1 //===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a CFG stacking pass. 11 /// 12 /// This pass inserts BLOCK, LOOP, and TRY markers to mark the start of scopes, 13 /// since scope boundaries serve as the labels for WebAssembly's control 14 /// transfers. 15 /// 16 /// This is sufficient to convert arbitrary CFGs into a form that works on 17 /// WebAssembly, provided that all loops are single-entry. 18 /// 19 /// In case we use exceptions, this pass also fixes mismatches in unwind 20 /// destinations created during transforming CFG into wasm structured format. 21 /// 22 //===----------------------------------------------------------------------===// 23 24 #include "Utils/WebAssemblyTypeUtilities.h" 25 #include "WebAssembly.h" 26 #include "WebAssemblyExceptionInfo.h" 27 #include "WebAssemblyMachineFunctionInfo.h" 28 #include "WebAssemblySortRegion.h" 29 #include "WebAssemblySubtarget.h" 30 #include "WebAssemblyUtilities.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/WasmEHFuncInfo.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 using namespace llvm; 39 using WebAssembly::SortRegionInfo; 40 41 #define DEBUG_TYPE "wasm-cfg-stackify" 42 43 STATISTIC(NumCallUnwindMismatches, "Number of call unwind mismatches found"); 44 STATISTIC(NumCatchUnwindMismatches, "Number of catch unwind mismatches found"); 45 46 namespace { 47 class WebAssemblyCFGStackify final : public MachineFunctionPass { 48 MachineDominatorTree *MDT; 49 50 StringRef getPassName() const override { return "WebAssembly CFG Stackify"; } 51 52 void getAnalysisUsage(AnalysisUsage &AU) const override { 53 AU.addRequired<MachineDominatorTreeWrapperPass>(); 54 AU.addRequired<MachineLoopInfoWrapperPass>(); 55 AU.addRequired<WebAssemblyExceptionInfo>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 // For each block whose label represents the end of a scope, record the block 62 // which holds the beginning of the scope. This will allow us to quickly skip 63 // over scoped regions when walking blocks. 64 SmallVector<MachineBasicBlock *, 8> ScopeTops; 65 void updateScopeTops(MachineBasicBlock *Begin, MachineBasicBlock *End) { 66 int BeginNo = Begin->getNumber(); 67 int EndNo = End->getNumber(); 68 if (!ScopeTops[EndNo] || ScopeTops[EndNo]->getNumber() > BeginNo) 69 ScopeTops[EndNo] = Begin; 70 } 71 72 // Placing markers. 73 void placeMarkers(MachineFunction &MF); 74 void placeBlockMarker(MachineBasicBlock &MBB); 75 void placeLoopMarker(MachineBasicBlock &MBB); 76 void placeTryMarker(MachineBasicBlock &MBB); 77 78 // Exception handling related functions 79 bool fixCallUnwindMismatches(MachineFunction &MF); 80 bool fixCatchUnwindMismatches(MachineFunction &MF); 81 void addNestedTryDelegate(MachineInstr *RangeBegin, MachineInstr *RangeEnd, 82 MachineBasicBlock *UnwindDest); 83 void recalculateScopeTops(MachineFunction &MF); 84 void removeUnnecessaryInstrs(MachineFunction &MF); 85 86 // Wrap-up 87 using EndMarkerInfo = 88 std::pair<const MachineBasicBlock *, const MachineInstr *>; 89 unsigned getBranchDepth(const SmallVectorImpl<EndMarkerInfo> &Stack, 90 const MachineBasicBlock *MBB); 91 unsigned getDelegateDepth(const SmallVectorImpl<EndMarkerInfo> &Stack, 92 const MachineBasicBlock *MBB); 93 unsigned 94 getRethrowDepth(const SmallVectorImpl<EndMarkerInfo> &Stack, 95 const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack); 96 void rewriteDepthImmediates(MachineFunction &MF); 97 void fixEndsAtEndOfFunction(MachineFunction &MF); 98 void cleanupFunctionData(MachineFunction &MF); 99 100 // For each BLOCK|LOOP|TRY, the corresponding END_(BLOCK|LOOP|TRY) or DELEGATE 101 // (in case of TRY). 102 DenseMap<const MachineInstr *, MachineInstr *> BeginToEnd; 103 // For each END_(BLOCK|LOOP|TRY) or DELEGATE, the corresponding 104 // BLOCK|LOOP|TRY. 105 DenseMap<const MachineInstr *, MachineInstr *> EndToBegin; 106 // <TRY marker, EH pad> map 107 DenseMap<const MachineInstr *, MachineBasicBlock *> TryToEHPad; 108 // <EH pad, TRY marker> map 109 DenseMap<const MachineBasicBlock *, MachineInstr *> EHPadToTry; 110 111 // We need an appendix block to place 'end_loop' or 'end_try' marker when the 112 // loop / exception bottom block is the last block in a function 113 MachineBasicBlock *AppendixBB = nullptr; 114 MachineBasicBlock *getAppendixBlock(MachineFunction &MF) { 115 if (!AppendixBB) { 116 AppendixBB = MF.CreateMachineBasicBlock(); 117 // Give it a fake predecessor so that AsmPrinter prints its label. 118 AppendixBB->addSuccessor(AppendixBB); 119 MF.push_back(AppendixBB); 120 } 121 return AppendixBB; 122 } 123 124 // Before running rewriteDepthImmediates function, 'delegate' has a BB as its 125 // destination operand. getFakeCallerBlock() returns a fake BB that will be 126 // used for the operand when 'delegate' needs to rethrow to the caller. This 127 // will be rewritten as an immediate value that is the number of block depths 128 // + 1 in rewriteDepthImmediates, and this fake BB will be removed at the end 129 // of the pass. 130 MachineBasicBlock *FakeCallerBB = nullptr; 131 MachineBasicBlock *getFakeCallerBlock(MachineFunction &MF) { 132 if (!FakeCallerBB) 133 FakeCallerBB = MF.CreateMachineBasicBlock(); 134 return FakeCallerBB; 135 } 136 137 // Helper functions to register / unregister scope information created by 138 // marker instructions. 139 void registerScope(MachineInstr *Begin, MachineInstr *End); 140 void registerTryScope(MachineInstr *Begin, MachineInstr *End, 141 MachineBasicBlock *EHPad); 142 void unregisterScope(MachineInstr *Begin); 143 144 public: 145 static char ID; // Pass identification, replacement for typeid 146 WebAssemblyCFGStackify() : MachineFunctionPass(ID) {} 147 ~WebAssemblyCFGStackify() override { releaseMemory(); } 148 void releaseMemory() override; 149 }; 150 } // end anonymous namespace 151 152 char WebAssemblyCFGStackify::ID = 0; 153 INITIALIZE_PASS(WebAssemblyCFGStackify, DEBUG_TYPE, 154 "Insert BLOCK/LOOP/TRY markers for WebAssembly scopes", false, 155 false) 156 157 FunctionPass *llvm::createWebAssemblyCFGStackify() { 158 return new WebAssemblyCFGStackify(); 159 } 160 161 /// Test whether Pred has any terminators explicitly branching to MBB, as 162 /// opposed to falling through. Note that it's possible (eg. in unoptimized 163 /// code) for a branch instruction to both branch to a block and fallthrough 164 /// to it, so we check the actual branch operands to see if there are any 165 /// explicit mentions. 166 static bool explicitlyBranchesTo(MachineBasicBlock *Pred, 167 MachineBasicBlock *MBB) { 168 for (MachineInstr &MI : Pred->terminators()) 169 for (MachineOperand &MO : MI.explicit_operands()) 170 if (MO.isMBB() && MO.getMBB() == MBB) 171 return true; 172 return false; 173 } 174 175 // Returns an iterator to the earliest position possible within the MBB, 176 // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet 177 // contains instructions that should go before the marker, and AfterSet contains 178 // ones that should go after the marker. In this function, AfterSet is only 179 // used for validation checking. 180 template <typename Container> 181 static MachineBasicBlock::iterator 182 getEarliestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet, 183 const Container &AfterSet) { 184 auto InsertPos = MBB->end(); 185 while (InsertPos != MBB->begin()) { 186 if (BeforeSet.count(&*std::prev(InsertPos))) { 187 #ifndef NDEBUG 188 // Validation check 189 for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos) 190 assert(!AfterSet.count(&*std::prev(Pos))); 191 #endif 192 break; 193 } 194 --InsertPos; 195 } 196 return InsertPos; 197 } 198 199 // Returns an iterator to the latest position possible within the MBB, 200 // satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet 201 // contains instructions that should go before the marker, and AfterSet contains 202 // ones that should go after the marker. In this function, BeforeSet is only 203 // used for validation checking. 