xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision 05e6bb40ebfd285cc87f7ce326b7ba76c3c7f870)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "WebAssemblyMachineFunctionInfo.h"
18 #include "WebAssemblySubtarget.h"
19 #include "WebAssemblyTargetMachine.h"
20 #include "WebAssemblyUtilities.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsWebAssembly.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "wasm-lower"
45 
46 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
47     const TargetMachine &TM, const WebAssemblySubtarget &STI)
48     : TargetLowering(TM), Subtarget(&STI) {
49   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
50 
51   // Booleans always contain 0 or 1.
52   setBooleanContents(ZeroOrOneBooleanContent);
53   // Except in SIMD vectors
54   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
55   // We don't know the microarchitecture here, so just reduce register pressure.
56   setSchedulingPreference(Sched::RegPressure);
57   // Tell ISel that we have a stack pointer.
58   setStackPointerRegisterToSaveRestore(
59       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
60   // Set up the register classes.
61   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
62   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
63   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
64   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
65   if (Subtarget->hasSIMD128()) {
66     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
69     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
70     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
71     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
72   }
73   if (Subtarget->hasHalfPrecision()) {
74     addRegisterClass(MVT::v8f16, &WebAssembly::V128RegClass);
75   }
76   if (Subtarget->hasReferenceTypes()) {
77     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
78     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
79     if (Subtarget->hasExceptionHandling()) {
80       addRegisterClass(MVT::exnref, &WebAssembly::EXNREFRegClass);
81     }
82   }
83   // Compute derived properties from the register classes.
84   computeRegisterProperties(Subtarget->getRegisterInfo());
85 
86   // Transform loads and stores to pointers in address space 1 to loads and
87   // stores to WebAssembly global variables, outside linear memory.
88   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
89     setOperationAction(ISD::LOAD, T, Custom);
90     setOperationAction(ISD::STORE, T, Custom);
91   }
92   if (Subtarget->hasSIMD128()) {
93     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
94                    MVT::v2f64}) {
95       setOperationAction(ISD::LOAD, T, Custom);
96       setOperationAction(ISD::STORE, T, Custom);
97     }
98   }
99   if (Subtarget->hasReferenceTypes()) {
100     // We need custom load and store lowering for both externref, funcref and
101     // Other. The MVT::Other here represents tables of reference types.
102     for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
103       setOperationAction(ISD::LOAD, T, Custom);
104       setOperationAction(ISD::STORE, T, Custom);
105     }
106   }
107 
108   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
109   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
110   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
111   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
112   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
113   setOperationAction(ISD::BRIND, MVT::Other, Custom);
114   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom);
115 
116   // Take the default expansion for va_arg, va_copy, and va_end. There is no
117   // default action for va_start, so we do that custom.
118   setOperationAction(ISD::VASTART, MVT::Other, Custom);
119   setOperationAction(ISD::VAARG, MVT::Other, Expand);
120   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
121   setOperationAction(ISD::VAEND, MVT::Other, Expand);
122 
123   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
124     // Don't expand the floating-point types to constant pools.
125     setOperationAction(ISD::ConstantFP, T, Legal);
126     // Expand floating-point comparisons.
127     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
128                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
129       setCondCodeAction(CC, T, Expand);
130     // Expand floating-point library function operators.
131     for (auto Op :
132          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
133       setOperationAction(Op, T, Expand);
134     // Note supported floating-point library function operators that otherwise
135     // default to expand.
136     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
137                     ISD::FRINT, ISD::FROUNDEVEN})
138       setOperationAction(Op, T, Legal);
139     // Support minimum and maximum, which otherwise default to expand.
140     setOperationAction(ISD::FMINIMUM, T, Legal);
141     setOperationAction(ISD::FMAXIMUM, T, Legal);
142     // WebAssembly currently has no builtin f16 support.
143     setOperationAction(ISD::FP16_TO_FP, T, Expand);
144     setOperationAction(ISD::FP_TO_FP16, T, Expand);
145     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
146     setTruncStoreAction(T, MVT::f16, Expand);
147   }
148 
149   if (Subtarget->hasHalfPrecision()) {
150     setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
151     setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
152   }
153 
154   // Expand unavailable integer operations.
155   for (auto Op :
156        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
157         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
158         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
159     for (auto T : {MVT::i32, MVT::i64})
160       setOperationAction(Op, T, Expand);
161     if (Subtarget->hasSIMD128())
162       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
163         setOperationAction(Op, T, Expand);
164   }
165 
166   if (Subtarget->hasNontrappingFPToInt())
167     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
168       for (auto T : {MVT::i32, MVT::i64})
169         setOperationAction(Op, T, Custom);
170 
171   // SIMD-specific configuration
172   if (Subtarget->hasSIMD128()) {
173     // Combine vector mask reductions into alltrue/anytrue
174     setTargetDAGCombine(ISD::SETCC);
175 
176     // Convert vector to integer bitcasts to bitmask
177     setTargetDAGCombine(ISD::BITCAST);
178 
179     // Hoist bitcasts out of shuffles
180     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
181 
182     // Combine extends of extract_subvectors into widening ops
183     setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND});
184 
185     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
186     // conversions ops
187     setTargetDAGCombine({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_EXTEND,
188                          ISD::EXTRACT_SUBVECTOR});
189 
190     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
191     // into conversion ops
192     setTargetDAGCombine({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
193                          ISD::FP_ROUND, ISD::CONCAT_VECTORS});
194 
195     setTargetDAGCombine(ISD::TRUNCATE);
196 
197     // Support saturating add for i8x16 and i16x8
198     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
199       for (auto T : {MVT::v16i8, MVT::v8i16})
200         setOperationAction(Op, T, Legal);
201 
202     // Support integer abs
203     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
204       setOperationAction(ISD::ABS, T, Legal);
205 
206     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
207     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
208                    MVT::v2f64})
209       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
210 
211     // We have custom shuffle lowering to expose the shuffle mask
212     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
213                    MVT::v2f64})
214       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
215 
216     // Support splatting
217     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
218                    MVT::v2f64})
219       setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
220 
221     // Custom lowering since wasm shifts must have a scalar shift amount
222     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
223       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
224         setOperationAction(Op, T, Custom);
225 
226     // Custom lower lane accesses to expand out variable indices
227     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
228       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
229                      MVT::v2f64})
230         setOperationAction(Op, T, Custom);
231 
232     // There is no i8x16.mul instruction
233     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
234 
235     // There is no vector conditional select instruction
236     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
237                    MVT::v2f64})
238       setOperationAction(ISD::SELECT_CC, T, Expand);
239 
240     // Expand integer operations supported for scalars but not SIMD
241     for (auto Op :
242          {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
243       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
244         setOperationAction(Op, T, Expand);
245 
246     // But we do have integer min and max operations
247     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
248       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
249         setOperationAction(Op, T, Legal);
250 
251     // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
252     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
253     setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
254     setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
255 
256     // Custom lower bit counting operations for other types to scalarize them.
257     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
258       for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
259         setOperationAction(Op, T, Custom);
260 
261     // Expand float operations supported for scalars but not SIMD
262     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
263                     ISD::FEXP, ISD::FEXP2})
264       for (auto T : {MVT::v4f32, MVT::v2f64})
265         setOperationAction(Op, T, Expand);
266 
267     // Unsigned comparison operations are unavailable for i64x2 vectors.
268     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
269       setCondCodeAction(CC, MVT::v2i64, Custom);
270 
271     // 64x2 conversions are not in the spec
272     for (auto Op :
273          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
274       for (auto T : {MVT::v2i64, MVT::v2f64})
275         setOperationAction(Op, T, Expand);
276 
277     // But saturating fp_to_int converstions are
278     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
279       setOperationAction(Op, MVT::v4i32, Custom);
280 
281     // Support vector extending
282     for (auto T : MVT::integer_fixedlen_vector_valuetypes()) {
283       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Custom);
284       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Custom);
285     }
286   }
287 
288   // As a special case, these operators use the type to mean the type to
289   // sign-extend from.
290   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
291   if (!Subtarget->hasSignExt()) {
292     // Sign extends are legal only when extending a vector extract
293     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
294     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
295       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
296   }
297   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
298     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
299 
300   // Dynamic stack allocation: use the default expansion.
301   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
302   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
303   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
304 
305   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
306   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
307   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
308 
309   // Expand these forms; we pattern-match the forms that we can handle in isel.
310   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
311     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
312       setOperationAction(Op, T, Expand);
313 
314   // We have custom switch handling.
315   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
316 
317   // WebAssembly doesn't have:
318   //  - Floating-point extending loads.
319   //  - Floating-point truncating stores.
320   //  - i1 extending loads.
321   //  - truncating SIMD stores and most extending loads
322   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
323   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
324   for (auto T : MVT::integer_valuetypes())
325     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
326       setLoadExtAction(Ext, T, MVT::i1, Promote);
327   if (Subtarget->hasSIMD128()) {
328     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
329                    MVT::v2f64}) {
330       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
331         if (MVT(T) != MemT) {
332           setTruncStoreAction(T, MemT, Expand);
333           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
334             setLoadExtAction(Ext, T, MemT, Expand);
335         }
336       }
337     }
338     // But some vector extending loads are legal
339     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
340       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
341       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
342       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
343     }
344     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
345   }
346 
347   // Don't do anything clever with build_pairs
348   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
349 
350   // Trap lowers to wasm unreachable
351   setOperationAction(ISD::TRAP, MVT::Other, Legal);
352   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
353 
354   // Exception handling intrinsics
355   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
356   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
357   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
358 
359   setMaxAtomicSizeInBitsSupported(64);
360 
361   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
362   // consistent with the f64 and f128 names.
363   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
364   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
365 
366   // Define the emscripten name for return address helper.
367   // TODO: when implementing other Wasm backends, make this generic or only do
368   // this on emscripten depending on what they end up doing.
369   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
370 
371   // Always convert switches to br_tables unless there is only one case, which
372   // is equivalent to a simple branch. This reduces code size for wasm, and we
373   // defer possible jump table optimizations to the VM.
374   setMinimumJumpTableEntries(2);
375 }
376 
377 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
378                                             uint32_t AS) const {
379   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
380     return MVT::externref;
381   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
382     return MVT::funcref;
383   return TargetLowering::getPointerTy(DL, AS);
384 }
385 
386 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
387                                                uint32_t AS) const {
388   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
389     return MVT::externref;
390   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
391     return MVT::funcref;
392   return TargetLowering::getPointerMemTy(DL, AS);
393 }
394 
395 TargetLowering::AtomicExpansionKind
396 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
397   // We have wasm instructions for these
398   switch (AI->getOperation()) {
399   case AtomicRMWInst::Add:
400   case AtomicRMWInst::Sub:
401   case AtomicRMWInst::And:
402   case AtomicRMWInst::Or:
403   case AtomicRMWInst::Xor:
404   case AtomicRMWInst::Xchg:
405     return AtomicExpansionKind::None;
406   default:
407     break;
408   }
409   return AtomicExpansionKind::CmpXChg;
410 }
411 
412 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
413   // Implementation copied from X86TargetLowering.
414   unsigned Opc = VecOp.getOpcode();
415 
416   // Assume target opcodes can't be scalarized.
417   // TODO - do we have any exceptions?
418   if (Opc >= ISD::BUILTIN_OP_END)
419     return false;
420 
421   // If the vector op is not supported, try to convert to scalar.
422   EVT VecVT = VecOp.getValueType();
423   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
424     return true;
425 
426   // If the vector op is supported, but the scalar op is not, the transform may
427   // not be worthwhile.
428   EVT ScalarVT = VecVT.getScalarType();
429   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
430 }
431 
432 FastISel *WebAssemblyTargetLowering::createFastISel(
433     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
434   return WebAssembly::createFastISel(FuncInfo, LibInfo);
435 }
436 
437 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
438                                                       EVT VT) const {
439   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
440   if (BitWidth > 1 && BitWidth < 8)
441     BitWidth = 8;
442 
443   if (BitWidth > 64) {
444     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
445     // the count to be an i32.
