xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyCFGStackify.cpp (revision 6bbf7f06d8e4e84bbda9027252b26a0d9ae10cde)
1 //===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a CFG stacking pass.
11 ///
12 /// This pass inserts BLOCK, LOOP, TRY, and TRY_TABLE markers to mark the start
13 /// of scopes, since scope boundaries serve as the labels for WebAssembly's
14 /// control transfers.
15 ///
16 /// This is sufficient to convert arbitrary CFGs into a form that works on
17 /// WebAssembly, provided that all loops are single-entry.
18 ///
19 /// In case we use exceptions, this pass also fixes mismatches in unwind
20 /// destinations created during transforming CFG into wasm structured format.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
25 #include "Utils/WebAssemblyTypeUtilities.h"
26 #include "WebAssembly.h"
27 #include "WebAssemblyExceptionInfo.h"
28 #include "WebAssemblyMachineFunctionInfo.h"
29 #include "WebAssemblySortRegion.h"
30 #include "WebAssemblySubtarget.h"
31 #include "WebAssemblyUtilities.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/BinaryFormat/Wasm.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/WasmEHFuncInfo.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 using namespace llvm;
41 using WebAssembly::SortRegionInfo;
42 
43 #define DEBUG_TYPE "wasm-cfg-stackify"
44 
45 STATISTIC(NumCallUnwindMismatches, "Number of call unwind mismatches found");
46 STATISTIC(NumCatchUnwindMismatches, "Number of catch unwind mismatches found");
47 
48 namespace {
49 class WebAssemblyCFGStackify final : public MachineFunctionPass {
50   MachineDominatorTree *MDT;
51 
52   StringRef getPassName() const override { return "WebAssembly CFG Stackify"; }
53 
54   void getAnalysisUsage(AnalysisUsage &AU) const override {
55     AU.addRequired<MachineDominatorTreeWrapperPass>();
56     AU.addRequired<MachineLoopInfoWrapperPass>();
57     AU.addRequired<WebAssemblyExceptionInfo>();
58     MachineFunctionPass::getAnalysisUsage(AU);
59   }
60 
61   bool runOnMachineFunction(MachineFunction &MF) override;
62 
63   // For each block whose label represents the end of a scope, record the block
64   // which holds the beginning of the scope. This will allow us to quickly skip
65   // over scoped regions when walking blocks.
66   SmallVector<MachineBasicBlock *, 8> ScopeTops;
67   void updateScopeTops(MachineBasicBlock *Begin, MachineBasicBlock *End) {
68     int BeginNo = Begin->getNumber();
69     int EndNo = End->getNumber();
70     if (!ScopeTops[EndNo] || ScopeTops[EndNo]->getNumber() > BeginNo)
71       ScopeTops[EndNo] = Begin;
72   }
73 
74   // Placing markers.
75   void placeMarkers(MachineFunction &MF);
76   void placeBlockMarker(MachineBasicBlock &MBB);
77   void placeLoopMarker(MachineBasicBlock &MBB);
78   void placeTryMarker(MachineBasicBlock &MBB);
79   void placeTryTableMarker(MachineBasicBlock &MBB);
80 
81   // Exception handling related functions
82   bool fixCallUnwindMismatches(MachineFunction &MF);
83   bool fixCatchUnwindMismatches(MachineFunction &MF);
84   void addNestedTryDelegate(MachineInstr *RangeBegin, MachineInstr *RangeEnd,
85                             MachineBasicBlock *UnwindDest);
86   void recalculateScopeTops(MachineFunction &MF);
87   void removeUnnecessaryInstrs(MachineFunction &MF);
88 
89   // Wrap-up
90   using EndMarkerInfo =
91       std::pair<const MachineBasicBlock *, const MachineInstr *>;
92   unsigned getBranchDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
93                           const MachineBasicBlock *MBB);
94   unsigned getDelegateDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
95                             const MachineBasicBlock *MBB);
96   unsigned
97   getRethrowDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
98                   const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack);
99   void rewriteDepthImmediates(MachineFunction &MF);
100   void fixEndsAtEndOfFunction(MachineFunction &MF);
101   void cleanupFunctionData(MachineFunction &MF);
102 
103   // For each BLOCK|LOOP|TRY|TRY_TABLE, the corresponding
104   // END_(BLOCK|LOOP|TRY|TRY_TABLE) or DELEGATE (in case of TRY).
105   DenseMap<const MachineInstr *, MachineInstr *> BeginToEnd;
106   // For each END_(BLOCK|LOOP|TRY|TRY_TABLE) or DELEGATE, the corresponding
107   // BLOCK|LOOP|TRY|TRY_TABLE.
108   DenseMap<const MachineInstr *, MachineInstr *> EndToBegin;
109   // <TRY marker, EH pad> map
110   DenseMap<const MachineInstr *, MachineBasicBlock *> TryToEHPad;
111   // <EH pad, TRY marker> map
112   DenseMap<const MachineBasicBlock *, MachineInstr *> EHPadToTry;
113 
114   // We need an appendix block to place 'end_loop' or 'end_try' marker when the
115   // loop / exception bottom block is the last block in a function
116   MachineBasicBlock *AppendixBB = nullptr;
117   MachineBasicBlock *getAppendixBlock(MachineFunction &MF) {
118     if (!AppendixBB) {
119       AppendixBB = MF.CreateMachineBasicBlock();
120       // Give it a fake predecessor so that AsmPrinter prints its label.
121       AppendixBB->addSuccessor(AppendixBB);
122       MF.push_back(AppendixBB);
123     }
124     return AppendixBB;
125   }
126 
127   // Before running rewriteDepthImmediates function, 'delegate' has a BB as its
128   // destination operand. getFakeCallerBlock() returns a fake BB that will be
129   // used for the operand when 'delegate' needs to rethrow to the caller. This
130   // will be rewritten as an immediate value that is the number of block depths
131   // + 1 in rewriteDepthImmediates, and this fake BB will be removed at the end
132   // of the pass.
133   MachineBasicBlock *FakeCallerBB = nullptr;
134   MachineBasicBlock *getFakeCallerBlock(MachineFunction &MF) {
135     if (!FakeCallerBB)
136       FakeCallerBB = MF.CreateMachineBasicBlock();
137     return FakeCallerBB;
138   }
139 
140   // Helper functions to register / unregister scope information created by
141   // marker instructions.
142   void registerScope(MachineInstr *Begin, MachineInstr *End);
143   void registerTryScope(MachineInstr *Begin, MachineInstr *End,
144                         MachineBasicBlock *EHPad);
145   void unregisterScope(MachineInstr *Begin);
146 
147 public:
148   static char ID; // Pass identification, replacement for typeid
149   WebAssemblyCFGStackify() : MachineFunctionPass(ID) {}
150   ~WebAssemblyCFGStackify() override { releaseMemory(); }
151   void releaseMemory() override;
152 };
153 } // end anonymous namespace
154 
155 char WebAssemblyCFGStackify::ID = 0;
156 INITIALIZE_PASS(
157     WebAssemblyCFGStackify, DEBUG_TYPE,
158     "Insert BLOCK/LOOP/TRY/TRY_TABLE markers for WebAssembly scopes", false,
159     false)
160 
161 FunctionPass *llvm::createWebAssemblyCFGStackify() {
162   return new WebAssemblyCFGStackify();
163 }
164 
165 /// Test whether Pred has any terminators explicitly branching to MBB, as
166 /// opposed to falling through. Note that it's possible (eg. in unoptimized
167 /// code) for a branch instruction to both branch to a block and fallthrough
168 /// to it, so we check the actual branch operands to see if there are any
169 /// explicit mentions.
170 static bool explicitlyBranchesTo(MachineBasicBlock *Pred,
171                                  MachineBasicBlock *MBB) {
172   for (MachineInstr &MI : Pred->terminators())
173     for (MachineOperand &MO : MI.explicit_operands())
174       if (MO.isMBB() && MO.getMBB() == MBB)
175         return true;
176   return false;
177 }
178 
179 // Returns an iterator to the earliest position possible within the MBB,
180 // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
181 // contains instructions that should go before the marker, and AfterSet contains
182 // ones that should go after the marker. In this function, AfterSet is only
183 // used for validation checking.
184 template <typename Container>
185 static MachineBasicBlock::iterator
186 getEarliestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
187                      const Container &AfterSet) {
188   auto InsertPos = MBB->end();
189   while (InsertPos != MBB->begin()) {
190     if (BeforeSet.count(&*std::prev(InsertPos))) {
191 #ifndef NDEBUG
192       // Validation check
193       for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos)
194         assert(!AfterSet.count(&*std::prev(Pos)));
195 #endif
196       break;
197     }
198     --InsertPos;
199   }
200   return InsertPos;
201 }
202 
203 // Returns an iterator to the latest position possible within the MBB,
204 // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
205 // contains instructions that should go before the marker, and AfterSet contains
206 // ones that should go after the marker. In this function, BeforeSet is only
207 // used for validation checking.
208 template <typename Container>
209 static MachineBasicBlock::iterator
210 getLatestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
211                    const Container &AfterSet) {
212   auto InsertPos = MBB->begin();
213   while (InsertPos != MBB->end()) {
214     if (AfterSet.count(&*InsertPos)) {
215 #ifndef NDEBUG
216       // Validation check
217       for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos)
218         assert(!BeforeSet.count(&*Pos));
219 #endif
220       break;
221     }
222     ++InsertPos;
223   }
224   return InsertPos;
225 }
226 
227 void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin,
228                                            MachineInstr *End) {
229   BeginToEnd[Begin] = End;
230   EndToBegin[End] = Begin;
231 }
232 
233 // When 'End' is not an 'end_try' but a 'delegate', EHPad is nullptr.
234 void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin,
235                                               MachineInstr *End,
236                                               MachineBasicBlock *EHPad) {
237   registerScope(Begin, End);
238   TryToEHPad[Begin] = EHPad;
239   EHPadToTry[EHPad] = Begin;
240 }
241 
242 void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) {
243   assert(BeginToEnd.count(Begin));
244   MachineInstr *End = BeginToEnd[Begin];
245   assert(EndToBegin.count(End));
246   BeginToEnd.erase(Begin);
247   EndToBegin.erase(End);
248   MachineBasicBlock *EHPad = TryToEHPad.lookup(Begin);
249   if (EHPad) {
250     assert(EHPadToTry.count(EHPad));
251     TryToEHPad.erase(Begin);
252     EHPadToTry.erase(EHPad);
253   }
254 }
255 
256 /// Insert a BLOCK marker for branches to MBB (if needed).