204 template <typename Container> 205 static MachineBasicBlock::iterator 206 getLatestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet, 207 const Container &AfterSet) { 208 auto InsertPos = MBB->begin(); 209 while (InsertPos != MBB->end()) { 210 if (AfterSet.count(&*InsertPos)) { 211 #ifndef NDEBUG 212 // Validation check 213 for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos) 214 assert(!BeforeSet.count(&*Pos)); 215 #endif 216 break; 217 } 218 ++InsertPos; 219 } 220 return InsertPos; 221 } 222 223 void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin, 224 MachineInstr *End) { 225 BeginToEnd[Begin] = End; 226 EndToBegin[End] = Begin; 227 } 228 229 // When 'End' is not an 'end_try' but a 'delegate', EHPad is nullptr. 230 void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin, 231 MachineInstr *End, 232 MachineBasicBlock *EHPad) { 233 registerScope(Begin, End); 234 TryToEHPad[Begin] = EHPad; 235 EHPadToTry[EHPad] = Begin; 236 } 237 238 void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) { 239 assert(BeginToEnd.count(Begin)); 240 MachineInstr *End = BeginToEnd[Begin]; 241 assert(EndToBegin.count(End)); 242 BeginToEnd.erase(Begin); 243 EndToBegin.erase(End); 244 MachineBasicBlock *EHPad = TryToEHPad.lookup(Begin); 245 if (EHPad) { 246 assert(EHPadToTry.count(EHPad)); 247 TryToEHPad.erase(Begin); 248 EHPadToTry.erase(EHPad); 249 } 250 } 251 252 /// Insert a BLOCK marker for branches to MBB (if needed). 253 // TODO Consider a more generalized way of handling block (and also loop and 254 // try) signatures when we implement the multi-value proposal later. 255 void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) { 256 assert(!MBB.isEHPad()); 257 MachineFunction &MF = *MBB.getParent(); 258 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 259 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 260 261 // First compute the nearest common dominator of all forward non-fallthrough 262 // predecessors so that we minimize the time that the BLOCK is on the stack, 263 // which reduces overall stack height. 264 MachineBasicBlock *Header = nullptr; 265 bool IsBranchedTo = false; 266 int MBBNumber = MBB.getNumber(); 267 for (MachineBasicBlock *Pred : MBB.predecessors()) { 268 if (Pred->getNumber() < MBBNumber) { 269 Header = Header ? MDT->findNearestCommonDominator(Header, Pred) : Pred; 270 if (explicitlyBranchesTo(Pred, &MBB)) 271 IsBranchedTo = true; 272 } 273 } 274 if (!Header) 275 return; 276 if (!IsBranchedTo) 277 return; 278 279 assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors"); 280 MachineBasicBlock *LayoutPred = MBB.getPrevNode(); 281 282 // If the nearest common dominator is inside a more deeply nested context, 283 // walk out to the nearest scope which isn't more deeply nested. 284 for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) { 285 if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) { 286 if (ScopeTop->getNumber() > Header->getNumber()) { 287 // Skip over an intervening scope. 288 I = std::next(ScopeTop->getIterator()); 289 } else { 290 // We found a scope level at an appropriate depth. 291 Header = ScopeTop; 292 break; 293 } 294 } 295 } 296 297 // Decide where in MBB to put the BLOCK. 298 299 // Instructions that should go before the BLOCK. 300 SmallPtrSet<const MachineInstr *, 4> BeforeSet; 301 // Instructions that should go after the BLOCK. 302 SmallPtrSet<const MachineInstr *, 4> AfterSet; 303 for (const auto &MI : *Header) { 304 // If there is a previously placed LOOP marker and the bottom block of the 305 // loop is above MBB, it should be after the BLOCK, because the loop is 306 // nested in this BLOCK. Otherwise it should be before the BLOCK. 307 if (MI.getOpcode() == WebAssembly::LOOP) { 308 auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode(); 309 if (MBB.getNumber() > LoopBottom->getNumber()) 310 AfterSet.insert(&MI); 311 #ifndef NDEBUG 312 else 313 BeforeSet.insert(&MI); 314 #endif 315 } 316 317 // If there is a previously placed BLOCK/TRY marker and its corresponding 318 // END marker is before the current BLOCK's END marker, that should be 319 // placed after this BLOCK. Otherwise it should be placed before this BLOCK 320 // marker. 321 if (MI.getOpcode() == WebAssembly::BLOCK || 322 MI.getOpcode() == WebAssembly::TRY) { 323 if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber()) 324 AfterSet.insert(&MI); 325 #ifndef NDEBUG 326 else 327 BeforeSet.insert(&MI); 328 #endif 329 } 330 331 #ifndef NDEBUG 332 // All END_(BLOCK|LOOP|TRY) markers should be before the BLOCK. 333 if (MI.getOpcode() == WebAssembly::END_BLOCK || 334 MI.getOpcode() == WebAssembly::END_LOOP || 335 MI.getOpcode() == WebAssembly::END_TRY) 336 BeforeSet.insert(&MI); 337 #endif 338 339 // Terminators should go after the BLOCK. 340 if (MI.isTerminator()) 341 AfterSet.insert(&MI); 342 } 343 344 // Local expression tree should go after the BLOCK. 345 for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E; 346 --I) { 347 if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) 348 continue; 349 if (WebAssembly::isChild(*std::prev(I), MFI)) 350 AfterSet.insert(&*std::prev(I)); 351 else 352 break; 353 } 354 355 // Add the BLOCK. 356 WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void; 357 auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet); 358 MachineInstr *Begin = 359 BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos), 360 TII.get(WebAssembly::BLOCK)) 361 .addImm(int64_t(ReturnType)); 362 363 // Decide where in MBB to put the END_BLOCK. 364 BeforeSet.clear(); 365 AfterSet.clear(); 366 for (auto &MI : MBB) { 367 #ifndef NDEBUG 368 // END_BLOCK should precede existing LOOP markers. 369 if (MI.getOpcode() == WebAssembly::LOOP) 370 AfterSet.insert(&MI); 371 #endif 372 373 // If there is a previously placed END_LOOP marker and the header of the 374 // loop is above this block's header, the END_LOOP should be placed after 375 // the END_BLOCK, because the loop contains this block. Otherwise the 376 // END_LOOP should be placed before the END_BLOCK. The same for END_TRY. 377 if (MI.getOpcode() == WebAssembly::END_LOOP || 378 MI.getOpcode() == WebAssembly::END_TRY) { 379 if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber()) 380 BeforeSet.insert(&MI); 381 #ifndef NDEBUG 382 else 383 AfterSet.insert(&MI); 384 #endif 385 } 386 } 387 388 // Mark the end of the block. 389 InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet); 390 MachineInstr *End = BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos), 391 TII.get(WebAssembly::END_BLOCK)); 392 registerScope(Begin, End); 393 394 // Track the farthest-spanning scope that ends at this point. 395 updateScopeTops(Header, &MBB); 396 } 397 398 /// Insert a LOOP marker for a loop starting at MBB (if it's a loop header). 399 void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) { 400 MachineFunction &MF = *MBB.getParent(); 401 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 402 const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>(); 403 SortRegionInfo SRI(MLI, WEI); 404 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 405 406 MachineLoop *Loop = MLI.getLoopFor(&MBB); 407 if (!Loop || Loop->getHeader() != &MBB) 408 return; 409 410 // The operand of a LOOP is the first block after the loop. If the loop is the 411 // bottom of the function, insert a dummy block at the end. 412 MachineBasicBlock *Bottom = SRI.getBottom(Loop); 413 auto Iter = std::next(Bottom->getIterator()); 414 if (Iter == MF.end()) { 415 getAppendixBlock(MF); 416 Iter = std::next(Bottom->getIterator()); 417 } 418 MachineBasicBlock *AfterLoop = &*Iter; 419 420 // Decide where in Header to put the LOOP. 421 SmallPtrSet<const MachineInstr *, 4> BeforeSet; 422 SmallPtrSet<const MachineInstr *, 4> AfterSet; 423 for (const auto &MI : MBB) { 424 // LOOP marker should be after any existing loop that ends here. Otherwise 425 // we assume the instruction belongs to the loop. 426 if (MI.getOpcode() == WebAssembly::END_LOOP) 427 BeforeSet.insert(&MI); 428 #ifndef NDEBUG 429 else 430 AfterSet.insert(&MI); 431 #endif 432 } 433 434 // Mark the beginning of the loop. 435 auto InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet); 436 MachineInstr *Begin = BuildMI(MBB, InsertPos, MBB.findDebugLoc(InsertPos), 437 TII.get(WebAssembly::LOOP)) 438 .addImm(int64_t(WebAssembly::BlockType::Void)); 439 440 // Decide where in MBB to put the END_LOOP. 441 BeforeSet.clear(); 442 AfterSet.clear(); 443 #ifndef NDEBUG 444 for (const auto &MI : MBB) 445 // Existing END_LOOP markers belong to parent loops of this loop 446 if (MI.getOpcode() == WebAssembly::END_LOOP) 447 AfterSet.insert(&MI); 448 #endif 449 450 // Mark the end of the loop (using arbitrary debug location that branched to 451 // the loop end as its location). 