1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The analysis collects instructions that should be output at the module level 10 // and performs the global register numbering. 11 // 12 // The results of this analysis are used in AsmPrinter to rename registers 13 // globally and to output required instructions at the module level. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SPIRVModuleAnalysis.h" 18 #include "MCTargetDesc/SPIRVBaseInfo.h" 19 #include "MCTargetDesc/SPIRVMCTargetDesc.h" 20 #include "SPIRV.h" 21 #include "SPIRVSubtarget.h" 22 #include "SPIRVTargetMachine.h" 23 #include "SPIRVUtils.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "spirv-module-analysis" 31 32 static cl::opt<bool> 33 SPVDumpDeps("spv-dump-deps", 34 cl::desc("Dump MIR with SPIR-V dependencies info"), 35 cl::Optional, cl::init(false)); 36 37 static cl::list<SPIRV::Capability::Capability> 38 AvoidCapabilities("avoid-spirv-capabilities", 39 cl::desc("SPIR-V capabilities to avoid if there are " 40 "other options enabling a feature"), 41 cl::ZeroOrMore, cl::Hidden, 42 cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader", 43 "SPIR-V Shader capability"))); 44 // Use sets instead of cl::list to check "if contains" condition 45 struct AvoidCapabilitiesSet { 46 SmallSet<SPIRV::Capability::Capability, 4> S; 47 AvoidCapabilitiesSet() { 48 for (auto Cap : AvoidCapabilities) 49 S.insert(Cap); 50 } 51 }; 52 53 char llvm::SPIRVModuleAnalysis::ID = 0; 54 55 namespace llvm { 56 void initializeSPIRVModuleAnalysisPass(PassRegistry &); 57 } // namespace llvm 58 59 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true, 60 true) 61 62 // Retrieve an unsigned from an MDNode with a list of them as operands. 63 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex, 64 unsigned DefaultVal = 0) { 65 if (MdNode && OpIndex < MdNode->getNumOperands()) { 66 const auto &Op = MdNode->getOperand(OpIndex); 67 return mdconst::extract<ConstantInt>(Op)->getZExtValue(); 68 } 69 return DefaultVal; 70 } 71 72 static SPIRV::Requirements 73 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category, 74 unsigned i, const SPIRVSubtarget &ST, 75 SPIRV::RequirementHandler &Reqs) { 76 static AvoidCapabilitiesSet 77 AvoidCaps; // contains capabilities to avoid if there is another option 78 79 VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i); 80 VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i); 81 VersionTuple SPIRVVersion = ST.getSPIRVVersion(); 82 bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer; 83 bool MaxVerOK = 84 ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer; 85 CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i); 86 ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i); 87 if (ReqCaps.empty()) { 88 if (ReqExts.empty()) { 89 if (MinVerOK && MaxVerOK) 90 return {true, {}, {}, ReqMinVer, ReqMaxVer}; 91 return {false, {}, {}, VersionTuple(), VersionTuple()}; 92 } 93 } else if (MinVerOK && MaxVerOK) { 94 if (ReqCaps.size() == 1) { 95 auto Cap = ReqCaps[0]; 96 if (Reqs.isCapabilityAvailable(Cap)) 97 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; 98 } else { 99 // By SPIR-V specification: "If an instruction, enumerant, or other 100 // feature specifies multiple enabling capabilities, only one such 101 // capability needs to be declared to use the feature." However, one 102 // capability may be preferred over another. We use command line 103 // argument(s) and AvoidCapabilities to avoid selection of certain 104 // capabilities if there are other options. 105 CapabilityList UseCaps; 106 for (auto Cap : ReqCaps) 107 if (Reqs.isCapabilityAvailable(Cap)) 108 UseCaps.push_back(Cap); 109 for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) { 110 auto Cap = UseCaps[i]; 111 if (i == Sz - 1 || !AvoidCaps.S.contains(Cap)) 112 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; 113 } 114 } 115 } 116 // If there are no capabilities, or we can't satisfy the version or 117 // capability requirements, use the list of extensions (if the subtarget 118 // can handle them all). 