257 // TODO Consider a more generalized way of handling block (and also loop and
258 // try) signatures when we implement the multi-value proposal later.
259 void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) {
260   assert(!MBB.isEHPad());
261   MachineFunction &MF = *MBB.getParent();
262   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
263   const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
264 
265   // First compute the nearest common dominator of all forward non-fallthrough
266   // predecessors so that we minimize the time that the BLOCK is on the stack,
267   // which reduces overall stack height.
268   MachineBasicBlock *Header = nullptr;
269   bool IsBranchedTo = false;
270   int MBBNumber = MBB.getNumber();
271   for (MachineBasicBlock *Pred : MBB.predecessors()) {
272     if (Pred->getNumber() < MBBNumber) {
273       Header = Header ? MDT->findNearestCommonDominator(Header, Pred) : Pred;
274       if (explicitlyBranchesTo(Pred, &MBB))
275         IsBranchedTo = true;
276     }
277   }
278   if (!Header)
279     return;
280   if (!IsBranchedTo)
281     return;
282 
283   assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
284   MachineBasicBlock *LayoutPred = MBB.getPrevNode();
285 
286   // If the nearest common dominator is inside a more deeply nested context,
287   // walk out to the nearest scope which isn't more deeply nested.
288   for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
289     if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
290       if (ScopeTop->getNumber() > Header->getNumber()) {
291         // Skip over an intervening scope.
292         I = std::next(ScopeTop->getIterator());
293       } else {
294         // We found a scope level at an appropriate depth.
295         Header = ScopeTop;
296         break;
297       }
298     }
299   }
300 
301   // Decide where in MBB to put the BLOCK.
302 
303   // Instructions that should go before the BLOCK.
304   SmallPtrSet<const MachineInstr *, 4> BeforeSet;
305   // Instructions that should go after the BLOCK.
306   SmallPtrSet<const MachineInstr *, 4> AfterSet;
307   for (const auto &MI : *Header) {
308     // If there is a previously placed LOOP marker and the bottom block of the
309     // loop is above MBB, it should be after the BLOCK, because the loop is
310     // nested in this BLOCK. Otherwise it should be before the BLOCK.
311     if (MI.getOpcode() == WebAssembly::LOOP) {
312       auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
313       if (MBB.getNumber() > LoopBottom->getNumber())
314         AfterSet.insert(&MI);
315 #ifndef NDEBUG
316       else
317         BeforeSet.insert(&MI);
318 #endif
319     }
320 
321     // If there is a previously placed BLOCK/TRY/TRY_TABLE marker and its
322     // corresponding END marker is before the current BLOCK's END marker, that
323     // should be placed after this BLOCK. Otherwise it should be placed before
324     // this BLOCK marker.
325     if (MI.getOpcode() == WebAssembly::BLOCK ||
326         MI.getOpcode() == WebAssembly::TRY ||
327         MI.getOpcode() == WebAssembly::TRY_TABLE) {
328       if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber())
329         AfterSet.insert(&MI);
330 #ifndef NDEBUG
331       else
332         BeforeSet.insert(&MI);
333 #endif
334     }
335 
336 #ifndef NDEBUG
337     // All END_(BLOCK|LOOP|TRY|TRY_TABLE) markers should be before the BLOCK.
338     if (MI.getOpcode() == WebAssembly::END_BLOCK ||
339         MI.getOpcode() == WebAssembly::END_LOOP ||
340         MI.getOpcode() == WebAssembly::END_TRY ||
341         MI.getOpcode() == WebAssembly::END_TRY_TABLE)
342       BeforeSet.insert(&MI);
343 #endif
344 
345     // Terminators should go after the BLOCK.
346     if (MI.isTerminator())
347       AfterSet.insert(&MI);
348   }
349 
350   // Local expression tree should go after the BLOCK.
351   for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E;
352        --I) {
353     if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
354       continue;
355     if (WebAssembly::isChild(*std::prev(I), MFI))
356       AfterSet.insert(&*std::prev(I));
357     else
358       break;
359   }
360 
361   // Add the BLOCK.
362   WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void;
363   auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
364   MachineInstr *Begin =
365       BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
366               TII.get(WebAssembly::BLOCK))
367           .addImm(int64_t(ReturnType));
368 
369   // Decide where in MBB to put the END_BLOCK.
370   BeforeSet.clear();
371   AfterSet.clear();
372   for (auto &MI : MBB) {
373 #ifndef NDEBUG
374     // END_BLOCK should precede existing LOOP markers.
375     if (MI.getOpcode() == WebAssembly::LOOP)
376       AfterSet.insert(&MI);
377 #endif
378 
379     // If there is a previously placed END_LOOP marker and the header of the
380     // loop is above this block's header, the END_LOOP should be placed after
381     // the END_BLOCK, because the loop contains this block. Otherwise the
382     // END_LOOP should be placed before the END_BLOCK. The same for END_TRY.
383     //
384     // Note that while there can be existing END_TRYs, there can't be
385     // END_TRY_TABLEs; END_TRYs are placed when its corresponding EH pad is
386     // processed, so they are placed below MBB (EH pad) in placeTryMarker. But
387     // END_TRY_TABLE is placed like a END_BLOCK, so they can't be here already.
388     if (MI.getOpcode() == WebAssembly::END_LOOP ||
389         MI.getOpcode() == WebAssembly::END_TRY) {
390       if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber())
391         BeforeSet.insert(&MI);
392 #ifndef NDEBUG
393       else
394         AfterSet.insert(&MI);
395 #endif
396     }
397   }
398 
399   // Mark the end of the block.
400   InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
401   MachineInstr *End = BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos),
402                               TII.get(WebAssembly::END_BLOCK));
403   registerScope(Begin, End);
404 
405   // Track the farthest-spanning scope that ends at this point.
406   updateScopeTops(Header, &MBB);
407 }
408 
409 /// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
410 void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) {
411   MachineFunction &MF = *MBB.getParent();
412   const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
413   const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
414   SortRegionInfo SRI(MLI, WEI);
415   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
416 
417   MachineLoop *Loop = MLI.getLoopFor(&MBB);
418   if (!Loop || Loop->getHeader() != &MBB)
419     return;
420 
421   // The operand of a LOOP is the first block after the loop. If the loop is the
422   // bottom of the function, insert a dummy block at the end.
423   MachineBasicBlock *Bottom = SRI.getBottom(Loop);
424   auto Iter = std::next(Bottom->getIterator());
425   if (Iter == MF.end()) {
426     getAppendixBlock(MF);
427     Iter = std::next(Bottom->getIterator());
428   }
429   MachineBasicBlock *AfterLoop = &*Iter;
430 
431   // Decide where in Header to put the LOOP.
432   SmallPtrSet<const MachineInstr *, 4> BeforeSet;
433   SmallPtrSet<const MachineInstr *, 4> AfterSet;
434   for (const auto &MI : MBB) {
435     // LOOP marker should be after any existing loop that ends here. Otherwise
436     // we assume the instruction belongs to the loop.
437     if (MI.getOpcode() == WebAssembly::END_LOOP)
438       BeforeSet.insert(&MI);
439 #ifndef NDEBUG
440     else
441       AfterSet.insert(&MI);
442 #endif
443   }
444 
445   // Mark the beginning of the loop.
446   auto InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
447   MachineInstr *Begin = BuildMI(MBB, InsertPos, MBB.findDebugLoc(InsertPos),
448                                 TII.get(WebAssembly::LOOP))
449                             .addImm(int64_t(WebAssembly::BlockType::Void));
450 
451   // Decide where in MBB to put the END_LOOP.
452   BeforeSet.clear();
453   AfterSet.clear();
454 #ifndef NDEBUG
455   for (const auto &MI : MBB)
456     // Existing END_LOOP markers belong to parent loops of this loop
457     if (MI.getOpcode() == WebAssembly::END_LOOP)
458       AfterSet.insert(&MI);
459 #endif
460 
461   // Mark the end of the loop (using arbitrary debug location that branched to
462   // the loop end as its location).
463   InsertPos = getEarliestInsertPos(AfterLoop, BeforeSet, AfterSet);
464   DebugLoc EndDL = AfterLoop->pred_empty()
465                        ? DebugLoc()
466                        : (*AfterLoop->pred_rbegin())->findBranchDebugLoc();
467   MachineInstr *End =
468       BuildMI(*AfterLoop, InsertPos, EndDL, TII.get(WebAssembly::END_LOOP));
469   registerScope(Begin, End);
470 
471   assert((!ScopeTops[AfterLoop->getNumber()] ||
472           ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
473          "With block sorting the outermost loop for a block should be first.");
474   updateScopeTops(&MBB, AfterLoop);
475 }
476 
477 void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) {
478   assert(MBB.isEHPad());
479   MachineFunction &MF = *MBB.getParent();
480   auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
481   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
482   const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
483   const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
484   SortRegionInfo SRI(MLI, WEI);
485   const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
486 
487   // Compute the nearest common dominator of all unwind predecessors
488   MachineBasicBlock *Header = nullptr;
489   int MBBNumber = MBB.getNumber();
490   for (auto *Pred : MBB.predecessors()) {
491     if (Pred->getNumber() < MBBNumber) {
492       Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
493       assert(!explicitlyBranchesTo(Pred, &MBB) &&
494              "Explicit branch to an EH pad!");
495     }
496   }
497   if (!Header)
498     return;
499 
500   // If this try is at the bottom of the function, insert a dummy block at the
501   // end.
502   WebAssemblyException *WE = WEI.getExceptionFor(&MBB);
503   assert(WE);
504   MachineBasicBlock *Bottom = SRI.getBottom(WE);
505   auto Iter = std::next(Bottom->getIterator());
506   if (Iter == MF.end()) {
507     getAppendixBlock(MF);
508     Iter = std::next(Bottom->getIterator());
509   }
510   MachineBasicBlock *Cont = &*Iter;
511 
512   // If the nearest common dominator is inside a more deeply nested context,
513   // walk out to the nearest scope which isn't more deeply nested.
514   for (MachineFunction::iterator I(Bottom), E(Header); I != E; --I) {
515     if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
516       if (ScopeTop->getNumber() > Header->getNumber()) {
517         // Skip over an intervening scope.
518         I = std::next(ScopeTop->getIterator());
519       } else {
520         // We found a scope level at an appropriate depth.
521         Header = ScopeTop;
522         break;
523       }
524     }
525   }
526 
527   // Decide where in Header to put the TRY.
528 
529   // Instructions that should go before the TRY.