446     BitWidth = 32;
447     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
448            "32-bit shift counts ought to be enough for anyone");
449   }
450 
451   MVT Result = MVT::getIntegerVT(BitWidth);
452   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
453          "Unable to represent scalar shift amount type");
454   return Result;
455 }
456 
457 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
458 // undefined result on invalid/overflow, to the WebAssembly opcode, which
459 // traps on invalid/overflow.
460 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
461                                        MachineBasicBlock *BB,
462                                        const TargetInstrInfo &TII,
463                                        bool IsUnsigned, bool Int64,
464                                        bool Float64, unsigned LoweredOpcode) {
465   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
466 
467   Register OutReg = MI.getOperand(0).getReg();
468   Register InReg = MI.getOperand(1).getReg();
469 
470   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
471   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
472   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
473   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
474   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
475   unsigned Eqz = WebAssembly::EQZ_I32;
476   unsigned And = WebAssembly::AND_I32;
477   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
478   int64_t Substitute = IsUnsigned ? 0 : Limit;
479   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
480   auto &Context = BB->getParent()->getFunction().getContext();
481   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
482 
483   const BasicBlock *LLVMBB = BB->getBasicBlock();
484   MachineFunction *F = BB->getParent();
485   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
486   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
487   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
488 
489   MachineFunction::iterator It = ++BB->getIterator();
490   F->insert(It, FalseMBB);
491   F->insert(It, TrueMBB);
492   F->insert(It, DoneMBB);
493 
494   // Transfer the remainder of BB and its successor edges to DoneMBB.
495   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
496   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
497 
498   BB->addSuccessor(TrueMBB);
499   BB->addSuccessor(FalseMBB);
500   TrueMBB->addSuccessor(DoneMBB);
501   FalseMBB->addSuccessor(DoneMBB);
502 
503   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
504   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
505   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
506   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
507   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
508   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
509   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
510 
511   MI.eraseFromParent();
512   // For signed numbers, we can do a single comparison to determine whether
513   // fabs(x) is within range.
514   if (IsUnsigned) {
515     Tmp0 = InReg;
516   } else {
517     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
518   }
519   BuildMI(BB, DL, TII.get(FConst), Tmp1)
520       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
521   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
522 
523   // For unsigned numbers, we have to do a separate comparison with zero.
524   if (IsUnsigned) {
525     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
526     Register SecondCmpReg =
527         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
528     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
529     BuildMI(BB, DL, TII.get(FConst), Tmp1)
530         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
531     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
532     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
533     CmpReg = AndReg;
534   }
535 
536   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
537 
538   // Create the CFG diamond to select between doing the conversion or using
539   // the substitute value.
540   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
541   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
542   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
543   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
544   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
545       .addReg(FalseReg)
546       .addMBB(FalseMBB)
547       .addReg(TrueReg)
548       .addMBB(TrueMBB);
549 
550   return DoneMBB;
551 }
552 
553 static MachineBasicBlock *
554 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
555                  const WebAssemblySubtarget *Subtarget,
556                  const TargetInstrInfo &TII) {
557   MachineInstr &CallParams = *CallResults.getPrevNode();
558   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
559   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
560          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
561 
562   bool IsIndirect =
563       CallParams.getOperand(0).isReg() || CallParams.getOperand(0).isFI();
564   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
565 
566   bool IsFuncrefCall = false;
567   if (IsIndirect && CallParams.getOperand(0).isReg()) {
568     Register Reg = CallParams.getOperand(0).getReg();
569     const MachineFunction *MF = BB->getParent();
570     const MachineRegisterInfo &MRI = MF->getRegInfo();
571     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
572     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
573     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
574   }
575 
576   unsigned CallOp;
577   if (IsIndirect && IsRetCall) {
578     CallOp = WebAssembly::RET_CALL_INDIRECT;
579   } else if (IsIndirect) {
580     CallOp = WebAssembly::CALL_INDIRECT;
581   } else if (IsRetCall) {
582     CallOp = WebAssembly::RET_CALL;
583   } else {
584     CallOp = WebAssembly::CALL;
585   }
586 
587   MachineFunction &MF = *BB->getParent();
588   const MCInstrDesc &MCID = TII.get(CallOp);
589   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
590 
591   // Move the function pointer to the end of the arguments for indirect calls
592   if (IsIndirect) {
593     auto FnPtr = CallParams.getOperand(0);
594     CallParams.removeOperand(0);
595 
596     // For funcrefs, call_indirect is done through __funcref_call_table and the
597     // funcref is always installed in slot 0 of the table, therefore instead of
598     // having the function pointer added at the end of the params list, a zero
599     // (the index in
600     // __funcref_call_table is added).
601     if (IsFuncrefCall) {
602       Register RegZero =
603           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
604       MachineInstrBuilder MIBC0 =
605           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
606 
607       BB->insert(CallResults.getIterator(), MIBC0);
608       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
609     } else
610       CallParams.addOperand(FnPtr);
611   }
612 
613   for (auto Def : CallResults.defs())
614     MIB.add(Def);
615 
616   if (IsIndirect) {
617     // Placeholder for the type index.
618     MIB.addImm(0);
619     // The table into which this call_indirect indexes.
620     MCSymbolWasm *Table = IsFuncrefCall
621                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
622                                     MF.getContext(), Subtarget)
623                               : WebAssembly::getOrCreateFunctionTableSymbol(
624                                     MF.getContext(), Subtarget);
625     if (Subtarget->hasReferenceTypes()) {
626       MIB.addSym(Table);
627     } else {
628       // For the MVP there is at most one table whose number is 0, but we can't
629       // write a table symbol or issue relocations.  Instead we just ensure the
630       // table is live and write a zero.
631       Table->setNoStrip();
632       MIB.addImm(0);
633     }
634   }
635 
636   for (auto Use : CallParams.uses())
637     MIB.add(Use);
638 
639   BB->insert(CallResults.getIterator(), MIB);
640   CallParams.eraseFromParent();
641   CallResults.eraseFromParent();
642 
643   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
644   // table slot with ref.null upon call_indirect return.
645   //
646   // This generates the following code, which comes right after a call_indirect
647   // of a funcref:
648   //
649   //    i32.const 0
650   //    ref.null func
651   //    table.set __funcref_call_table
652   if (IsIndirect && IsFuncrefCall) {
653     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
654         MF.getContext(), Subtarget);
655     Register RegZero =
656         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
657     MachineInstr *Const0 =
658         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
659     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
660 
661     Register RegFuncref =
662         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
663     MachineInstr *RefNull =
664         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
665     BB->insertAfter(Const0->getIterator(), RefNull);
666 
667     MachineInstr *TableSet =
668         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
669             .addSym(Table)
670             .addReg(RegZero)
671             .addReg(RegFuncref);
672     BB->insertAfter(RefNull->getIterator(), TableSet);
673   }
674 
675   return BB;
676 }
677 
678 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
679     MachineInstr &MI, MachineBasicBlock *BB) const {
680   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
681   DebugLoc DL = MI.getDebugLoc();
682 
683   switch (MI.getOpcode()) {
684   default:
685     llvm_unreachable("Unexpected instr type to insert");
686   case WebAssembly::FP_TO_SINT_I32_F32:
687     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
688                         WebAssembly::I32_TRUNC_S_F32);
689   case WebAssembly::FP_TO_UINT_I32_F32:
690     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
691                         WebAssembly::I32_TRUNC_U_F32);
692   case WebAssembly::FP_TO_SINT_I64_F32:
693     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
694                         WebAssembly::I64_TRUNC_S_F32);
695   case WebAssembly::FP_TO_UINT_I64_F32:
696     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
697                         WebAssembly::I64_TRUNC_U_F32);
698   case WebAssembly::FP_TO_SINT_I32_F64:
699     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
700                         WebAssembly::I32_TRUNC_S_F64);
701   case WebAssembly::FP_TO_UINT_I32_F64:
702     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
703                         WebAssembly::I32_TRUNC_U_F64);
704   case WebAssembly::FP_TO_SINT_I64_F64:
705     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
706                         WebAssembly::I64_TRUNC_S_F64);
707   case WebAssembly::FP_TO_UINT_I64_F64:
708     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
709                         WebAssembly::I64_TRUNC_U_F64);
710   case WebAssembly::CALL_RESULTS:
711   case WebAssembly::RET_CALL_RESULTS:
712     return LowerCallResults(MI, DL, BB, Subtarget, TII);
713   }
714 }
715 
716 const char *
717 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
718   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
719   case WebAssemblyISD::FIRST_NUMBER:
720   case WebAssemblyISD::FIRST_MEM_OPCODE:
721     break;
722 #define HANDLE_NODETYPE(NODE)                                                  \
723   case WebAssemblyISD::NODE:                                                   \
724     return "WebAssemblyISD::" #NODE;
725 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
726 #include "WebAssemblyISD.def"
727 #undef HANDLE_MEM_NODETYPE
728 #undef HANDLE_NODETYPE
729   }
730   return nullptr;
731 }
732 
733 std::pair<unsigned, const TargetRegisterClass *>
734 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
735     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
736   // First, see if this is a constraint that directly corresponds to a
737   // WebAssembly register class.
738   if (Constraint.size() == 1) {
739     switch (Constraint[0]) {
740     case 'r':
741       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
742       if (Subtarget->hasSIMD128() && VT.isVector()) {
743         if (VT.getSizeInBits() == 128)
744           return std::make_pair(0U, &WebAssembly::V128RegClass);
745       }
746       if (VT.isInteger() && !VT.isVector()) {
747         if (VT.getSizeInBits() <= 32)
748           return std::make_pair(0U, &WebAssembly::I32RegClass);
749         if (VT.getSizeInBits() <= 64)
750           return std::make_pair(0U, &WebAssembly::I64RegClass);
751       }
752       if (VT.isFloatingPoint() && !VT.isVector()) {
753         switch (VT.getSizeInBits()) {
754         case 32:
755           return std::make_pair(0U, &WebAssembly::F32RegClass);
756         case 64:
757           return std::make_pair(0U, &WebAssembly::F64RegClass);
758         default:
759           break;
760         }
761       }
762       break;
763     default:
764       break;
765     }
766   }
767 
768   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
769 }
770 
771 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
772   // Assume ctz is a relatively cheap operation.
773   return true;
774 }
775 
776 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
777   // Assume clz is a relatively cheap operation.
778   return true;
779 }
780 
781 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
782                                                       const AddrMode &AM,
783                                                       Type *Ty, unsigned AS,
784                                                       Instruction *I) const {
785   // WebAssembly offsets are added as unsigned without wrapping. The
786   // isLegalAddressingMode gives us no way to determine if wrapping could be
787   // happening, so we approximate this by accepting only non-negative offsets.
788   if (AM.BaseOffs < 0)
789     return false;
790 
791   // WebAssembly has no scale register operands.
792   if (AM.Scale != 0)
793     return false;
794 
795   // Everything else is legal.
796   return true;
797 }
798 
799 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
800     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
801     MachineMemOperand::Flags /*Flags*/, unsigned *Fast) const {
802   // WebAssembly supports unaligned accesses, though it should be declared
803   // with the p2align attribute on loads and stores which do so, and there
804   // may be a performance impact. We tell LLVM they're "fast" because
805   // for the kinds of things that LLVM uses this for (merging adjacent stores
806   // of constants, etc.), WebAssembly implementations will either want the
807   // unaligned access or they'll split anyway.
808   if (Fast)
809     *Fast = 1;
810   return true;
811 }
812 
813 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
814                                               AttributeList Attr) const {
815   // The current thinking is that wasm engines will perform this optimization,
816   // so we can save on code size.