119 if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) { 120 return ST.canUseExtension(Ext); 121 })) { 122 return {true, 123 {}, 124 ReqExts, 125 VersionTuple(), 126 VersionTuple()}; // TODO: add versions to extensions. 127 } 128 return {false, {}, {}, VersionTuple(), VersionTuple()}; 129 } 130 131 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) { 132 MAI.MaxID = 0; 133 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++) 134 MAI.MS[i].clear(); 135 MAI.RegisterAliasTable.clear(); 136 MAI.InstrsToDelete.clear(); 137 MAI.FuncMap.clear(); 138 MAI.GlobalVarList.clear(); 139 MAI.ExtInstSetMap.clear(); 140 MAI.Reqs.clear(); 141 MAI.Reqs.initAvailableCapabilities(*ST); 142 143 // TODO: determine memory model and source language from the configuratoin. 144 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) { 145 auto MemMD = MemModel->getOperand(0); 146 MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>( 147 getMetadataUInt(MemMD, 0)); 148 MAI.Mem = 149 static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1)); 150 } else { 151 // TODO: Add support for VulkanMemoryModel. 152 MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL 153 : SPIRV::MemoryModel::GLSL450; 154 if (MAI.Mem == SPIRV::MemoryModel::OpenCL) { 155 unsigned PtrSize = ST->getPointerSize(); 156 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32 157 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64 158 : SPIRV::AddressingModel::Logical; 159 } else { 160 // TODO: Add support for PhysicalStorageBufferAddress. 161 MAI.Addr = SPIRV::AddressingModel::Logical; 162 } 163 } 164 // Get the OpenCL version number from metadata. 165 // TODO: support other source languages. 166 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) { 167 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C; 168 // Construct version literal in accordance with SPIRV-LLVM-Translator. 169 // TODO: support multiple OCL version metadata. 170 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR"); 171 auto VersionMD = VerNode->getOperand(0); 172 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2); 173 unsigned MinorNum = getMetadataUInt(VersionMD, 1); 174 unsigned RevNum = getMetadataUInt(VersionMD, 2); 175 // Prevent Major part of OpenCL version to be 0 176 MAI.SrcLangVersion = 177 (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum; 178 } else { 179 // If there is no information about OpenCL version we are forced to generate 180 // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling 181 // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV 182 // Translator avoids potential issues with run-times in a similar manner. 183 if (ST->isOpenCLEnv()) { 184 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP; 185 MAI.SrcLangVersion = 100000; 186 } else { 187 MAI.SrcLang = SPIRV::SourceLanguage::Unknown; 188 MAI.SrcLangVersion = 0; 189 } 190 } 191 192 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) { 193 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) { 194 MDNode *MD = ExtNode->getOperand(I); 195 if (!MD || MD->getNumOperands() == 0) 196 continue; 197 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J) 198 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString()); 199 } 200 } 201 202 // Update required capabilities for this memory model, addressing model and 203 // source language. 204 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, 205 MAI.Mem, *ST); 206 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand, 207 MAI.SrcLang, *ST); 208 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 209 MAI.Addr, *ST); 210 211 if (ST->isOpenCLEnv()) { 212 // TODO: check if it's required by default. 213 MAI.ExtInstSetMap[static_cast<unsigned>( 214 SPIRV::InstructionSet::OpenCL_std)] = 215 Register::index2VirtReg(MAI.getNextID()); 216 } 217 } 218 219 // Collect MI which defines the register in the given machine function. 