src2 = DAG.getBitcast(VecT, Src2); 2434 } 2435 2436 int Mask[16]; 2437 assert(DestLaneCount <= 16); 2438 for (size_t I = 0; I < DestLaneCount; ++I) { 2439 const SDValue &Lane = Op->getOperand(I); 2440 SDValue Src = GetShuffleSrc(Lane); 2441 if (Src == ShuffleSrc1) { 2442 Mask[I] = Lane->getConstantOperandVal(1) * Scale1; 2443 } else if (Src && Src == ShuffleSrc2) { 2444 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; 2445 } else { 2446 Mask[I] = -1; 2447 } 2448 } 2449 ArrayRef<int> MaskRef(Mask, DestLaneCount); 2450 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); 2451 IsLaneConstructed = [&](size_t, const SDValue &Lane) { 2452 auto Src = GetShuffleSrc(Lane); 2453 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); 2454 }; 2455 } else if (NumConstantLanes >= NumSplatLanes) { 2456 SmallVector<SDValue, 16> ConstLanes; 2457 for (const SDValue &Lane : Op->op_values()) { 2458 if (IsConstant(Lane)) { 2459 // Values may need to be fixed so that they will sign extend to be 2460 // within the expected range during ISel. Check whether the value is in 2461 // bounds based on the lane bit width and if it is out of bounds, lop 2462 // off the extra bits and subtract 2^n to reflect giving the high bit 2463 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it 2464 // cannot possibly be out of range. 2465 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); 2466 int64_t Val = Const ? Const->getSExtValue() : 0; 2467 uint64_t LaneBits = 128 / Lanes; 2468 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && 2469 "Unexpected out of bounds negative value"); 2470 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { 2471 uint64_t Mask = (1ll << LaneBits) - 1; 2472 auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask; 2473 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); 2474 } else { 2475 ConstLanes.push_back(Lane); 2476 } 2477 } else if (LaneT.isFloatingPoint()) { 2478 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 2479 } else { 2480 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 2481 } 2482 } 2483 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 2484 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 2485 return IsConstant(Lane); 2486 }; 2487 } else { 2488 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits(); 2489 if (NumSplatLanes == 1 && Op->getOperand(0) == SplatValue && 2490 (DestLaneSize == 32 || DestLaneSize == 64)) { 2491 // Could be selected to load_zero. 2492 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecT, SplatValue); 2493 } else { 2494 // Use a splat (which might be selected as a load splat) 2495 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 2496 } 2497 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 2498 return Lane == SplatValue; 2499 }; 2500 } 2501 2502 assert(Result); 2503 assert(IsLaneConstructed); 2504 2505 // Add replace_lane instructions for any unhandled values 2506 for (size_t I = 0; I < Lanes; ++I) { 2507 const SDValue &Lane = Op->getOperand(I); 2508 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 2509 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 2510 DAG.getConstant(I, DL, MVT::i32)); 2511 } 2512 2513 return Result; 2514 } 2515 2516 SDValue 2517 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 2518 SelectionDAG &DAG) const { 2519 SDLoc DL(Op); 2520 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 2521 MVT VecType = Op.getOperand(0).getSimpleValueType(); 2522 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 2523 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 2524 2525 // Space for two vector args and sixteen mask indices 2526 SDValue Ops[18]; 2527 size_t OpIdx = 0; 2528 Ops[OpIdx++] = Op.getOperand(0); 2529 Ops[OpIdx++] = Op.getOperand(1); 2530 2531 // Expand mask indices to byte indices and materialize them as operands 2532 for (int M : Mask) { 2533 for (size_t J = 0; J < LaneBytes; ++J) { 2534 // Lower undefs (represented by -1 in mask) to {0..J}, which use a 2535 // whole lane of vector input, to allow further reduction at VM. E.g. 2536 // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle. 2537 uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J; 