452 InsertPos = getEarliestInsertPos(AfterLoop, BeforeSet, AfterSet); 453 DebugLoc EndDL = AfterLoop->pred_empty() 454 ? DebugLoc() 455 : (*AfterLoop->pred_rbegin())->findBranchDebugLoc(); 456 MachineInstr *End = 457 BuildMI(*AfterLoop, InsertPos, EndDL, TII.get(WebAssembly::END_LOOP)); 458 registerScope(Begin, End); 459 460 assert((!ScopeTops[AfterLoop->getNumber()] || 461 ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) && 462 "With block sorting the outermost loop for a block should be first."); 463 updateScopeTops(&MBB, AfterLoop); 464 } 465 466 void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) { 467 assert(MBB.isEHPad()); 468 MachineFunction &MF = *MBB.getParent(); 469 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 470 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 471 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 472 const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>(); 473 SortRegionInfo SRI(MLI, WEI); 474 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 475 476 // Compute the nearest common dominator of all unwind predecessors 477 MachineBasicBlock *Header = nullptr; 478 int MBBNumber = MBB.getNumber(); 479 for (auto *Pred : MBB.predecessors()) { 480 if (Pred->getNumber() < MBBNumber) { 481 Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred; 482 assert(!explicitlyBranchesTo(Pred, &MBB) && 483 "Explicit branch to an EH pad!"); 484 } 485 } 486 if (!Header) 487 return; 488 489 // If this try is at the bottom of the function, insert a dummy block at the 490 // end. 491 WebAssemblyException *WE = WEI.getExceptionFor(&MBB); 492 assert(WE); 493 MachineBasicBlock *Bottom = SRI.getBottom(WE); 494 auto Iter = std::next(Bottom->getIterator()); 495 if (Iter == MF.end()) { 496 getAppendixBlock(MF); 497 Iter = std::next(Bottom->getIterator()); 498 } 499 MachineBasicBlock *Cont = &*Iter; 500 501 // If the nearest common dominator is inside a more deeply nested context, 502 // walk out to the nearest scope which isn't more deeply nested. 503 for (MachineFunction::iterator I(Bottom), E(Header); I != E; --I) { 504 if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) { 505 if (ScopeTop->getNumber() > Header->getNumber()) { 506 // Skip over an intervening scope. 507 I = std::next(ScopeTop->getIterator()); 508 } else { 509 // We found a scope level at an appropriate depth. 510 Header = ScopeTop; 511 break; 512 } 513 } 514 } 515 516 // Decide where in Header to put the TRY. 517 518 // Instructions that should go before the TRY. 519 SmallPtrSet<const MachineInstr *, 4> BeforeSet; 520 // Instructions that should go after the TRY. 521 SmallPtrSet<const MachineInstr *, 4> AfterSet; 522 for (const auto &MI : *Header) { 523 // If there is a previously placed LOOP marker and the bottom block of the 524 // loop is above MBB, it should be after the TRY, because the loop is nested 525 // in this TRY. Otherwise it should be before the TRY. 526 if (MI.getOpcode() == WebAssembly::LOOP) { 527 auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode(); 528 if (MBB.getNumber() > LoopBottom->getNumber()) 529 AfterSet.insert(&MI); 530 #ifndef NDEBUG 531 else 532 BeforeSet.insert(&MI); 533 #endif 534 } 535 536 // All previously inserted BLOCK/TRY markers should be after the TRY because 537 // they are all nested blocks/trys. 538 if (MI.getOpcode() == WebAssembly::BLOCK || 539 MI.getOpcode() == WebAssembly::TRY) 540 AfterSet.insert(&MI); 541 542 #ifndef NDEBUG 543 // All END_(BLOCK/LOOP/TRY) markers should be before the TRY. 544 if (MI.getOpcode() == WebAssembly::END_BLOCK || 545 MI.getOpcode() == WebAssembly::END_LOOP || 546 MI.getOpcode() == WebAssembly::END_TRY) 547 BeforeSet.insert(&MI); 548 #endif 549 550 // Terminators should go after the TRY. 551 if (MI.isTerminator()) 552 AfterSet.insert(&MI); 553 } 554 555 // If Header unwinds to MBB (= Header contains 'invoke'), the try block should 556 // contain the call within it. So the call should go after the TRY. The 557 // exception is when the header's terminator is a rethrow instruction, in 558 // which case that instruction, not a call instruction before it, is gonna 559 // throw. 560 MachineInstr *ThrowingCall = nullptr; 561 if (MBB.isPredecessor(Header)) { 562 auto TermPos = Header->getFirstTerminator(); 563 if (TermPos == Header->end() || 564 TermPos->getOpcode() != WebAssembly::RETHROW) { 565 for (auto &MI : reverse(*Header)) { 566 if (MI.isCall()) { 567 AfterSet.insert(&MI); 568 ThrowingCall = &MI; 569 // Possibly throwing calls are usually wrapped by EH_LABEL 570 // instructions. We don't want to split them and the call. 571 if (MI.getIterator() != Header->begin() && 572 std::prev(MI.getIterator())->isEHLabel()) { 573 AfterSet.insert(&*std::prev(MI.getIterator())); 574 ThrowingCall = &*std::prev(MI.getIterator()); 575 } 576 break; 577 } 578 } 579 } 580 } 581 582 // Local expression tree should go after the TRY. 583 // For BLOCK placement, we start the search from the previous instruction of a 584 // BB's terminator, but in TRY's case, we should start from the previous 585 // instruction of a call that can throw, or a EH_LABEL that precedes the call, 586 // because the return values of the call's previous instructions can be 587 // stackified and consumed by the throwing call. 588 auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall) 589 : Header->getFirstTerminator(); 590 for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) { 591 if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) 592 continue; 593 if (WebAssembly::isChild(*std::prev(I), MFI)) 594 AfterSet.insert(&*std::prev(I)); 595 else 596 break; 597 } 598 599 // Add the TRY. 600 auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet); 601 MachineInstr *Begin = 602 BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos), 603 TII.get(WebAssembly::TRY)) 604 .addImm(int64_t(WebAssembly::BlockType::Void)); 605 606 // Decide where in Cont to put the END_TRY. 607 BeforeSet.clear(); 608 AfterSet.clear(); 609 for (const auto &MI : *Cont) { 610 #ifndef NDEBUG 611 // END_TRY should precede existing LOOP markers. 612 if (MI.getOpcode() == WebAssembly::LOOP) 613 AfterSet.insert(&MI); 614 615 // All END_TRY markers placed earlier belong to exceptions that contains 616 // this one. 617 if (MI.getOpcode() == WebAssembly::END_TRY) 618 AfterSet.insert(&MI); 619 #endif 620 621 // If there is a previously placed END_LOOP marker and its header is after 622 // where TRY marker is, this loop is contained within the 'catch' part, so 623 // the END_TRY marker should go after that. Otherwise, the whole try-catch 624 // is contained within this loop, so the END_TRY should go before that. 625 if (MI.getOpcode() == WebAssembly::END_LOOP) { 626 // For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they 627 // are in the same BB, LOOP is always before TRY. 628 if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber()) 629 BeforeSet.insert(&MI); 630 #ifndef NDEBUG 631 else 632 AfterSet.insert(&MI); 633 #endif 634 } 635 636 // It is not possible for an END_BLOCK to be already in this block. 