220 static void collectDefInstr(Register Reg, const MachineFunction *MF, 221 SPIRV::ModuleAnalysisInfo *MAI, 222 SPIRV::ModuleSectionType MSType, 223 bool DoInsert = true) { 224 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias"); 225 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg); 226 assert(MI && "There should be an instruction that defines the register"); 227 MAI->setSkipEmission(MI); 228 if (DoInsert) 229 MAI->MS[MSType].push_back(MI); 230 } 231 232 void SPIRVModuleAnalysis::collectGlobalEntities( 233 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph, 234 SPIRV::ModuleSectionType MSType, 235 std::function<bool(const SPIRV::DTSortableEntry *)> Pred, 236 bool UsePreOrder = false) { 237 DenseSet<const SPIRV::DTSortableEntry *> Visited; 238 for (const auto *E : DepsGraph) { 239 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil; 240 // NOTE: here we prefer recursive approach over iterative because 241 // we don't expect depchains long enough to cause SO. 242 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred, 243 &RecHoistUtil](const SPIRV::DTSortableEntry *E) { 244 if (Visited.count(E) || !Pred(E)) 245 return; 246 Visited.insert(E); 247 248 // Traversing deps graph in post-order allows us to get rid of 249 // register aliases preprocessing. 250 // But pre-order is required for correct processing of function 251 // declaration and arguments processing. 252 if (!UsePreOrder) 253 for (auto *S : E->getDeps()) 254 RecHoistUtil(S); 255 256 Register GlobalReg = Register::index2VirtReg(MAI.getNextID()); 257 bool IsFirst = true; 258 for (auto &U : *E) { 259 const MachineFunction *MF = U.first; 260 Register Reg = U.second; 261 MAI.setRegisterAlias(MF, Reg, GlobalReg); 262 if (!MF->getRegInfo().getUniqueVRegDef(Reg)) 263 continue; 264 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst); 265 IsFirst = false; 266 if (E->getIsGV()) 267 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg)); 268 } 269 270 if (UsePreOrder) 271 for (auto *S : E->getDeps()) 272 RecHoistUtil(S); 273 }; 274 RecHoistUtil(E); 275 } 276 } 277 278 // The function initializes global register alias table for types, consts, 279 // global vars and func decls and collects these instruction for output 280 // at module level. Also it collects explicit OpExtension/OpCapability 281 // instructions. 282 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) { 283 std::vector<SPIRV::DTSortableEntry *> DepsGraph; 284 285 GR->buildDepsGraph(DepsGraph, TII, SPVDumpDeps ? MMI : nullptr); 286 287 collectGlobalEntities( 288 DepsGraph, SPIRV::MB_TypeConstVars, 289 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); }); 290 291 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 292 MachineFunction *MF = MMI->getMachineFunction(*F); 293 if (!MF) 294 continue; 295 // Iterate through and collect OpExtension/OpCapability instructions. 296 for (MachineBasicBlock &MBB : *MF) { 297 for (MachineInstr &MI : MBB) { 298 if (MI.getOpcode() == SPIRV::OpExtension) { 299 // Here, OpExtension just has a single enum operand, not a string. 300 auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm()); 301 MAI.Reqs.addExtension(Ext); 302 MAI.setSkipEmission(&MI); 303 } else if (MI.getOpcode() == SPIRV::OpCapability) { 304 auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm()); 305 MAI.Reqs.addCapability(Cap); 306 MAI.setSkipEmission(&MI); 307 } 308 } 309 } 310 } 311 312 collectGlobalEntities( 313 DepsGraph, SPIRV::MB_ExtFuncDecls, 314 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true); 315 } 316 317 // Look for IDs declared with Import linkage, and map the corresponding function 318 // to the register defining that variable (which will usually be the result of 319 // an OpFunction). This lets us call externally imported functions using 320 // the correct ID registers. 321 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI, 322 const Function *F) { 323 if (MI.getOpcode() == SPIRV::OpDecorate) { 324 // If it's got Import linkage. 325 auto Dec = MI.getOperand(1).getImm(); 326 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) { 327 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm(); 328 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) { 329 // Map imported function name to function ID register. 330 const Function *ImportedFunc = 331 F->getParent()->getFunction(getStringImm(MI, 2)); 332 Register Target = MI.getOperand(0).getReg(); 333 MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target); 334 } 335 } 336 } else if (MI.getOpcode() == SPIRV::OpFunction) { 337 // Record all internal OpFunction declarations. 