530   SmallPtrSet<const MachineInstr *, 4> BeforeSet;
531   // Instructions that should go after the TRY.
532   SmallPtrSet<const MachineInstr *, 4> AfterSet;
533   for (const auto &MI : *Header) {
534     // If there is a previously placed LOOP marker and the bottom block of the
535     // loop is above MBB, it should be after the TRY, because the loop is nested
536     // in this TRY. Otherwise it should be before the TRY.
537     if (MI.getOpcode() == WebAssembly::LOOP) {
538       auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
539       if (MBB.getNumber() > LoopBottom->getNumber())
540         AfterSet.insert(&MI);
541 #ifndef NDEBUG
542       else
543         BeforeSet.insert(&MI);
544 #endif
545     }
546 
547     // All previously inserted BLOCK/TRY markers should be after the TRY because
548     // they are all nested blocks/trys.
549     if (MI.getOpcode() == WebAssembly::BLOCK ||
550         MI.getOpcode() == WebAssembly::TRY)
551       AfterSet.insert(&MI);
552 
553 #ifndef NDEBUG
554     // All END_(BLOCK/LOOP/TRY) markers should be before the TRY.
555     if (MI.getOpcode() == WebAssembly::END_BLOCK ||
556         MI.getOpcode() == WebAssembly::END_LOOP ||
557         MI.getOpcode() == WebAssembly::END_TRY)
558       BeforeSet.insert(&MI);
559 #endif
560 
561     // Terminators should go after the TRY.
562     if (MI.isTerminator())
563       AfterSet.insert(&MI);
564   }
565 
566   // If Header unwinds to MBB (= Header contains 'invoke'), the try block should
567   // contain the call within it. So the call should go after the TRY. The
568   // exception is when the header's terminator is a rethrow instruction, in
569   // which case that instruction, not a call instruction before it, is gonna
570   // throw.
571   MachineInstr *ThrowingCall = nullptr;
572   if (MBB.isPredecessor(Header)) {
573     auto TermPos = Header->getFirstTerminator();
574     if (TermPos == Header->end() ||
575         TermPos->getOpcode() != WebAssembly::RETHROW) {
576       for (auto &MI : reverse(*Header)) {
577         if (MI.isCall()) {
578           AfterSet.insert(&MI);
579           ThrowingCall = &MI;
580           // Possibly throwing calls are usually wrapped by EH_LABEL
581           // instructions. We don't want to split them and the call.
582           if (MI.getIterator() != Header->begin() &&
583               std::prev(MI.getIterator())->isEHLabel()) {
584             AfterSet.insert(&*std::prev(MI.getIterator()));
585             ThrowingCall = &*std::prev(MI.getIterator());
586           }
587           break;
588         }
589       }
590     }
591   }
592 
593   // Local expression tree should go after the TRY.
594   // For BLOCK placement, we start the search from the previous instruction of a
595   // BB's terminator, but in TRY's case, we should start from the previous
596   // instruction of a call that can throw, or a EH_LABEL that precedes the call,
597   // because the return values of the call's previous instructions can be
598   // stackified and consumed by the throwing call.
599   auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall)
600                                     : Header->getFirstTerminator();
601   for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) {
602     if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
603       continue;
604     if (WebAssembly::isChild(*std::prev(I), MFI))
605       AfterSet.insert(&*std::prev(I));
606     else
607       break;
608   }
609 
610   // Add the TRY.
611   auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
612   MachineInstr *Begin =
613       BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
614               TII.get(WebAssembly::TRY))
615           .addImm(int64_t(WebAssembly::BlockType::Void));
616 
617   // Decide where in Cont to put the END_TRY.
618   BeforeSet.clear();
619   AfterSet.clear();
620   for (const auto &MI : *Cont) {
621 #ifndef NDEBUG
622     // END_TRY should precede existing LOOP markers.
623     if (MI.getOpcode() == WebAssembly::LOOP)
624       AfterSet.insert(&MI);
625 
626     // All END_TRY markers placed earlier belong to exceptions that contains
627     // this one.
628     if (MI.getOpcode() == WebAssembly::END_TRY)
629       AfterSet.insert(&MI);
630 #endif
631 
632     // If there is a previously placed END_LOOP marker and its header is after
633     // where TRY marker is, this loop is contained within the 'catch' part, so
634     // the END_TRY marker should go after that. Otherwise, the whole try-catch
635     // is contained within this loop, so the END_TRY should go before that.
636     if (MI.getOpcode() == WebAssembly::END_LOOP) {
637       // For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they
638       // are in the same BB, LOOP is always before TRY.
639       if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber())
640         BeforeSet.insert(&MI);
641 #ifndef NDEBUG
642       else
643         AfterSet.insert(&MI);
644 #endif
645     }
646 
647     // It is not possible for an END_BLOCK to be already in this block.
648   }
649 
650   // Mark the end of the TRY.
651   InsertPos = getEarliestInsertPos(Cont, BeforeSet, AfterSet);
652   MachineInstr *End = BuildMI(*Cont, InsertPos, Bottom->findBranchDebugLoc(),
653                               TII.get(WebAssembly::END_TRY));
654   registerTryScope(Begin, End, &MBB);
655 
656   // Track the farthest-spanning scope that ends at this point. We create two
657   // mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB
658   // with 'try'). We need to create 'catch' -> 'try' mapping here too because
659   // markers should not span across 'catch'. For example, this should not
660   // happen:
661   //
662   // try
663   //   block     --|  (X)
664   // catch         |
665   //   end_block --|
666   // end_try
667   for (auto *End : {&MBB, Cont})
668     updateScopeTops(Header, End);
669 }
670 
671 void WebAssemblyCFGStackify::placeTryTableMarker(MachineBasicBlock &MBB) {
672   assert(MBB.isEHPad());
673   MachineFunction &MF = *MBB.getParent();
674   auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
675   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
676   const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
677   const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
678   SortRegionInfo SRI(MLI, WEI);
679   const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
680 
681   // Compute the nearest common dominator of all unwind predecessors
682   MachineBasicBlock *Header = nullptr;
683   int MBBNumber = MBB.getNumber();
684   for (auto *Pred : MBB.predecessors()) {
685     if (Pred->getNumber() < MBBNumber) {
686       Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
687       assert(!explicitlyBranchesTo(Pred, &MBB) &&
688              "Explicit branch to an EH pad!");
689     }
690   }
691   if (!Header)
692     return;
693 
694   assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
695   MachineBasicBlock *LayoutPred = MBB.getPrevNode();
696 
697   // If the nearest common dominator is inside a more deeply nested context,
698   // walk out to the nearest scope which isn't more deeply nested.
699   for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
700     if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
701       if (ScopeTop->getNumber() > Header->getNumber()) {
702         // Skip over an intervening scope.
703         I = std::next(ScopeTop->getIterator());
704       } else {
705         // We found a scope level at an appropriate depth.
706         Header = ScopeTop;
707         break;
708       }
709     }
710   }
711 
712   // Decide where in Header to put the TRY_TABLE.
713 
714   // Instructions that should go before the TRY_TABLE.
715   SmallPtrSet<const MachineInstr *, 4> BeforeSet;
716   // Instructions that should go after the TRY_TABLE.
717   SmallPtrSet<const MachineInstr *, 4> AfterSet;
718   for (const auto &MI : *Header) {
719     // If there is a previously placed LOOP marker and the bottom block of the
720     // loop is above MBB, it should be after the TRY_TABLE, because the loop is
721     // nested in this TRY_TABLE. Otherwise it should be before the TRY_TABLE.
722     if (MI.getOpcode() == WebAssembly::LOOP) {
723       auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
724       if (MBB.getNumber() > LoopBottom->getNumber())
725         AfterSet.insert(&MI);
726 #ifndef NDEBUG
727       else
728         BeforeSet.insert(&MI);
729 #endif
730     }
731 
732     // All previously inserted BLOCK/TRY_TABLE markers should be after the
733     // TRY_TABLE because they are all nested blocks/try_tables.
734     if (MI.getOpcode() == WebAssembly::BLOCK ||
735         MI.getOpcode() == WebAssembly::TRY_TABLE)
736       AfterSet.insert(&MI);
737 
738 #ifndef NDEBUG
739     // All END_(BLOCK/LOOP/TRY_TABLE) markers should be before the TRY_TABLE.
740     if (MI.getOpcode() == WebAssembly::END_BLOCK ||
741         MI.getOpcode() == WebAssembly::END_LOOP ||
742         MI.getOpcode() == WebAssembly::END_TRY_TABLE)
743       BeforeSet.insert(&MI);
744 #endif
745 
746     // Terminators should go after the TRY_TABLE.
747     if (MI.isTerminator())
748       AfterSet.insert(&MI);
749   }
750 
751   // If Header unwinds to MBB (= Header contains 'invoke'), the try_table block
752   // should contain the call within it. So the call should go after the
753   // TRY_TABLE. The exception is when the header's terminator is a rethrow
754   // instruction, in which case that instruction, not a call instruction before
755   // it, is gonna throw.
756   MachineInstr *ThrowingCall = nullptr;
757   if (MBB.isPredecessor(Header)) {
758     auto TermPos = Header->getFirstTerminator();
759     if (TermPos == Header->end() ||
760         TermPos->getOpcode() != WebAssembly::RETHROW) {
761       for (auto &MI : reverse(*Header)) {
762         if (MI.isCall()) {
763           AfterSet.insert(&MI);
764           ThrowingCall = &MI;
765           // Possibly throwing calls are usually wrapped by EH_LABEL
766           // instructions. We don't want to split them and the call.
767           if (MI.getIterator() != Header->begin() &&
768               std::prev(MI.getIterator())->isEHLabel()) {
769             AfterSet.insert(&*std::prev(MI.getIterator()));
770             ThrowingCall = &*std::prev(MI.getIterator());
771           }
772           break;
773         }
774       }
775     }
776   }
777 
778   // Local expression tree should go after the TRY_TABLE.
779   // For BLOCK placement, we start the search from the previous instruction of a
780   // BB's terminator, but in TRY_TABLE's case, we should start from the previous
781   // instruction of a call that can throw, or a EH_LABEL that precedes the call,
782   // because the return values of the call's previous instructions can be
783   // stackified and consumed by the throwing call.
784   auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall)
785                                     : Header->getFirstTerminator();
786   for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) {
787     if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
788       continue;
789     if (WebAssembly::isChild(*std::prev(I), MFI))
790       AfterSet.insert(&*std::prev(I));
791     else
792       break;
793   }
794 
795   // Add the TRY_TABLE and a BLOCK for the catch destination. We currently
796   // generate only one CATCH clause for a TRY_TABLE, so we need one BLOCK for
797   // its destination.