637 } 638 639 // Mark the end of the TRY. 640 InsertPos = getEarliestInsertPos(Cont, BeforeSet, AfterSet); 641 MachineInstr *End = BuildMI(*Cont, InsertPos, Bottom->findBranchDebugLoc(), 642 TII.get(WebAssembly::END_TRY)); 643 registerTryScope(Begin, End, &MBB); 644 645 // Track the farthest-spanning scope that ends at this point. We create two 646 // mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB 647 // with 'try'). We need to create 'catch' -> 'try' mapping here too because 648 // markers should not span across 'catch'. For example, this should not 649 // happen: 650 // 651 // try 652 // block --| (X) 653 // catch | 654 // end_block --| 655 // end_try 656 for (auto *End : {&MBB, Cont}) 657 updateScopeTops(Header, End); 658 } 659 660 void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) { 661 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 662 663 // When there is an unconditional branch right before a catch instruction and 664 // it branches to the end of end_try marker, we don't need the branch, because 665 // if there is no exception, the control flow transfers to that point anyway. 666 // bb0: 667 // try 668 // ... 669 // br bb2 <- Not necessary 670 // bb1 (ehpad): 671 // catch 672 // ... 673 // bb2: <- Continuation BB 674 // end 675 // 676 // A more involved case: When the BB where 'end' is located is an another EH 677 // pad, the Cont (= continuation) BB is that EH pad's 'end' BB. For example, 678 // bb0: 679 // try 680 // try 681 // ... 682 // br bb3 <- Not necessary 683 // bb1 (ehpad): 684 // catch 685 // bb2 (ehpad): 686 // end 687 // catch 688 // ... 689 // bb3: <- Continuation BB 690 // end 691 // 692 // When the EH pad at hand is bb1, its matching end_try is in bb2. But it is 693 // another EH pad, so bb0's continuation BB becomes bb3. So 'br bb3' in the 694 // code can be deleted. This is why we run 'while' until 'Cont' is not an EH 695 // pad. 696 for (auto &MBB : MF) { 697 if (!MBB.isEHPad()) 698 continue; 699 700 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 701 SmallVector<MachineOperand, 4> Cond; 702 MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode(); 703 704 MachineBasicBlock *Cont = &MBB; 705 while (Cont->isEHPad()) { 706 MachineInstr *Try = EHPadToTry[Cont]; 707 MachineInstr *EndTry = BeginToEnd[Try]; 708 // We started from an EH pad, so the end marker cannot be a delegate 709 assert(EndTry->getOpcode() != WebAssembly::DELEGATE); 710 Cont = EndTry->getParent(); 711 } 712 713 bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond); 714 // This condition means either 715 // 1. This BB ends with a single unconditional branch whose destinaion is 716 // Cont. 717 // 2. This BB ends with a conditional branch followed by an unconditional 718 // branch, and the unconditional branch's destination is Cont. 719 // In both cases, we want to remove the last (= unconditional) branch. 720 if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) || 721 (!Cond.empty() && FBB && FBB == Cont))) { 722 bool ErasedUncondBr = false; 723 (void)ErasedUncondBr; 724 for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin(); 725 I != E; --I) { 726 auto PrevI = std::prev(I); 727 if (PrevI->isTerminator()) { 728 assert(PrevI->getOpcode() == WebAssembly::BR); 729 PrevI->eraseFromParent(); 730 ErasedUncondBr = true; 731 break; 732 } 733 } 734 assert(ErasedUncondBr && "Unconditional branch not erased!"); 735 } 736 } 737 738 // When there are block / end_block markers that overlap with try / end_try 739 // markers, and the block and try markers' return types are the same, the 740 // block /end_block markers are not necessary, because try / end_try markers 741 // also can serve as boundaries for branches. 742 // block <- Not necessary 743 // try 744 // ... 745 // catch 746 // ... 747 // end 748 // end <- Not necessary 749 SmallVector<MachineInstr *, 32> ToDelete; 750 for (auto &MBB : MF) { 751 for (auto &MI : MBB) { 752 if (MI.getOpcode() != WebAssembly::TRY) 753 continue; 754 MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try]; 755 if (EndTry->getOpcode() == WebAssembly::DELEGATE) 756 continue; 757 758 MachineBasicBlock *TryBB = Try->getParent(); 759 MachineBasicBlock *Cont = EndTry->getParent(); 760 int64_t RetType = Try->getOperand(0).getImm(); 761 for (auto B = Try->getIterator(), E = std::next(EndTry->getIterator()); 762 B != TryBB->begin() && E != Cont->end() && 763 std::prev(B)->getOpcode() == WebAssembly::BLOCK && 764 E->getOpcode() == WebAssembly::END_BLOCK && 765 std::prev(B)->getOperand(0).getImm() == RetType; 766 --B, ++E) { 767 ToDelete.push_back(&*std::prev(B)); 768 ToDelete.push_back(&*E); 769 } 770 } 771 } 772 for (auto *MI : ToDelete) { 773 if (MI->getOpcode() == WebAssembly::BLOCK) 774 unregisterScope(MI); 775 MI->eraseFromParent(); 776 } 777 } 778 779 // When MBB is split into MBB and Split, we should unstackify defs in MBB that 780 // have their uses in Split. 781 static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB, 782 MachineBasicBlock &Split) { 783 MachineFunction &MF = *MBB.getParent(); 784 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 785 auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 786 auto &MRI = MF.getRegInfo(); 787 788 for (auto &MI : Split) { 789 for (auto &MO : MI.explicit_uses()) { 790 if (!MO.isReg() || MO.getReg().isPhysical()) 791 continue; 792 if (MachineInstr *Def = MRI.getUniqueVRegDef(MO.getReg())) 793 if (Def->getParent() == &MBB) 794 MFI.unstackifyVReg(MO.getReg()); 795 } 796 } 797 798 // In RegStackify, when a register definition is used multiple times, 799 // Reg = INST ... 800 // INST ..., Reg, ... 801 // INST ..., Reg, ... 802 // INST ..., Reg, ... 803 // 804 // we introduce a TEE, which has the following form: 805 // DefReg = INST ... 806 // TeeReg, Reg = TEE_... DefReg 807 // INST ..., TeeReg, ... 808 // INST ..., Reg, ... 809 // INST ..., Reg, ... 810 // with DefReg and TeeReg stackified but Reg not stackified. 811 // 812 // But the invariant that TeeReg should be stackified can be violated while we 813 // unstackify registers in the split BB above. In this case, we convert TEEs 814 // into two COPYs. This COPY will be eventually eliminated in ExplicitLocals. 815 // DefReg = INST ... 816 // TeeReg = COPY DefReg 817 // Reg = COPY DefReg 818 // INST ..., TeeReg, ... 819 // INST ..., Reg, ... 820 // INST ..., Reg, ... 821 for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) { 822 if (!WebAssembly::isTee(MI.getOpcode())) 823 continue; 824 Register TeeReg = MI.getOperand(0).getReg(); 825 Register Reg = MI.getOperand(1).getReg(); 826 Register DefReg = MI.getOperand(2).getReg(); 827 if (!MFI.isVRegStackified(TeeReg)) { 828 // Now we are not using TEE anymore, so unstackify DefReg too 829 MFI.unstackifyVReg(DefReg); 830 unsigned CopyOpc = 831 WebAssembly::getCopyOpcodeForRegClass(MRI.getRegClass(DefReg)); 832 BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), TeeReg) 833 .addReg(DefReg); 834 BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), Reg).addReg(DefReg); 835 MI.eraseFromParent(); 836 } 837 } 838 } 839 840 // Wrap the given range of instruction with try-delegate. RangeBegin and 841 // RangeEnd are inclusive. 842 void WebAssemblyCFGStackify::addNestedTryDelegate( 843 MachineInstr *RangeBegin, MachineInstr *RangeEnd, 844 MachineBasicBlock *UnwindDest) { 845 auto *BeginBB = RangeBegin->getParent(); 846 auto *EndBB = RangeEnd->getParent(); 847 MachineFunction &MF = *BeginBB->getParent(); 848 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 849 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 850 851 // Local expression tree before the first call of this range should go 852 // after the nested TRY. 853 SmallPtrSet<const MachineInstr *, 4> AfterSet; 854 AfterSet.insert(RangeBegin); 855 for (auto I = MachineBasicBlock::iterator(RangeBegin), E = BeginBB->begin(); 856 I != E; --I) { 857 if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition()) 858 continue; 859 if (WebAssembly::isChild(*std::prev(I), MFI)) 860 AfterSet.insert(&*std::prev(I)); 861 else 862 break; 863 } 864 865 // Create the nested try instruction. 866 auto TryPos = getLatestInsertPos( 867 BeginBB, SmallPtrSet<const MachineInstr *, 4>(), AfterSet); 868 MachineInstr *Try = BuildMI(*BeginBB, TryPos, RangeBegin->getDebugLoc(), 869 TII.get(WebAssembly::TRY)) 870 .addImm(int64_t(WebAssembly::BlockType::Void)); 871 872 // Create a BB to insert the 'delegate' instruction. 873 MachineBasicBlock *DelegateBB = MF.CreateMachineBasicBlock(); 874 // If the destination of 'delegate' is not the caller, adds the destination to 875 // the BB's successors. 