1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The analysis collects instructions that should be output at the module level 10 // and performs the global register numbering. 11 // 12 // The results of this analysis are used in AsmPrinter to rename registers 13 // globally and to output required instructions at the module level. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SPIRVModuleAnalysis.h" 18 #include "MCTargetDesc/SPIRVBaseInfo.h" 19 #include "MCTargetDesc/SPIRVMCTargetDesc.h" 20 #include "SPIRV.h" 21 #include "SPIRVSubtarget.h" 22 #include "SPIRVTargetMachine.h" 23 #include "SPIRVUtils.h" 24 #include "TargetInfo/SPIRVTargetInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "spirv-module-analysis" 32 33 static cl::opt<bool> 34 SPVDumpDeps("spv-dump-deps", 35 cl::desc("Dump MIR with SPIR-V dependencies info"), 36 cl::Optional, cl::init(false)); 37 38 static cl::list<SPIRV::Capability::Capability> 39 AvoidCapabilities("avoid-spirv-capabilities", 40 cl::desc("SPIR-V capabilities to avoid if there are " 41 "other options enabling a feature"), 42 cl::ZeroOrMore, cl::Hidden, 43 cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader", 44 "SPIR-V Shader capability"))); 45 // Use sets instead of cl::list to check "if contains" condition 46 struct AvoidCapabilitiesSet { 47 SmallSet<SPIRV::Capability::Capability, 4> S; 48 AvoidCapabilitiesSet() { 49 for (auto Cap : AvoidCapabilities) 50 S.insert(Cap); 51 } 52 }; 53 54 char llvm::SPIRVModuleAnalysis::ID = 0; 55 56 namespace llvm { 57 void initializeSPIRVModuleAnalysisPass(PassRegistry &); 58 } // namespace llvm 59 60 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true, 61 true) 62 63 // Retrieve an unsigned from an MDNode with a list of them as operands. 64 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex, 65 unsigned DefaultVal = 0) { 66 if (MdNode && OpIndex < MdNode->getNumOperands()) { 67 const auto &Op = MdNode->getOperand(OpIndex); 68 return mdconst::extract<ConstantInt>(Op)->getZExtValue(); 69 } 70 return DefaultVal; 71 } 72 73 static SPIRV::Requirements 74 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category, 75 unsigned i, const SPIRVSubtarget &ST, 76 SPIRV::RequirementHandler &Reqs) { 77 static AvoidCapabilitiesSet 78 AvoidCaps; // contains capabilities to avoid if there is another option 79 80 VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i); 81 VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i); 82 VersionTuple SPIRVVersion = ST.getSPIRVVersion(); 83 bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer; 84 bool MaxVerOK = 85 ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer; 86 CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i); 87 ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i); 88 if (ReqCaps.empty()) { 89 if (ReqExts.empty()) { 90 if (MinVerOK && MaxVerOK) 91 return {true, {}, {}, ReqMinVer, ReqMaxVer}; 92 return {false, {}, {}, VersionTuple(), VersionTuple()}; 93 } 94 } else if (MinVerOK && MaxVerOK) { 95 if (ReqCaps.size() == 1) { 96 auto Cap = ReqCaps[0]; 97 if (Reqs.isCapabilityAvailable(Cap)) 98 return {true, {Cap}, {}, ReqMinVer, ReqMaxVer}; 99 } else { 100 // By SPIR-V specification: "If an instruction, enumerant, or other 101 // feature specifies multiple enabling capabilities, only one such 102 // capability needs to be declared to use the feature." However, one 103 // capability may be preferred over another. We use command line 104 // argument(s) and AvoidCapabilities to avoid selection of certain 105 // capabilities if there are other options. 106 CapabilityList UseCaps; 107 for (auto Cap : ReqCaps) 108 if (Reqs.isCapabilityAvailable(Cap)) 109 UseCaps.push_back(Cap); 110 for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) { 111 auto Cap = UseCaps[i]; 112 if (i == Sz - 1 || !AvoidCaps.S.contains(Cap)) 113 return {true, {Cap}, {}, ReqMinVer, ReqMaxVer}; 114 } 115 } 116 } 117 // If there are no capabilities, or we can't satisfy the version or 118 // capability requirements, use the list of extensions (if the subtarget 119 // can handle them all). 120 if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) { 121 return ST.canUseExtension(Ext); 122 })) { 123 return {true, 124 {}, 125 ReqExts, 126 VersionTuple(), 127 VersionTuple()}; // TODO: add versions to extensions. 128 } 129 return {false, {}, {}, VersionTuple(), VersionTuple()}; 130 } 131 132 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) { 133 MAI.MaxID = 0; 134 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++) 135 MAI.MS[i].clear(); 136 MAI.RegisterAliasTable.clear(); 137 MAI.InstrsToDelete.clear(); 138 MAI.FuncMap.clear(); 139 MAI.GlobalVarList.clear(); 140 MAI.ExtInstSetMap.clear(); 141 MAI.Reqs.clear(); 142 MAI.Reqs.initAvailableCapabilities(*ST); 143 144 // TODO: determine memory model and source language from the configuratoin. 145 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) { 146 auto MemMD = MemModel->getOperand(0); 147 MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>( 148 getMetadataUInt(MemMD, 0)); 149 MAI.Mem = 150 static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1)); 151 } else { 152 // TODO: Add support for VulkanMemoryModel. 153 MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL 154 : SPIRV::MemoryModel::GLSL450; 155 if (MAI.Mem == SPIRV::MemoryModel::OpenCL) { 156 unsigned PtrSize = ST->getPointerSize(); 157 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32 158 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64 159 : SPIRV::AddressingModel::Logical; 160 } else { 161 // TODO: Add support for PhysicalStorageBufferAddress. 162 MAI.Addr = SPIRV::AddressingModel::Logical; 163 } 164 } 165 // Get the OpenCL version number from metadata. 166 // TODO: support other source languages. 167 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) { 168 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C; 169 // Construct version literal in accordance with SPIRV-LLVM-Translator. 170 // TODO: support multiple OCL version metadata. 