338 Register Reg = MI.defs().begin()->getReg(); 339 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg); 340 assert(GlobalReg.isValid()); 341 MAI.FuncMap[F] = GlobalReg; 342 } 343 } 344 345 // References to a function via function pointers generate virtual 346 // registers without a definition. We are able to resolve this 347 // reference using Globar Register info into an OpFunction instruction 348 // and replace dummy operands by the corresponding global register references. 349 void SPIRVModuleAnalysis::collectFuncPtrs() { 350 for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars]) 351 if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL) 352 collectFuncPtrs(MI); 353 } 354 355 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) { 356 const MachineOperand *FunUse = &MI->getOperand(2); 357 if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) { 358 const MachineInstr *FunDefMI = FunDef->getParent(); 359 assert(FunDefMI->getOpcode() == SPIRV::OpFunction && 360 "Constant function pointer must refer to function definition"); 361 Register FunDefReg = FunDef->getReg(); 362 Register GlobalFunDefReg = 363 MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg); 364 assert(GlobalFunDefReg.isValid() && 365 "Function definition must refer to a global register"); 366 Register FunPtrReg = FunUse->getReg(); 367 MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg); 368 } 369 } 370 371 using InstrSignature = SmallVector<size_t>; 372 using InstrTraces = std::set<InstrSignature>; 373 374 // Returns a representation of an instruction as a vector of MachineOperand 375 // hash values, see llvm::hash_value(const MachineOperand &MO) for details. 376 // This creates a signature of the instruction with the same content 377 // that MachineOperand::isIdenticalTo uses for comparison. 378 static InstrSignature instrToSignature(MachineInstr &MI, 379 SPIRV::ModuleAnalysisInfo &MAI) { 380 InstrSignature Signature; 381 for (unsigned i = 0; i < MI.getNumOperands(); ++i) { 382 const MachineOperand &MO = MI.getOperand(i); 383 size_t h; 384 if (MO.isReg()) { 385 Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg()); 386 // mimic llvm::hash_value(const MachineOperand &MO) 387 h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(), 388 MO.isDef()); 389 } else { 390 h = hash_value(MO); 391 } 392 Signature.push_back(h); 393 } 394 return Signature; 395 } 396 397 // Collect the given instruction in the specified MS. We assume global register 398 // numbering has already occurred by this point. We can directly compare reg 399 // arguments when detecting duplicates. 400 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI, 401 SPIRV::ModuleSectionType MSType, InstrTraces &IS, 402 bool Append = true) { 403 MAI.setSkipEmission(&MI); 404 InstrSignature MISign = instrToSignature(MI, MAI); 405 auto FoundMI = IS.insert(MISign); 406 if (!FoundMI.second) 407 return; // insert failed, so we found a duplicate; don't add it to MAI.MS 408 // No duplicates, so add it. 409 if (Append) 410 MAI.MS[MSType].push_back(&MI); 411 else 412 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI); 413 } 414 415 // Some global instructions make reference to function-local ID regs, so cannot 416 // be correctly collected until these registers are globally numbered. 417 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) { 418 InstrTraces IS; 419 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 420 if ((*F).isDeclaration()) 421 continue; 422 MachineFunction *MF = MMI->getMachineFunction(*F); 423 assert(MF); 424 for (MachineBasicBlock &MBB : *MF) 425 for (MachineInstr &MI : MBB) { 426 if (MAI.getSkipEmission(&MI)) 427 continue; 428 const unsigned OpCode = MI.getOpcode(); 429 if (OpCode == SPIRV::OpString) { 430 collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS); 431 } else if (OpCode == SPIRV::OpExtInst && MI.getOperand(2).isImm() && 432 MI.getOperand(2).getImm() == 433 SPIRV::InstructionSet:: 434 NonSemantic_Shader_DebugInfo_100) { 435 MachineOperand Ins = MI.getOperand(3); 436 namespace NS = SPIRV::NonSemanticExtInst; 