876 if (UnwindDest != FakeCallerBB) 877 DelegateBB->addSuccessor(UnwindDest); 878 879 auto SplitPos = std::next(RangeEnd->getIterator()); 880 if (SplitPos == EndBB->end()) { 881 // If the range's end instruction is at the end of the BB, insert the new 882 // delegate BB after the current BB. 883 MF.insert(std::next(EndBB->getIterator()), DelegateBB); 884 EndBB->addSuccessor(DelegateBB); 885 886 } else { 887 // When the split pos is in the middle of a BB, we split the BB into two and 888 // put the 'delegate' BB in between. We normally create a split BB and make 889 // it a successor of the original BB (PostSplit == true), but in case the BB 890 // is an EH pad and the split pos is before 'catch', we should preserve the 891 // BB's property, including that it is an EH pad, in the later part of the 892 // BB, where 'catch' is. In this case we set PostSplit to false. 893 bool PostSplit = true; 894 if (EndBB->isEHPad()) { 895 for (auto I = MachineBasicBlock::iterator(SplitPos), E = EndBB->end(); 896 I != E; ++I) { 897 if (WebAssembly::isCatch(I->getOpcode())) { 898 PostSplit = false; 899 break; 900 } 901 } 902 } 903 904 MachineBasicBlock *PreBB = nullptr, *PostBB = nullptr; 905 if (PostSplit) { 906 // If the range's end instruction is in the middle of the BB, we split the 907 // BB into two and insert the delegate BB in between. 908 // - Before: 909 // bb: 910 // range_end 911 // other_insts 912 // 913 // - After: 914 // pre_bb: (previous 'bb') 915 // range_end 916 // delegate_bb: (new) 917 // delegate 918 // post_bb: (new) 919 // other_insts 920 PreBB = EndBB; 921 PostBB = MF.CreateMachineBasicBlock(); 922 MF.insert(std::next(PreBB->getIterator()), PostBB); 923 MF.insert(std::next(PreBB->getIterator()), DelegateBB); 924 PostBB->splice(PostBB->end(), PreBB, SplitPos, PreBB->end()); 925 PostBB->transferSuccessors(PreBB); 926 } else { 927 // - Before: 928 // ehpad: 929 // range_end 930 // catch 931 // ... 932 // 933 // - After: 934 // pre_bb: (new) 935 // range_end 936 // delegate_bb: (new) 937 // delegate 938 // post_bb: (previous 'ehpad') 939 // catch 940 // ... 941 assert(EndBB->isEHPad()); 942 PreBB = MF.CreateMachineBasicBlock(); 943 PostBB = EndBB; 944 MF.insert(PostBB->getIterator(), PreBB); 945 MF.insert(PostBB->getIterator(), DelegateBB); 946 PreBB->splice(PreBB->end(), PostBB, PostBB->begin(), SplitPos); 947 // We don't need to transfer predecessors of the EH pad to 'PreBB', 948 // because an EH pad's predecessors are all through unwind edges and they 949 // should still unwind to the EH pad, not PreBB. 950 } 951 unstackifyVRegsUsedInSplitBB(*PreBB, *PostBB); 952 PreBB->addSuccessor(DelegateBB); 953 PreBB->addSuccessor(PostBB); 954 } 955 956 // Add 'delegate' instruction in the delegate BB created above. 957 MachineInstr *Delegate = BuildMI(DelegateBB, RangeEnd->getDebugLoc(), 958 TII.get(WebAssembly::DELEGATE)) 959 .addMBB(UnwindDest); 960 registerTryScope(Try, Delegate, nullptr); 961 } 962 963 bool WebAssemblyCFGStackify::fixCallUnwindMismatches(MachineFunction &MF) { 964 // Linearizing the control flow by placing TRY / END_TRY markers can create 965 // mismatches in unwind destinations for throwing instructions, such as calls. 966 // 967 // We use the 'delegate' instruction to fix the unwind mismatches. 'delegate' 968 // instruction delegates an exception to an outer 'catch'. It can target not 969 // only 'catch' but all block-like structures including another 'delegate', 970 // but with slightly different semantics than branches. When it targets a 971 // 'catch', it will delegate the exception to that catch. It is being 972 // discussed how to define the semantics when 'delegate''s target is a non-try 973 // block: it will either be a validation failure or it will target the next 974 // outer try-catch. But anyway our LLVM backend currently does not generate 975 // such code. The example below illustrates where the 'delegate' instruction 976 // in the middle will delegate the exception to, depending on the value of N. 977 // try 978 // try 979 // block 980 // try 981 // try 982 // call @foo 983 // delegate N ;; Where will this delegate to? 984 // catch ;; N == 0 985 // end 986 // end ;; N == 1 (invalid; will not be generated) 987 // delegate ;; N == 2 988 // catch ;; N == 3 989 // end 990 // ;; N == 4 (to caller) 991 992 // 1. When an instruction may throw, but the EH pad it will unwind to can be 993 // different from the original CFG. 994 // 995 // Example: we have the following CFG: 996 // bb0: 997 // call @foo ; if it throws, unwind to bb2 998 // bb1: 999 // call @bar ; if it throws, unwind to bb3 1000 // bb2 (ehpad): 1001 // catch 1002 // ... 1003 // bb3 (ehpad) 1004 // catch 1005 // ... 1006 // 1007 // And the CFG is sorted in this order. Then after placing TRY markers, it 1008 // will look like: (BB markers are omitted) 1009 // try 1010 // try 1011 // call @foo 1012 // call @bar ;; if it throws, unwind to bb3 1013 // catch ;; ehpad (bb2) 1014 // ... 1015 // end_try 1016 // catch ;; ehpad (bb3) 1017 // ... 1018 // end_try 1019 // 1020 // Now if bar() throws, it is going to end up ip in bb2, not bb3, where it 1021 // is supposed to end up. We solve this problem by wrapping the mismatching 1022 // call with an inner try-delegate that rethrows the exception to the right 1023 // 'catch'. 1024 // 1025 // try 1026 // try 1027 // call @foo 1028 // try ;; (new) 1029 // call @bar 1030 // delegate 1 (bb3) ;; (new) 1031 // catch ;; ehpad (bb2) 1032 // ... 1033 // end_try 1034 // catch ;; ehpad (bb3) 1035 // ... 1036 // end_try 1037 // 1038 // --- 1039 // 2. The same as 1, but in this case an instruction unwinds to a caller 1040 // function and not another EH pad. 1041 // 1042 // Example: we have the following CFG: 1043 // bb0: 1044 // call @foo ; if it throws, unwind to bb2 1045 // bb1: 1046 // call @bar ; if it throws, unwind to caller 1047 // bb2 (ehpad): 1048 // catch 1049 // ... 1050 // 1051 // And the CFG is sorted in this order. Then after placing TRY markers, it 1052 // will look like: 1053 // try 1054 // call @foo 1055 // call @bar ;; if it throws, unwind to caller 1056 // catch ;; ehpad (bb2) 1057 // ... 1058 // end_try 1059 // 1060 // Now if bar() throws, it is going to end up ip in bb2, when it is supposed 1061 // throw up to the caller. We solve this problem in the same way, but in this 1062 // case 'delegate's immediate argument is the number of block depths + 1, 1063 // which means it rethrows to the caller. 1064 // try 1065 // call @foo 1066 // try ;; (new) 1067 // call @bar 1068 // delegate 1 (caller) ;; (new) 1069 // catch ;; ehpad (bb2) 1070 // ... 1071 // end_try 1072 // 1073 // Before rewriteDepthImmediates, delegate's argument is a BB. In case of the 1074 // caller, it will take a fake BB generated by getFakeCallerBlock(), which 1075 // will be converted to a correct immediate argument later. 1076 // 1077 // In case there are multiple calls in a BB that may throw to the caller, they 1078 // can be wrapped together in one nested try-delegate scope. (In 1, this 1079 // couldn't happen, because may-throwing instruction there had an unwind 1080 // destination, i.e., it was an invoke before, and there could be only one 1081 // invoke within a BB.) 1082 1083 SmallVector<const MachineBasicBlock *, 8> EHPadStack; 1084 // Range of intructions to be wrapped in a new nested try/catch. A range 1085 // exists in a single BB and does not span multiple BBs. 1086 using TryRange = std::pair<MachineInstr *, MachineInstr *>; 1087 // In original CFG, <unwind destination BB, a vector of try ranges> 1088 DenseMap<MachineBasicBlock *, SmallVector<TryRange, 4>> UnwindDestToTryRanges; 1089 1090 // Gather possibly throwing calls (i.e., previously invokes) whose current 1091 // unwind destination is not the same as the original CFG. (Case 1) 1092 1093 for (auto &MBB : reverse(MF)) { 1094 bool SeenThrowableInstInBB = false; 1095 for (auto &MI : reverse(MBB)) { 1096 if (MI.getOpcode() == WebAssembly::TRY) 1097 EHPadStack.pop_back(); 1098 else if (WebAssembly::isCatch(MI.getOpcode())) 1099 EHPadStack.push_back(MI.getParent()); 1100 1101 // In this loop we only gather calls that have an EH pad to unwind. So 1102 // there will be at most 1 such call (= invoke) in a BB, so after we've 1103 // seen one, we can skip the rest of BB. Also if MBB has no EH pad 1104 // successor or MI does not throw, this is not an invoke. 