817   return true;
818 }
819 
820 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
821   EVT ExtT = ExtVal.getValueType();
822   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
823   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
824          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
825          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
826 }
827 
828 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
829     const GlobalAddressSDNode *GA) const {
830   // Wasm doesn't support function addresses with offsets
831   const GlobalValue *GV = GA->getGlobal();
832   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
833 }
834 
835 bool WebAssemblyTargetLowering::shouldSinkOperands(
836     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
837   using namespace llvm::PatternMatch;
838 
839   if (!I->getType()->isVectorTy() || !I->isShift())
840     return false;
841 
842   Value *V = I->getOperand(1);
843   // We dont need to sink constant splat.
844   if (dyn_cast<Constant>(V))
845     return false;
846 
847   if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()),
848                          m_Value(), m_ZeroMask()))) {
849     // Sink insert
850     Ops.push_back(&cast<Instruction>(V)->getOperandUse(0));
851     // Sink shuffle
852     Ops.push_back(&I->getOperandUse(1));
853     return true;
854   }
855 
856   return false;
857 }
858 
859 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
860                                                   LLVMContext &C,
861                                                   EVT VT) const {
862   if (VT.isVector())
863     return VT.changeVectorElementTypeToInteger();
864 
865   // So far, all branch instructions in Wasm take an I32 condition.
866   // The default TargetLowering::getSetCCResultType returns the pointer size,
867   // which would be useful to reduce instruction counts when testing
868   // against 64-bit pointers/values if at some point Wasm supports that.
869   return EVT::getIntegerVT(C, 32);
870 }
871 
872 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
873                                                    const CallInst &I,
874                                                    MachineFunction &MF,
875                                                    unsigned Intrinsic) const {
876   switch (Intrinsic) {
877   case Intrinsic::wasm_memory_atomic_notify:
878     Info.opc = ISD::INTRINSIC_W_CHAIN;
879     Info.memVT = MVT::i32;
880     Info.ptrVal = I.getArgOperand(0);
881     Info.offset = 0;
882     Info.align = Align(4);
883     // atomic.notify instruction does not really load the memory specified with
884     // this argument, but MachineMemOperand should either be load or store, so
885     // we set this to a load.
886     // FIXME Volatile isn't really correct, but currently all LLVM atomic
887     // instructions are treated as volatiles in the backend, so we should be
888     // consistent. The same applies for wasm_atomic_wait intrinsics too.
889     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
890     return true;
891   case Intrinsic::wasm_memory_atomic_wait32:
892     Info.opc = ISD::INTRINSIC_W_CHAIN;
893     Info.memVT = MVT::i32;
894     Info.ptrVal = I.getArgOperand(0);
895     Info.offset = 0;
896     Info.align = Align(4);
897     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
898     return true;
899   case Intrinsic::wasm_memory_atomic_wait64:
900     Info.opc = ISD::INTRINSIC_W_CHAIN;
901     Info.memVT = MVT::i64;
902     Info.ptrVal = I.getArgOperand(0);
903     Info.offset = 0;
904     Info.align = Align(8);
905     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
906     return true;
907   case Intrinsic::wasm_loadf16_f32:
908     Info.opc = ISD::INTRINSIC_W_CHAIN;
909     Info.memVT = MVT::f16;
910     Info.ptrVal = I.getArgOperand(0);
911     Info.offset = 0;
912     Info.align = Align(2);
913     Info.flags = MachineMemOperand::MOLoad;
914     return true;
915   case Intrinsic::wasm_storef16_f32:
916     Info.opc = ISD::INTRINSIC_VOID;
917     Info.memVT = MVT::f16;
918     Info.ptrVal = I.getArgOperand(1);
919     Info.offset = 0;
920     Info.align = Align(2);
921     Info.flags = MachineMemOperand::MOStore;
922     return true;
923   default:
924     return false;
925   }
926 }
927 
928 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
929     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
930     const SelectionDAG &DAG, unsigned Depth) const {
931   switch (Op.getOpcode()) {
932   default:
933     break;
934   case ISD::INTRINSIC_WO_CHAIN: {
935     unsigned IntNo = Op.getConstantOperandVal(0);
936     switch (IntNo) {
937     default:
938       break;
939     case Intrinsic::wasm_bitmask: {
940       unsigned BitWidth = Known.getBitWidth();
941       EVT VT = Op.getOperand(1).getSimpleValueType();
942       unsigned PossibleBits = VT.getVectorNumElements();
943       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
944       Known.Zero |= ZeroMask;
945       break;
946     }
947     }
948   }
949   }
950 }
951 
952 TargetLoweringBase::LegalizeTypeAction
953 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
954   if (VT.isFixedLengthVector()) {
955     MVT EltVT = VT.getVectorElementType();
956     // We have legal vector types with these lane types, so widening the
957     // vector would let us use some of the lanes directly without having to
958     // extend or truncate values.
959     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
960         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
961       return TypeWidenVector;
962   }
963 
964   return TargetLoweringBase::getPreferredVectorAction(VT);
965 }
966 
967 bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
968     SDValue Op, const TargetLoweringOpt &TLO) const {
969   // ISel process runs DAGCombiner after legalization; this step is called
970   // SelectionDAG optimization phase. This post-legalization combining process
971   // runs DAGCombiner on each node, and if there was a change to be made,
972   // re-runs legalization again on it and its user nodes to make sure
973   // everythiing is in a legalized state.
974   //
975   // The legalization calls lowering routines, and we do our custom lowering for
976   // build_vectors (LowerBUILD_VECTOR), which converts undef vector elements
977   // into zeros. But there is a set of routines in DAGCombiner that turns unused
978   // (= not demanded) nodes into undef, among which SimplifyDemandedVectorElts
979   // turns unused vector elements into undefs. But this routine does not work
980   // with our custom LowerBUILD_VECTOR, which turns undefs into zeros. This
981   // combination can result in a infinite loop, in which undefs are converted to
982   // zeros in legalization and back to undefs in combining.
983   //
984   // So after DAG is legalized, we prevent SimplifyDemandedVectorElts from
985   // running for build_vectors.
986   if (Op.getOpcode() == ISD::BUILD_VECTOR && TLO.LegalOps && TLO.LegalTys)
987     return false;
988   return true;
989 }
990 
991 //===----------------------------------------------------------------------===//
992 // WebAssembly Lowering private implementation.
993 //===----------------------------------------------------------------------===//
994 
995 //===----------------------------------------------------------------------===//
996 // Lowering Code
997 //===----------------------------------------------------------------------===//
998 
999 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
1000   MachineFunction &MF = DAG.getMachineFunction();
1001   DAG.getContext()->diagnose(
1002       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
1003 }
1004 
1005 // Test whether the given calling convention is supported.
1006 static bool callingConvSupported(CallingConv::ID CallConv) {
1007   // We currently support the language-independent target-independent
1008   // conventions. We don't yet have a way to annotate calls with properties like
1009   // "cold", and we don't have any call-clobbered registers, so these are mostly
1010   // all handled the same.
1011   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
1012          CallConv == CallingConv::Cold ||
1013          CallConv == CallingConv::PreserveMost ||
1014          CallConv == CallingConv::PreserveAll ||
1015          CallConv == CallingConv::CXX_FAST_TLS ||
1016          CallConv == CallingConv::WASM_EmscriptenInvoke ||
1017          CallConv == CallingConv::Swift;
1018 }
1019 
1020 SDValue
1021 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1022                                      SmallVectorImpl<SDValue> &InVals) const {
1023   SelectionDAG &DAG = CLI.DAG;
1024   SDLoc DL = CLI.DL;
1025   SDValue Chain = CLI.Chain;
1026   SDValue Callee = CLI.Callee;
1027   MachineFunction &MF = DAG.getMachineFunction();
1028   auto Layout = MF.getDataLayout();
1029 
1030   CallingConv::ID CallConv = CLI.CallConv;
1031   if (!callingConvSupported(CallConv))
1032     fail(DL, DAG,
1033          "WebAssembly doesn't support language-specific or target-specific "
1034          "calling conventions yet");
1035   if (CLI.IsPatchPoint)
1036     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
1037 
1038   if (CLI.IsTailCall) {
1039     auto NoTail = [&](const char *Msg) {
1040       if (CLI.CB && CLI.CB->isMustTailCall())
1041         fail(DL, DAG, Msg);
1042       CLI.IsTailCall = false;
1043     };
1044 
1045     if (!Subtarget->hasTailCall())
1046       NoTail("WebAssembly 'tail-call' feature not enabled");
1047 
1048     // Varargs calls cannot be tail calls because the buffer is on the stack
1049     if (CLI.IsVarArg)
1050       NoTail("WebAssembly does not support varargs tail calls");
1051 
1052     // Do not tail call unless caller and callee return types match
1053     const Function &F = MF.getFunction();
1054     const TargetMachine &TM = getTargetMachine();
1055     Type *RetTy = F.getReturnType();
1056     SmallVector<MVT, 4> CallerRetTys;
1057     SmallVector<MVT, 4> CalleeRetTys;
1058     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
1059     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
1060     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
1061                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
1062                                  CalleeRetTys.begin());
1063     if (!TypesMatch)
1064       NoTail("WebAssembly tail call requires caller and callee return types to "
1065              "match");
1066 
1067     // If pointers to local stack values are passed, we cannot tail call
1068     if (CLI.CB) {
1069       for (auto &Arg : CLI.CB->args()) {
1070         Value *Val = Arg.get();
1071         // Trace the value back through pointer operations
1072         while (true) {
1073           Value *Src = Val->stripPointerCastsAndAliases();
1074           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
1075             Src = GEP->getPointerOperand();
1076           if (Val == Src)
1077             break;
1078           Val = Src;
1079         }
1080         if (isa<AllocaInst>(Val)) {
1081           NoTail(
1082               "WebAssembly does not support tail calling with stack arguments");
1083           break;
1084         }
1085       }
1086     }
1087   }
1088 
1089   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1090   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1091   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1092 
1093   // The generic code may have added an sret argument. If we're lowering an
1094   // invoke function, the ABI requires that the function pointer be the first
1095   // argument, so we may have to swap the arguments.
1096   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1097       Outs[0].Flags.isSRet()) {
1098     std::swap(Outs[0], Outs[1]);
1099     std::swap(OutVals[0], OutVals[1]);
1100   }
1101 
1102   bool HasSwiftSelfArg = false;
1103   bool HasSwiftErrorArg = false;
1104   unsigned NumFixedArgs = 0;
1105   for (unsigned I = 0; I < Outs.size(); ++I) {
1106     const ISD::OutputArg &Out = Outs[I];
1107     SDValue &OutVal = OutVals[I];
1108     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1109     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1110     if (Out.Flags.isNest())
1111       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1112     if (Out.Flags.isInAlloca())
1113       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1114     if (Out.Flags.isInConsecutiveRegs())
1115       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1116     if (Out.Flags.isInConsecutiveRegsLast())
1117       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1118     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1119       auto &MFI = MF.getFrameInfo();
1120       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1121                                      Out.Flags.getNonZeroByValAlign(),
1122                                      /*isSS=*/false);
1123       SDValue SizeNode =
1124           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1125       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1126       Chain = DAG.getMemcpy(
1127           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1128           /*isVolatile*/ false, /*AlwaysInline=*/false,
1129           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1130       OutVal = FINode;
1131     }
1132     // Count the number of fixed args *after* legalization.
1133     NumFixedArgs += Out.IsFixed;
1134   }
1135 
1136   bool IsVarArg = CLI.IsVarArg;
1137   auto PtrVT = getPointerTy(Layout);
1138 
1139   // For swiftcc, emit additional swiftself and swifterror arguments
1140   // if there aren't. These additional arguments are also added for callee
1141   // signature They are necessary to match callee and caller signature for
1142   // indirect call.
1143   if (CallConv == CallingConv::Swift) {
1144     if (!HasSwiftSelfArg) {
1145       NumFixedArgs++;
1146       ISD::OutputArg Arg;
1147       Arg.Flags.setSwiftSelf();
1148       CLI.Outs.push_back(Arg);
1149       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1150       CLI.OutVals.push_back(ArgVal);
1151     }
1152     if (!HasSwiftErrorArg) {
1153       NumFixedArgs++;
1154       ISD::OutputArg Arg;
1155       Arg.Flags.setSwiftError();
1156       CLI.Outs.push_back(Arg);
1157       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1158       CLI.OutVals.push_back(ArgVal);
1159     }
1160   }
1161 
1162   // Analyze operands of the call, assigning locations to each operand.