437 static constexpr int64_t GlobalNonSemanticDITy[] = { 438 NS::DebugSource, NS::DebugCompilationUnit, NS::DebugInfoNone, 439 NS::DebugTypeBasic, NS::DebugTypePointer}; 440 bool IsGlobalDI = false; 441 for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx) 442 IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx]; 443 if (IsGlobalDI) 444 collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS); 445 } else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) { 446 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS); 447 } else if (OpCode == SPIRV::OpEntryPoint) { 448 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS); 449 } else if (TII->isDecorationInstr(MI)) { 450 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS); 451 collectFuncNames(MI, &*F); 452 } else if (TII->isConstantInstr(MI)) { 453 // Now OpSpecConstant*s are not in DT, 454 // but they need to be collected anyway. 455 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS); 456 } else if (OpCode == SPIRV::OpFunction) { 457 collectFuncNames(MI, &*F); 458 } else if (OpCode == SPIRV::OpTypeForwardPointer) { 459 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false); 460 } 461 } 462 } 463 } 464 465 // Number registers in all functions globally from 0 onwards and store 466 // the result in global register alias table. Some registers are already 467 // numbered in collectGlobalEntities. 468 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) { 469 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 470 if ((*F).isDeclaration()) 471 continue; 472 MachineFunction *MF = MMI->getMachineFunction(*F); 473 assert(MF); 474 for (MachineBasicBlock &MBB : *MF) { 475 for (MachineInstr &MI : MBB) { 476 for (MachineOperand &Op : MI.operands()) { 477 if (!Op.isReg()) 478 continue; 479 Register Reg = Op.getReg(); 480 if (MAI.hasRegisterAlias(MF, Reg)) 481 continue; 482 Register NewReg = Register::index2VirtReg(MAI.getNextID()); 483 MAI.setRegisterAlias(MF, Reg, NewReg); 484 } 485 if (MI.getOpcode() != SPIRV::OpExtInst) 486 continue; 487 auto Set = MI.getOperand(2).getImm(); 488 if (!MAI.ExtInstSetMap.contains(Set)) 489 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID()); 490 } 491 } 492 } 493 } 494 495 // RequirementHandler implementations. 496 void SPIRV::RequirementHandler::getAndAddRequirements( 497 SPIRV::OperandCategory::OperandCategory Category, uint32_t i, 498 const SPIRVSubtarget &ST) { 499 addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this)); 500 } 501 502 void SPIRV::RequirementHandler::recursiveAddCapabilities( 503 const CapabilityList &ToPrune) { 504 for (const auto &Cap : ToPrune) { 505 AllCaps.insert(Cap); 506 CapabilityList ImplicitDecls = 507 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 508 recursiveAddCapabilities(ImplicitDecls); 509 } 510 } 511 512 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) { 513 for (const auto &Cap : ToAdd) { 514 bool IsNewlyInserted = AllCaps.insert(Cap).second; 515 if (!IsNewlyInserted) // Don't re-add if it's already been declared. 516 continue; 517 CapabilityList ImplicitDecls = 518 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 519 recursiveAddCapabilities(ImplicitDecls); 520 MinimalCaps.push_back(Cap); 521 } 522 } 523 524 void SPIRV::RequirementHandler::addRequirements( 525 const SPIRV::Requirements &Req) { 526 if (!Req.IsSatisfiable) 527 report_fatal_error("Adding SPIR-V requirements this target can't satisfy."); 528 529 if (Req.Cap.has_value()) 530 addCapabilities({Req.Cap.value()}); 531 532 addExtensions(Req.Exts); 533 534 if (!Req.MinVer.empty()) { 535 if (!MaxVersion.empty() && Req.MinVer > MaxVersion) { 536 LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer 537 << " and <= " << MaxVersion << "\n"); 538 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 539 } 540 541 if (MinVersion.empty() || Req.MinVer > MinVersion) 542 MinVersion = Req.MinVer; 543 } 544 545 if (!Req.MaxVer.empty()) { 546 if (!MinVersion.empty() && Req.MaxVer < MinVersion) { 547 LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer 548 << " and >= " << MinVersion << "\n"); 549 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 550 } 551 552 if (MaxVersion.empty() || Req.MaxVer < MaxVersion) 553 MaxVersion = Req.MaxVer; 554 } 555 } 556 557 void SPIRV::RequirementHandler::checkSatisfiable( 558 const SPIRVSubtarget &ST) const { 559 // Report as many errors as possible before aborting the compilation. 