1105 if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() || 1106 !WebAssembly::mayThrow(MI)) 1107 continue; 1108 SeenThrowableInstInBB = true; 1109 1110 // If the EH pad on the stack top is where this instruction should unwind 1111 // next, we're good. 1112 MachineBasicBlock *UnwindDest = getFakeCallerBlock(MF); 1113 for (auto *Succ : MBB.successors()) { 1114 // Even though semantically a BB can have multiple successors in case an 1115 // exception is not caught by a catchpad, in our backend implementation 1116 // it is guaranteed that a BB can have at most one EH pad successor. For 1117 // details, refer to comments in findWasmUnwindDestinations function in 1118 // SelectionDAGBuilder.cpp. 1119 if (Succ->isEHPad()) { 1120 UnwindDest = Succ; 1121 break; 1122 } 1123 } 1124 if (EHPadStack.back() == UnwindDest) 1125 continue; 1126 1127 // Include EH_LABELs in the range before and after the invoke 1128 MachineInstr *RangeBegin = &MI, *RangeEnd = &MI; 1129 if (RangeBegin->getIterator() != MBB.begin() && 1130 std::prev(RangeBegin->getIterator())->isEHLabel()) 1131 RangeBegin = &*std::prev(RangeBegin->getIterator()); 1132 if (std::next(RangeEnd->getIterator()) != MBB.end() && 1133 std::next(RangeEnd->getIterator())->isEHLabel()) 1134 RangeEnd = &*std::next(RangeEnd->getIterator()); 1135 1136 // If not, record the range. 1137 UnwindDestToTryRanges[UnwindDest].push_back( 1138 TryRange(RangeBegin, RangeEnd)); 1139 LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " << MBB.getName() 1140 << "\nCall = " << MI 1141 << "\nOriginal dest = " << UnwindDest->getName() 1142 << " Current dest = " << EHPadStack.back()->getName() 1143 << "\n\n"); 1144 } 1145 } 1146 1147 assert(EHPadStack.empty()); 1148 1149 // Gather possibly throwing calls that are supposed to unwind up to the caller 1150 // if they throw, but currently unwind to an incorrect destination. Unlike the 1151 // loop above, there can be multiple calls within a BB that unwind to the 1152 // caller, which we should group together in a range. (Case 2) 1153 1154 MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive 1155 1156 // Record the range. 1157 auto RecordCallerMismatchRange = [&](const MachineBasicBlock *CurrentDest) { 1158 UnwindDestToTryRanges[getFakeCallerBlock(MF)].push_back( 1159 TryRange(RangeBegin, RangeEnd)); 1160 LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " 1161 << RangeBegin->getParent()->getName() 1162 << "\nRange begin = " << *RangeBegin 1163 << "Range end = " << *RangeEnd 1164 << "\nOriginal dest = caller Current dest = " 1165 << CurrentDest->getName() << "\n\n"); 1166 RangeBegin = RangeEnd = nullptr; // Reset range pointers 1167 }; 1168 1169 for (auto &MBB : reverse(MF)) { 1170 bool SeenThrowableInstInBB = false; 1171 for (auto &MI : reverse(MBB)) { 1172 bool MayThrow = WebAssembly::mayThrow(MI); 1173 1174 // If MBB has an EH pad successor and this is the last instruction that 1175 // may throw, this instruction unwinds to the EH pad and not to the 1176 // caller. 1177 if (MBB.hasEHPadSuccessor() && MayThrow && !SeenThrowableInstInBB) 1178 SeenThrowableInstInBB = true; 1179 1180 // We wrap up the current range when we see a marker even if we haven't 1181 // finished a BB. 1182 else if (RangeEnd && WebAssembly::isMarker(MI.getOpcode())) 1183 RecordCallerMismatchRange(EHPadStack.back()); 1184 1185 // If EHPadStack is empty, that means it correctly unwinds to the caller 1186 // if it throws, so we're good. If MI does not throw, we're good too. 1187 else if (EHPadStack.empty() || !MayThrow) { 1188 } 1189 1190 // We found an instruction that unwinds to the caller but currently has an 1191 // incorrect unwind destination. Create a new range or increment the 1192 // currently existing range. 1193 else { 1194 if (!RangeEnd) 1195 RangeBegin = RangeEnd = &MI; 1196 else 1197 RangeBegin = &MI; 1198 } 1199 1200 // Update EHPadStack. 1201 if (MI.getOpcode() == WebAssembly::TRY) 1202 EHPadStack.pop_back(); 1203 else if (WebAssembly::isCatch(MI.getOpcode())) 1204 EHPadStack.push_back(MI.getParent()); 1205 } 1206 1207 if (RangeEnd) 1208 RecordCallerMismatchRange(EHPadStack.back()); 1209 } 1210 1211 assert(EHPadStack.empty()); 1212 1213 // We don't have any unwind destination mismatches to resolve. 1214 if (UnwindDestToTryRanges.empty()) 1215 return false; 1216 1217 // Now we fix the mismatches by wrapping calls with inner try-delegates. 1218 for (auto &P : UnwindDestToTryRanges) { 1219 NumCallUnwindMismatches += P.second.size(); 1220 MachineBasicBlock *UnwindDest = P.first; 1221 auto &TryRanges = P.second; 1222 1223 for (auto Range : TryRanges) { 1224 MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; 1225 std::tie(RangeBegin, RangeEnd) = Range; 1226 auto *MBB = RangeBegin->getParent(); 1227 1228 // If this BB has an EH pad successor, i.e., ends with an 'invoke', and if 1229 // the current range contains the invoke, now we are going to wrap the 1230 // invoke with try-delegate, making the 'delegate' BB the new successor 1231 // instead, so remove the EH pad succesor here. The BB may not have an EH 1232 // pad successor if calls in this BB throw to the caller. 1233 if (UnwindDest != getFakeCallerBlock(MF)) { 1234 MachineBasicBlock *EHPad = nullptr; 1235 for (auto *Succ : MBB->successors()) { 1236 if (Succ->isEHPad()) { 1237 EHPad = Succ; 1238 break; 1239 } 1240 } 1241 if (EHPad) 1242 MBB->removeSuccessor(EHPad); 1243 } 1244 1245 addNestedTryDelegate(RangeBegin, RangeEnd, UnwindDest); 1246 } 1247 } 1248 1249 return true; 1250 } 1251 1252 bool WebAssemblyCFGStackify::fixCatchUnwindMismatches(MachineFunction &MF) { 1253 // There is another kind of unwind destination mismatches besides call unwind 1254 // mismatches, which we will call "catch unwind mismatches". See this example 1255 // after the marker placement: 1256 // try 1257 // try 1258 // call @foo 1259 // catch __cpp_exception ;; ehpad A (next unwind dest: caller) 1260 // ... 1261 // end_try 1262 // catch_all ;; ehpad B 1263 // ... 1264 // end_try 1265 // 1266 // 'call @foo's unwind destination is the ehpad A. But suppose 'call @foo' 1267 // throws a foreign exception that is not caught by ehpad A, and its next 1268 // destination should be the caller. But after control flow linearization, 1269 // another EH pad can be placed in between (e.g. ehpad B here), making the 1270 // next unwind destination incorrect. In this case, the foreign exception 1271 // will instead go to ehpad B and will be caught there instead. In this 1272 // example the correct next unwind destination is the caller, but it can be 1273 // another outer catch in other cases. 1274 // 1275 // There is no specific 'call' or 'throw' instruction to wrap with a 1276 // try-delegate, so we wrap the whole try-catch-end with a try-delegate and 1277 // make it rethrow to the right destination, as in the example below: 1278 // try 1279 // try ;; (new) 1280 // try 1281 // call @foo 1282 // catch __cpp_exception ;; ehpad A (next unwind dest: caller) 1283 // ... 1284 // end_try 1285 // delegate 1 (caller) ;; (new) 1286 // catch_all ;; ehpad B 1287 // ... 1288 // end_try 1289 1290 const auto *EHInfo = MF.getWasmEHFuncInfo(); 1291 assert(EHInfo); 1292 SmallVector<const MachineBasicBlock *, 8> EHPadStack; 1293 // For EH pads that have catch unwind mismatches, a map of <EH pad, its 1294 // correct unwind destination>. 1295 DenseMap<MachineBasicBlock *, MachineBasicBlock *> EHPadToUnwindDest; 1296 1297 for (auto &MBB : reverse(MF)) { 1298 for (auto &MI : reverse(MBB)) { 1299 if (MI.getOpcode() == WebAssembly::TRY) 1300 EHPadStack.pop_back(); 1301 else if (MI.getOpcode() == WebAssembly::DELEGATE) 1302 EHPadStack.push_back(&MBB); 1303 else if (WebAssembly::isCatch(MI.getOpcode())) { 1304 auto *EHPad = &MBB; 1305 1306 // catch_all always catches an exception, so we don't need to do 1307 // anything 1308 if (MI.getOpcode() == WebAssembly::CATCH_ALL_LEGACY) { 1309 } 1310 1311 // This can happen when the unwind dest was removed during the 1312 // optimization, e.g. because it was unreachable. 