1163   SmallVector<CCValAssign, 16> ArgLocs;
1164   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1165 
1166   if (IsVarArg) {
1167     // Outgoing non-fixed arguments are placed in a buffer. First
1168     // compute their offsets and the total amount of buffer space needed.
1169     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1170       const ISD::OutputArg &Out = Outs[I];
1171       SDValue &Arg = OutVals[I];
1172       EVT VT = Arg.getValueType();
1173       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1174       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1175       Align Alignment =
1176           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1177       unsigned Offset =
1178           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1179       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1180                                         Offset, VT.getSimpleVT(),
1181                                         CCValAssign::Full));
1182     }
1183   }
1184 
1185   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1186 
1187   SDValue FINode;
1188   if (IsVarArg && NumBytes) {
1189     // For non-fixed arguments, next emit stores to store the argument values
1190     // to the stack buffer at the offsets computed above.
1191     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1192                                                  Layout.getStackAlignment(),
1193                                                  /*isSS=*/false);
1194     unsigned ValNo = 0;
1195     SmallVector<SDValue, 8> Chains;
1196     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1197       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1198              "ArgLocs should remain in order and only hold varargs args");
1199       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1200       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1201       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1202                                 DAG.getConstant(Offset, DL, PtrVT));
1203       Chains.push_back(
1204           DAG.getStore(Chain, DL, Arg, Add,
1205                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1206     }
1207     if (!Chains.empty())
1208       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1209   } else if (IsVarArg) {
1210     FINode = DAG.getIntPtrConstant(0, DL);
1211   }
1212 
1213   if (Callee->getOpcode() == ISD::GlobalAddress) {
1214     // If the callee is a GlobalAddress node (quite common, every direct call
1215     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1216     // doesn't at MO_GOT which is not needed for direct calls.
1217     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Callee);
1218     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1219                                         getPointerTy(DAG.getDataLayout()),
1220                                         GA->getOffset());
1221     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1222                          getPointerTy(DAG.getDataLayout()), Callee);
1223   }
1224 
1225   // Compute the operands for the CALLn node.
1226   SmallVector<SDValue, 16> Ops;
1227   Ops.push_back(Chain);
1228   Ops.push_back(Callee);
1229 
1230   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1231   // isn't reliable.
1232   Ops.append(OutVals.begin(),
1233              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1234   // Add a pointer to the vararg buffer.
1235   if (IsVarArg)
1236     Ops.push_back(FINode);
1237 
1238   SmallVector<EVT, 8> InTys;
1239   for (const auto &In : Ins) {
1240     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1241     assert(!In.Flags.isNest() && "nest is not valid for return values");
1242     if (In.Flags.isInAlloca())
1243       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1244     if (In.Flags.isInConsecutiveRegs())
1245       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1246     if (In.Flags.isInConsecutiveRegsLast())
1247       fail(DL, DAG,
1248            "WebAssembly hasn't implemented cons regs last return values");
1249     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1250     // registers.
1251     InTys.push_back(In.VT);
1252   }
1253 
1254   // Lastly, if this is a call to a funcref we need to add an instruction
1255   // table.set to the chain and transform the call.
1256   if (CLI.CB && WebAssembly::isWebAssemblyFuncrefType(
1257                     CLI.CB->getCalledOperand()->getType())) {
1258     // In the absence of function references proposal where a funcref call is
1259     // lowered to call_ref, using reference types we generate a table.set to set
1260     // the funcref to a special table used solely for this purpose, followed by
1261     // a call_indirect. Here we just generate the table set, and return the
1262     // SDValue of the table.set so that LowerCall can finalize the lowering by
1263     // generating the call_indirect.
1264     SDValue Chain = Ops[0];
1265 
1266     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1267         MF.getContext(), Subtarget);
1268     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1269     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1270     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1271     SDValue TableSet = DAG.getMemIntrinsicNode(
1272         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1273         MVT::funcref,
1274         // Machine Mem Operand args
1275         MachinePointerInfo(
1276             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1277         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1278         MachineMemOperand::MOStore);
1279 
1280     Ops[0] = TableSet; // The new chain is the TableSet itself
1281   }
1282 
1283   if (CLI.IsTailCall) {
1284     // ret_calls do not return values to the current frame
1285     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1286     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1287   }
1288 
1289   InTys.push_back(MVT::Other);
1290   SDVTList InTyList = DAG.getVTList(InTys);
1291   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1292 
1293   for (size_t I = 0; I < Ins.size(); ++I)
1294     InVals.push_back(Res.getValue(I));
1295 
1296   // Return the chain
1297   return Res.getValue(Ins.size());
1298 }
1299 
1300 bool WebAssemblyTargetLowering::CanLowerReturn(
1301     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1302     const SmallVectorImpl<ISD::OutputArg> &Outs,
1303     LLVMContext & /*Context*/) const {
1304   // WebAssembly can only handle returning tuples with multivalue enabled
1305   return WebAssembly::canLowerReturn(Outs.size(), Subtarget);
1306 }
1307 
1308 SDValue WebAssemblyTargetLowering::LowerReturn(
1309     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1310     const SmallVectorImpl<ISD::OutputArg> &Outs,
1311     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1312     SelectionDAG &DAG) const {
1313   assert(WebAssembly::canLowerReturn(Outs.size(), Subtarget) &&
1314          "MVP WebAssembly can only return up to one value");
1315   if (!callingConvSupported(CallConv))
1316     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1317 
1318   SmallVector<SDValue, 4> RetOps(1, Chain);
1319   RetOps.append(OutVals.begin(), OutVals.end());
1320   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1321 
1322   // Record the number and types of the return values.
1323   for (const ISD::OutputArg &Out : Outs) {
1324     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1325     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1326     assert(Out.IsFixed && "non-fixed return value is not valid");
1327     if (Out.Flags.isInAlloca())
1328       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1329     if (Out.Flags.isInConsecutiveRegs())
1330       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1331     if (Out.Flags.isInConsecutiveRegsLast())
1332       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1333   }
1334 
1335   return Chain;
1336 }
1337 
1338 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1339     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1340     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1341     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1342   if (!callingConvSupported(CallConv))
1343     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1344 
1345   MachineFunction &MF = DAG.getMachineFunction();
1346   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1347 
1348   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1349   // of the incoming values before they're represented by virtual registers.
1350   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1351 
1352   bool HasSwiftErrorArg = false;
1353   bool HasSwiftSelfArg = false;
1354   for (const ISD::InputArg &In : Ins) {
1355     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1356     HasSwiftErrorArg |= In.Flags.isSwiftError();
1357     if (In.Flags.isInAlloca())
1358       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1359     if (In.Flags.isNest())
1360       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1361     if (In.Flags.isInConsecutiveRegs())
1362       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1363     if (In.Flags.isInConsecutiveRegsLast())
1364       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1365     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1366     // registers.
1367     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1368                                            DAG.getTargetConstant(InVals.size(),
1369                                                                  DL, MVT::i32))
1370                              : DAG.getUNDEF(In.VT));
1371 
1372     // Record the number and types of arguments.
1373     MFI->addParam(In.VT);
1374   }
1375 
1376   // For swiftcc, emit additional swiftself and swifterror arguments
1377   // if there aren't. These additional arguments are also added for callee
1378   // signature They are necessary to match callee and caller signature for
1379   // indirect call.
1380   auto PtrVT = getPointerTy(MF.getDataLayout());
1381   if (CallConv == CallingConv::Swift) {
1382     if (!HasSwiftSelfArg) {
1383       MFI->addParam(PtrVT);
1384     }
1385     if (!HasSwiftErrorArg) {
1386       MFI->addParam(PtrVT);
1387     }
1388   }
1389   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1390   // the buffer is passed as an argument.
1391   if (IsVarArg) {
1392     MVT PtrVT = getPointerTy(MF.getDataLayout());
1393     Register VarargVreg =
1394         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1395     MFI->setVarargBufferVreg(VarargVreg);
1396     Chain = DAG.getCopyToReg(
1397         Chain, DL, VarargVreg,
1398         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1399                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1400     MFI->addParam(PtrVT);
1401   }
1402 
1403   // Record the number and types of arguments and results.
1404   SmallVector<MVT, 4> Params;
1405   SmallVector<MVT, 4> Results;
1406   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1407                       MF.getFunction(), DAG.getTarget(), Params, Results);
1408   for (MVT VT : Results)
1409     MFI->addResult(VT);
1410   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1411   // the param logic here with ComputeSignatureVTs
1412   assert(MFI->getParams().size() == Params.size() &&
1413          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1414                     Params.begin()));
1415 
1416   return Chain;
1417 }
1418 
1419 void WebAssemblyTargetLowering::ReplaceNodeResults(
1420     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1421   switch (N->getOpcode()) {
1422   case ISD::SIGN_EXTEND_INREG:
1423     // Do not add any results, signifying that N should not be custom lowered
1424     // after all. This happens because simd128 turns on custom lowering for
1425     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1426     // illegal type.
1427     break;
1428   case ISD::SIGN_EXTEND_VECTOR_INREG:
1429   case ISD::ZERO_EXTEND_VECTOR_INREG:
1430     // Do not add any results, signifying that N should not be custom lowered.
1431     // EXTEND_VECTOR_INREG is implemented for some vectors, but not all.
1432     break;
1433   default:
1434     llvm_unreachable(
1435         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1436   }
1437 }
1438 
1439 //===----------------------------------------------------------------------===//
1440 //  Custom lowering hooks.