798   //
799   // Header:
800   //   block
801   //     try_table (catch ... $MBB)
802   //       ...
803   //
804   // MBB:
805   //     end_try_table
806   //   end_block                 ;; destination of (catch ...)
807   //   ... catch handler body ...
808   auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
809   MachineInstrBuilder BlockMIB =
810       BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
811               TII.get(WebAssembly::BLOCK));
812   auto *Block = BlockMIB.getInstr();
813   MachineInstrBuilder TryTableMIB =
814       BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
815               TII.get(WebAssembly::TRY_TABLE))
816           .addImm(int64_t(WebAssembly::BlockType::Void))
817           .addImm(1); // # of catch clauses
818   auto *TryTable = TryTableMIB.getInstr();
819 
820   // Add a CATCH_*** clause to the TRY_TABLE. These are pseudo instructions
821   // following the destination END_BLOCK to simulate block return values,
822   // because we currently don't support them.
823   auto *Catch = WebAssembly::findCatch(&MBB);
824   switch (Catch->getOpcode()) {
825   case WebAssembly::CATCH:
826     // CATCH's destination block's return type is the extracted value type,
827     // which is currently i32 for all supported tags.
828     BlockMIB.addImm(int64_t(WebAssembly::BlockType::I32));
829     TryTableMIB.addImm(wasm::WASM_OPCODE_CATCH);
830     for (const auto &Use : Catch->uses()) {
831       // The only use operand a CATCH can have is the tag symbol.
832       TryTableMIB.addExternalSymbol(Use.getSymbolName());
833       break;
834     }
835     TryTableMIB.addMBB(&MBB);
836     break;
837   case WebAssembly::CATCH_REF:
838     // CATCH_REF's destination block's return type is the extracted value type
839     // followed by an exnref, which is (i32, exnref) in our case. We assign the
840     // actual multiavlue signature in MCInstLower. MO_CATCH_BLOCK_SIG signals
841     // that this operand is used for catch_ref's multivalue destination.
842     BlockMIB.addImm(int64_t(WebAssembly::BlockType::Multivalue));
843     Block->getOperand(0).setTargetFlags(WebAssemblyII::MO_CATCH_BLOCK_SIG);
844     TryTableMIB.addImm(wasm::WASM_OPCODE_CATCH_REF);
845     for (const auto &Use : Catch->uses()) {
846       TryTableMIB.addExternalSymbol(Use.getSymbolName());
847       break;
848     }
849     TryTableMIB.addMBB(&MBB);
850     break;
851   case WebAssembly::CATCH_ALL:
852     // CATCH_ALL's destination block's return type is void.
853     BlockMIB.addImm(int64_t(WebAssembly::BlockType::Void));
854     TryTableMIB.addImm(wasm::WASM_OPCODE_CATCH_ALL);
855     TryTableMIB.addMBB(&MBB);
856     break;
857   case WebAssembly::CATCH_ALL_REF:
858     // CATCH_ALL_REF's destination block's return type is exnref.
859     BlockMIB.addImm(int64_t(WebAssembly::BlockType::Exnref));
860     TryTableMIB.addImm(wasm::WASM_OPCODE_CATCH_ALL_REF);
861     TryTableMIB.addMBB(&MBB);
862     break;
863   }
864 
865   // Decide where in MBB to put the END_TRY_TABLE, and the END_BLOCK for the
866   // CATCH destination.
867   BeforeSet.clear();
868   AfterSet.clear();
869   for (const auto &MI : MBB) {
870 #ifndef NDEBUG
871     // END_TRY_TABLE should precede existing LOOP markers.
872     if (MI.getOpcode() == WebAssembly::LOOP)
873       AfterSet.insert(&MI);
874 #endif
875 
876     // If there is a previously placed END_LOOP marker and the header of the
877     // loop is above this try_table's header, the END_LOOP should be placed
878     // after the END_TRY_TABLE, because the loop contains this block. Otherwise
879     // the END_LOOP should be placed before the END_TRY_TABLE.
880     if (MI.getOpcode() == WebAssembly::END_LOOP) {
881       if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber())
882         BeforeSet.insert(&MI);
883 #ifndef NDEBUG
884       else
885         AfterSet.insert(&MI);
886 #endif
887     }
888 
889 #ifndef NDEBUG
890     // CATCH, CATCH_REF, CATCH_ALL, and CATCH_ALL_REF are pseudo-instructions
891     // that simulate the block return value, so they should be placed after the
892     // END_TRY_TABLE.
893     if (WebAssembly::isCatch(MI.getOpcode()))
894       AfterSet.insert(&MI);
895 #endif
896   }
897 
898   // Mark the end of the TRY_TABLE and the BLOCK.
899   InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
900   MachineInstr *EndTryTable =
901       BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos),
902               TII.get(WebAssembly::END_TRY_TABLE));
903   registerTryScope(TryTable, EndTryTable, &MBB);
904   MachineInstr *EndBlock =
905       BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos),
906               TII.get(WebAssembly::END_BLOCK));
907   registerScope(Block, EndBlock);
908   // Track the farthest-spanning scope that ends at this point.
909   updateScopeTops(Header, &MBB);
910 }
911 
912 void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) {
913   if (WebAssembly::WasmEnableExnref)
914     return;
915 
916   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
917 
918   // When there is an unconditional branch right before a catch instruction and
919   // it branches to the end of end_try marker, we don't need the branch, because
920   // if there is no exception, the control flow transfers to that point anyway.
921   // bb0:
922   //   try
923   //     ...
924   //     br bb2      <- Not necessary
925   // bb1 (ehpad):
926   //   catch
927   //     ...
928   // bb2:            <- Continuation BB
929   //   end
930   //
931   // A more involved case: When the BB where 'end' is located is an another EH
932   // pad, the Cont (= continuation) BB is that EH pad's 'end' BB. For example,
933   // bb0:
934   //   try
935   //     try
936   //       ...
937   //       br bb3      <- Not necessary
938   // bb1 (ehpad):
939   //     catch
940   // bb2 (ehpad):
941   //     end
942   //   catch
943   //     ...
944   // bb3:            <- Continuation BB
945   //   end
946   //
947   // When the EH pad at hand is bb1, its matching end_try is in bb2. But it is
948   // another EH pad, so bb0's continuation BB becomes bb3. So 'br bb3' in the
949   // code can be deleted. This is why we run 'while' until 'Cont' is not an EH
950   // pad.
951   for (auto &MBB : MF) {
952     if (!MBB.isEHPad())
953       continue;
954 
955     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
956     SmallVector<MachineOperand, 4> Cond;
957     MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode();
958 
959     MachineBasicBlock *Cont = &MBB;
960     while (Cont->isEHPad()) {
961       MachineInstr *Try = EHPadToTry[Cont];
962       MachineInstr *EndTry = BeginToEnd[Try];
963       // We started from an EH pad, so the end marker cannot be a delegate
964       assert(EndTry->getOpcode() != WebAssembly::DELEGATE);
965       Cont = EndTry->getParent();
966     }
967 
968     bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond);
969     // This condition means either
970     // 1. This BB ends with a single unconditional branch whose destinaion is
971     //    Cont.
972     // 2. This BB ends with a conditional branch followed by an unconditional
973     //    branch, and the unconditional branch's destination is Cont.
974     // In both cases, we want to remove the last (= unconditional) branch.
975     if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) ||
976                        (!Cond.empty() && FBB && FBB == Cont))) {
977       bool ErasedUncondBr = false;
978       (void)ErasedUncondBr;
979       for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin();
980            I != E; --I) {
981         auto PrevI = std::prev(I);
982         if (PrevI->isTerminator()) {
983           assert(PrevI->getOpcode() == WebAssembly::BR);
984           PrevI->eraseFromParent();
985           ErasedUncondBr = true;
986           break;
987         }
988       }
989       assert(ErasedUncondBr && "Unconditional branch not erased!");
990     }
991   }
992 
993   // When there are block / end_block markers that overlap with try / end_try
994   // markers, and the block and try markers' return types are the same, the
995   // block /end_block markers are not necessary, because try / end_try markers
996   // also can serve as boundaries for branches.
997   // block         <- Not necessary
998   //   try
999   //     ...
1000   //   catch
1001   //     ...
1002   //   end
1003   // end           <- Not necessary
1004   SmallVector<MachineInstr *, 32> ToDelete;
1005   for (auto &MBB : MF) {
1006     for (auto &MI : MBB) {
1007       if (MI.getOpcode() != WebAssembly::TRY)
1008         continue;
1009       MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try];
1010       if (EndTry->getOpcode() == WebAssembly::DELEGATE)
1011         continue;
1012 
1013       MachineBasicBlock *TryBB = Try->getParent();
1014       MachineBasicBlock *Cont = EndTry->getParent();
1015       int64_t RetType = Try->getOperand(0).getImm();
1016       for (auto B = Try->getIterator(), E = std::next(EndTry->getIterator());
1017            B != TryBB->begin() && E != Cont->end() &&
1018            std::prev(B)->getOpcode() == WebAssembly::BLOCK &&
1019            E->getOpcode() == WebAssembly::END_BLOCK &&
1020            std::prev(B)->getOperand(0).getImm() == RetType;
1021            --B, ++E) {
1022         ToDelete.push_back(&*std::prev(B));
1023         ToDelete.push_back(&*E);
1024       }
1025     }
1026   }
1027   for (auto *MI : ToDelete) {
1028     if (MI->getOpcode() == WebAssembly::BLOCK)
1029       unregisterScope(MI);
1030     MI->eraseFromParent();
1031   }
1032 }
1033 
1034 // When MBB is split into MBB and Split, we should unstackify defs in MBB that
1035 // have their uses in Split.
1036 static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB,
1037                                          MachineBasicBlock &Split) {
1038   MachineFunction &MF = *MBB.getParent();
1039   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
1040   auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
1041   auto &MRI = MF.getRegInfo();
1042 
1043   for (auto &MI : Split) {
1044     for (auto &MO : MI.explicit_uses()) {
1045       if (!MO.isReg() || MO.getReg().isPhysical())
1046         continue;
1047       if (MachineInstr *Def = MRI.getUniqueVRegDef(MO.getReg()))
1048         if (Def->getParent() == &MBB)
1049           MFI.unstackifyVReg(MO.getReg());
1050     }
1051   }
1052 
1053   // In RegStackify, when a register definition is used multiple times,
1054   //    Reg = INST ...