171 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR"); 172 auto VersionMD = VerNode->getOperand(0); 173 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2); 174 unsigned MinorNum = getMetadataUInt(VersionMD, 1); 175 unsigned RevNum = getMetadataUInt(VersionMD, 2); 176 // Prevent Major part of OpenCL version to be 0 177 MAI.SrcLangVersion = 178 (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum; 179 } else { 180 // If there is no information about OpenCL version we are forced to generate 181 // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling 182 // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV 183 // Translator avoids potential issues with run-times in a similar manner. 184 if (ST->isOpenCLEnv()) { 185 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP; 186 MAI.SrcLangVersion = 100000; 187 } else { 188 MAI.SrcLang = SPIRV::SourceLanguage::Unknown; 189 MAI.SrcLangVersion = 0; 190 } 191 } 192 193 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) { 194 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) { 195 MDNode *MD = ExtNode->getOperand(I); 196 if (!MD || MD->getNumOperands() == 0) 197 continue; 198 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J) 199 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString()); 200 } 201 } 202 203 // Update required capabilities for this memory model, addressing model and 204 // source language. 205 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, 206 MAI.Mem, *ST); 207 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand, 208 MAI.SrcLang, *ST); 209 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 210 MAI.Addr, *ST); 211 212 if (ST->isOpenCLEnv()) { 213 // TODO: check if it's required by default. 214 MAI.ExtInstSetMap[static_cast<unsigned>( 215 SPIRV::InstructionSet::OpenCL_std)] = 216 Register::index2VirtReg(MAI.getNextID()); 217 } 218 } 219 220 // Collect MI which defines the register in the given machine function. 221 static void collectDefInstr(Register Reg, const MachineFunction *MF, 222 SPIRV::ModuleAnalysisInfo *MAI, 223 SPIRV::ModuleSectionType MSType, 224 bool DoInsert = true) { 225 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias"); 226 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg); 227 assert(MI && "There should be an instruction that defines the register"); 228 MAI->setSkipEmission(MI); 229 if (DoInsert) 230 MAI->MS[MSType].push_back(MI); 231 } 232 233 void SPIRVModuleAnalysis::collectGlobalEntities( 234 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph, 235 SPIRV::ModuleSectionType MSType, 236 std::function<bool(const SPIRV::DTSortableEntry *)> Pred, 237 bool UsePreOrder = false) { 238 DenseSet<const SPIRV::DTSortableEntry *> Visited; 239 for (const auto *E : DepsGraph) { 240 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil; 241 // NOTE: here we prefer recursive approach over iterative because 242 // we don't expect depchains long enough to cause SO. 243 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred, 244 &RecHoistUtil](const SPIRV::DTSortableEntry *E) { 245 if (Visited.count(E) || !Pred(E)) 246 return; 247 Visited.insert(E); 248 249 // Traversing deps graph in post-order allows us to get rid of 250 // register aliases preprocessing. 251 // But pre-order is required for correct processing of function 252 // declaration and arguments processing. 253 if (!UsePreOrder) 254 for (auto *S : E->getDeps()) 255 RecHoistUtil(S); 256 257 Register GlobalReg = Register::index2VirtReg(MAI.getNextID()); 258 bool IsFirst = true; 259 for (auto &U : *E) { 260 const MachineFunction *MF = U.first; 261 Register Reg = U.second; 262 MAI.setRegisterAlias(MF, Reg, GlobalReg); 263 if (!MF->getRegInfo().getUniqueVRegDef(Reg)) 264 continue; 265 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst); 266 IsFirst = false; 267 if (E->getIsGV()) 268 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg)); 269 } 270 271 if (UsePreOrder) 272 for (auto *S : E->getDeps()) 273 RecHoistUtil(S); 274 }; 275 RecHoistUtil(E); 276 } 277 } 278 279 // The function initializes global register alias table for types, consts, 280 // global vars and func decls and collects these instruction for output 281 // at module level. Also it collects explicit OpExtension/OpCapability 282 // instructions. 283 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) { 284 std::vector<SPIRV::DTSortableEntry *> DepsGraph; 285 286 GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr); 287 288 collectGlobalEntities( 289 DepsGraph, SPIRV::MB_TypeConstVars, 290 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); }); 291 292 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 293 MachineFunction *MF = MMI->getMachineFunction(*F); 294 if (!MF) 295 continue; 296 // Iterate through and collect OpExtension/OpCapability instructions. 297 for (MachineBasicBlock &MBB : *MF) { 298 for (MachineInstr &MI : MBB) { 299 if (MI.getOpcode() == SPIRV::OpExtension) { 300 // Here, OpExtension just has a single enum operand, not a string. 301 auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm()); 302 MAI.Reqs.addExtension(Ext); 303 MAI.setSkipEmission(&MI); 304 } else if (MI.getOpcode() == SPIRV::OpCapability) { 305 auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm()); 306 MAI.Reqs.addCapability(Cap); 307 MAI.setSkipEmission(&MI); 308 } 309 } 310 } 311 } 312 313 collectGlobalEntities( 314 DepsGraph, SPIRV::MB_ExtFuncDecls, 315 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true); 316 } 317 318 // Look for IDs declared with Import linkage, and map the corresponding function 319 // to the register defining that variable (which will usually be the result of 320 // an OpFunction). This lets us call externally imported functions using 321 // the correct ID registers. 322 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI, 323 const Function *F) { 324 if (MI.getOpcode() == SPIRV::OpDecorate) { 325 // If it's got Import linkage. 326 auto Dec = MI.getOperand(1).getImm(); 327 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) { 328 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm(); 329 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) { 330 // Map imported function name to function ID register. 331 const Function *ImportedFunc = 332 F->getParent()->getFunction(getStringImm(MI, 2)); 333 Register Target = MI.getOperand(0).getReg(); 334 MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target); 335 } 336 } 337 } else if (MI.getOpcode() == SPIRV::OpFunction) { 338 // Record all internal OpFunction declarations. 