1441 //===----------------------------------------------------------------------===//
1442 
1443 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1444                                                   SelectionDAG &DAG) const {
1445   SDLoc DL(Op);
1446   switch (Op.getOpcode()) {
1447   default:
1448     llvm_unreachable("unimplemented operation lowering");
1449     return SDValue();
1450   case ISD::FrameIndex:
1451     return LowerFrameIndex(Op, DAG);
1452   case ISD::GlobalAddress:
1453     return LowerGlobalAddress(Op, DAG);
1454   case ISD::GlobalTLSAddress:
1455     return LowerGlobalTLSAddress(Op, DAG);
1456   case ISD::ExternalSymbol:
1457     return LowerExternalSymbol(Op, DAG);
1458   case ISD::JumpTable:
1459     return LowerJumpTable(Op, DAG);
1460   case ISD::BR_JT:
1461     return LowerBR_JT(Op, DAG);
1462   case ISD::VASTART:
1463     return LowerVASTART(Op, DAG);
1464   case ISD::BlockAddress:
1465   case ISD::BRIND:
1466     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1467     return SDValue();
1468   case ISD::RETURNADDR:
1469     return LowerRETURNADDR(Op, DAG);
1470   case ISD::FRAMEADDR:
1471     return LowerFRAMEADDR(Op, DAG);
1472   case ISD::CopyToReg:
1473     return LowerCopyToReg(Op, DAG);
1474   case ISD::EXTRACT_VECTOR_ELT:
1475   case ISD::INSERT_VECTOR_ELT:
1476     return LowerAccessVectorElement(Op, DAG);
1477   case ISD::INTRINSIC_VOID:
1478   case ISD::INTRINSIC_WO_CHAIN:
1479   case ISD::INTRINSIC_W_CHAIN:
1480     return LowerIntrinsic(Op, DAG);
1481   case ISD::SIGN_EXTEND_INREG:
1482     return LowerSIGN_EXTEND_INREG(Op, DAG);
1483   case ISD::ZERO_EXTEND_VECTOR_INREG:
1484   case ISD::SIGN_EXTEND_VECTOR_INREG:
1485     return LowerEXTEND_VECTOR_INREG(Op, DAG);
1486   case ISD::BUILD_VECTOR:
1487     return LowerBUILD_VECTOR(Op, DAG);
1488   case ISD::VECTOR_SHUFFLE:
1489     return LowerVECTOR_SHUFFLE(Op, DAG);
1490   case ISD::SETCC:
1491     return LowerSETCC(Op, DAG);
1492   case ISD::SHL:
1493   case ISD::SRA:
1494   case ISD::SRL:
1495     return LowerShift(Op, DAG);
1496   case ISD::FP_TO_SINT_SAT:
1497   case ISD::FP_TO_UINT_SAT:
1498     return LowerFP_TO_INT_SAT(Op, DAG);
1499   case ISD::LOAD:
1500     return LowerLoad(Op, DAG);
1501   case ISD::STORE:
1502     return LowerStore(Op, DAG);
1503   case ISD::CTPOP:
1504   case ISD::CTLZ:
1505   case ISD::CTTZ:
1506     return DAG.UnrollVectorOp(Op.getNode());
1507   case ISD::CLEAR_CACHE:
1508     report_fatal_error("llvm.clear_cache is not supported on wasm");
1509   }
1510 }
1511 
1512 static bool IsWebAssemblyGlobal(SDValue Op) {
1513   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1514     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1515 
1516   return false;
1517 }
1518 
1519 static std::optional<unsigned> IsWebAssemblyLocal(SDValue Op,
1520                                                   SelectionDAG &DAG) {
1521   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1522   if (!FI)
1523     return std::nullopt;
1524 
1525   auto &MF = DAG.getMachineFunction();
1526   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1527 }
1528 
1529 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1530                                               SelectionDAG &DAG) const {
1531   SDLoc DL(Op);
1532   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1533   const SDValue &Value = SN->getValue();
1534   const SDValue &Base = SN->getBasePtr();
1535   const SDValue &Offset = SN->getOffset();
1536 
1537   if (IsWebAssemblyGlobal(Base)) {
1538     if (!Offset->isUndef())
1539       report_fatal_error("unexpected offset when storing to webassembly global",
1540                          false);
1541 
1542     SDVTList Tys = DAG.getVTList(MVT::Other);
1543     SDValue Ops[] = {SN->getChain(), Value, Base};
1544     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1545                                    SN->getMemoryVT(), SN->getMemOperand());
1546   }
1547 
1548   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1549     if (!Offset->isUndef())
1550       report_fatal_error("unexpected offset when storing to webassembly local",
1551                          false);
1552 
1553     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1554     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1555     SDValue Ops[] = {SN->getChain(), Idx, Value};
1556     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1557   }
1558 
1559   if (WebAssembly::isWasmVarAddressSpace(SN->getAddressSpace()))
1560     report_fatal_error(
1561         "Encountered an unlowerable store to the wasm_var address space",
1562         false);
1563 
1564   return Op;
1565 }
1566 
1567 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1568                                              SelectionDAG &DAG) const {
1569   SDLoc DL(Op);
1570   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1571   const SDValue &Base = LN->getBasePtr();
1572   const SDValue &Offset = LN->getOffset();
1573 
1574   if (IsWebAssemblyGlobal(Base)) {
1575     if (!Offset->isUndef())
1576       report_fatal_error(
1577           "unexpected offset when loading from webassembly global", false);
1578 
1579     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1580     SDValue Ops[] = {LN->getChain(), Base};
1581     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1582                                    LN->getMemoryVT(), LN->getMemOperand());
1583   }
1584 
1585   if (std::optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1586     if (!Offset->isUndef())
1587       report_fatal_error(
1588           "unexpected offset when loading from webassembly local", false);
1589 
1590     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1591     EVT LocalVT = LN->getValueType(0);
1592     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1593                                    {LN->getChain(), Idx});
1594     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1595     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1596     return Result;
1597   }
1598 
1599   if (WebAssembly::isWasmVarAddressSpace(LN->getAddressSpace()))
1600     report_fatal_error(
1601         "Encountered an unlowerable load from the wasm_var address space",
1602         false);
1603 
1604   return Op;
1605 }
1606 
1607 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1608                                                   SelectionDAG &DAG) const {
1609   SDValue Src = Op.getOperand(2);
1610   if (isa<FrameIndexSDNode>(Src.getNode())) {
1611     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1612     // the FI to some LEA-like instruction, but since we don't have that, we
1613     // need to insert some kind of instruction that can take an FI operand and
1614     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1615     // local.copy between Op and its FI operand.
1616     SDValue Chain = Op.getOperand(0);
1617     SDLoc DL(Op);
1618     Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1619     EVT VT = Src.getValueType();
1620     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1621                                                    : WebAssembly::COPY_I64,
1622                                     DL, VT, Src),
1623                  0);
1624     return Op.getNode()->getNumValues() == 1
1625                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1626                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1627                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1628                                                            : SDValue());
1629   }
1630   return SDValue();
1631 }
1632 
1633 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1634                                                    SelectionDAG &DAG) const {
1635   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1636   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1637 }
1638 
1639 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1640                                                    SelectionDAG &DAG) const {
1641   SDLoc DL(Op);
1642 
1643   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1644     fail(DL, DAG,
1645          "Non-Emscripten WebAssembly hasn't implemented "
1646          "__builtin_return_address");
1647     return SDValue();
1648   }
1649 
1650   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1651     return SDValue();
1652 
1653   unsigned Depth = Op.getConstantOperandVal(0);
1654   MakeLibCallOptions CallOptions;
1655   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1656                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1657       .first;
1658 }
1659 
1660 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1661                                                   SelectionDAG &DAG) const {
1662   // Non-zero depths are not supported by WebAssembly currently. Use the
1663   // legalizer's default expansion, which is to return 0 (what this function is
1664   // documented to do).
1665   if (Op.getConstantOperandVal(0) > 0)
1666     return SDValue();
1667 
1668   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1669   EVT VT = Op.getValueType();
1670   Register FP =
1671       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1672   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1673 }
1674 
1675 SDValue
1676 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1677                                                  SelectionDAG &DAG) const {
1678   SDLoc DL(Op);
1679   const auto *GA = cast<GlobalAddressSDNode>(Op);
1680 
1681   MachineFunction &MF = DAG.getMachineFunction();
1682   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1683     report_fatal_error("cannot use thread-local storage without bulk memory",
1684                        false);
1685 
1686   const GlobalValue *GV = GA->getGlobal();
1687 
1688   // Currently only Emscripten supports dynamic linking with threads. Therefore,
1689   // on other targets, if we have thread-local storage, only the local-exec
1690   // model is possible.
1691   auto model = Subtarget->getTargetTriple().isOSEmscripten()
1692                    ? GV->getThreadLocalMode()
1693                    : GlobalValue::LocalExecTLSModel;
1694 
1695   // Unsupported TLS modes
1696   assert(model != GlobalValue::NotThreadLocal);
1697   assert(model != GlobalValue::InitialExecTLSModel);
1698 
1699   if (model == GlobalValue::LocalExecTLSModel ||
1700       model == GlobalValue::LocalDynamicTLSModel ||
1701       (model == GlobalValue::GeneralDynamicTLSModel &&
1702        getTargetMachine().shouldAssumeDSOLocal(GV))) {
1703     // For DSO-local TLS variables we use offset from __tls_base
1704 
1705     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1706     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1707                                        : WebAssembly::GLOBAL_GET_I32;
1708     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1709 
1710     SDValue BaseAddr(
1711         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1712                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1713         0);
1714 
1715     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1716         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1717     SDValue SymOffset =
1718         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1719 
1720     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1721   }
1722 
1723   assert(model == GlobalValue::GeneralDynamicTLSModel);
1724 
1725   EVT VT = Op.getValueType();
1726   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1727                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1728                                                 GA->getOffset(),
1729                                                 WebAssemblyII::MO_GOT_TLS));
1730 }
1731 
1732 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1733                                                       SelectionDAG &DAG) const {
1734   SDLoc DL(Op);
1735   const auto *GA = cast<GlobalAddressSDNode>(Op);
1736   EVT VT = Op.getValueType();
1737   assert(GA->getTargetFlags() == 0 &&
1738          "Unexpected target flags on generic GlobalAddressSDNode");
1739   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1740     fail(DL, DAG, "Invalid address space for WebAssembly target");
1741 
1742   unsigned OperandFlags = 0;
1743   const GlobalValue *GV = GA->getGlobal();
1744   // Since WebAssembly tables cannot yet be shared accross modules, we don't
1745   // need special treatment for tables in PIC mode.
1746   if (isPositionIndependent() &&
1747       !WebAssembly::isWebAssemblyTableType(GV->getValueType())) {
1748     if (getTargetMachine().shouldAssumeDSOLocal(GV)) {
1749       MachineFunction &MF = DAG.getMachineFunction();
1750       MVT PtrVT = getPointerTy(MF.getDataLayout());
1751       const char *BaseName;
1752       if (GV->getValueType()->isFunctionTy()) {
1753         BaseName = MF.createExternalSymbolName("__table_base");
1754         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1755       } else {
1756         BaseName = MF.createExternalSymbolName("__memory_base");
1757         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1758       }
1759       SDValue BaseAddr =
1760           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1761                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1762 
1763       SDValue SymAddr = DAG.getNode(
1764           WebAssemblyISD::WrapperREL, DL, VT,
1765           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1766                                      OperandFlags));
1767 
1768       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1769     }
1770     OperandFlags = WebAssemblyII::MO_GOT;
1771   }
1772 
1773   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1774                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1775                                                 GA->getOffset(), OperandFlags));
1776 }
1777 
1778 SDValue
1779 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1780                                                SelectionDAG &DAG) const {
1781   SDLoc DL(Op);
1782   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1783   EVT VT = Op.getValueType();
1784   assert(ES->getTargetFlags() == 0 &&
1785          "Unexpected target flags on generic ExternalSymbolSDNode");
1786   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1787                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1788 }
1789 
1790 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1791                                                   SelectionDAG &DAG) const {
1792   // There's no need for a Wrapper node because we always incorporate a jump
1793   // table operand into a BR_TABLE instruction, rather than ever
1794   // materializing it in a register.
1795   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1796   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1797                                 JT->getTargetFlags());
1798 }
1799 
1800 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1801                                               SelectionDAG &DAG) const {
1802   SDLoc DL(Op);
1803   SDValue Chain = Op.getOperand(0);
1804   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1805   SDValue Index = Op.getOperand(2);
1806   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1807 
1808   SmallVector<SDValue, 8> Ops;
1809   Ops.push_back(Chain);
1810   Ops.push_back(Index);
1811 
1812   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1813   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1814 
1815   // Add an operand for each case.
1816   for (auto *MBB : MBBs)
1817     Ops.push_back(DAG.getBasicBlock(MBB));
1818 
1819   // Add the first MBB as a dummy default target for now. This will be replaced
1820   // with the proper default target (and the preceding range check eliminated)
1821   // if possible by WebAssemblyFixBrTableDefaults.
1822   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1823   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1824 }
1825 
1826 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1827                                                 SelectionDAG &DAG) const {
1828   SDLoc DL(Op);
1829   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1830 
1831   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1832   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1833 
1834   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1835                                     MFI->getVarargBufferVreg(), PtrVT);
1836   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1837                       MachinePointerInfo(SV));
1838 }
1839 
1840 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1841                                                   SelectionDAG &DAG) const {
1842   MachineFunction &MF = DAG.getMachineFunction();
1843   unsigned IntNo;
1844   switch (Op.getOpcode()) {
1845   case ISD::INTRINSIC_VOID:
1846   case ISD::INTRINSIC_W_CHAIN:
1847     IntNo = Op.getConstantOperandVal(1);
1848     break;
1849   case ISD::INTRINSIC_WO_CHAIN:
1850     IntNo = Op.getConstantOperandVal(0);
1851     break;
1852   default:
1853     llvm_unreachable("Invalid intrinsic");
1854   }
1855   SDLoc DL(Op);
1856 
1857   switch (IntNo) {
1858   default:
1859     return SDValue(); // Don't custom lower most intrinsics.