2538 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 2539 } 2540 } 2541 2542 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 2543 } 2544 2545 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 2546 SelectionDAG &DAG) const { 2547 SDLoc DL(Op); 2548 // The legalizer does not know how to expand the unsupported comparison modes 2549 // of i64x2 vectors, so we manually unroll them here. 2550 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 2551 SmallVector<SDValue, 2> LHS, RHS; 2552 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 2553 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 2554 const SDValue &CC = Op->getOperand(2); 2555 auto MakeLane = [&](unsigned I) { 2556 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 2557 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 2558 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 2559 }; 2560 return DAG.getBuildVector(Op->getValueType(0), DL, 2561 {MakeLane(0), MakeLane(1)}); 2562 } 2563 2564 SDValue 2565 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 2566 SelectionDAG &DAG) const { 2567 // Allow constant lane indices, expand variable lane indices 2568 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 2569 if (isa<ConstantSDNode>(IdxNode)) { 2570 // Ensure the index type is i32 to match the tablegen patterns 2571 uint64_t Idx = IdxNode->getAsZExtVal(); 2572 SmallVector<SDValue, 3> Ops(Op.getNode()->ops()); 2573 Ops[Op.getNumOperands() - 1] = 2574 DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32); 2575 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops); 2576 } 2577 // Perform default expansion 2578 return SDValue(); 2579 } 2580 2581 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 2582 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 2583 // 32-bit and 64-bit unrolled shifts will have proper semantics 2584 if (LaneT.bitsGE(MVT::i32)) 2585 return DAG.UnrollVectorOp(Op.getNode()); 2586 // Otherwise mask the shift value to get proper semantics from 32-bit shift 2587 SDLoc DL(Op); 2588 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 2589 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 2590 unsigned ShiftOpcode = Op.getOpcode(); 2591 SmallVector<SDValue, 16> ShiftedElements; 2592 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 2593 SmallVector<SDValue, 16> ShiftElements; 2594 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 2595 SmallVector<SDValue, 16> UnrolledOps; 2596 for (size_t i = 0; i < NumLanes; ++i) { 2597 SDValue MaskedShiftValue = 2598 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 2599 SDValue ShiftedValue = ShiftedElements[i]; 2600 if (ShiftOpcode == ISD::SRA) 2601 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 2602 ShiftedValue, DAG.getValueType(LaneT)); 2603 UnrolledOps.push_back( 2604 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 2605 } 2606 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 2607 } 2608 2609 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 2610 SelectionDAG &DAG) const { 2611 SDLoc DL(Op); 2612 2613 // Only manually lower vector shifts 2614 assert(Op.getSimpleValueType().isVector()); 2615 2616 uint64_t LaneBits = Op.getValueType().getScalarSizeInBits(); 2617 auto ShiftVal = Op.getOperand(1); 2618 2619 // Try to skip bitmask operation since it is implied inside shift instruction 2620 auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) { 2621 if (MaskOp.getOpcode() != ISD::AND) 2622 return MaskOp; 2623 SDValue LHS = MaskOp.getOperand(0); 2624 SDValue RHS = MaskOp.getOperand(1); 2625 if (MaskOp.getValueType().isVector()) { 2626 APInt MaskVal; 2627 if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal)) 2628 std::swap(LHS, RHS); 2629 2630 if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) && 2631 MaskVal == MaskBits) 2632 MaskOp = LHS; 2633 } else { 2634 if (!isa<ConstantSDNode>(RHS.getNode())) 2635 std::swap(LHS, RHS); 2636 2637 auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode()); 2638 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits) 2639 MaskOp = LHS; 2640 } 2641 2642 return MaskOp; 2643 }; 2644 2645 // Skip vector and operation 2646 