339 Register Reg = MI.defs().begin()->getReg(); 340 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg); 341 assert(GlobalReg.isValid()); 342 MAI.FuncMap[F] = GlobalReg; 343 } 344 } 345 346 // References to a function via function pointers generate virtual 347 // registers without a definition. We are able to resolve this 348 // reference using Globar Register info into an OpFunction instruction 349 // and replace dummy operands by the corresponding global register references. 350 void SPIRVModuleAnalysis::collectFuncPtrs() { 351 for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars]) 352 if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL) 353 collectFuncPtrs(MI); 354 } 355 356 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) { 357 const MachineOperand *FunUse = &MI->getOperand(2); 358 if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) { 359 const MachineInstr *FunDefMI = FunDef->getParent(); 360 assert(FunDefMI->getOpcode() == SPIRV::OpFunction && 361 "Constant function pointer must refer to function definition"); 362 Register FunDefReg = FunDef->getReg(); 363 Register GlobalFunDefReg = 364 MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg); 365 assert(GlobalFunDefReg.isValid() && 366 "Function definition must refer to a global register"); 367 Register FunPtrReg = FunUse->getReg(); 368 MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg); 369 } 370 } 371 372 using InstrSignature = SmallVector<size_t>; 373 using InstrTraces = std::set<InstrSignature>; 374 375 // Returns a representation of an instruction as a vector of MachineOperand 376 // hash values, see llvm::hash_value(const MachineOperand &MO) for details. 377 // This creates a signature of the instruction with the same content 378 // that MachineOperand::isIdenticalTo uses for comparison. 379 static InstrSignature instrToSignature(MachineInstr &MI, 380 SPIRV::ModuleAnalysisInfo &MAI) { 381 InstrSignature Signature; 382 for (unsigned i = 0; i < MI.getNumOperands(); ++i) { 383 const MachineOperand &MO = MI.getOperand(i); 384 size_t h; 385 if (MO.isReg()) { 386 Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg()); 387 // mimic llvm::hash_value(const MachineOperand &MO) 388 h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(), 389 MO.isDef()); 390 } else { 391 h = hash_value(MO); 392 } 393 Signature.push_back(h); 394 } 395 return Signature; 396 } 397 398 // Collect the given instruction in the specified MS. We assume global register 399 // numbering has already occurred by this point. We can directly compare reg 400 // arguments when detecting duplicates. 401 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI, 402 SPIRV::ModuleSectionType MSType, InstrTraces &IS, 403 bool Append = true) { 404 MAI.setSkipEmission(&MI); 405 InstrSignature MISign = instrToSignature(MI, MAI); 406 auto FoundMI = IS.insert(MISign); 407 if (!FoundMI.second) 408 return; // insert failed, so we found a duplicate; don't add it to MAI.MS 409 // No duplicates, so add it. 410 if (Append) 411 MAI.MS[MSType].push_back(&MI); 412 else 413 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI); 414 } 415 416 // Some global instructions make reference to function-local ID regs, so cannot 417 // be correctly collected until these registers are globally numbered. 418 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) { 419 InstrTraces IS; 420 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 421 if ((*F).isDeclaration()) 422 continue; 423 MachineFunction *MF = MMI->getMachineFunction(*F); 424 assert(MF); 425 for (MachineBasicBlock &MBB : *MF) 426 for (MachineInstr &MI : MBB) { 427 if (MAI.getSkipEmission(&MI)) 428 continue; 429 const unsigned OpCode = MI.getOpcode(); 430 if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) { 431 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS); 432 } else if (OpCode == SPIRV::OpEntryPoint) { 433 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS); 434 } else if (TII->isDecorationInstr(MI)) { 435 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS); 436 collectFuncNames(MI, &*F); 437 } else if (TII->isConstantInstr(MI)) { 438 // Now OpSpecConstant*s are not in DT, 439 // but they need to be collected anyway. 440 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS); 441 } else if (OpCode == SPIRV::OpFunction) { 442 collectFuncNames(MI, &*F); 443 } else if (OpCode == SPIRV::OpTypeForwardPointer) { 444 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false); 445 } 446 } 447 } 448 } 449 450 // Number registers in all functions globally from 0 onwards and store 451 // the result in global register alias table. Some registers are already 452 // numbered in collectGlobalEntities. 453 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) { 454 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 455 if ((*F).isDeclaration()) 456 continue; 457 MachineFunction *MF = MMI->getMachineFunction(*F); 458 assert(MF); 459 for (MachineBasicBlock &MBB : *MF) { 460 for (MachineInstr &MI : MBB) { 461 for (MachineOperand &Op : MI.operands()) { 462 if (!Op.isReg()) 463 continue; 464 Register Reg = Op.getReg(); 465 if (MAI.hasRegisterAlias(MF, Reg)) 466 continue; 467 Register NewReg = Register::index2VirtReg(MAI.getNextID()); 468 MAI.setRegisterAlias(MF, Reg, NewReg); 469 } 470 if (MI.getOpcode() != SPIRV::OpExtInst) 471 continue; 472 auto Set = MI.getOperand(2).getImm(); 473 if (!MAI.ExtInstSetMap.contains(Set)) 474 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID()); 475 } 476 } 477 } 478 } 479 480 // RequirementHandler implementations. 481 void SPIRV::RequirementHandler::getAndAddRequirements( 482 SPIRV::OperandCategory::OperandCategory Category, uint32_t i, 483 const SPIRVSubtarget &ST) { 484 addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this)); 485 } 486 487 void SPIRV::RequirementHandler::recursiveAddCapabilities( 488 const CapabilityList &ToPrune) { 489 for (const auto &Cap : ToPrune) { 490 AllCaps.insert(Cap); 491 CapabilityList ImplicitDecls = 492 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 493 recursiveAddCapabilities(ImplicitDecls); 494 } 495 } 496 497 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) { 498 for (const auto &Cap : ToAdd) { 499 bool IsNewlyInserted = AllCaps.insert(Cap).second; 500 if (!IsNewlyInserted) // Don't re-add if it's already been declared. 