1055   //    INST ..., Reg, ...
1056   //    INST ..., Reg, ...
1057   //    INST ..., Reg, ...
1058   //
1059   // we introduce a TEE, which has the following form:
1060   //    DefReg = INST ...
1061   //    TeeReg, Reg = TEE_... DefReg
1062   //    INST ..., TeeReg, ...
1063   //    INST ..., Reg, ...
1064   //    INST ..., Reg, ...
1065   // with DefReg and TeeReg stackified but Reg not stackified.
1066   //
1067   // But the invariant that TeeReg should be stackified can be violated while we
1068   // unstackify registers in the split BB above. In this case, we convert TEEs
1069   // into two COPYs. This COPY will be eventually eliminated in ExplicitLocals.
1070   //    DefReg = INST ...
1071   //    TeeReg = COPY DefReg
1072   //    Reg = COPY DefReg
1073   //    INST ..., TeeReg, ...
1074   //    INST ..., Reg, ...
1075   //    INST ..., Reg, ...
1076   for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) {
1077     if (!WebAssembly::isTee(MI.getOpcode()))
1078       continue;
1079     Register TeeReg = MI.getOperand(0).getReg();
1080     Register Reg = MI.getOperand(1).getReg();
1081     Register DefReg = MI.getOperand(2).getReg();
1082     if (!MFI.isVRegStackified(TeeReg)) {
1083       // Now we are not using TEE anymore, so unstackify DefReg too
1084       MFI.unstackifyVReg(DefReg);
1085       unsigned CopyOpc =
1086           WebAssembly::getCopyOpcodeForRegClass(MRI.getRegClass(DefReg));
1087       BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), TeeReg)
1088           .addReg(DefReg);
1089       BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), Reg).addReg(DefReg);
1090       MI.eraseFromParent();
1091     }
1092   }
1093 }
1094 
1095 // Wrap the given range of instruction with try-delegate. RangeBegin and
1096 // RangeEnd are inclusive.
1097 void WebAssemblyCFGStackify::addNestedTryDelegate(
1098     MachineInstr *RangeBegin, MachineInstr *RangeEnd,
1099     MachineBasicBlock *UnwindDest) {
1100   auto *BeginBB = RangeBegin->getParent();
1101   auto *EndBB = RangeEnd->getParent();
1102   MachineFunction &MF = *BeginBB->getParent();
1103   const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
1104   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
1105 
1106   // Local expression tree before the first call of this range should go
1107   // after the nested TRY.
1108   SmallPtrSet<const MachineInstr *, 4> AfterSet;
1109   AfterSet.insert(RangeBegin);
1110   for (auto I = MachineBasicBlock::iterator(RangeBegin), E = BeginBB->begin();
1111        I != E; --I) {
1112     if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
1113       continue;
1114     if (WebAssembly::isChild(*std::prev(I), MFI))
1115       AfterSet.insert(&*std::prev(I));
1116     else
1117       break;
1118   }
1119 
1120   // Create the nested try instruction.
1121   auto TryPos = getLatestInsertPos(
1122       BeginBB, SmallPtrSet<const MachineInstr *, 4>(), AfterSet);
1123   MachineInstr *Try = BuildMI(*BeginBB, TryPos, RangeBegin->getDebugLoc(),
1124                               TII.get(WebAssembly::TRY))
1125                           .addImm(int64_t(WebAssembly::BlockType::Void));
1126 
1127   // Create a BB to insert the 'delegate' instruction.
1128   MachineBasicBlock *DelegateBB = MF.CreateMachineBasicBlock();
1129   // If the destination of 'delegate' is not the caller, adds the destination to
1130   // the BB's successors.
1131   if (UnwindDest != FakeCallerBB)
1132     DelegateBB->addSuccessor(UnwindDest);
1133 
1134   auto SplitPos = std::next(RangeEnd->getIterator());
1135   if (SplitPos == EndBB->end()) {
1136     // If the range's end instruction is at the end of the BB, insert the new
1137     // delegate BB after the current BB.
1138     MF.insert(std::next(EndBB->getIterator()), DelegateBB);
1139     EndBB->addSuccessor(DelegateBB);
1140 
1141   } else {
1142     // When the split pos is in the middle of a BB, we split the BB into two and
1143     // put the 'delegate' BB in between. We normally create a split BB and make
1144     // it a successor of the original BB (PostSplit == true), but in case the BB
1145     // is an EH pad and the split pos is before 'catch', we should preserve the
1146     // BB's property, including that it is an EH pad, in the later part of the
1147     // BB, where 'catch' is. In this case we set PostSplit to false.
1148     bool PostSplit = true;
1149     if (EndBB->isEHPad()) {
1150       for (auto I = MachineBasicBlock::iterator(SplitPos), E = EndBB->end();
1151            I != E; ++I) {
1152         if (WebAssembly::isCatch(I->getOpcode())) {
1153           PostSplit = false;
1154           break;
1155         }
1156       }
1157     }
1158 
1159     MachineBasicBlock *PreBB = nullptr, *PostBB = nullptr;
1160     if (PostSplit) {
1161       // If the range's end instruction is in the middle of the BB, we split the
1162       // BB into two and insert the delegate BB in between.
1163       // - Before:
1164       // bb:
1165       //   range_end
1166       //   other_insts
1167       //
1168       // - After:
1169       // pre_bb: (previous 'bb')
1170       //   range_end
1171       // delegate_bb: (new)
1172       //   delegate
1173       // post_bb: (new)
1174       //   other_insts
1175       PreBB = EndBB;
1176       PostBB = MF.CreateMachineBasicBlock();
1177       MF.insert(std::next(PreBB->getIterator()), PostBB);
1178       MF.insert(std::next(PreBB->getIterator()), DelegateBB);
1179       PostBB->splice(PostBB->end(), PreBB, SplitPos, PreBB->end());
1180       PostBB->transferSuccessors(PreBB);
1181     } else {
1182       // - Before:
1183       // ehpad:
1184       //   range_end
1185       //   catch
1186       //   ...
1187       //
1188       // - After:
1189       // pre_bb: (new)
1190       //   range_end
1191       // delegate_bb: (new)
1192       //   delegate
1193       // post_bb: (previous 'ehpad')
1194       //   catch
1195       //   ...
1196       assert(EndBB->isEHPad());
1197       PreBB = MF.CreateMachineBasicBlock();
1198       PostBB = EndBB;
1199       MF.insert(PostBB->getIterator(), PreBB);
1200       MF.insert(PostBB->getIterator(), DelegateBB);
1201       PreBB->splice(PreBB->end(), PostBB, PostBB->begin(), SplitPos);
1202       // We don't need to transfer predecessors of the EH pad to 'PreBB',
1203       // because an EH pad's predecessors are all through unwind edges and they
1204       // should still unwind to the EH pad, not PreBB.
1205     }
1206     unstackifyVRegsUsedInSplitBB(*PreBB, *PostBB);
1207     PreBB->addSuccessor(DelegateBB);
1208     PreBB->addSuccessor(PostBB);
1209   }
1210 
1211   // Add 'delegate' instruction in the delegate BB created above.
1212   MachineInstr *Delegate = BuildMI(DelegateBB, RangeEnd->getDebugLoc(),
1213                                    TII.get(WebAssembly::DELEGATE))
1214                                .addMBB(UnwindDest);
1215   registerTryScope(Try, Delegate, nullptr);
1216 }
1217 
1218 bool WebAssemblyCFGStackify::fixCallUnwindMismatches(MachineFunction &MF) {
1219   // Linearizing the control flow by placing TRY / END_TRY markers can create
1220   // mismatches in unwind destinations for throwing instructions, such as calls.
1221   //
1222   // We use the 'delegate' instruction to fix the unwind mismatches. 'delegate'
1223   // instruction delegates an exception to an outer 'catch'. It can target not
1224   // only 'catch' but all block-like structures including another 'delegate',
1225   // but with slightly different semantics than branches. When it targets a
1226   // 'catch', it will delegate the exception to that catch. It is being
1227   // discussed how to define the semantics when 'delegate''s target is a non-try
1228   // block: it will either be a validation failure or it will target the next
1229   // outer try-catch. But anyway our LLVM backend currently does not generate
1230   // such code. The example below illustrates where the 'delegate' instruction
1231   // in the middle will delegate the exception to, depending on the value of N.
1232   // try
1233   //   try
1234   //     block
1235   //       try
1236   //         try
1237   //           call @foo
1238   //         delegate N    ;; Where will this delegate to?
1239   //       catch           ;; N == 0
1240   //       end
1241   //     end               ;; N == 1 (invalid; will not be generated)
1242   //   delegate            ;; N == 2
1243   // catch                 ;; N == 3
1244   // end
1245   //                       ;; N == 4 (to caller)
1246 
1247   // 1. When an instruction may throw, but the EH pad it will unwind to can be
1248   //    different from the original CFG.
1249   //
1250   // Example: we have the following CFG:
1251   // bb0:
1252   //   call @foo    ; if it throws, unwind to bb2
1253   // bb1:
1254   //   call @bar    ; if it throws, unwind to bb3
1255   // bb2 (ehpad):
1256   //   catch
1257   //   ...
1258   // bb3 (ehpad)
1259   //   catch
1260   //   ...
1261   //
1262   // And the CFG is sorted in this order. Then after placing TRY markers, it
1263   // will look like: (BB markers are omitted)
1264   // try
1265   //   try
1266   //     call @foo
1267   //     call @bar   ;; if it throws, unwind to bb3
1268   //   catch         ;; ehpad (bb2)
1269   //     ...
1270   //   end_try
1271   // catch           ;; ehpad (bb3)
1272   //   ...
1273   // end_try
1274   //
1275   // Now if bar() throws, it is going to end up ip in bb2, not bb3, where it
1276   // is supposed to end up. We solve this problem by wrapping the mismatching
1277   // call with an inner try-delegate that rethrows the exception to the right
1278   // 'catch'.
1279   //
1280   // try
1281   //   try
1282   //     call @foo
1283   //     try               ;; (new)
1284   //       call @bar
1285   //     delegate 1 (bb3)  ;; (new)
1286   //   catch               ;; ehpad (bb2)
1287   //     ...
1288   //   end_try
1289   // catch                 ;; ehpad (bb3)
1290   //   ...
1291   // end_try
1292   //
1293   // ---
1294   // 2. The same as 1, but in this case an instruction unwinds to a caller
1295   //    function and not another EH pad.