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2647 ShiftVal = DAG.getSplatValue(ShiftVal); 2648 if (!ShiftVal) 2649 return unrollVectorShift(Op, DAG); 2650 2651 // Skip scalar and operation 2652 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1); 2653 // Use anyext because none of the high bits can affect the shift 2654 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 2655 2656 unsigned Opcode; 2657 switch (Op.getOpcode()) { 2658 case ISD::SHL: 2659 Opcode = WebAssemblyISD::VEC_SHL; 2660 break; 2661 case ISD::SRA: 2662 Opcode = WebAssemblyISD::VEC_SHR_S; 2663 break; 2664 case ISD::SRL: 2665 Opcode = WebAssemblyISD::VEC_SHR_U; 2666 break; 2667 default: 2668 llvm_unreachable("unexpected opcode"); 2669 } 2670 2671 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 2672 } 2673 2674 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, 2675 SelectionDAG &DAG) const { 2676 SDLoc DL(Op); 2677 EVT ResT = Op.getValueType(); 2678 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2679 2680 if ((ResT == MVT::i32 || ResT == MVT::i64) && 2681 (SatVT == MVT::i32 || SatVT == MVT::i64)) 2682 return Op; 2683 2684 if (ResT == MVT::v4i32 && SatVT == MVT::i32) 2685 return Op; 2686 2687 if (ResT == MVT::v8i16 && SatVT == MVT::i16) 2688 return Op; 2689 2690 return SDValue(); 2691 } 2692 2693 //===----------------------------------------------------------------------===// 2694 // Custom DAG combine hooks 2695 //===----------------------------------------------------------------------===// 2696 static SDValue 2697 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2698 auto &DAG = DCI.DAG; 2699 auto Shuffle = cast<ShuffleVectorSDNode>(N); 2700 2701 // Hoist vector bitcasts that don't change the number of lanes out of unary 2702 // shuffles, where they are less likely to get in the way of other combines. 2703 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 2704 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 2705 SDValue Bitcast = N->getOperand(0); 2706 if (Bitcast.getOpcode() != ISD::BITCAST) 2707 return SDValue(); 2708 if (!N->getOperand(1).isUndef()) 2709 return SDValue(); 2710 SDValue CastOp = Bitcast.getOperand(0); 2711 EVT SrcType = CastOp.getValueType(); 2712 EVT DstType = Bitcast.getValueType(); 2713 if (!SrcType.is128BitVector() || 2714 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 2715 return SDValue(); 2716 SDValue NewShuffle = DAG.getVectorShuffle( 2717 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 2718 return DAG.getBitcast(DstType, NewShuffle); 2719 } 2720 2721 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get 2722 /// split up into scalar instructions during legalization, and the vector 2723 /// extending instructions are selected in performVectorExtendCombine below. 2724 static SDValue 2725 performVectorExtendToFPCombine(SDNode *N, 2726 TargetLowering::DAGCombinerInfo &DCI) { 2727 auto &DAG = DCI.DAG; 2728 assert(N->getOpcode() == ISD::UINT_TO_FP || 2729 N->getOpcode() == ISD::SINT_TO_FP); 2730 2731 EVT InVT = N->getOperand(0)->getValueType(0); 2732 EVT ResVT = N->getValueType(0); 2733 MVT ExtVT; 2734 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8)) 2735 ExtVT = MVT::v4i32; 2736 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8)) 2737 ExtVT = MVT::v2i32; 2738 else 2739 return SDValue(); 2740 2741 unsigned Op = 2742 N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2743 SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0)); 2744 return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv); 2745 } 2746 2747 static SDValue 2748 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2749 auto &DAG = DCI.DAG; 2750 assert(N->getOpcode() == ISD::SIGN_EXTEND || 2751 N->getOpcode() == ISD::ZERO_EXTEND); 2752 2753 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 2754 // possible before the extract_subvector can be expanded. 2755 auto Extract = N->getOperand(0); 2756 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2757 return SDValue(); 2758 auto Source = Extract.getOperand(0); 2759 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 2760 if (IndexNode == nullptr) 2761 return SDValue(); 2762 auto Index = IndexNode->getZExtValue(); 2763 2764 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the 2765 // extracted subvector is the low or high half of its source. 