501 continue; 502 CapabilityList ImplicitDecls = 503 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 504 recursiveAddCapabilities(ImplicitDecls); 505 MinimalCaps.push_back(Cap); 506 } 507 } 508 509 void SPIRV::RequirementHandler::addRequirements( 510 const SPIRV::Requirements &Req) { 511 if (!Req.IsSatisfiable) 512 report_fatal_error("Adding SPIR-V requirements this target can't satisfy."); 513 514 if (Req.Cap.has_value()) 515 addCapabilities({Req.Cap.value()}); 516 517 addExtensions(Req.Exts); 518 519 if (!Req.MinVer.empty()) { 520 if (!MaxVersion.empty() && Req.MinVer > MaxVersion) { 521 LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer 522 << " and <= " << MaxVersion << "\n"); 523 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 524 } 525 526 if (MinVersion.empty() || Req.MinVer > MinVersion) 527 MinVersion = Req.MinVer; 528 } 529 530 if (!Req.MaxVer.empty()) { 531 if (!MinVersion.empty() && Req.MaxVer < MinVersion) { 532 LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer 533 << " and >= " << MinVersion << "\n"); 534 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 535 } 536 537 if (MaxVersion.empty() || Req.MaxVer < MaxVersion) 538 MaxVersion = Req.MaxVer; 539 } 540 } 541 542 void SPIRV::RequirementHandler::checkSatisfiable( 543 const SPIRVSubtarget &ST) const { 544 // Report as many errors as possible before aborting the compilation. 545 bool IsSatisfiable = true; 546 auto TargetVer = ST.getSPIRVVersion(); 547 548 if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) { 549 LLVM_DEBUG( 550 dbgs() << "Target SPIR-V version too high for required features\n" 551 << "Required max version: " << MaxVersion << " target version " 552 << TargetVer << "\n"); 553 IsSatisfiable = false; 554 } 555 556 if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) { 557 LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n" 558 << "Required min version: " << MinVersion 559 << " target version " << TargetVer << "\n"); 560 IsSatisfiable = false; 561 } 562 563 if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) { 564 LLVM_DEBUG( 565 dbgs() 566 << "Version is too low for some features and too high for others.\n" 567 << "Required SPIR-V min version: " << MinVersion 568 << " required SPIR-V max version " << MaxVersion << "\n"); 569 IsSatisfiable = false; 570 } 571 572 for (auto Cap : MinimalCaps) { 573 if (AvailableCaps.contains(Cap)) 574 continue; 575 LLVM_DEBUG(dbgs() << "Capability not supported: " 576 << getSymbolicOperandMnemonic( 577 OperandCategory::CapabilityOperand, Cap) 578 << "\n"); 579 IsSatisfiable = false; 580 } 581 582 for (auto Ext : AllExtensions) { 583 if (ST.canUseExtension(Ext)) 584 continue; 585 LLVM_DEBUG(dbgs() << "Extension not supported: " 586 << getSymbolicOperandMnemonic( 587 OperandCategory::ExtensionOperand, Ext) 588 << "\n"); 589 IsSatisfiable = false; 590 } 591 592 if (!IsSatisfiable) 593 report_fatal_error("Unable to meet SPIR-V requirements for this target."); 594 } 595 596 // Add the given capabilities and all their implicitly defined capabilities too. 597 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) { 598 for (const auto Cap : ToAdd) 599 if (AvailableCaps.insert(Cap).second) 600 addAvailableCaps(getSymbolicOperandCapabilities( 601 SPIRV::OperandCategory::CapabilityOperand, Cap)); 602 } 603 604 void SPIRV::RequirementHandler::removeCapabilityIf( 605 const Capability::Capability ToRemove, 606 const Capability::Capability IfPresent) { 607 if (AllCaps.contains(IfPresent)) 608 AllCaps.erase(ToRemove); 609 } 610 611 namespace llvm { 612 namespace SPIRV { 613 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) { 614 if (ST.isOpenCLEnv()) { 615 initAvailableCapabilitiesForOpenCL(ST); 616 return; 617 } 618 619 if (ST.isVulkanEnv()) { 620 initAvailableCapabilitiesForVulkan(ST); 621 return; 622 } 623 624 report_fatal_error("Unimplemented environment for SPIR-V generation."); 625 } 626 627 void RequirementHandler::initAvailableCapabilitiesForOpenCL( 628 const SPIRVSubtarget &ST) { 629 // Add the min requirements for different OpenCL and SPIR-V versions. 630 addAvailableCaps({Capability::Addresses, Capability::Float16Buffer, 631 Capability::Int16, Capability::Int8, Capability::Kernel, 632 Capability::Linkage, Capability::Vector16, 633 Capability::Groups, Capability::GenericPointer, 634 Capability::Shader}); 635 if (ST.hasOpenCLFullProfile()) 636 addAvailableCaps({Capability::Int64, Capability::Int64Atomics}); 637 if (ST.hasOpenCLImageSupport()) { 638 addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler, 639 Capability::Image1D, Capability::SampledBuffer, 640 Capability::ImageBuffer}); 641 if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0))) 642 addAvailableCaps({Capability::ImageReadWrite}); 643 } 644 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) && 645 ST.isAtLeastOpenCLVer(VersionTuple(2, 2))) 646 addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage}); 647 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3))) 648 addAvailableCaps({Capability::GroupNonUniform, 649 Capability::GroupNonUniformVote, 650 Capability::GroupNonUniformArithmetic, 651 Capability::GroupNonUniformBallot, 652 Capability::GroupNonUniformClustered, 653 Capability::GroupNonUniformShuffle, 654 Capability::GroupNonUniformShuffleRelative}); 655 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4))) 656 addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero, 657 Capability::SignedZeroInfNanPreserve, 658 Capability::RoundingModeRTE, 659 Capability::RoundingModeRTZ}); 660 // TODO: verify if this needs some checks. 661 addAvailableCaps({Capability::Float16, Capability::Float64}); 662 663 // Add capabilities enabled by extensions. 664 for (auto Extension : ST.getAllAvailableExtensions()) { 665 CapabilityList EnabledCapabilities = 666 getCapabilitiesEnabledByExtension(Extension); 667 addAvailableCaps(EnabledCapabilities); 668 } 669 670 // TODO: add OpenCL extensions. 