1296   //
1297   // Example: we have the following CFG:
1298   // bb0:
1299   //   call @foo       ; if it throws, unwind to bb2
1300   // bb1:
1301   //   call @bar       ; if it throws, unwind to caller
1302   // bb2 (ehpad):
1303   //   catch
1304   //   ...
1305   //
1306   // And the CFG is sorted in this order. Then after placing TRY markers, it
1307   // will look like:
1308   // try
1309   //   call @foo
1310   //   call @bar     ;; if it throws, unwind to caller
1311   // catch           ;; ehpad (bb2)
1312   //   ...
1313   // end_try
1314   //
1315   // Now if bar() throws, it is going to end up ip in bb2, when it is supposed
1316   // throw up to the caller. We solve this problem in the same way, but in this
1317   // case 'delegate's immediate argument is the number of block depths + 1,
1318   // which means it rethrows to the caller.
1319   // try
1320   //   call @foo
1321   //   try                  ;; (new)
1322   //     call @bar
1323   //   delegate 1 (caller)  ;; (new)
1324   // catch                  ;; ehpad (bb2)
1325   //   ...
1326   // end_try
1327   //
1328   // Before rewriteDepthImmediates, delegate's argument is a BB. In case of the
1329   // caller, it will take a fake BB generated by getFakeCallerBlock(), which
1330   // will be converted to a correct immediate argument later.
1331   //
1332   // In case there are multiple calls in a BB that may throw to the caller, they
1333   // can be wrapped together in one nested try-delegate scope. (In 1, this
1334   // couldn't happen, because may-throwing instruction there had an unwind
1335   // destination, i.e., it was an invoke before, and there could be only one
1336   // invoke within a BB.)
1337 
1338   SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1339   // Range of intructions to be wrapped in a new nested try/catch. A range
1340   // exists in a single BB and does not span multiple BBs.
1341   using TryRange = std::pair<MachineInstr *, MachineInstr *>;
1342   // In original CFG, <unwind destination BB, a vector of try ranges>
1343   DenseMap<MachineBasicBlock *, SmallVector<TryRange, 4>> UnwindDestToTryRanges;
1344 
1345   // Gather possibly throwing calls (i.e., previously invokes) whose current
1346   // unwind destination is not the same as the original CFG. (Case 1)
1347 
1348   for (auto &MBB : reverse(MF)) {
1349     bool SeenThrowableInstInBB = false;
1350     for (auto &MI : reverse(MBB)) {
1351       if (MI.getOpcode() == WebAssembly::TRY)
1352         EHPadStack.pop_back();
1353       else if (WebAssembly::isCatch(MI.getOpcode()))
1354         EHPadStack.push_back(MI.getParent());
1355 
1356       // In this loop we only gather calls that have an EH pad to unwind. So
1357       // there will be at most 1 such call (= invoke) in a BB, so after we've
1358       // seen one, we can skip the rest of BB. Also if MBB has no EH pad
1359       // successor or MI does not throw, this is not an invoke.
1360       if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() ||
1361           !WebAssembly::mayThrow(MI))
1362         continue;
1363       SeenThrowableInstInBB = true;
1364 
1365       // If the EH pad on the stack top is where this instruction should unwind
1366       // next, we're good.
1367       MachineBasicBlock *UnwindDest = getFakeCallerBlock(MF);
1368       for (auto *Succ : MBB.successors()) {
1369         // Even though semantically a BB can have multiple successors in case an
1370         // exception is not caught by a catchpad, in our backend implementation
1371         // it is guaranteed that a BB can have at most one EH pad successor. For
1372         // details, refer to comments in findWasmUnwindDestinations function in
1373         // SelectionDAGBuilder.cpp.
1374         if (Succ->isEHPad()) {
1375           UnwindDest = Succ;
1376           break;
1377         }
1378       }
1379       if (EHPadStack.back() == UnwindDest)
1380         continue;
1381 
1382       // Include EH_LABELs in the range before and after the invoke
1383       MachineInstr *RangeBegin = &MI, *RangeEnd = &MI;
1384       if (RangeBegin->getIterator() != MBB.begin() &&
1385           std::prev(RangeBegin->getIterator())->isEHLabel())
1386         RangeBegin = &*std::prev(RangeBegin->getIterator());
1387       if (std::next(RangeEnd->getIterator()) != MBB.end() &&
1388           std::next(RangeEnd->getIterator())->isEHLabel())
1389         RangeEnd = &*std::next(RangeEnd->getIterator());
1390 
1391       // If not, record the range.
1392       UnwindDestToTryRanges[UnwindDest].push_back(
1393           TryRange(RangeBegin, RangeEnd));
1394       LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " << MBB.getName()
1395                         << "\nCall = " << MI
1396                         << "\nOriginal dest = " << UnwindDest->getName()
1397                         << "  Current dest = " << EHPadStack.back()->getName()
1398                         << "\n\n");
1399     }
1400   }
1401 
1402   assert(EHPadStack.empty());
1403 
1404   // Gather possibly throwing calls that are supposed to unwind up to the caller
1405   // if they throw, but currently unwind to an incorrect destination. Unlike the
1406   // loop above, there can be multiple calls within a BB that unwind to the
1407   // caller, which we should group together in a range. (Case 2)
1408 
1409   MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive
1410 
1411   // Record the range.
1412   auto RecordCallerMismatchRange = [&](const MachineBasicBlock *CurrentDest) {
1413     UnwindDestToTryRanges[getFakeCallerBlock(MF)].push_back(
1414         TryRange(RangeBegin, RangeEnd));
1415     LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = "
1416                       << RangeBegin->getParent()->getName()
1417                       << "\nRange begin = " << *RangeBegin
1418                       << "Range end = " << *RangeEnd
1419                       << "\nOriginal dest = caller  Current dest = "
1420                       << CurrentDest->getName() << "\n\n");
1421     RangeBegin = RangeEnd = nullptr; // Reset range pointers
1422   };
1423 
1424   for (auto &MBB : reverse(MF)) {
1425     bool SeenThrowableInstInBB = false;
1426     for (auto &MI : reverse(MBB)) {
1427       bool MayThrow = WebAssembly::mayThrow(MI);
1428 
1429       // If MBB has an EH pad successor and this is the last instruction that
1430       // may throw, this instruction unwinds to the EH pad and not to the
1431       // caller.
1432       if (MBB.hasEHPadSuccessor() && MayThrow && !SeenThrowableInstInBB)
1433         SeenThrowableInstInBB = true;
1434 
1435       // We wrap up the current range when we see a marker even if we haven't
1436       // finished a BB.
1437       else if (RangeEnd && WebAssembly::isMarker(MI.getOpcode()))
1438         RecordCallerMismatchRange(EHPadStack.back());
1439 
1440       // If EHPadStack is empty, that means it correctly unwinds to the caller
1441       // if it throws, so we're good. If MI does not throw, we're good too.
1442       else if (EHPadStack.empty() || !MayThrow) {
1443       }
1444 
1445       // We found an instruction that unwinds to the caller but currently has an
1446       // incorrect unwind destination. Create a new range or increment the
1447       // currently existing range.
1448       else {
1449         if (!RangeEnd)
1450           RangeBegin = RangeEnd = &MI;
1451         else
1452           RangeBegin = &MI;
1453       }
1454 
1455       // Update EHPadStack.
1456       if (MI.getOpcode() == WebAssembly::TRY)
1457         EHPadStack.pop_back();
1458       else if (WebAssembly::isCatch(MI.getOpcode()))
1459         EHPadStack.push_back(MI.getParent());
1460     }
1461 
1462     if (RangeEnd)
1463       RecordCallerMismatchRange(EHPadStack.back());
1464   }
1465 
1466   assert(EHPadStack.empty());
1467 
1468   // We don't have any unwind destination mismatches to resolve.
1469   if (UnwindDestToTryRanges.empty())
1470     return false;
1471 
1472   // Now we fix the mismatches by wrapping calls with inner try-delegates.
1473   for (auto &P : UnwindDestToTryRanges) {
1474     NumCallUnwindMismatches += P.second.size();
1475     MachineBasicBlock *UnwindDest = P.first;
1476     auto &TryRanges = P.second;
1477 
1478     for (auto Range : TryRanges) {
1479       MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr;
1480       std::tie(RangeBegin, RangeEnd) = Range;
1481       auto *MBB = RangeBegin->getParent();
1482 
1483       // If this BB has an EH pad successor, i.e., ends with an 'invoke', and if
1484       // the current range contains the invoke, now we are going to wrap the
1485       // invoke with try-delegate, making the 'delegate' BB the new successor
1486       // instead, so remove the EH pad succesor here. The BB may not have an EH
1487       // pad successor if calls in this BB throw to the caller.
1488       if (UnwindDest != getFakeCallerBlock(MF)) {
1489         MachineBasicBlock *EHPad = nullptr;
1490         for (auto *Succ : MBB->successors()) {
1491           if (Succ->isEHPad()) {
1492             EHPad = Succ;
1493             break;
1494           }
1495         }
1496         if (EHPad)
1497           MBB->removeSuccessor(EHPad);
1498       }
1499 
1500       addNestedTryDelegate(RangeBegin, RangeEnd, UnwindDest);
1501     }
1502   }
1503 
1504   return true;
1505 }
1506 
1507 bool WebAssemblyCFGStackify::fixCatchUnwindMismatches(MachineFunction &MF) {
1508   // There is another kind of unwind destination mismatches besides call unwind
1509   // mismatches, which we will call "catch unwind mismatches". See this example
1510   // after the marker placement:
1511   // try
1512   //   try
1513   //     call @foo
1514   //   catch __cpp_exception  ;; ehpad A (next unwind dest: caller)
1515   //     ...
1516   //   end_try
1517   // catch_all                ;; ehpad B
1518   //   ...
1519   // end_try
1520   //
1521   // 'call @foo's unwind destination is the ehpad A. But suppose 'call @foo'
1522   // throws a foreign exception that is not caught by ehpad A, and its next
1523   // destination should be the caller. But after control flow linearization,
1524   // another EH pad can be placed in between (e.g. ehpad B here), making the
1525   // next unwind destination incorrect. In this case, the  foreign exception
1526   // will instead go to ehpad B and will be caught there instead. In this
1527   // example the correct next unwind destination is the caller, but it can be
1528   // another outer catch in other cases.