2766 EVT ResVT = N->getValueType(0); 2767 if (ResVT == MVT::v8i16) { 2768 if (Extract.getValueType() != MVT::v8i8 || 2769 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 2770 return SDValue(); 2771 } else if (ResVT == MVT::v4i32) { 2772 if (Extract.getValueType() != MVT::v4i16 || 2773 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 2774 return SDValue(); 2775 } else if (ResVT == MVT::v2i64) { 2776 if (Extract.getValueType() != MVT::v2i32 || 2777 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) 2778 return SDValue(); 2779 } else { 2780 return SDValue(); 2781 } 2782 2783 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 2784 bool IsLow = Index == 0; 2785 2786 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S 2787 : WebAssemblyISD::EXTEND_HIGH_S) 2788 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U 2789 : WebAssemblyISD::EXTEND_HIGH_U); 2790 2791 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2792 } 2793 2794 static SDValue 2795 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 2796 auto &DAG = DCI.DAG; 2797 2798 auto GetWasmConversionOp = [](unsigned Op) { 2799 switch (Op) { 2800 case ISD::FP_TO_SINT_SAT: 2801 return WebAssemblyISD::TRUNC_SAT_ZERO_S; 2802 case ISD::FP_TO_UINT_SAT: 2803 return WebAssemblyISD::TRUNC_SAT_ZERO_U; 2804 case ISD::FP_ROUND: 2805 return WebAssemblyISD::DEMOTE_ZERO; 2806 } 2807 llvm_unreachable("unexpected op"); 2808 }; 2809 2810 auto IsZeroSplat = [](SDValue SplatVal) { 2811 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode()); 2812 APInt SplatValue, SplatUndef; 2813 unsigned SplatBitSize; 2814 bool HasAnyUndefs; 2815 // Endianness doesn't matter in this context because we are looking for 2816 // an all-zero value. 2817 return Splat && 2818 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2819 HasAnyUndefs) && 2820 SplatValue == 0; 2821 }; 2822 2823 if (N->getOpcode() == ISD::CONCAT_VECTORS) { 2824 // Combine this: 2825 // 2826 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0))) 2827 // 2828 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2829 // 2830 // Or this: 2831 // 2832 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0))) 2833 // 2834 // into (f32x4.demote_zero_f64x2 $x). 2835 EVT ResVT; 2836 EVT ExpectedConversionType; 2837 auto Conversion = N->getOperand(0); 2838 auto ConversionOp = Conversion.getOpcode(); 2839 switch (ConversionOp) { 2840 case ISD::FP_TO_SINT_SAT: 2841 case ISD::FP_TO_UINT_SAT: 2842 ResVT = MVT::v4i32; 2843 ExpectedConversionType = MVT::v2i32; 2844 break; 2845 case ISD::FP_ROUND: 2846 ResVT = MVT::v4f32; 2847 ExpectedConversionType = MVT::v2f32; 2848 break; 2849 default: 2850 return SDValue(); 2851 } 2852 2853 if (N->getValueType(0) != ResVT) 2854 return SDValue(); 2855 2856 if (Conversion.getValueType() != ExpectedConversionType) 2857 return SDValue(); 2858 2859 auto Source = Conversion.getOperand(0); 2860 if (Source.getValueType() != MVT::v2f64) 2861 return SDValue(); 2862 2863 if (!IsZeroSplat(N->getOperand(1)) || 2864 N->getOperand(1).getValueType() != ExpectedConversionType) 2865 return SDValue(); 2866 2867 unsigned Op = GetWasmConversionOp(ConversionOp); 2868 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2869 } 2870 2871 // Combine this: 2872 // 2873 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32) 2874 // 2875 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x). 2876 // 2877 // Or this: 2878 // 2879 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0))))) 2880 // 2881 // into (f32x4.demote_zero_f64x2 $x). 2882 EVT ResVT; 2883 auto ConversionOp = N->getOpcode(); 2884 switch (ConversionOp) { 2885 case ISD::FP_TO_SINT_SAT: 2886 case ISD::FP_TO_UINT_SAT: 2887 ResVT = MVT::v4i32; 2888 break; 2889 case ISD::FP_ROUND: 2890 ResVT = MVT::v4f32; 2891 break; 2892 default: 2893 llvm_unreachable("unexpected op"); 2894 } 2895 2896 if (N->getValueType(0) != ResVT) 2897 return SDValue(); 2898 2899 auto Concat = N->getOperand(0); 2900 if (Concat.getValueType() != MVT::v4f64) 2901 return SDValue(); 2902 2903 auto Source = Concat.getOperand(0); 2904 if (Source.getValueType() != MVT::v2f64) 2905 return SDValue(); 2906 2907 if (!IsZeroSplat(Concat.getOperand(1)) || 2908 Concat.getOperand(1).getValueType() != MVT::v2f64) 2909 return SDValue(); 2910 2911 unsigned Op = GetWasmConversionOp(ConversionOp); 2912 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2913 } 2914 2915 // Helper to extract VectorWidth bits from Vec, starting from IdxVal. 