671 } 672 673 void RequirementHandler::initAvailableCapabilitiesForVulkan( 674 const SPIRVSubtarget &ST) { 675 addAvailableCaps({Capability::Shader, Capability::Linkage}); 676 677 // Provided by all supported Vulkan versions. 678 addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16, 679 Capability::Float64, Capability::GroupNonUniform}); 680 } 681 682 } // namespace SPIRV 683 } // namespace llvm 684 685 // Add the required capabilities from a decoration instruction (including 686 // BuiltIns). 687 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex, 688 SPIRV::RequirementHandler &Reqs, 689 const SPIRVSubtarget &ST) { 690 int64_t DecOp = MI.getOperand(DecIndex).getImm(); 691 auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp); 692 Reqs.addRequirements(getSymbolicOperandRequirements( 693 SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs)); 694 695 if (Dec == SPIRV::Decoration::BuiltIn) { 696 int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm(); 697 auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp); 698 Reqs.addRequirements(getSymbolicOperandRequirements( 699 SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs)); 700 } else if (Dec == SPIRV::Decoration::LinkageAttributes) { 701 int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm(); 702 SPIRV::LinkageType::LinkageType LnkType = 703 static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp); 704 if (LnkType == SPIRV::LinkageType::LinkOnceODR) 705 Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr); 706 } 707 } 708 709 // Add requirements for image handling. 710 static void addOpTypeImageReqs(const MachineInstr &MI, 711 SPIRV::RequirementHandler &Reqs, 712 const SPIRVSubtarget &ST) { 713 assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage"); 714 // The operand indices used here are based on the OpTypeImage layout, which 715 // the MachineInstr follows as well. 716 int64_t ImgFormatOp = MI.getOperand(7).getImm(); 717 auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp); 718 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand, 719 ImgFormat, ST); 720 721 bool IsArrayed = MI.getOperand(4).getImm() == 1; 722 bool IsMultisampled = MI.getOperand(5).getImm() == 1; 723 bool NoSampler = MI.getOperand(6).getImm() == 2; 724 // Add dimension requirements. 725 assert(MI.getOperand(2).isImm()); 726 switch (MI.getOperand(2).getImm()) { 727 case SPIRV::Dim::DIM_1D: 728 Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D 729 : SPIRV::Capability::Sampled1D); 730 break; 731 case SPIRV::Dim::DIM_2D: 732 if (IsMultisampled && NoSampler) 733 Reqs.addRequirements(SPIRV::Capability::ImageMSArray); 734 break; 735 case SPIRV::Dim::DIM_Cube: 736 Reqs.addRequirements(SPIRV::Capability::Shader); 737 if (IsArrayed) 738 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray 739 : SPIRV::Capability::SampledCubeArray); 740 break; 741 case SPIRV::Dim::DIM_Rect: 742 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect 743 : SPIRV::Capability::SampledRect); 744 break; 745 case SPIRV::Dim::DIM_Buffer: 746 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer 747 : SPIRV::Capability::SampledBuffer); 748 break; 749 case SPIRV::Dim::DIM_SubpassData: 750 Reqs.addRequirements(SPIRV::Capability::InputAttachment); 751 break; 752 } 753 754 // Has optional access qualifier. 755 // TODO: check if it's OpenCL's kernel. 756 if (MI.getNumOperands() > 8 && 757 MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite) 758 Reqs.addRequirements(SPIRV::Capability::ImageReadWrite); 759 else 760 Reqs.addRequirements(SPIRV::Capability::ImageBasic); 761 } 762 763 // Add requirements for handling atomic float instructions 764 #define ATOM_FLT_REQ_EXT_MSG(ExtName) \ 765 "The atomic float instruction requires the following SPIR-V " \ 766 "extension: SPV_EXT_shader_atomic_float" ExtName 767 static void AddAtomicFloatRequirements(const MachineInstr &MI, 768 SPIRV::RequirementHandler &Reqs, 769 const SPIRVSubtarget &ST) { 770 assert(MI.getOperand(1).isReg() && 771 "Expect register operand in atomic float instruction"); 772 Register TypeReg = MI.getOperand(1).getReg(); 773 SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg); 774 if (TypeDef->getOpcode() != SPIRV::OpTypeFloat) 775 report_fatal_error("Result type of an atomic float instruction must be a " 776 "floating-point type scalar"); 777 778 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 779 unsigned Op = MI.getOpcode(); 780 if (Op == SPIRV::OpAtomicFAddEXT) { 781 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add)) 782 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false); 783 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add); 784 switch (BitWidth) { 785 case 16: 786 if (!ST.canUseExtension( 787 SPIRV::Extension::SPV_EXT_shader_atomic_float16_add)) 788 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false); 789 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add); 790 Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT); 791 break; 792 case 32: 793 Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT); 794 break; 795 case 64: 796 Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT); 797 break; 798 default: 799 report_fatal_error( 800 "Unexpected floating-point type width in atomic float instruction"); 801 } 802 } else { 803 if (!ST.canUseExtension( 804 SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max)) 805 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false); 806 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max); 807 switch (BitWidth) { 808 case 16: 809 Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT); 810 break; 811 case 32: 812 Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT); 813 break; 814 case 64: 815 Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT); 816 break; 817 default: 818 report_fatal_error( 819 "Unexpected floating-point type width in atomic float instruction"); 820 } 821 } 822 } 823 824 void addInstrRequirements(const MachineInstr &MI, 825 SPIRV::RequirementHandler &Reqs, 826 const SPIRVSubtarget &ST) { 827 switch (MI.getOpcode()) { 828 case SPIRV::OpMemoryModel: { 829 int64_t Addr = MI.getOperand(0).getImm(); 830 Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 831 Addr, ST); 832 int64_t Mem = MI.getOperand(1).getImm(); 833 Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem, 