1529   //
1530   // There is no specific 'call' or 'throw' instruction to wrap with a
1531   // try-delegate, so we wrap the whole try-catch-end with a try-delegate and
1532   // make it rethrow to the right destination, as in the example below:
1533   // try
1534   //   try                     ;; (new)
1535   //     try
1536   //       call @foo
1537   //     catch __cpp_exception ;; ehpad A (next unwind dest: caller)
1538   //       ...
1539   //     end_try
1540   //   delegate 1 (caller)     ;; (new)
1541   // catch_all                 ;; ehpad B
1542   //   ...
1543   // end_try
1544 
1545   const auto *EHInfo = MF.getWasmEHFuncInfo();
1546   assert(EHInfo);
1547   SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1548   // For EH pads that have catch unwind mismatches, a map of <EH pad, its
1549   // correct unwind destination>.
1550   DenseMap<MachineBasicBlock *, MachineBasicBlock *> EHPadToUnwindDest;
1551 
1552   for (auto &MBB : reverse(MF)) {
1553     for (auto &MI : reverse(MBB)) {
1554       if (MI.getOpcode() == WebAssembly::TRY)
1555         EHPadStack.pop_back();
1556       else if (MI.getOpcode() == WebAssembly::DELEGATE)
1557         EHPadStack.push_back(&MBB);
1558       else if (WebAssembly::isCatch(MI.getOpcode())) {
1559         auto *EHPad = &MBB;
1560 
1561         // catch_all always catches an exception, so we don't need to do
1562         // anything
1563         if (MI.getOpcode() == WebAssembly::CATCH_ALL_LEGACY) {
1564         }
1565 
1566         // This can happen when the unwind dest was removed during the
1567         // optimization, e.g. because it was unreachable.
1568         else if (EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
1569           LLVM_DEBUG(dbgs() << "EHPad (" << EHPad->getName()
1570                             << "'s unwind destination does not exist anymore"
1571                             << "\n\n");
1572         }
1573 
1574         // The EHPad's next unwind destination is the caller, but we incorrectly
1575         // unwind to another EH pad.
1576         else if (!EHPadStack.empty() && !EHInfo->hasUnwindDest(EHPad)) {
1577           EHPadToUnwindDest[EHPad] = getFakeCallerBlock(MF);
1578           LLVM_DEBUG(dbgs()
1579                      << "- Catch unwind mismatch:\nEHPad = " << EHPad->getName()
1580                      << "  Original dest = caller  Current dest = "
1581                      << EHPadStack.back()->getName() << "\n\n");
1582         }
1583 
1584         // The EHPad's next unwind destination is an EH pad, whereas we
1585         // incorrectly unwind to another EH pad.
1586         else if (!EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
1587           auto *UnwindDest = EHInfo->getUnwindDest(EHPad);
1588           if (EHPadStack.back() != UnwindDest) {
1589             EHPadToUnwindDest[EHPad] = UnwindDest;
1590             LLVM_DEBUG(dbgs() << "- Catch unwind mismatch:\nEHPad = "
1591                               << EHPad->getName() << "  Original dest = "
1592                               << UnwindDest->getName() << "  Current dest = "
1593                               << EHPadStack.back()->getName() << "\n\n");
1594           }
1595         }
1596 
1597         EHPadStack.push_back(EHPad);
1598       }
1599     }
1600   }
1601 
1602   assert(EHPadStack.empty());
1603   if (EHPadToUnwindDest.empty())
1604     return false;
1605   NumCatchUnwindMismatches += EHPadToUnwindDest.size();
1606   SmallPtrSet<MachineBasicBlock *, 4> NewEndTryBBs;
1607 
1608   for (auto &[EHPad, UnwindDest] : EHPadToUnwindDest) {
1609     MachineInstr *Try = EHPadToTry[EHPad];
1610     MachineInstr *EndTry = BeginToEnd[Try];
1611     addNestedTryDelegate(Try, EndTry, UnwindDest);
1612     NewEndTryBBs.insert(EndTry->getParent());
1613   }
1614 
1615   // Adding a try-delegate wrapping an existing try-catch-end can make existing
1616   // branch destination BBs invalid. For example,
1617   //
1618   // - Before:
1619   // bb0:
1620   //   block
1621   //     br bb3
1622   // bb1:
1623   //     try
1624   //       ...
1625   // bb2: (ehpad)
1626   //     catch
1627   // bb3:
1628   //     end_try
1629   //   end_block   ;; 'br bb3' targets here
1630   //
1631   // Suppose this try-catch-end has a catch unwind mismatch, so we need to wrap
1632   // this with a try-delegate. Then this becomes:
1633   //
1634   // - After:
1635   // bb0:
1636   //   block
1637   //     br bb3    ;; invalid destination!
1638   // bb1:
1639   //     try       ;; (new instruction)
1640   //       try
1641   //         ...
1642   // bb2: (ehpad)
1643   //       catch
1644   // bb3:
1645   //       end_try ;; 'br bb3' still incorrectly targets here!
1646   // delegate_bb:  ;; (new BB)
1647   //     delegate  ;; (new instruction)
1648   // split_bb:     ;; (new BB)
1649   //   end_block
1650   //
1651   // Now 'br bb3' incorrectly branches to an inner scope.
1652   //
1653   // As we can see in this case, when branches target a BB that has both
1654   // 'end_try' and 'end_block' and the BB is split to insert a 'delegate', we
1655   // have to remap existing branch destinations so that they target not the
1656   // 'end_try' BB but the new 'end_block' BB. There can be multiple 'delegate's
1657   // in between, so we try to find the next BB with 'end_block' instruction. In
1658   // this example, the 'br bb3' instruction should be remapped to 'br split_bb'.
1659   for (auto &MBB : MF) {
1660     for (auto &MI : MBB) {
1661       if (MI.isTerminator()) {
1662         for (auto &MO : MI.operands()) {
1663           if (MO.isMBB() && NewEndTryBBs.count(MO.getMBB())) {
1664             auto *BrDest = MO.getMBB();
1665             bool FoundEndBlock = false;
1666             for (; std::next(BrDest->getIterator()) != MF.end();
1667                  BrDest = BrDest->getNextNode()) {
1668               for (const auto &MI : *BrDest) {
1669                 if (MI.getOpcode() == WebAssembly::END_BLOCK) {
1670                   FoundEndBlock = true;
1671                   break;
1672                 }
1673               }
1674               if (FoundEndBlock)
1675                 break;
1676             }
1677             assert(FoundEndBlock);
1678             MO.setMBB(BrDest);
1679           }
1680         }
1681       }
1682     }
1683   }
1684 
1685   return true;
1686 }
1687 
1688 void WebAssemblyCFGStackify::recalculateScopeTops(MachineFunction &MF) {
1689   // Renumber BBs and recalculate ScopeTop info because new BBs might have been
1690   // created and inserted during fixing unwind mismatches.
1691   MF.RenumberBlocks();
1692   MDT->updateBlockNumbers();
1693   ScopeTops.clear();
1694   ScopeTops.resize(MF.getNumBlockIDs());
1695   for (auto &MBB : reverse(MF)) {
1696     for (auto &MI : reverse(MBB)) {
1697       if (ScopeTops[MBB.getNumber()])
1698         break;
1699       switch (MI.getOpcode()) {
1700       case WebAssembly::END_BLOCK:
1701       case WebAssembly::END_LOOP:
1702       case WebAssembly::END_TRY:
1703       case WebAssembly::END_TRY_TABLE:
1704       case WebAssembly::DELEGATE:
1705         updateScopeTops(EndToBegin[&MI]->getParent(), &MBB);
1706         break;
1707       case WebAssembly::CATCH_LEGACY:
1708       case WebAssembly::CATCH_ALL_LEGACY:
1709         updateScopeTops(EHPadToTry[&MBB]->getParent(), &MBB);
1710         break;
1711       }
1712     }
1713   }
1714 }
1715 
1716 /// In normal assembly languages, when the end of a function is unreachable,
1717 /// because the function ends in an infinite loop or a noreturn call or similar,
1718 /// it isn't necessary to worry about the function return type at the end of
1719 /// the function, because it's never reached. However, in WebAssembly, blocks
1720 /// that end at the function end need to have a return type signature that
1721 /// matches the function signature, even though it's unreachable. This function
1722 /// checks for such cases and fixes up the signatures.
1723 void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) {
1724   const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
1725 
1726   if (MFI.getResults().empty())
1727     return;
1728 
1729   // MCInstLower will add the proper types to multivalue signatures based on the
1730   // function return type
1731   WebAssembly::BlockType RetType =
1732       MFI.getResults().size() > 1
1733           ? WebAssembly::BlockType::Multivalue
1734           : WebAssembly::BlockType(
1735                 WebAssembly::toValType(MFI.getResults().front()));
1736 
1737   SmallVector<MachineBasicBlock::reverse_iterator, 4> Worklist;
1738   Worklist.push_back(MF.rbegin()->rbegin());
1739 
1740   auto Process = [&](MachineBasicBlock::reverse_iterator It) {
1741     auto *MBB = It->getParent();
1742     while (It != MBB->rend()) {
1743       MachineInstr &MI = *It++;
1744       if (MI.isPosition() || MI.isDebugInstr())
1745         continue;
1746       switch (MI.getOpcode()) {
1747       case WebAssembly::END_TRY: {
1748         // If a 'try''s return type is fixed, both its try body and catch body
1749         // should satisfy the return type, so we need to search 'end'
1750         // instructions before its corresponding 'catch' too.
1751         auto *EHPad = TryToEHPad.lookup(EndToBegin[&MI]);
1752         assert(EHPad);
1753         auto NextIt =
1754             std::next(WebAssembly::findCatch(EHPad)->getReverseIterator());
1755         if (NextIt != EHPad->rend())
1756           Worklist.push_back(NextIt);
1757         [[fallthrough]];
1758       }
1759       case WebAssembly::END_BLOCK:
1760       case WebAssembly::END_LOOP:
1761       case WebAssembly::END_TRY_TABLE:
1762       case WebAssembly::DELEGATE:
1763         EndToBegin[&MI]->getOperand(0).setImm(int32_t(RetType));
1764         continue;
1765       default:
1766         // Something other than an `end`. We're done for this BB.
1767         return;
1768       }
1769     }
1770     // We've reached the beginning of a BB. Continue the search in the previous
1771     // BB.
1772     Worklist.push_back(MBB->getPrevNode()->rbegin());
1773   };
1774 
1775   while (!Worklist.empty())
1776     Process(Worklist.pop_back_val());
1777 }
1778 
1779 // WebAssembly functions end with an end instruction, as if the function body
1780 // were a block.