1313 else if (EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) { 1314 LLVM_DEBUG(dbgs() << "EHPad (" << EHPad->getName() 1315 << "'s unwind destination does not exist anymore" 1316 << "\n\n"); 1317 } 1318 1319 // The EHPad's next unwind destination is the caller, but we incorrectly 1320 // unwind to another EH pad. 1321 else if (!EHPadStack.empty() && !EHInfo->hasUnwindDest(EHPad)) { 1322 EHPadToUnwindDest[EHPad] = getFakeCallerBlock(MF); 1323 LLVM_DEBUG(dbgs() 1324 << "- Catch unwind mismatch:\nEHPad = " << EHPad->getName() 1325 << " Original dest = caller Current dest = " 1326 << EHPadStack.back()->getName() << "\n\n"); 1327 } 1328 1329 // The EHPad's next unwind destination is an EH pad, whereas we 1330 // incorrectly unwind to another EH pad. 1331 else if (!EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) { 1332 auto *UnwindDest = EHInfo->getUnwindDest(EHPad); 1333 if (EHPadStack.back() != UnwindDest) { 1334 EHPadToUnwindDest[EHPad] = UnwindDest; 1335 LLVM_DEBUG(dbgs() << "- Catch unwind mismatch:\nEHPad = " 1336 << EHPad->getName() << " Original dest = " 1337 << UnwindDest->getName() << " Current dest = " 1338 << EHPadStack.back()->getName() << "\n\n"); 1339 } 1340 } 1341 1342 EHPadStack.push_back(EHPad); 1343 } 1344 } 1345 } 1346 1347 assert(EHPadStack.empty()); 1348 if (EHPadToUnwindDest.empty()) 1349 return false; 1350 NumCatchUnwindMismatches += EHPadToUnwindDest.size(); 1351 SmallPtrSet<MachineBasicBlock *, 4> NewEndTryBBs; 1352 1353 for (auto &[EHPad, UnwindDest] : EHPadToUnwindDest) { 1354 MachineInstr *Try = EHPadToTry[EHPad]; 1355 MachineInstr *EndTry = BeginToEnd[Try]; 1356 addNestedTryDelegate(Try, EndTry, UnwindDest); 1357 NewEndTryBBs.insert(EndTry->getParent()); 1358 } 1359 1360 // Adding a try-delegate wrapping an existing try-catch-end can make existing 1361 // branch destination BBs invalid. For example, 1362 // 1363 // - Before: 1364 // bb0: 1365 // block 1366 // br bb3 1367 // bb1: 1368 // try 1369 // ... 1370 // bb2: (ehpad) 1371 // catch 1372 // bb3: 1373 // end_try 1374 // end_block ;; 'br bb3' targets here 1375 // 1376 // Suppose this try-catch-end has a catch unwind mismatch, so we need to wrap 1377 // this with a try-delegate. Then this becomes: 1378 // 1379 // - After: 1380 // bb0: 1381 // block 1382 // br bb3 ;; invalid destination! 1383 // bb1: 1384 // try ;; (new instruction) 1385 // try 1386 // ... 1387 // bb2: (ehpad) 1388 // catch 1389 // bb3: 1390 // end_try ;; 'br bb3' still incorrectly targets here! 1391 // delegate_bb: ;; (new BB) 1392 // delegate ;; (new instruction) 1393 // split_bb: ;; (new BB) 1394 // end_block 1395 // 1396 // Now 'br bb3' incorrectly branches to an inner scope. 1397 // 1398 // As we can see in this case, when branches target a BB that has both 1399 // 'end_try' and 'end_block' and the BB is split to insert a 'delegate', we 1400 // have to remap existing branch destinations so that they target not the 1401 // 'end_try' BB but the new 'end_block' BB. There can be multiple 'delegate's 1402 // in between, so we try to find the next BB with 'end_block' instruction. In 1403 // this example, the 'br bb3' instruction should be remapped to 'br split_bb'. 1404 for (auto &MBB : MF) { 1405 for (auto &MI : MBB) { 1406 if (MI.isTerminator()) { 1407 for (auto &MO : MI.operands()) { 1408 if (MO.isMBB() && NewEndTryBBs.count(MO.getMBB())) { 1409 auto *BrDest = MO.getMBB(); 1410 bool FoundEndBlock = false; 1411 for (; std::next(BrDest->getIterator()) != MF.end(); 1412 BrDest = BrDest->getNextNode()) { 1413 for (const auto &MI : *BrDest) { 1414 if (MI.getOpcode() == WebAssembly::END_BLOCK) { 1415 FoundEndBlock = true; 1416 break; 1417 } 1418 } 1419 if (FoundEndBlock) 1420 break; 1421 } 1422 assert(FoundEndBlock); 1423 MO.setMBB(BrDest); 1424 } 1425 } 1426 } 1427 } 1428 } 1429 1430 return true; 1431 } 1432 1433 void WebAssemblyCFGStackify::recalculateScopeTops(MachineFunction &MF) { 1434 // Renumber BBs and recalculate ScopeTop info because new BBs might have been 1435 // created and inserted during fixing unwind mismatches. 1436 MF.RenumberBlocks(); 1437 MDT->updateBlockNumbers(); 1438 ScopeTops.clear(); 1439 ScopeTops.resize(MF.getNumBlockIDs()); 1440 for (auto &MBB : reverse(MF)) { 1441 for (auto &MI : reverse(MBB)) { 1442 if (ScopeTops[MBB.getNumber()]) 1443 break; 1444 switch (MI.getOpcode()) { 1445 case WebAssembly::END_BLOCK: 1446 case WebAssembly::END_LOOP: 1447 case WebAssembly::END_TRY: 1448 case WebAssembly::DELEGATE: 1449 updateScopeTops(EndToBegin[&MI]->getParent(), &MBB); 1450 break; 1451 case WebAssembly::CATCH_LEGACY: 1452 case WebAssembly::CATCH_ALL_LEGACY: 1453 updateScopeTops(EHPadToTry[&MBB]->getParent(), &MBB); 1454 break; 1455 } 1456 } 1457 } 1458 } 1459 1460 /// In normal assembly languages, when the end of a function is unreachable, 1461 /// because the function ends in an infinite loop or a noreturn call or similar, 1462 /// it isn't necessary to worry about the function return type at the end of 1463 /// the function, because it's never reached. However, in WebAssembly, blocks 1464 /// that end at the function end need to have a return type signature that 1465 /// matches the function signature, even though it's unreachable. This function 1466 /// checks for such cases and fixes up the signatures. 1467 void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) { 1468 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 1469 1470 if (MFI.getResults().empty()) 1471 return; 1472 1473 // MCInstLower will add the proper types to multivalue signatures based on the 1474 // function return type 1475 WebAssembly::BlockType RetType = 1476 MFI.getResults().size() > 1 1477 ? WebAssembly::BlockType::Multivalue 1478 : WebAssembly::BlockType( 1479 WebAssembly::toValType(MFI.getResults().front())); 1480 1481 SmallVector<MachineBasicBlock::reverse_iterator, 4> Worklist; 1482 Worklist.push_back(MF.rbegin()->rbegin()); 1483 1484 auto Process = [&](MachineBasicBlock::reverse_iterator It) { 1485 auto *MBB = It->getParent(); 1486 while (It != MBB->rend()) { 1487 MachineInstr &MI = *It++; 1488 if (MI.isPosition() || MI.isDebugInstr()) 1489 continue; 1490 switch (MI.getOpcode()) { 1491 case WebAssembly::END_TRY: { 1492 // If a 'try''s return type is fixed, both its try body and catch body 1493 // should satisfy the return type, so we need to search 'end' 1494 // instructions before its corresponding 'catch' too. 1495 auto *EHPad = TryToEHPad.lookup(EndToBegin[&MI]); 1496 assert(EHPad); 1497 auto NextIt = 1498 std::next(WebAssembly::findCatch(EHPad)->getReverseIterator()); 1499 if (NextIt != EHPad->rend()) 1500 Worklist.push_back(NextIt); 1501 [[fallthrough]]; 1502 } 1503 case WebAssembly::END_BLOCK: 1504 case WebAssembly::END_LOOP: 1505 case WebAssembly::DELEGATE: 1506 EndToBegin[&MI]->getOperand(0).setImm(int32_t(RetType)); 1507 continue; 1508 default: 1509 // Something other than an `end`. We're done for this BB. 1510 return; 1511 } 1512 } 1513 // We've reached the beginning of a BB. Continue the search in the previous 1514 // BB. 1515 Worklist.push_back(MBB->getPrevNode()->rbegin()); 1516 }; 1517 1518 while (!Worklist.empty()) 1519 Process(Worklist.pop_back_val()); 1520 } 1521 1522 // WebAssembly functions end with an end instruction, as if the function body 1523 // were a block. 1524 static void appendEndToFunction(MachineFunction &MF, 1525 const WebAssemblyInstrInfo &TII) { 1526 BuildMI(MF.back(), MF.back().end(), 1527 MF.back().findPrevDebugLoc(MF.back().end()), 1528 TII.get(WebAssembly::END_FUNCTION)); 1529 } 1530 1531 /// Insert BLOCK/LOOP/TRY markers at appropriate places. 1532 void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) { 1533 // We allocate one more than the number of blocks in the function to 1534 // accommodate for the possible fake block we may insert at the end. 1535 ScopeTops.resize(MF.getNumBlockIDs() + 1); 1536 // Place the LOOP for MBB if MBB is the header of a loop. 1537 for (auto &MBB : MF) 1538 placeLoopMarker(MBB); 1539 1540 const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo(); 1541 for (auto &MBB : MF) { 1542 if (MBB.isEHPad()) { 1543 // Place the TRY for MBB if MBB is the EH pad of an exception. 