834 ST); 835 break; 836 } 837 case SPIRV::OpEntryPoint: { 838 int64_t Exe = MI.getOperand(0).getImm(); 839 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand, 840 Exe, ST); 841 break; 842 } 843 case SPIRV::OpExecutionMode: 844 case SPIRV::OpExecutionModeId: { 845 int64_t Exe = MI.getOperand(1).getImm(); 846 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand, 847 Exe, ST); 848 break; 849 } 850 case SPIRV::OpTypeMatrix: 851 Reqs.addCapability(SPIRV::Capability::Matrix); 852 break; 853 case SPIRV::OpTypeInt: { 854 unsigned BitWidth = MI.getOperand(1).getImm(); 855 if (BitWidth == 64) 856 Reqs.addCapability(SPIRV::Capability::Int64); 857 else if (BitWidth == 16) 858 Reqs.addCapability(SPIRV::Capability::Int16); 859 else if (BitWidth == 8) 860 Reqs.addCapability(SPIRV::Capability::Int8); 861 break; 862 } 863 case SPIRV::OpTypeFloat: { 864 unsigned BitWidth = MI.getOperand(1).getImm(); 865 if (BitWidth == 64) 866 Reqs.addCapability(SPIRV::Capability::Float64); 867 else if (BitWidth == 16) 868 Reqs.addCapability(SPIRV::Capability::Float16); 869 break; 870 } 871 case SPIRV::OpTypeVector: { 872 unsigned NumComponents = MI.getOperand(2).getImm(); 873 if (NumComponents == 8 || NumComponents == 16) 874 Reqs.addCapability(SPIRV::Capability::Vector16); 875 break; 876 } 877 case SPIRV::OpTypePointer: { 878 auto SC = MI.getOperand(1).getImm(); 879 Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC, 880 ST); 881 // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer 882 // capability. 883 if (!ST.isOpenCLEnv()) 884 break; 885 assert(MI.getOperand(2).isReg()); 886 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 887 SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg()); 888 if (TypeDef->getOpcode() == SPIRV::OpTypeFloat && 889 TypeDef->getOperand(1).getImm() == 16) 890 Reqs.addCapability(SPIRV::Capability::Float16Buffer); 891 break; 892 } 893 case SPIRV::OpBitReverse: 894 case SPIRV::OpBitFieldInsert: 895 case SPIRV::OpBitFieldSExtract: 896 case SPIRV::OpBitFieldUExtract: 897 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) { 898 Reqs.addCapability(SPIRV::Capability::Shader); 899 break; 900 } 901 Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions); 902 Reqs.addCapability(SPIRV::Capability::BitInstructions); 903 break; 904 case SPIRV::OpTypeRuntimeArray: 905 Reqs.addCapability(SPIRV::Capability::Shader); 906 break; 907 case SPIRV::OpTypeOpaque: 908 case SPIRV::OpTypeEvent: 909 Reqs.addCapability(SPIRV::Capability::Kernel); 910 break; 911 case SPIRV::OpTypePipe: 912 case SPIRV::OpTypeReserveId: 913 Reqs.addCapability(SPIRV::Capability::Pipes); 914 break; 915 case SPIRV::OpTypeDeviceEvent: 916 case SPIRV::OpTypeQueue: 917 case SPIRV::OpBuildNDRange: 918 Reqs.addCapability(SPIRV::Capability::DeviceEnqueue); 919 break; 920 case SPIRV::OpDecorate: 921 case SPIRV::OpDecorateId: 922 case SPIRV::OpDecorateString: 923 addOpDecorateReqs(MI, 1, Reqs, ST); 924 break; 925 case SPIRV::OpMemberDecorate: 926 case SPIRV::OpMemberDecorateString: 927 addOpDecorateReqs(MI, 2, Reqs, ST); 928 break; 929 case SPIRV::OpInBoundsPtrAccessChain: 930 Reqs.addCapability(SPIRV::Capability::Addresses); 931 break; 932 case SPIRV::OpConstantSampler: 933 Reqs.addCapability(SPIRV::Capability::LiteralSampler); 934 break; 935 case SPIRV::OpTypeImage: 936 addOpTypeImageReqs(MI, Reqs, ST); 937 break; 938 case SPIRV::OpTypeSampler: 939 Reqs.addCapability(SPIRV::Capability::ImageBasic); 940 break; 941 case SPIRV::OpTypeForwardPointer: 942 // TODO: check if it's OpenCL's kernel. 943 Reqs.addCapability(SPIRV::Capability::Addresses); 944 break; 945 case SPIRV::OpAtomicFlagTestAndSet: 946 case SPIRV::OpAtomicLoad: 947 case SPIRV::OpAtomicStore: 948 case SPIRV::OpAtomicExchange: 949 case SPIRV::OpAtomicCompareExchange: 950 case SPIRV::OpAtomicIIncrement: 951 case SPIRV::OpAtomicIDecrement: 952 case SPIRV::OpAtomicIAdd: 953 case SPIRV::OpAtomicISub: 954 case SPIRV::OpAtomicUMin: 955 case SPIRV::OpAtomicUMax: 956 case SPIRV::OpAtomicSMin: 957 case SPIRV::OpAtomicSMax: 958 case SPIRV::OpAtomicAnd: 959 case SPIRV::OpAtomicOr: 960 case SPIRV::OpAtomicXor: { 961 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 962 const MachineInstr *InstrPtr = &MI; 963 if (MI.getOpcode() == SPIRV::OpAtomicStore) { 964 assert(MI.getOperand(3).isReg()); 965 InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg()); 966 assert(InstrPtr && "Unexpected type instruction for OpAtomicStore"); 967 } 968 assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic"); 969 Register TypeReg = InstrPtr->getOperand(1).getReg(); 970 SPIRVType *TypeDef = MRI.getVRegDef(TypeReg); 971 if (TypeDef->getOpcode() == SPIRV::OpTypeInt) { 972 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 973 if (BitWidth == 64) 974 Reqs.addCapability(SPIRV::Capability::Int64Atomics); 975 } 976 break; 977 } 978 case SPIRV::OpGroupNonUniformIAdd: 979 case SPIRV::OpGroupNonUniformFAdd: 980 case SPIRV::OpGroupNonUniformIMul: 981 case SPIRV::OpGroupNonUniformFMul: 982 case SPIRV::OpGroupNonUniformSMin: 983 case SPIRV::OpGroupNonUniformUMin: 984 case SPIRV::OpGroupNonUniformFMin: 985 case SPIRV::OpGroupNonUniformSMax: 986 case SPIRV::OpGroupNonUniformUMax: 987 case SPIRV::OpGroupNonUniformFMax: 988 case SPIRV::OpGroupNonUniformBitwiseAnd: 989 case SPIRV::OpGroupNonUniformBitwiseOr: 990 case SPIRV::OpGroupNonUniformBitwiseXor: 991 case SPIRV::OpGroupNonUniformLogicalAnd: 992 case SPIRV::OpGroupNonUniformLogicalOr: 993 case SPIRV::OpGroupNonUniformLogicalXor: { 994 assert(MI.getOperand(3).isImm()); 995 int64_t GroupOp = MI.getOperand(3).getImm(); 996 switch (GroupOp) { 997 case SPIRV::GroupOperation::Reduce: 998 case SPIRV::GroupOperation::InclusiveScan: 999 case SPIRV::GroupOperation::ExclusiveScan: 1000 Reqs.addCapability(SPIRV::Capability::Kernel); 1001 Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic); 1002 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1003 break; 1004 case SPIRV::GroupOperation::ClusteredReduce: 1005 Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered); 1006 break; 1007 case SPIRV::GroupOperation::PartitionedReduceNV: 1008 case SPIRV::GroupOperation::PartitionedInclusiveScanNV: 1009 case SPIRV::GroupOperation::PartitionedExclusiveScanNV: 