560 bool IsSatisfiable = true; 561 auto TargetVer = ST.getSPIRVVersion(); 562 563 if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) { 564 LLVM_DEBUG( 565 dbgs() << "Target SPIR-V version too high for required features\n" 566 << "Required max version: " << MaxVersion << " target version " 567 << TargetVer << "\n"); 568 IsSatisfiable = false; 569 } 570 571 if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) { 572 LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n" 573 << "Required min version: " << MinVersion 574 << " target version " << TargetVer << "\n"); 575 IsSatisfiable = false; 576 } 577 578 if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) { 579 LLVM_DEBUG( 580 dbgs() 581 << "Version is too low for some features and too high for others.\n" 582 << "Required SPIR-V min version: " << MinVersion 583 << " required SPIR-V max version " << MaxVersion << "\n"); 584 IsSatisfiable = false; 585 } 586 587 for (auto Cap : MinimalCaps) { 588 if (AvailableCaps.contains(Cap)) 589 continue; 590 LLVM_DEBUG(dbgs() << "Capability not supported: " 591 << getSymbolicOperandMnemonic( 592 OperandCategory::CapabilityOperand, Cap) 593 << "\n"); 594 IsSatisfiable = false; 595 } 596 597 for (auto Ext : AllExtensions) { 598 if (ST.canUseExtension(Ext)) 599 continue; 600 LLVM_DEBUG(dbgs() << "Extension not supported: " 601 << getSymbolicOperandMnemonic( 602 OperandCategory::ExtensionOperand, Ext) 603 << "\n"); 604 IsSatisfiable = false; 605 } 606 607 if (!IsSatisfiable) 608 report_fatal_error("Unable to meet SPIR-V requirements for this target."); 609 } 610 611 // Add the given capabilities and all their implicitly defined capabilities too. 612 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) { 613 for (const auto Cap : ToAdd) 614 if (AvailableCaps.insert(Cap).second) 615 addAvailableCaps(getSymbolicOperandCapabilities( 616 SPIRV::OperandCategory::CapabilityOperand, Cap)); 617 } 618 619 void SPIRV::RequirementHandler::removeCapabilityIf( 620 const Capability::Capability ToRemove, 621 const Capability::Capability IfPresent) { 622 if (AllCaps.contains(IfPresent)) 623 AllCaps.erase(ToRemove); 624 } 625 626 namespace llvm { 627 namespace SPIRV { 628 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) { 629 if (ST.isOpenCLEnv()) { 630 initAvailableCapabilitiesForOpenCL(ST); 631 return; 632 } 633 634 if (ST.isVulkanEnv()) { 635 initAvailableCapabilitiesForVulkan(ST); 636 return; 637 } 638 639 report_fatal_error("Unimplemented environment for SPIR-V generation."); 640 } 641 642 void RequirementHandler::initAvailableCapabilitiesForOpenCL( 643 const SPIRVSubtarget &ST) { 644 // Add the min requirements for different OpenCL and SPIR-V versions. 645 addAvailableCaps({Capability::Addresses, Capability::Float16Buffer, 646 Capability::Int16, Capability::Int8, Capability::Kernel, 647 Capability::Linkage, Capability::Vector16, 648 Capability::Groups, Capability::GenericPointer, 649 Capability::Shader}); 650 if (ST.hasOpenCLFullProfile()) 651 addAvailableCaps({Capability::Int64, Capability::Int64Atomics}); 652 if (ST.hasOpenCLImageSupport()) { 653 addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler, 654 Capability::Image1D, Capability::SampledBuffer, 655 Capability::ImageBuffer}); 656 if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0))) 657 addAvailableCaps({Capability::ImageReadWrite}); 658 } 659 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) && 660 ST.isAtLeastOpenCLVer(VersionTuple(2, 2))) 661 addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage}); 662 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3))) 663 addAvailableCaps({Capability::GroupNonUniform, 664 Capability::GroupNonUniformVote, 665 Capability::GroupNonUniformArithmetic, 666 Capability::GroupNonUniformBallot, 667 Capability::GroupNonUniformClustered, 668 Capability::GroupNonUniformShuffle, 669 Capability::GroupNonUniformShuffleRelative}); 670 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4))) 671 addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero, 672 Capability::SignedZeroInfNanPreserve, 673 Capability::RoundingModeRTE, 674 Capability::RoundingModeRTZ}); 675 // TODO: verify if this needs some checks. 