1544 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && 1545 MF.getFunction().hasPersonalityFn()) 1546 placeTryMarker(MBB); 1547 } else { 1548 // Place the BLOCK for MBB if MBB is branched to from above. 1549 placeBlockMarker(MBB); 1550 } 1551 } 1552 // Fix mismatches in unwind destinations induced by linearizing the code. 1553 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && 1554 MF.getFunction().hasPersonalityFn()) { 1555 bool MismatchFixed = fixCallUnwindMismatches(MF); 1556 MismatchFixed |= fixCatchUnwindMismatches(MF); 1557 if (MismatchFixed) 1558 recalculateScopeTops(MF); 1559 } 1560 } 1561 1562 unsigned WebAssemblyCFGStackify::getBranchDepth( 1563 const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) { 1564 unsigned Depth = 0; 1565 for (auto X : reverse(Stack)) { 1566 if (X.first == MBB) 1567 break; 1568 ++Depth; 1569 } 1570 assert(Depth < Stack.size() && "Branch destination should be in scope"); 1571 return Depth; 1572 } 1573 1574 unsigned WebAssemblyCFGStackify::getDelegateDepth( 1575 const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) { 1576 if (MBB == FakeCallerBB) 1577 return Stack.size(); 1578 // Delegate's destination is either a catch or a another delegate BB. When the 1579 // destination is another delegate, we can compute the argument in the same 1580 // way as branches, because the target delegate BB only contains the single 1581 // delegate instruction. 1582 if (!MBB->isEHPad()) // Target is a delegate BB 1583 return getBranchDepth(Stack, MBB); 1584 1585 // When the delegate's destination is a catch BB, we need to use its 1586 // corresponding try's end_try BB because Stack contains each marker's end BB. 1587 // Also we need to check if the end marker instruction matches, because a 1588 // single BB can contain multiple end markers, like this: 1589 // bb: 1590 // END_BLOCK 1591 // END_TRY 1592 // END_BLOCK 1593 // END_TRY 1594 // ... 1595 // 1596 // In case of branches getting the immediate that targets any of these is 1597 // fine, but delegate has to exactly target the correct try. 1598 unsigned Depth = 0; 1599 const MachineInstr *EndTry = BeginToEnd[EHPadToTry[MBB]]; 1600 for (auto X : reverse(Stack)) { 1601 if (X.first == EndTry->getParent() && X.second == EndTry) 1602 break; 1603 ++Depth; 1604 } 1605 assert(Depth < Stack.size() && "Delegate destination should be in scope"); 1606 return Depth; 1607 } 1608 1609 unsigned WebAssemblyCFGStackify::getRethrowDepth( 1610 const SmallVectorImpl<EndMarkerInfo> &Stack, 1611 const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack) { 1612 unsigned Depth = 0; 1613 // In our current implementation, rethrows always rethrow the exception caught 1614 // by the innermost enclosing catch. This means while traversing Stack in the 1615 // reverse direction, when we encounter END_TRY, we should check if the 1616 // END_TRY corresponds to the current innermost EH pad. For example: 1617 // try 1618 // ... 1619 // catch ;; (a) 1620 // try 1621 // rethrow 1 ;; (b) 1622 // catch ;; (c) 1623 // rethrow 0 ;; (d) 1624 // end ;; (e) 1625 // end ;; (f) 1626 // 1627 // When we are at 'rethrow' (d), while reversely traversing Stack the first 1628 // 'end' we encounter is the 'end' (e), which corresponds to the 'catch' (c). 1629 // And 'rethrow' (d) rethrows the exception caught by 'catch' (c), so we stop 1630 // there and the depth should be 0. But when we are at 'rethrow' (b), it 1631 // rethrows the exception caught by 'catch' (a), so when traversing Stack 1632 // reversely, we should skip the 'end' (e) and choose 'end' (f), which 1633 // corresponds to 'catch' (a). 1634 for (auto X : reverse(Stack)) { 1635 const MachineInstr *End = X.second; 1636 if (End->getOpcode() == WebAssembly::END_TRY) { 1637 auto *EHPad = TryToEHPad[EndToBegin[End]]; 1638 if (EHPadStack.back() == EHPad) 1639 break; 1640 } 1641 ++Depth; 1642 } 1643 assert(Depth < Stack.size() && "Rethrow destination should be in scope"); 1644 return Depth; 1645 } 1646 1647 void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) { 1648 // Now rewrite references to basic blocks to be depth immediates. 1649 SmallVector<EndMarkerInfo, 8> Stack; 1650 SmallVector<const MachineBasicBlock *, 8> EHPadStack; 1651 1652 auto RewriteOperands = [&](MachineInstr &MI) { 1653 // Rewrite MBB operands to be depth immediates. 1654 SmallVector<MachineOperand, 4> Ops(MI.operands()); 1655 while (MI.getNumOperands() > 0) 1656 MI.removeOperand(MI.getNumOperands() - 1); 1657 for (auto MO : Ops) { 1658 if (MO.isMBB()) { 1659 if (MI.getOpcode() == WebAssembly::DELEGATE) 1660 MO = MachineOperand::CreateImm(getDelegateDepth(Stack, MO.getMBB())); 1661 else 1662 MO = MachineOperand::CreateImm(getBranchDepth(Stack, MO.getMBB())); 1663 } 1664 MI.addOperand(MF, MO); 1665 } 1666 }; 1667 1668 for (auto &MBB : reverse(MF)) { 1669 for (MachineInstr &MI : llvm::reverse(MBB)) { 1670 switch (MI.getOpcode()) { 1671 case WebAssembly::BLOCK: 1672 case WebAssembly::TRY: 1673 assert(ScopeTops[Stack.back().first->getNumber()]->getNumber() <= 1674 MBB.getNumber() && 1675 "Block/try marker should be balanced"); 1676 Stack.pop_back(); 1677 break; 1678 1679 case WebAssembly::LOOP: 1680 assert(Stack.back().first == &MBB && "Loop top should be balanced"); 1681 Stack.pop_back(); 1682 break; 1683 1684 case WebAssembly::END_TRY: { 1685 auto *EHPad = TryToEHPad[EndToBegin[&MI]]; 1686 EHPadStack.push_back(EHPad); 1687 [[fallthrough]]; 1688 } 1689 case WebAssembly::END_BLOCK: 1690 Stack.push_back(std::make_pair(&MBB, &MI)); 1691 break; 1692 1693 case WebAssembly::END_LOOP: 1694 Stack.push_back(std::make_pair(EndToBegin[&MI]->getParent(), &MI)); 1695 break; 1696 1697 case WebAssembly::CATCH_LEGACY: 1698 case WebAssembly::CATCH_ALL_LEGACY: 1699 EHPadStack.pop_back(); 1700 break; 1701 1702 case WebAssembly::RETHROW: 1703 MI.getOperand(0).setImm(getRethrowDepth(Stack, EHPadStack)); 1704 break; 1705 1706 case WebAssembly::DELEGATE: 1707 RewriteOperands(MI); 1708 Stack.push_back(std::make_pair(&MBB, &MI)); 1709 break; 1710 1711 default: 1712 if (MI.isTerminator()) 1713 RewriteOperands(MI); 1714 break; 1715 } 1716 } 1717 } 1718 assert(Stack.empty() && "Control flow should be balanced"); 1719 } 1720 1721 void WebAssemblyCFGStackify::cleanupFunctionData(MachineFunction &MF) { 1722 if (FakeCallerBB) 1723 MF.deleteMachineBasicBlock(FakeCallerBB); 1724 AppendixBB = FakeCallerBB = nullptr; 1725 } 1726 1727 void WebAssemblyCFGStackify::releaseMemory() { 1728 ScopeTops.clear(); 1729 BeginToEnd.clear(); 1730 EndToBegin.clear(); 1731 TryToEHPad.clear(); 1732 EHPadToTry.clear(); 1733 } 1734 1735 bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) { 1736 LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n" 1737 "********** Function: " 1738 << MF.getName() << '\n'); 1739 const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo(); 1740 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1741 1742 releaseMemory(); 1743 1744 // Liveness is not tracked for VALUE_STACK physreg. 1745 MF.getRegInfo().invalidateLiveness(); 1746 1747 // Place the BLOCK/LOOP/TRY markers to indicate the beginnings of scopes. 1748 placeMarkers(MF); 1749 1750 // Remove unnecessary instructions possibly introduced by try/end_trys. 1751 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm && 1752 MF.getFunction().hasPersonalityFn()) 1753 removeUnnecessaryInstrs(MF); 1754 1755 // Convert MBB operands in terminators to relative depth immediates. 1756 rewriteDepthImmediates(MF); 1757 1758 // Fix up block/loop/try signatures at the end of the function to conform to 1759 // WebAssembly's rules. 1760 fixEndsAtEndOfFunction(MF); 1761 1762 // Add an end instruction at the end of the function body. 1763 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 1764 appendEndToFunction(MF, TII); 1765 1766 cleanupFunctionData(MF); 1767 1768 MF.getInfo<WebAssemblyFunctionInfo>()->setCFGStackified(); 1769 return true; 1770 } 1771