1010 Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV); 1011 break; 1012 } 1013 break; 1014 } 1015 case SPIRV::OpGroupNonUniformShuffle: 1016 case SPIRV::OpGroupNonUniformShuffleXor: 1017 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle); 1018 break; 1019 case SPIRV::OpGroupNonUniformShuffleUp: 1020 case SPIRV::OpGroupNonUniformShuffleDown: 1021 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative); 1022 break; 1023 case SPIRV::OpGroupAll: 1024 case SPIRV::OpGroupAny: 1025 case SPIRV::OpGroupBroadcast: 1026 case SPIRV::OpGroupIAdd: 1027 case SPIRV::OpGroupFAdd: 1028 case SPIRV::OpGroupFMin: 1029 case SPIRV::OpGroupUMin: 1030 case SPIRV::OpGroupSMin: 1031 case SPIRV::OpGroupFMax: 1032 case SPIRV::OpGroupUMax: 1033 case SPIRV::OpGroupSMax: 1034 Reqs.addCapability(SPIRV::Capability::Groups); 1035 break; 1036 case SPIRV::OpGroupNonUniformElect: 1037 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1038 break; 1039 case SPIRV::OpGroupNonUniformAll: 1040 case SPIRV::OpGroupNonUniformAny: 1041 case SPIRV::OpGroupNonUniformAllEqual: 1042 Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote); 1043 break; 1044 case SPIRV::OpGroupNonUniformBroadcast: 1045 case SPIRV::OpGroupNonUniformBroadcastFirst: 1046 case SPIRV::OpGroupNonUniformBallot: 1047 case SPIRV::OpGroupNonUniformInverseBallot: 1048 case SPIRV::OpGroupNonUniformBallotBitExtract: 1049 case SPIRV::OpGroupNonUniformBallotBitCount: 1050 case SPIRV::OpGroupNonUniformBallotFindLSB: 1051 case SPIRV::OpGroupNonUniformBallotFindMSB: 1052 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1053 break; 1054 case SPIRV::OpSubgroupShuffleINTEL: 1055 case SPIRV::OpSubgroupShuffleDownINTEL: 1056 case SPIRV::OpSubgroupShuffleUpINTEL: 1057 case SPIRV::OpSubgroupShuffleXorINTEL: 1058 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1059 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1060 Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL); 1061 } 1062 break; 1063 case SPIRV::OpSubgroupBlockReadINTEL: 1064 case SPIRV::OpSubgroupBlockWriteINTEL: 1065 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1066 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1067 Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL); 1068 } 1069 break; 1070 case SPIRV::OpSubgroupImageBlockReadINTEL: 1071 case SPIRV::OpSubgroupImageBlockWriteINTEL: 1072 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1073 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1074 Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL); 1075 } 1076 break; 1077 case SPIRV::OpAssumeTrueKHR: 1078 case SPIRV::OpExpectKHR: 1079 if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) { 1080 Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume); 1081 Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR); 1082 } 1083 break; 1084 case SPIRV::OpPtrCastToCrossWorkgroupINTEL: 1085 case SPIRV::OpCrossWorkgroupCastToPtrINTEL: 1086 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) { 1087 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes); 1088 Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL); 1089 } 1090 break; 1091 case SPIRV::OpConstantFunctionPointerINTEL: 1092 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1093 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1094 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1095 } 1096 break; 1097 case SPIRV::OpGroupNonUniformRotateKHR: 1098 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate)) 1099 report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the " 1100 "following SPIR-V extension: SPV_KHR_subgroup_rotate", 1101 false); 1102 Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate); 1103 Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR); 1104 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1105 break; 1106 case SPIRV::OpGroupIMulKHR: 1107 case SPIRV::OpGroupFMulKHR: 1108 case SPIRV::OpGroupBitwiseAndKHR: 1109 case SPIRV::OpGroupBitwiseOrKHR: 1110 case SPIRV::OpGroupBitwiseXorKHR: 1111 case SPIRV::OpGroupLogicalAndKHR: 1112 case SPIRV::OpGroupLogicalOrKHR: 1113 case SPIRV::OpGroupLogicalXorKHR: 1114 if (ST.canUseExtension( 1115 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) { 1116 Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions); 1117 Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR); 1118 } 1119 break; 1120 case SPIRV::OpFunctionPointerCallINTEL: 1121 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1122 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1123 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1124 } 1125 break; 1126 case SPIRV::OpAtomicFAddEXT: 1127 case SPIRV::OpAtomicFMinEXT: 1128 case SPIRV::OpAtomicFMaxEXT: 1129 AddAtomicFloatRequirements(MI, Reqs, ST); 1130 break; 1131 case SPIRV::OpConvertBF16ToFINTEL: 1132 case SPIRV::OpConvertFToBF16INTEL: 1133 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) { 1134 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion); 1135 Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL); 1136 } 1137 break; 1138 case SPIRV::OpVariableLengthArrayINTEL: 1139 case SPIRV::OpSaveMemoryINTEL: 1140 case SPIRV::OpRestoreMemoryINTEL: 1141 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) { 1142 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array); 1143 Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL); 1144 } 1145 break; 1146 default: 1147 break; 1148 } 1149 1150 // If we require capability Shader, then we can remove the requirement for 1151 // the BitInstructions capability, since Shader is a superset capability 1152 // of BitInstructions. 1153 Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions, 1154 SPIRV::Capability::Shader); 1155 } 1156 1157 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI, 1158 MachineModuleInfo *MMI, const SPIRVSubtarget &ST) { 1159 // Collect requirements for existing instructions. 1160 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1161 MachineFunction *MF = MMI->getMachineFunction(*F); 1162 if (!MF) 1163 continue; 1164 for (const MachineBasicBlock &MBB : *MF) 1165 for (const MachineInstr &MI : MBB) 1166 addInstrRequirements(MI, MAI.Reqs, ST); 1167 } 1168 // Collect requirements for OpExecutionMode instructions. 