1860 
1861   case Intrinsic::wasm_lsda: {
1862     auto PtrVT = getPointerTy(MF.getDataLayout());
1863     const char *SymName = MF.createExternalSymbolName(
1864         "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1865     if (isPositionIndependent()) {
1866       SDValue Node = DAG.getTargetExternalSymbol(
1867           SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1868       const char *BaseName = MF.createExternalSymbolName("__memory_base");
1869       SDValue BaseAddr =
1870           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1871                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1872       SDValue SymAddr =
1873           DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1874       return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1875     }
1876     SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1877     return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1878   }
1879 
1880   case Intrinsic::wasm_shuffle: {
1881     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1882     SDValue Ops[18];
1883     size_t OpIdx = 0;
1884     Ops[OpIdx++] = Op.getOperand(1);
1885     Ops[OpIdx++] = Op.getOperand(2);
1886     while (OpIdx < 18) {
1887       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1888       if (MaskIdx.isUndef() || MaskIdx.getNode()->getAsZExtVal() >= 32) {
1889         bool isTarget = MaskIdx.getNode()->getOpcode() == ISD::TargetConstant;
1890         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32, isTarget);
1891       } else {
1892         Ops[OpIdx++] = MaskIdx;
1893       }
1894     }
1895     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1896   }
1897   }
1898 }
1899 
1900 SDValue
1901 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1902                                                   SelectionDAG &DAG) const {
1903   SDLoc DL(Op);
1904   // If sign extension operations are disabled, allow sext_inreg only if operand
1905   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1906   // extension operations, but allowing sext_inreg in this context lets us have
1907   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1908   // everywhere would be simpler in this file, but would necessitate large and
1909   // brittle patterns to undo the expansion and select extract_lane_s
1910   // instructions.
1911   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1912   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1913     return SDValue();
1914 
1915   const SDValue &Extract = Op.getOperand(0);
1916   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1917   if (VecT.getVectorElementType().getSizeInBits() > 32)
1918     return SDValue();
1919   MVT ExtractedLaneT =
1920       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1921   MVT ExtractedVecT =
1922       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1923   if (ExtractedVecT == VecT)
1924     return Op;
1925 
1926   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1927   const SDNode *Index = Extract.getOperand(1).getNode();
1928   if (!isa<ConstantSDNode>(Index))
1929     return SDValue();
1930   unsigned IndexVal = Index->getAsZExtVal();
1931   unsigned Scale =
1932       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1933   assert(Scale > 1);
1934   SDValue NewIndex =
1935       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1936   SDValue NewExtract = DAG.getNode(
1937       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1938       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1939   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1940                      Op.getOperand(1));
1941 }
1942 
1943 SDValue
1944 WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(SDValue Op,
1945                                                     SelectionDAG &DAG) const {
1946   SDLoc DL(Op);
1947   EVT VT = Op.getValueType();
1948   SDValue Src = Op.getOperand(0);
1949   EVT SrcVT = Src.getValueType();
1950 
1951   if (SrcVT.getVectorElementType() == MVT::i1 ||
1952       SrcVT.getVectorElementType() == MVT::i64)
1953     return SDValue();
1954 
1955   assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 &&
1956          "Unexpected extension factor.");
1957   unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
1958 
1959   if (Scale != 2 && Scale != 4 && Scale != 8)
1960     return SDValue();
1961 
1962   unsigned Ext;
1963   switch (Op.getOpcode()) {
1964   case ISD::ZERO_EXTEND_VECTOR_INREG:
1965     Ext = WebAssemblyISD::EXTEND_LOW_U;
1966     break;
1967   case ISD::SIGN_EXTEND_VECTOR_INREG:
1968     Ext = WebAssemblyISD::EXTEND_LOW_S;
1969     break;
1970   }
1971 
1972   SDValue Ret = Src;
1973   while (Scale != 1) {
1974     Ret = DAG.getNode(Ext, DL,
1975                       Ret.getValueType()
1976                           .widenIntegerVectorElementType(*DAG.getContext())
1977                           .getHalfNumVectorElementsVT(*DAG.getContext()),
1978                       Ret);
1979     Scale /= 2;
1980   }
1981   assert(Ret.getValueType() == VT);
1982   return Ret;
1983 }
1984 
1985 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1986   SDLoc DL(Op);
1987   if (Op.getValueType() != MVT::v2f64)
1988     return SDValue();
1989 
1990   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1991                              unsigned &Index) -> bool {
1992     switch (Op.getOpcode()) {
1993     case ISD::SINT_TO_FP:
1994       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1995       break;
1996     case ISD::UINT_TO_FP:
1997       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1998       break;
1999     case ISD::FP_EXTEND:
2000       Opcode = WebAssemblyISD::PROMOTE_LOW;
2001       break;
2002     default:
2003       return false;
2004     }
2005 
2006     auto ExtractVector = Op.getOperand(0);
2007     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2008       return false;
2009 
2010     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2011       return false;
2012 
2013     SrcVec = ExtractVector.getOperand(0);
2014     Index = ExtractVector.getConstantOperandVal(1);
2015     return true;
2016   };
2017 
2018   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2019   SDValue LHSSrcVec, RHSSrcVec;
2020   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2021       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2022     return SDValue();
2023 
2024   if (LHSOpcode != RHSOpcode)
2025     return SDValue();
2026 
2027   MVT ExpectedSrcVT;
2028   switch (LHSOpcode) {
2029   case WebAssemblyISD::CONVERT_LOW_S:
2030   case WebAssemblyISD::CONVERT_LOW_U:
2031     ExpectedSrcVT = MVT::v4i32;
2032     break;
2033   case WebAssemblyISD::PROMOTE_LOW:
2034     ExpectedSrcVT = MVT::v4f32;
2035     break;
2036   }
2037   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2038     return SDValue();
2039 
2040   auto Src = LHSSrcVec;
2041   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2042     // Shuffle the source vector so that the converted lanes are the low lanes.
2043     Src = DAG.getVectorShuffle(
2044         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2045         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2046   }
2047   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2048 }
2049 
2050 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2051                                                      SelectionDAG &DAG) const {
2052   if (auto ConvertLow = LowerConvertLow(Op, DAG))
2053     return ConvertLow;
2054 
2055   SDLoc DL(Op);
2056   const EVT VecT = Op.getValueType();
2057   const EVT LaneT = Op.getOperand(0).getValueType();
2058   const size_t Lanes = Op.getNumOperands();
2059   bool CanSwizzle = VecT == MVT::v16i8;
2060 
2061   // BUILD_VECTORs are lowered to the instruction that initializes the highest
2062   // possible number of lanes at once followed by a sequence of replace_lane
2063   // instructions to individually initialize any remaining lanes.
2064 
2065   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2066   // swizzled lanes should be given greater weight.
2067 
2068   // TODO: Investigate looping rather than always extracting/replacing specific
2069   // lanes to fill gaps.
2070 
2071   auto IsConstant = [](const SDValue &V) {
2072     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2073   };
2074 
2075   // Returns the source vector and index vector pair if they exist. Checks for:
2076   //   (extract_vector_elt
2077   //     $src,
2078   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
2079   //   )
2080   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2081     auto Bail = std::make_pair(SDValue(), SDValue());
2082     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2083       return Bail;
2084     const SDValue &SwizzleSrc = Lane->getOperand(0);
2085     const SDValue &IndexExt = Lane->getOperand(1);
2086     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2087       return Bail;
2088     const SDValue &Index = IndexExt->getOperand(0);
2089     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2090       return Bail;
2091     const SDValue &SwizzleIndices = Index->getOperand(0);
2092     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2093         SwizzleIndices.getValueType() != MVT::v16i8 ||
2094         Index->getOperand(1)->getOpcode() != ISD::Constant ||
2095         Index->getConstantOperandVal(1) != I)
2096       return Bail;
2097     return std::make_pair(SwizzleSrc, SwizzleIndices);
2098   };
2099 
2100   // If the lane is extracted from another vector at a constant index, return
2101   // that vector. The source vector must not have more lanes than the dest
2102   // because the shufflevector indices are in terms of the destination lanes and
2103   // would not be able to address the smaller individual source lanes.
2104   auto GetShuffleSrc = [&](const SDValue &Lane) {
2105     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2106       return SDValue();
2107     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2108       return SDValue();
2109     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2110         VecT.getVectorNumElements())
2111       return SDValue();
2112     return Lane->getOperand(0);
2113   };
2114 
2115   using ValueEntry = std::pair<SDValue, size_t>;
2116   SmallVector<ValueEntry, 16> SplatValueCounts;
2117 
2118   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2119   SmallVector<SwizzleEntry, 16> SwizzleCounts;
2120 
2121   using ShuffleEntry = std::pair<SDValue, size_t>;
2122   SmallVector<ShuffleEntry, 16> ShuffleCounts;
2123 
2124   auto AddCount = [](auto &Counts, const auto &Val) {
2125     auto CountIt =
2126         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2127     if (CountIt == Counts.end()) {
2128       Counts.emplace_back(Val, 1);
2129     } else {
2130       CountIt->second++;
2131     }
2132   };
2133 
2134   auto GetMostCommon = [](auto &Counts) {
2135     auto CommonIt =
2136         std::max_element(Counts.begin(), Counts.end(), llvm::less_second());
2137     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2138     return *CommonIt;
2139   };
2140 
2141   size_t NumConstantLanes = 0;
2142 
2143   // Count eligible lanes for each type of vector creation op
2144   for (size_t I = 0; I < Lanes; ++I) {
2145     const SDValue &Lane = Op->getOperand(I);
2146     if (Lane.isUndef())
2147       continue;
2148 
2149     AddCount(SplatValueCounts, Lane);
2150 
2151     if (IsConstant(Lane))
2152       NumConstantLanes++;
2153     if (auto ShuffleSrc = GetShuffleSrc(Lane))
2154       AddCount(ShuffleCounts, ShuffleSrc);
2155     if (CanSwizzle) {
2156       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2157       if (SwizzleSrcs.first)
2158         AddCount(SwizzleCounts, SwizzleSrcs);
2159     }
2160   }
2161 
2162   SDValue SplatValue;
2163   size_t NumSplatLanes;
2164   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2165 
2166   SDValue SwizzleSrc;
2167   SDValue SwizzleIndices;
2168   size_t NumSwizzleLanes = 0;
2169   if (SwizzleCounts.size())
2170     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2171                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2172 
2173   // Shuffles can draw from up to two vectors, so find the two most common
2174   // sources.
2175   SDValue ShuffleSrc1, ShuffleSrc2;
2176   size_t NumShuffleLanes = 0;
2177   if (ShuffleCounts.size()) {
2178     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2179     llvm::erase_if(ShuffleCounts,
2180                    [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2181   }
2182   if (ShuffleCounts.size()) {
2183     size_t AdditionalShuffleLanes;
2184     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2185         GetMostCommon(ShuffleCounts);
2186     NumShuffleLanes += AdditionalShuffleLanes;
2187   }
2188 
2189   // Predicate returning true if the lane is properly initialized by the
2190   // original instruction
2191   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2192   SDValue Result;
2193   // Prefer swizzles over shuffles over vector consts over splats
2194   if (NumSwizzleLanes >= NumShuffleLanes &&
2195       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2196     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2197                          SwizzleIndices);
2198     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2199     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2200       return Swizzled == GetSwizzleSrcs(I, Lane);
2201     };
2202   } else if (NumShuffleLanes >= NumConstantLanes &&
2203              NumShuffleLanes >= NumSplatLanes) {
2204     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2205     size_t DestLaneCount = VecT.getVectorNumElements();
2206     size_t Scale1 = 1;
2207     size_t Scale2 = 1;
2208     SDValue Src1 = ShuffleSrc1;
2209     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2210     if (Src1.getValueType() != VecT) {
2211       size_t LaneSize =
2212           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2213       assert(LaneSize > DestLaneSize);
2214       Scale1 = LaneSize / DestLaneSize;
2215       Src1 = DAG.getBitcast(VecT, Src1);
2216     }
2217     if (Src2.getValueType() != VecT) {
2218       size_t LaneSize =
2219           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2220       assert(LaneSize > DestLaneSize);
2221       Scale2 = LaneSize / DestLaneSize;
2222       Src2 = DAG.getBitcast(VecT, Src2);
2223     }
2224 
2225     int Mask[16];
2226     assert(DestLaneCount <= 16);
2227     for (size_t I = 0; I < DestLaneCount; ++I) {
2228       const SDValue &Lane = Op->getOperand(I);
2229       SDValue Src = GetShuffleSrc(Lane);
2230       if (Src == ShuffleSrc1) {
2231         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2232       } else if (Src && Src == ShuffleSrc2) {
2233         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2234       } else {
2235         Mask[I] = -1;
2236       }
2237     }
2238     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2239     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2240     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2241       auto Src = GetShuffleSrc(Lane);
2242       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2243     };
2244   } else if (NumConstantLanes >= NumSplatLanes) {
2245     SmallVector<SDValue, 16> ConstLanes;
2246     for (const SDValue &Lane : Op->op_values()) {
2247       if (IsConstant(Lane)) {
2248         // Values may need to be fixed so that they will sign extend to be
2249         // within the expected range during ISel. Check whether the value is in
2250         // bounds based on the lane bit width and if it is out of bounds, lop
2251         // off the extra bits and subtract 2^n to reflect giving the high bit
2252         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2253         // cannot possibly be out of range.