1781 static void appendEndToFunction(MachineFunction &MF,
1782                                 const WebAssemblyInstrInfo &TII) {
1783   BuildMI(MF.back(), MF.back().end(),
1784           MF.back().findPrevDebugLoc(MF.back().end()),
1785           TII.get(WebAssembly::END_FUNCTION));
1786 }
1787 
1788 /// Insert BLOCK/LOOP/TRY/TRY_TABLE markers at appropriate places.
1789 void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) {
1790   // We allocate one more than the number of blocks in the function to
1791   // accommodate for the possible fake block we may insert at the end.
1792   ScopeTops.resize(MF.getNumBlockIDs() + 1);
1793   // Place the LOOP for MBB if MBB is the header of a loop.
1794   for (auto &MBB : MF)
1795     placeLoopMarker(MBB);
1796 
1797   const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
1798   for (auto &MBB : MF) {
1799     if (MBB.isEHPad()) {
1800       // Place the TRY/TRY_TABLE for MBB if MBB is the EH pad of an exception.
1801       if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
1802           MF.getFunction().hasPersonalityFn()) {
1803         if (WebAssembly::WasmEnableExnref)
1804           placeTryTableMarker(MBB);
1805         else
1806           placeTryMarker(MBB);
1807       }
1808     } else {
1809       // Place the BLOCK for MBB if MBB is branched to from above.
1810       placeBlockMarker(MBB);
1811     }
1812   }
1813 
1814   // FIXME We return here temporarily until we implement fixing unwind
1815   // mismatches for the new exnref proposal.
1816   if (WebAssembly::WasmEnableExnref)
1817     return;
1818 
1819   // Fix mismatches in unwind destinations induced by linearizing the code.
1820   if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
1821       MF.getFunction().hasPersonalityFn()) {
1822     bool MismatchFixed = fixCallUnwindMismatches(MF);
1823     MismatchFixed |= fixCatchUnwindMismatches(MF);
1824     if (MismatchFixed)
1825       recalculateScopeTops(MF);
1826   }
1827 }
1828 
1829 unsigned WebAssemblyCFGStackify::getBranchDepth(
1830     const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
1831   unsigned Depth = 0;
1832   for (auto X : reverse(Stack)) {
1833     if (X.first == MBB)
1834       break;
1835     ++Depth;
1836   }
1837   assert(Depth < Stack.size() && "Branch destination should be in scope");
1838   return Depth;
1839 }
1840 
1841 unsigned WebAssemblyCFGStackify::getDelegateDepth(
1842     const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
1843   if (MBB == FakeCallerBB)
1844     return Stack.size();
1845   // Delegate's destination is either a catch or a another delegate BB. When the
1846   // destination is another delegate, we can compute the argument in the same
1847   // way as branches, because the target delegate BB only contains the single
1848   // delegate instruction.
1849   if (!MBB->isEHPad()) // Target is a delegate BB
1850     return getBranchDepth(Stack, MBB);
1851 
1852   // When the delegate's destination is a catch BB, we need to use its
1853   // corresponding try's end_try BB because Stack contains each marker's end BB.
1854   // Also we need to check if the end marker instruction matches, because a
1855   // single BB can contain multiple end markers, like this:
1856   // bb:
1857   //   END_BLOCK
1858   //   END_TRY
1859   //   END_BLOCK
1860   //   END_TRY
1861   //   ...
1862   //
1863   // In case of branches getting the immediate that targets any of these is
1864   // fine, but delegate has to exactly target the correct try.
1865   unsigned Depth = 0;
1866   const MachineInstr *EndTry = BeginToEnd[EHPadToTry[MBB]];
1867   for (auto X : reverse(Stack)) {
1868     if (X.first == EndTry->getParent() && X.second == EndTry)
1869       break;
1870     ++Depth;
1871   }
1872   assert(Depth < Stack.size() && "Delegate destination should be in scope");
1873   return Depth;
1874 }
1875 
1876 unsigned WebAssemblyCFGStackify::getRethrowDepth(
1877     const SmallVectorImpl<EndMarkerInfo> &Stack,
1878     const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack) {
1879   unsigned Depth = 0;
1880   // In our current implementation, rethrows always rethrow the exception caught
1881   // by the innermost enclosing catch. This means while traversing Stack in the
1882   // reverse direction, when we encounter END_TRY, we should check if the
1883   // END_TRY corresponds to the current innermost EH pad. For example:
1884   // try
1885   //   ...
1886   // catch         ;; (a)
1887   //   try
1888   //     rethrow 1 ;; (b)
1889   //   catch       ;; (c)
1890   //     rethrow 0 ;; (d)
1891   //   end         ;; (e)
1892   // end           ;; (f)
1893   //
1894   // When we are at 'rethrow' (d), while reversely traversing Stack the first
1895   // 'end' we encounter is the 'end' (e), which corresponds to the 'catch' (c).
1896   // And 'rethrow' (d) rethrows the exception caught by 'catch' (c), so we stop
1897   // there and the depth should be 0. But when we are at 'rethrow' (b), it
1898   // rethrows the exception caught by 'catch' (a), so when traversing Stack
1899   // reversely, we should skip the 'end' (e) and choose 'end' (f), which
1900   // corresponds to 'catch' (a).
1901   for (auto X : reverse(Stack)) {
1902     const MachineInstr *End = X.second;
1903     if (End->getOpcode() == WebAssembly::END_TRY) {
1904       auto *EHPad = TryToEHPad[EndToBegin[End]];
1905       if (EHPadStack.back() == EHPad)
1906         break;
1907     }
1908     ++Depth;
1909   }
1910   assert(Depth < Stack.size() && "Rethrow destination should be in scope");
1911   return Depth;
1912 }
1913 
1914 void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) {
1915   // Now rewrite references to basic blocks to be depth immediates.
1916   SmallVector<EndMarkerInfo, 8> Stack;
1917   SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1918 
1919   auto RewriteOperands = [&](MachineInstr &MI) {
1920     // Rewrite MBB operands to be depth immediates.
1921     SmallVector<MachineOperand, 4> Ops(MI.operands());
1922     while (MI.getNumOperands() > 0)
1923       MI.removeOperand(MI.getNumOperands() - 1);
1924     for (auto MO : Ops) {
1925       if (MO.isMBB()) {
1926         if (MI.getOpcode() == WebAssembly::DELEGATE)
1927           MO = MachineOperand::CreateImm(getDelegateDepth(Stack, MO.getMBB()));
1928         else
1929           MO = MachineOperand::CreateImm(getBranchDepth(Stack, MO.getMBB()));
1930       }
1931       MI.addOperand(MF, MO);
1932     }
1933   };
1934 
1935   for (auto &MBB : reverse(MF)) {
1936     for (MachineInstr &MI : llvm::reverse(MBB)) {
1937       switch (MI.getOpcode()) {
1938       case WebAssembly::TRY_TABLE:
1939         RewriteOperands(MI);
1940         [[fallthrough]];
1941       case WebAssembly::BLOCK:
1942       case WebAssembly::TRY:
1943         assert(ScopeTops[Stack.back().first->getNumber()]->getNumber() <=
1944                    MBB.getNumber() &&
1945                "Block/try/try_table marker should be balanced");
1946         Stack.pop_back();
1947         break;
1948 
1949       case WebAssembly::LOOP:
1950         assert(Stack.back().first == &MBB && "Loop top should be balanced");
1951         Stack.pop_back();
1952         break;
1953 
1954       case WebAssembly::END_TRY: {
1955         auto *EHPad = TryToEHPad[EndToBegin[&MI]];
1956         EHPadStack.push_back(EHPad);
1957         [[fallthrough]];
1958       }
1959       case WebAssembly::END_BLOCK:
1960       case WebAssembly::END_TRY_TABLE:
1961         Stack.push_back(std::make_pair(&MBB, &MI));
1962         break;
1963 
1964       case WebAssembly::END_LOOP:
1965         Stack.push_back(std::make_pair(EndToBegin[&MI]->getParent(), &MI));
1966         break;
1967 
1968       case WebAssembly::CATCH_LEGACY:
1969       case WebAssembly::CATCH_ALL_LEGACY:
1970         EHPadStack.pop_back();
1971         break;
1972 
1973       case WebAssembly::RETHROW:
1974         MI.getOperand(0).setImm(getRethrowDepth(Stack, EHPadStack));
1975         break;
1976 
1977       case WebAssembly::DELEGATE:
1978         RewriteOperands(MI);
1979         Stack.push_back(std::make_pair(&MBB, &MI));
1980         break;
1981 
1982       default:
1983         if (MI.isTerminator())
1984           RewriteOperands(MI);
1985         break;
1986       }
1987     }
1988   }
1989   assert(Stack.empty() && "Control flow should be balanced");
1990 }
1991 
1992 void WebAssemblyCFGStackify::cleanupFunctionData(MachineFunction &MF) {
1993   if (FakeCallerBB)
1994     MF.deleteMachineBasicBlock(FakeCallerBB);
1995   AppendixBB = FakeCallerBB = nullptr;
1996 }
1997 
1998 void WebAssemblyCFGStackify::releaseMemory() {
1999   ScopeTops.clear();
2000   BeginToEnd.clear();
2001   EndToBegin.clear();
2002   TryToEHPad.clear();
2003   EHPadToTry.clear();
2004 }
2005 
2006 bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) {
2007   LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n"
2008                        "********** Function: "
2009                     << MF.getName() << '\n');
2010   const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
2011   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
2012 
2013   releaseMemory();
2014 
2015   // Liveness is not tracked for VALUE_STACK physreg.
2016   MF.getRegInfo().invalidateLiveness();
2017 
2018   // Place the BLOCK/LOOP/TRY/TRY_TABLE markers to indicate the beginnings of
2019   // scopes.
2020   placeMarkers(MF);
2021 
2022   // Remove unnecessary instructions possibly introduced by try/end_trys.
2023   if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
2024       MF.getFunction().hasPersonalityFn())
2025     removeUnnecessaryInstrs(MF);
2026 
2027   // Convert MBB operands in terminators to relative depth immediates.
2028   rewriteDepthImmediates(MF);
2029 
2030   // Fix up block/loop/try/try_table signatures at the end of the function to
2031   // conform to WebAssembly's rules.
2032   fixEndsAtEndOfFunction(MF);
2033 
2034   // Add an end instruction at the end of the function body.
2035   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
2036   appendEndToFunction(MF, TII);
2037 
2038   cleanupFunctionData(MF);
2039 
2040   MF.getInfo<WebAssemblyFunctionInfo>()->setCFGStackified();
2041   return true;
2042 }
2043