1169 auto Node = M.getNamedMetadata("spirv.ExecutionMode"); 1170 if (Node) { 1171 // SPV_KHR_float_controls is not available until v1.4 1172 bool RequireFloatControls = false, 1173 VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4)); 1174 for (unsigned i = 0; i < Node->getNumOperands(); i++) { 1175 MDNode *MDN = cast<MDNode>(Node->getOperand(i)); 1176 const MDOperand &MDOp = MDN->getOperand(1); 1177 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) { 1178 Constant *C = CMeta->getValue(); 1179 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) { 1180 auto EM = Const->getZExtValue(); 1181 MAI.Reqs.getAndAddRequirements( 1182 SPIRV::OperandCategory::ExecutionModeOperand, EM, ST); 1183 // add SPV_KHR_float_controls if the version is too low 1184 switch (EM) { 1185 case SPIRV::ExecutionMode::DenormPreserve: 1186 case SPIRV::ExecutionMode::DenormFlushToZero: 1187 case SPIRV::ExecutionMode::SignedZeroInfNanPreserve: 1188 case SPIRV::ExecutionMode::RoundingModeRTE: 1189 case SPIRV::ExecutionMode::RoundingModeRTZ: 1190 RequireFloatControls = VerLower14; 1191 break; 1192 } 1193 } 1194 } 1195 } 1196 if (RequireFloatControls && 1197 ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls)) 1198 MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls); 1199 } 1200 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) { 1201 const Function &F = *FI; 1202 if (F.isDeclaration()) 1203 continue; 1204 if (F.getMetadata("reqd_work_group_size")) 1205 MAI.Reqs.getAndAddRequirements( 1206 SPIRV::OperandCategory::ExecutionModeOperand, 1207 SPIRV::ExecutionMode::LocalSize, ST); 1208 if (F.getFnAttribute("hlsl.numthreads").isValid()) { 1209 MAI.Reqs.getAndAddRequirements( 1210 SPIRV::OperandCategory::ExecutionModeOperand, 1211 SPIRV::ExecutionMode::LocalSize, ST); 1212 } 1213 if (F.getMetadata("work_group_size_hint")) 1214 MAI.Reqs.getAndAddRequirements( 1215 SPIRV::OperandCategory::ExecutionModeOperand, 1216 SPIRV::ExecutionMode::LocalSizeHint, ST); 1217 if (F.getMetadata("intel_reqd_sub_group_size")) 1218 MAI.Reqs.getAndAddRequirements( 1219 SPIRV::OperandCategory::ExecutionModeOperand, 1220 SPIRV::ExecutionMode::SubgroupSize, ST); 1221 if (F.getMetadata("vec_type_hint")) 1222 MAI.Reqs.getAndAddRequirements( 1223 SPIRV::OperandCategory::ExecutionModeOperand, 1224 SPIRV::ExecutionMode::VecTypeHint, ST); 1225 1226 if (F.hasOptNone() && 1227 ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) { 1228 // Output OpCapability OptNoneINTEL. 1229 MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone); 1230 MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL); 1231 } 1232 } 1233 } 1234 1235 static unsigned getFastMathFlags(const MachineInstr &I) { 1236 unsigned Flags = SPIRV::FPFastMathMode::None; 1237 if (I.getFlag(MachineInstr::MIFlag::FmNoNans)) 1238 Flags |= SPIRV::FPFastMathMode::NotNaN; 1239 if (I.getFlag(MachineInstr::MIFlag::FmNoInfs)) 1240 Flags |= SPIRV::FPFastMathMode::NotInf; 1241 if (I.getFlag(MachineInstr::MIFlag::FmNsz)) 1242 Flags |= SPIRV::FPFastMathMode::NSZ; 1243 if (I.getFlag(MachineInstr::MIFlag::FmArcp)) 1244 Flags |= SPIRV::FPFastMathMode::AllowRecip; 1245 if (I.getFlag(MachineInstr::MIFlag::FmReassoc)) 1246 Flags |= SPIRV::FPFastMathMode::Fast; 1247 return Flags; 1248 } 1249 1250 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST, 1251 const SPIRVInstrInfo &TII, 1252 SPIRV::RequirementHandler &Reqs) { 1253 if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) && 1254 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1255 SPIRV::Decoration::NoSignedWrap, ST, Reqs) 1256 .IsSatisfiable) { 1257 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1258 SPIRV::Decoration::NoSignedWrap, {}); 1259 } 1260 if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) && 1261 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1262 SPIRV::Decoration::NoUnsignedWrap, ST, 1263 Reqs) 1264 .IsSatisfiable) { 1265 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1266 SPIRV::Decoration::NoUnsignedWrap, {}); 1267 } 1268 if (!TII.canUseFastMathFlags(I)) 1269 return; 1270 unsigned FMFlags = getFastMathFlags(I); 1271 if (FMFlags == SPIRV::FPFastMathMode::None) 1272 return; 1273 Register DstReg = I.getOperand(0).getReg(); 1274 buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags}); 1275 } 1276 1277 // Walk all functions and add decorations related to MI flags. 1278 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII, 1279 MachineModuleInfo *MMI, const SPIRVSubtarget &ST, 1280 SPIRV::ModuleAnalysisInfo &MAI) { 1281 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1282 MachineFunction *MF = MMI->getMachineFunction(*F); 1283 if (!MF) 1284 continue; 1285 for (auto &MBB : *MF) 1286 for (auto &MI : MBB) 1287 handleMIFlagDecoration(MI, ST, TII, MAI.Reqs); 1288 } 1289 } 1290 1291 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI; 1292 1293 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1294 AU.addRequired<TargetPassConfig>(); 1295 AU.addRequired<MachineModuleInfoWrapperPass>(); 1296 } 1297 1298 bool SPIRVModuleAnalysis::runOnModule(Module &M) { 1299 SPIRVTargetMachine &TM = 1300 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>(); 1301 ST = TM.getSubtargetImpl(); 1302 GR = ST->getSPIRVGlobalRegistry(); 1303 TII = ST->getInstrInfo(); 1304 1305 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1306 1307 setBaseInfo(M); 1308 1309 addDecorations(M, *TII, MMI, *ST, MAI); 1310 1311 collectReqs(M, MAI, MMI, *ST); 1312 1313 // Process type/const/global var/func decl instructions, number their 1314 // destination registers from 0 to N, collect Extensions and Capabilities. 1315 processDefInstrs(M); 1316 1317 // Number rest of registers from N+1 onwards. 1318 numberRegistersGlobally(M); 1319 1320 // Update references to OpFunction instructions to use Global Registers 1321 if (GR->hasConstFunPtr()) 1322 collectFuncPtrs(); 1323 1324 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions. 1325 processOtherInstrs(M); 1326 1327 // If there are no entry points, we need the Linkage capability. 1328 if (MAI.MS[SPIRV::MB_EntryPoints].empty()) 1329 MAI.Reqs.addCapability(SPIRV::Capability::Linkage); 1330 1331 // Set maximum ID used. 1332 GR->setBound(MAI.MaxID); 1333 1334 return false; 1335 } 1336