2916 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, 2917 const SDLoc &DL, unsigned VectorWidth) { 2918 EVT VT = Vec.getValueType(); 2919 EVT ElVT = VT.getVectorElementType(); 2920 unsigned Factor = VT.getSizeInBits() / VectorWidth; 2921 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, 2922 VT.getVectorNumElements() / Factor); 2923 2924 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR 2925 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits(); 2926 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); 2927 2928 // This is the index of the first element of the VectorWidth-bit chunk 2929 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. 2930 IdxVal &= ~(ElemsPerChunk - 1); 2931 2932 // If the input is a buildvector just emit a smaller one. 2933 if (Vec.getOpcode() == ISD::BUILD_VECTOR) 2934 return DAG.getBuildVector(ResultVT, DL, 2935 Vec->ops().slice(IdxVal, ElemsPerChunk)); 2936 2937 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL); 2938 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx); 2939 } 2940 2941 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT 2942 // is the expected destination value type after recursion. In is the initial 2943 // input. Note that the input should have enough leading zero bits to prevent 2944 // NARROW_U from saturating results. 2945 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, 2946 SelectionDAG &DAG) { 2947 EVT SrcVT = In.getValueType(); 2948 2949 // No truncation required, we might get here due to recursive calls. 2950 if (SrcVT == DstVT) 2951 return In; 2952 2953 unsigned SrcSizeInBits = SrcVT.getSizeInBits(); 2954 unsigned NumElems = SrcVT.getVectorNumElements(); 2955 if (!isPowerOf2_32(NumElems)) 2956 return SDValue(); 2957 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); 2958 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation"); 2959 2960 LLVMContext &Ctx = *DAG.getContext(); 2961 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); 2962 2963 // Narrow to the largest type possible: 2964 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u. 2965 EVT InVT = MVT::i16, OutVT = MVT::i8; 2966 if (SrcVT.getScalarSizeInBits() > 16) { 2967 InVT = MVT::i32; 2968 OutVT = MVT::i16; 2969 } 2970 unsigned SubSizeInBits = SrcSizeInBits / 2; 2971 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); 2972 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); 2973 2974 // Split lower/upper subvectors. 2975 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits); 2976 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits); 2977 2978 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors. 2979 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) { 2980 Lo = DAG.getBitcast(InVT, Lo); 2981 Hi = DAG.getBitcast(InVT, Hi); 2982 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi); 2983 return DAG.getBitcast(DstVT, Res); 2984 } 2985 2986 // Recursively narrow lower/upper subvectors, concat result and narrow again. 2987 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2); 2988 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG); 2989 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG); 2990 2991 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); 2992 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); 2993 return truncateVectorWithNARROW(DstVT, Res, DL, DAG); 2994 } 2995 2996 static SDValue performTruncateCombine(SDNode *N, 2997 TargetLowering::DAGCombinerInfo &DCI) { 2998 auto &DAG = DCI.DAG; 2999 3000 SDValue In = N->getOperand(0); 3001 EVT InVT = In.getValueType(); 3002 if (!InVT.isSimple()) 3003 return SDValue(); 3004 3005 EVT OutVT = N->getValueType(0); 3006 if (!OutVT.isVector()) 3007 return SDValue(); 3008 3009 EVT OutSVT = OutVT.getVectorElementType(); 3010 EVT InSVT = InVT.getVectorElementType(); 3011 // Currently only cover truncate to v16i8 or v8i16. 