2254         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2255         int64_t Val = Const ? Const->getSExtValue() : 0;
2256         uint64_t LaneBits = 128 / Lanes;
2257         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2258                "Unexpected out of bounds negative value");
2259         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2260           uint64_t Mask = (1ll << LaneBits) - 1;
2261           auto NewVal = (((uint64_t)Val & Mask) - (1ll << LaneBits)) & Mask;
2262           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2263         } else {
2264           ConstLanes.push_back(Lane);
2265         }
2266       } else if (LaneT.isFloatingPoint()) {
2267         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2268       } else {
2269         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2270       }
2271     }
2272     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2273     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2274       return IsConstant(Lane);
2275     };
2276   } else {
2277     // Use a splat (which might be selected as a load splat)
2278     Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2279     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2280       return Lane == SplatValue;
2281     };
2282   }
2283 
2284   assert(Result);
2285   assert(IsLaneConstructed);
2286 
2287   // Add replace_lane instructions for any unhandled values
2288   for (size_t I = 0; I < Lanes; ++I) {
2289     const SDValue &Lane = Op->getOperand(I);
2290     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2291       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2292                            DAG.getConstant(I, DL, MVT::i32));
2293   }
2294 
2295   return Result;
2296 }
2297 
2298 SDValue
2299 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2300                                                SelectionDAG &DAG) const {
2301   SDLoc DL(Op);
2302   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2303   MVT VecType = Op.getOperand(0).getSimpleValueType();
2304   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2305   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2306 
2307   // Space for two vector args and sixteen mask indices
2308   SDValue Ops[18];
2309   size_t OpIdx = 0;
2310   Ops[OpIdx++] = Op.getOperand(0);
2311   Ops[OpIdx++] = Op.getOperand(1);
2312 
2313   // Expand mask indices to byte indices and materialize them as operands
2314   for (int M : Mask) {
2315     for (size_t J = 0; J < LaneBytes; ++J) {
2316       // Lower undefs (represented by -1 in mask) to {0..J}, which use a
2317       // whole lane of vector input, to allow further reduction at VM. E.g.
2318       // match an 8x16 byte shuffle to an equivalent cheaper 32x4 shuffle.
2319       uint64_t ByteIndex = M == -1 ? J : (uint64_t)M * LaneBytes + J;
2320       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2321     }
2322   }
2323 
2324   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2325 }
2326 
2327 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2328                                               SelectionDAG &DAG) const {
2329   SDLoc DL(Op);
2330   // The legalizer does not know how to expand the unsupported comparison modes
2331   // of i64x2 vectors, so we manually unroll them here.
2332   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2333   SmallVector<SDValue, 2> LHS, RHS;
2334   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2335   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2336   const SDValue &CC = Op->getOperand(2);
2337   auto MakeLane = [&](unsigned I) {
2338     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2339                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2340                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2341   };
2342   return DAG.getBuildVector(Op->getValueType(0), DL,
2343                             {MakeLane(0), MakeLane(1)});
2344 }
2345 
2346 SDValue
2347 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2348                                                     SelectionDAG &DAG) const {
2349   // Allow constant lane indices, expand variable lane indices
2350   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2351   if (isa<ConstantSDNode>(IdxNode)) {
2352     // Ensure the index type is i32 to match the tablegen patterns
2353     uint64_t Idx = IdxNode->getAsZExtVal();
2354     SmallVector<SDValue, 3> Ops(Op.getNode()->ops());
2355     Ops[Op.getNumOperands() - 1] =
2356         DAG.getConstant(Idx, SDLoc(IdxNode), MVT::i32);
2357     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Ops);
2358   }
2359   // Perform default expansion
2360   return SDValue();
2361 }
2362 
2363 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2364   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2365   // 32-bit and 64-bit unrolled shifts will have proper semantics
2366   if (LaneT.bitsGE(MVT::i32))
2367     return DAG.UnrollVectorOp(Op.getNode());
2368   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2369   SDLoc DL(Op);
2370   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2371   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2372   unsigned ShiftOpcode = Op.getOpcode();
2373   SmallVector<SDValue, 16> ShiftedElements;
2374   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2375   SmallVector<SDValue, 16> ShiftElements;
2376   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2377   SmallVector<SDValue, 16> UnrolledOps;
2378   for (size_t i = 0; i < NumLanes; ++i) {
2379     SDValue MaskedShiftValue =
2380         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2381     SDValue ShiftedValue = ShiftedElements[i];
2382     if (ShiftOpcode == ISD::SRA)
2383       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2384                                  ShiftedValue, DAG.getValueType(LaneT));
2385     UnrolledOps.push_back(
2386         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2387   }
2388   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2389 }
2390 
2391 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2392                                               SelectionDAG &DAG) const {
2393   SDLoc DL(Op);
2394 
2395   // Only manually lower vector shifts
2396   assert(Op.getSimpleValueType().isVector());
2397 
2398   uint64_t LaneBits = Op.getValueType().getScalarSizeInBits();
2399   auto ShiftVal = Op.getOperand(1);
2400 
2401   // Try to skip bitmask operation since it is implied inside shift instruction
2402   auto SkipImpliedMask = [](SDValue MaskOp, uint64_t MaskBits) {
2403     if (MaskOp.getOpcode() != ISD::AND)
2404       return MaskOp;
2405     SDValue LHS = MaskOp.getOperand(0);
2406     SDValue RHS = MaskOp.getOperand(1);
2407     if (MaskOp.getValueType().isVector()) {
2408       APInt MaskVal;
2409       if (!ISD::isConstantSplatVector(RHS.getNode(), MaskVal))
2410         std::swap(LHS, RHS);
2411 
2412       if (ISD::isConstantSplatVector(RHS.getNode(), MaskVal) &&
2413           MaskVal == MaskBits)
2414         MaskOp = LHS;
2415     } else {
2416       if (!isa<ConstantSDNode>(RHS.getNode()))
2417         std::swap(LHS, RHS);
2418 
2419       auto ConstantRHS = dyn_cast<ConstantSDNode>(RHS.getNode());
2420       if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2421         MaskOp = LHS;
2422     }
2423 
2424     return MaskOp;
2425   };
2426 
2427   // Skip vector and operation
2428   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2429   ShiftVal = DAG.getSplatValue(ShiftVal);
2430   if (!ShiftVal)
2431     return unrollVectorShift(Op, DAG);
2432 
2433   // Skip scalar and operation
2434   ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2435   // Use anyext because none of the high bits can affect the shift
2436   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2437 
2438   unsigned Opcode;
2439   switch (Op.getOpcode()) {
2440   case ISD::SHL:
2441     Opcode = WebAssemblyISD::VEC_SHL;
2442     break;
2443   case ISD::SRA:
2444     Opcode = WebAssemblyISD::VEC_SHR_S;
2445     break;
2446   case ISD::SRL:
2447     Opcode = WebAssemblyISD::VEC_SHR_U;
2448     break;
2449   default:
2450     llvm_unreachable("unexpected opcode");
2451   }
2452 
2453   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2454 }
2455 
2456 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2457                                                       SelectionDAG &DAG) const {
2458   SDLoc DL(Op);
2459   EVT ResT = Op.getValueType();
2460   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2461 
2462   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2463       (SatVT == MVT::i32 || SatVT == MVT::i64))
2464     return Op;
2465 
2466   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2467     return Op;
2468 
2469   return SDValue();
2470 }
2471 
2472 //===----------------------------------------------------------------------===//
2473 //   Custom DAG combine hooks
2474 //===----------------------------------------------------------------------===//
2475 static SDValue
2476 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2477   auto &DAG = DCI.DAG;
2478   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2479 
2480   // Hoist vector bitcasts that don't change the number of lanes out of unary
2481   // shuffles, where they are less likely to get in the way of other combines.
2482   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2483   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2484   SDValue Bitcast = N->getOperand(0);
2485   if (Bitcast.getOpcode() != ISD::BITCAST)
2486     return SDValue();
2487   if (!N->getOperand(1).isUndef())
2488     return SDValue();
2489   SDValue CastOp = Bitcast.getOperand(0);
2490   EVT SrcType = CastOp.getValueType();
2491   EVT DstType = Bitcast.getValueType();
2492   if (!SrcType.is128BitVector() ||
2493       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2494     return SDValue();
2495   SDValue NewShuffle = DAG.getVectorShuffle(
2496       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2497   return DAG.getBitcast(DstType, NewShuffle);
2498 }
2499 
2500 /// Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get
2501 /// split up into scalar instructions during legalization, and the vector
2502 /// extending instructions are selected in performVectorExtendCombine below.
2503 static SDValue
2504 performVectorExtendToFPCombine(SDNode *N,
2505                                TargetLowering::DAGCombinerInfo &DCI) {
2506   auto &DAG = DCI.DAG;
2507   assert(N->getOpcode() == ISD::UINT_TO_FP ||
2508          N->getOpcode() == ISD::SINT_TO_FP);
2509 
2510   EVT InVT = N->getOperand(0)->getValueType(0);
2511   EVT ResVT = N->getValueType(0);
2512   MVT ExtVT;
2513   if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2514     ExtVT = MVT::v4i32;
2515   else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2516     ExtVT = MVT::v2i32;
2517   else
2518     return SDValue();
2519 
2520   unsigned Op =
2521       N->getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2522   SDValue Conv = DAG.getNode(Op, SDLoc(N), ExtVT, N->getOperand(0));
2523   return DAG.getNode(N->getOpcode(), SDLoc(N), ResVT, Conv);
2524 }
2525 
2526 static SDValue
2527 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2528   auto &DAG = DCI.DAG;
2529   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2530          N->getOpcode() == ISD::ZERO_EXTEND);
2531 
2532   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2533   // possible before the extract_subvector can be expanded.
2534   auto Extract = N->getOperand(0);
2535   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2536     return SDValue();
2537   auto Source = Extract.getOperand(0);
2538   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2539   if (IndexNode == nullptr)
2540     return SDValue();
2541   auto Index = IndexNode->getZExtValue();
2542 
2543   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2544   // extracted subvector is the low or high half of its source.