3012 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) && 3013 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector())) 3014 return SDValue(); 3015 3016 SDLoc DL(N); 3017 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(), 3018 OutVT.getScalarSizeInBits()); 3019 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT)); 3020 return truncateVectorWithNARROW(OutVT, In, DL, DAG); 3021 } 3022 3023 static SDValue performBitcastCombine(SDNode *N, 3024 TargetLowering::DAGCombinerInfo &DCI) { 3025 auto &DAG = DCI.DAG; 3026 SDLoc DL(N); 3027 SDValue Src = N->getOperand(0); 3028 EVT VT = N->getValueType(0); 3029 EVT SrcVT = Src.getValueType(); 3030 3031 // bitcast <N x i1> to iN 3032 // ==> bitmask 3033 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 3034 SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) { 3035 unsigned NumElts = SrcVT.getVectorNumElements(); 3036 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3037 return SDValue(); 3038 EVT Width = MVT::getIntegerVT(128 / NumElts); 3039 return DAG.getZExtOrTrunc( 3040 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 3041 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32), 3042 DAG.getSExtOrTrunc(N->getOperand(0), DL, 3043 SrcVT.changeVectorElementType(Width))}), 3044 DL, VT); 3045 } 3046 3047 return SDValue(); 3048 } 3049 3050 static SDValue performSETCCCombine(SDNode *N, 3051 TargetLowering::DAGCombinerInfo &DCI) { 3052 auto &DAG = DCI.DAG; 3053 3054 SDValue LHS = N->getOperand(0); 3055 SDValue RHS = N->getOperand(1); 3056 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); 3057 SDLoc DL(N); 3058 EVT VT = N->getValueType(0); 3059 3060 // setcc (iN (bitcast (vNi1 X))), 0, ne 3061 // ==> any_true (vNi1 X) 3062 // setcc (iN (bitcast (vNi1 X))), 0, eq 3063 // ==> xor (any_true (vNi1 X)), -1 3064 // setcc (iN (bitcast (vNi1 X))), -1, eq 3065 // ==> all_true (vNi1 X) 3066 // setcc (iN (bitcast (vNi1 X))), -1, ne 3067 // ==> xor (all_true (vNi1 X)), -1 3068 if (DCI.isBeforeLegalize() && VT.isScalarInteger() && 3069 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3070 (isNullConstant(RHS) || isAllOnesConstant(RHS)) && 3071 LHS->getOpcode() == ISD::BITCAST) { 3072 EVT FromVT = LHS->getOperand(0).getValueType(); 3073 if (FromVT.isFixedLengthVector() && 3074 FromVT.getVectorElementType() == MVT::i1) { 3075 int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue 3076 : Intrinsic::wasm_alltrue; 3077 unsigned NumElts = FromVT.getVectorNumElements(); 3078 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3079 return SDValue(); 3080 EVT Width = MVT::getIntegerVT(128 / NumElts); 3081 SDValue Ret = DAG.getZExtOrTrunc( 3082 DAG.getNode( 3083 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 3084 {DAG.getConstant(Intrin, DL, MVT::i32), 3085 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, 3086 FromVT.changeVectorElementType(Width))}), 3087 DL, MVT::i1); 3088 if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) || 3089 (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) { 3090 Ret = DAG.getNOT(DL, Ret, MVT::i1); 3091 } 3092 return DAG.getZExtOrTrunc(Ret, DL, VT); 3093 } 3094 } 3095 3096 return SDValue(); 3097 } 3098 3099 SDValue 3100 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 3101 DAGCombinerInfo &DCI) const { 3102 switch (N->getOpcode()) { 3103 default: 3104 return SDValue(); 3105 case ISD::BITCAST: 3106 return performBitcastCombine(N, DCI); 3107 case ISD::SETCC: 3108 return performSETCCCombine(N, DCI); 3109 case ISD::VECTOR_SHUFFLE: 3110 return performVECTOR_SHUFFLECombine(N, DCI); 3111 case ISD::SIGN_EXTEND: 3112 case ISD::ZERO_EXTEND: 3113 return performVectorExtendCombine(N, DCI); 3114 case ISD::UINT_TO_FP: 3115 case ISD::SINT_TO_FP: 3116 return performVectorExtendToFPCombine(N, DCI); 3117 case ISD::FP_TO_SINT_SAT: 3118 case ISD::FP_TO_UINT_SAT: 3119 case ISD::FP_ROUND: 3120 case ISD::CONCAT_VECTORS: 3121 return performVectorTruncZeroCombine(N, DCI); 3122 case ISD::TRUNCATE: 3123 return performTruncateCombine(N, DCI); 3124 } 3125 } 3126