2545   EVT ResVT = N->getValueType(0);
2546   if (ResVT == MVT::v8i16) {
2547     if (Extract.getValueType() != MVT::v8i8 ||
2548         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2549       return SDValue();
2550   } else if (ResVT == MVT::v4i32) {
2551     if (Extract.getValueType() != MVT::v4i16 ||
2552         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2553       return SDValue();
2554   } else if (ResVT == MVT::v2i64) {
2555     if (Extract.getValueType() != MVT::v2i32 ||
2556         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2557       return SDValue();
2558   } else {
2559     return SDValue();
2560   }
2561 
2562   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2563   bool IsLow = Index == 0;
2564 
2565   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2566                                 : WebAssemblyISD::EXTEND_HIGH_S)
2567                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2568                                 : WebAssemblyISD::EXTEND_HIGH_U);
2569 
2570   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2571 }
2572 
2573 static SDValue
2574 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2575   auto &DAG = DCI.DAG;
2576 
2577   auto GetWasmConversionOp = [](unsigned Op) {
2578     switch (Op) {
2579     case ISD::FP_TO_SINT_SAT:
2580       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2581     case ISD::FP_TO_UINT_SAT:
2582       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2583     case ISD::FP_ROUND:
2584       return WebAssemblyISD::DEMOTE_ZERO;
2585     }
2586     llvm_unreachable("unexpected op");
2587   };
2588 
2589   auto IsZeroSplat = [](SDValue SplatVal) {
2590     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2591     APInt SplatValue, SplatUndef;
2592     unsigned SplatBitSize;
2593     bool HasAnyUndefs;
2594     // Endianness doesn't matter in this context because we are looking for
2595     // an all-zero value.
2596     return Splat &&
2597            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2598                                   HasAnyUndefs) &&
2599            SplatValue == 0;
2600   };
2601 
2602   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2603     // Combine this:
2604     //
2605     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2606     //
2607     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2608     //
2609     // Or this:
2610     //
2611     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2612     //
2613     // into (f32x4.demote_zero_f64x2 $x).
2614     EVT ResVT;
2615     EVT ExpectedConversionType;
2616     auto Conversion = N->getOperand(0);
2617     auto ConversionOp = Conversion.getOpcode();
2618     switch (ConversionOp) {
2619     case ISD::FP_TO_SINT_SAT:
2620     case ISD::FP_TO_UINT_SAT:
2621       ResVT = MVT::v4i32;
2622       ExpectedConversionType = MVT::v2i32;
2623       break;
2624     case ISD::FP_ROUND:
2625       ResVT = MVT::v4f32;
2626       ExpectedConversionType = MVT::v2f32;
2627       break;
2628     default:
2629       return SDValue();
2630     }
2631 
2632     if (N->getValueType(0) != ResVT)
2633       return SDValue();
2634 
2635     if (Conversion.getValueType() != ExpectedConversionType)
2636       return SDValue();
2637 
2638     auto Source = Conversion.getOperand(0);
2639     if (Source.getValueType() != MVT::v2f64)
2640       return SDValue();
2641 
2642     if (!IsZeroSplat(N->getOperand(1)) ||
2643         N->getOperand(1).getValueType() != ExpectedConversionType)
2644       return SDValue();
2645 
2646     unsigned Op = GetWasmConversionOp(ConversionOp);
2647     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2648   }
2649 
2650   // Combine this:
2651   //
2652   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2653   //
2654   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2655   //
2656   // Or this:
2657   //
2658   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2659   //
2660   // into (f32x4.demote_zero_f64x2 $x).
2661   EVT ResVT;
2662   auto ConversionOp = N->getOpcode();
2663   switch (ConversionOp) {
2664   case ISD::FP_TO_SINT_SAT:
2665   case ISD::FP_TO_UINT_SAT:
2666     ResVT = MVT::v4i32;
2667     break;
2668   case ISD::FP_ROUND:
2669     ResVT = MVT::v4f32;
2670     break;
2671   default:
2672     llvm_unreachable("unexpected op");
2673   }
2674 
2675   if (N->getValueType(0) != ResVT)
2676     return SDValue();
2677 
2678   auto Concat = N->getOperand(0);
2679   if (Concat.getValueType() != MVT::v4f64)
2680     return SDValue();
2681 
2682   auto Source = Concat.getOperand(0);
2683   if (Source.getValueType() != MVT::v2f64)
2684     return SDValue();
2685 
2686   if (!IsZeroSplat(Concat.getOperand(1)) ||
2687       Concat.getOperand(1).getValueType() != MVT::v2f64)
2688     return SDValue();
2689 
2690   unsigned Op = GetWasmConversionOp(ConversionOp);
2691   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2692 }
2693 
2694 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2695 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2696                                 const SDLoc &DL, unsigned VectorWidth) {
2697   EVT VT = Vec.getValueType();
2698   EVT ElVT = VT.getVectorElementType();
2699   unsigned Factor = VT.getSizeInBits() / VectorWidth;
2700   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2701                                   VT.getVectorNumElements() / Factor);
2702 
2703   // Extract the relevant VectorWidth bits.  Generate an EXTRACT_SUBVECTOR
2704   unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2705   assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2706 
2707   // This is the index of the first element of the VectorWidth-bit chunk
2708   // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2709   IdxVal &= ~(ElemsPerChunk - 1);
2710 
2711   // If the input is a buildvector just emit a smaller one.
2712   if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2713     return DAG.getBuildVector(ResultVT, DL,
2714                               Vec->ops().slice(IdxVal, ElemsPerChunk));
2715 
2716   SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2717   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2718 }
2719 
2720 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2721 // is the expected destination value type after recursion. In is the initial
2722 // input. Note that the input should have enough leading zero bits to prevent
2723 // NARROW_U from saturating results.
2724 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2725                                         SelectionDAG &DAG) {
2726   EVT SrcVT = In.getValueType();
2727 
2728   // No truncation required, we might get here due to recursive calls.
2729   if (SrcVT == DstVT)
2730     return In;
2731 
2732   unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2733   unsigned NumElems = SrcVT.getVectorNumElements();
2734   if (!isPowerOf2_32(NumElems))
2735     return SDValue();
2736   assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2737   assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2738 
2739   LLVMContext &Ctx = *DAG.getContext();
2740   EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2741 
2742   // Narrow to the largest type possible:
2743   // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2744   EVT InVT = MVT::i16, OutVT = MVT::i8;
2745   if (SrcVT.getScalarSizeInBits() > 16) {
2746     InVT = MVT::i32;
2747     OutVT = MVT::i16;
2748   }
2749   unsigned SubSizeInBits = SrcSizeInBits / 2;
2750   InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2751   OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2752 
2753   // Split lower/upper subvectors.
2754   SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2755   SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2756 
2757   // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2758   if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2759     Lo = DAG.getBitcast(InVT, Lo);
2760     Hi = DAG.getBitcast(InVT, Hi);
2761     SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2762     return DAG.getBitcast(DstVT, Res);
2763   }
2764 
2765   // Recursively narrow lower/upper subvectors, concat result and narrow again.
2766   EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2767   Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2768   Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2769 
2770   PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2771   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2772   return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2773 }
2774 
2775 static SDValue performTruncateCombine(SDNode *N,
2776                                       TargetLowering::DAGCombinerInfo &DCI) {
2777   auto &DAG = DCI.DAG;
2778 
2779   SDValue In = N->getOperand(0);
2780   EVT InVT = In.getValueType();
2781   if (!InVT.isSimple())
2782     return SDValue();
2783 
2784   EVT OutVT = N->getValueType(0);
2785   if (!OutVT.isVector())
2786     return SDValue();
2787 
2788   EVT OutSVT = OutVT.getVectorElementType();
2789   EVT InSVT = InVT.getVectorElementType();
2790   // Currently only cover truncate to v16i8 or v8i16.
2791   if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2792         (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2793     return SDValue();
2794 
2795   SDLoc DL(N);
2796   APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2797                                     OutVT.getScalarSizeInBits());
2798   In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2799   return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2800 }
2801 
2802 static SDValue performBitcastCombine(SDNode *N,
2803                                      TargetLowering::DAGCombinerInfo &DCI) {
2804   auto &DAG = DCI.DAG;
2805   SDLoc DL(N);
2806   SDValue Src = N->getOperand(0);
2807   EVT VT = N->getValueType(0);
2808   EVT SrcVT = Src.getValueType();
2809 
2810   // bitcast <N x i1> to iN
2811   //   ==> bitmask
2812   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2813       SrcVT.isFixedLengthVector() && SrcVT.getScalarType() == MVT::i1) {
2814     unsigned NumElts = SrcVT.getVectorNumElements();
2815     if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2816       return SDValue();
2817     EVT Width = MVT::getIntegerVT(128 / NumElts);
2818     return DAG.getZExtOrTrunc(
2819         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2820                     {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
2821                      DAG.getSExtOrTrunc(N->getOperand(0), DL,
2822                                         SrcVT.changeVectorElementType(Width))}),
2823         DL, VT);
2824   }
2825 
2826   return SDValue();
2827 }
2828 
2829 static SDValue performSETCCCombine(SDNode *N,
2830                                    TargetLowering::DAGCombinerInfo &DCI) {
2831   auto &DAG = DCI.DAG;
2832 
2833   SDValue LHS = N->getOperand(0);
2834   SDValue RHS = N->getOperand(1);
2835   ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
2836   SDLoc DL(N);
2837   EVT VT = N->getValueType(0);
2838 
2839   // setcc (iN (bitcast (vNi1 X))), 0, ne
2840   //   ==> any_true (vNi1 X)
2841   // setcc (iN (bitcast (vNi1 X))), 0, eq
2842   //   ==> xor (any_true (vNi1 X)), -1
2843   // setcc (iN (bitcast (vNi1 X))), -1, eq
2844   //   ==> all_true (vNi1 X)
2845   // setcc (iN (bitcast (vNi1 X))), -1, ne
2846   //   ==> xor (all_true (vNi1 X)), -1
2847   if (DCI.isBeforeLegalize() && VT.isScalarInteger() &&
2848       (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2849       (isNullConstant(RHS) || isAllOnesConstant(RHS)) &&
2850       LHS->getOpcode() == ISD::BITCAST) {
2851     EVT FromVT = LHS->getOperand(0).getValueType();
2852     if (FromVT.isFixedLengthVector() &&
2853         FromVT.getVectorElementType() == MVT::i1) {
2854       int Intrin = isNullConstant(RHS) ? Intrinsic::wasm_anytrue
2855                                        : Intrinsic::wasm_alltrue;
2856       unsigned NumElts = FromVT.getVectorNumElements();
2857       if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2858         return SDValue();
2859       EVT Width = MVT::getIntegerVT(128 / NumElts);
2860       SDValue Ret = DAG.getZExtOrTrunc(
2861           DAG.getNode(
2862               ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
2863               {DAG.getConstant(Intrin, DL, MVT::i32),
2864                DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
2865                                   FromVT.changeVectorElementType(Width))}),
2866           DL, MVT::i1);
2867       if ((isNullConstant(RHS) && (Cond == ISD::SETEQ)) ||
2868           (isAllOnesConstant(RHS) && (Cond == ISD::SETNE))) {
2869         Ret = DAG.getNOT(DL, Ret, MVT::i1);
2870       }
2871       return DAG.getZExtOrTrunc(Ret, DL, VT);
2872     }
2873   }
2874 
2875   return SDValue();
2876 }
2877 
2878 SDValue
2879 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2880                                              DAGCombinerInfo &DCI) const {
2881   switch (N->getOpcode()) {
2882   default:
2883     return SDValue();
2884   case ISD::BITCAST:
2885     return performBitcastCombine(N, DCI);
2886   case ISD::SETCC:
2887     return performSETCCCombine(N, DCI);
2888   case ISD::VECTOR_SHUFFLE:
2889     return performVECTOR_SHUFFLECombine(N, DCI);
2890   case ISD::SIGN_EXTEND:
2891   case ISD::ZERO_EXTEND:
2892     return performVectorExtendCombine(N, DCI);
2893   case ISD::UINT_TO_FP:
2894   case ISD::SINT_TO_FP:
2895     return performVectorExtendToFPCombine(N, DCI);
2896   case ISD::FP_TO_SINT_SAT:
2897   case ISD::FP_TO_UINT_SAT:
2898   case ISD::FP_ROUND:
2899   case ISD::CONCAT_VECTORS:
2900     return performVectorTruncZeroCombine(N, DCI);
2901   case ISD::TRUNCATE:
2902     return performTruncateCombine(N, DCI);
2903   }
2904 }
2905