676 addAvailableCaps({Capability::Float16, Capability::Float64}); 677 678 // Add capabilities enabled by extensions. 679 for (auto Extension : ST.getAllAvailableExtensions()) { 680 CapabilityList EnabledCapabilities = 681 getCapabilitiesEnabledByExtension(Extension); 682 addAvailableCaps(EnabledCapabilities); 683 } 684 685 // TODO: add OpenCL extensions. 686 } 687 688 void RequirementHandler::initAvailableCapabilitiesForVulkan( 689 const SPIRVSubtarget &ST) { 690 addAvailableCaps({Capability::Shader, Capability::Linkage}); 691 692 // Provided by all supported Vulkan versions. 693 addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16, 694 Capability::Float64, Capability::GroupNonUniform, 695 Capability::Image1D, Capability::SampledBuffer, 696 Capability::ImageBuffer}); 697 } 698 699 } // namespace SPIRV 700 } // namespace llvm 701 702 // Add the required capabilities from a decoration instruction (including 703 // BuiltIns). 704 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex, 705 SPIRV::RequirementHandler &Reqs, 706 const SPIRVSubtarget &ST) { 707 int64_t DecOp = MI.getOperand(DecIndex).getImm(); 708 auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp); 709 Reqs.addRequirements(getSymbolicOperandRequirements( 710 SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs)); 711 712 if (Dec == SPIRV::Decoration::BuiltIn) { 713 int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm(); 714 auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp); 715 Reqs.addRequirements(getSymbolicOperandRequirements( 716 SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs)); 717 } else if (Dec == SPIRV::Decoration::LinkageAttributes) { 718 int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm(); 719 SPIRV::LinkageType::LinkageType LnkType = 720 static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp); 721 if (LnkType == SPIRV::LinkageType::LinkOnceODR) 722 Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr); 723 } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL || 724 Dec == SPIRV::Decoration::CacheControlStoreINTEL) { 725 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls); 726 } else if (Dec == SPIRV::Decoration::HostAccessINTEL) { 727 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access); 728 } else if (Dec == SPIRV::Decoration::InitModeINTEL || 729 Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) { 730 Reqs.addExtension( 731 SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations); 732 } 733 } 734 735 // Add requirements for image handling. 736 static void addOpTypeImageReqs(const MachineInstr &MI, 737 SPIRV::RequirementHandler &Reqs, 738 const SPIRVSubtarget &ST) { 739 assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage"); 740 // The operand indices used here are based on the OpTypeImage layout, which 741 // the MachineInstr follows as well. 742 int64_t ImgFormatOp = MI.getOperand(7).getImm(); 743 auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp); 744 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand, 745 ImgFormat, ST); 746 747 bool IsArrayed = MI.getOperand(4).getImm() == 1; 748 bool IsMultisampled = MI.getOperand(5).getImm() == 1; 749 bool NoSampler = MI.getOperand(6).getImm() == 2; 750 // Add dimension requirements. 751 assert(MI.getOperand(2).isImm()); 752 switch (MI.getOperand(2).getImm()) { 753 case SPIRV::Dim::DIM_1D: 754 Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D 755 : SPIRV::Capability::Sampled1D); 756 break; 757 case SPIRV::Dim::DIM_2D: 758 if (IsMultisampled && NoSampler) 759 Reqs.addRequirements(SPIRV::Capability::ImageMSArray); 760 break; 761 case SPIRV::Dim::DIM_Cube: 762 Reqs.addRequirements(SPIRV::Capability::Shader); 763 if (IsArrayed) 764 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray 765 : SPIRV::Capability::SampledCubeArray); 766 break; 767 case SPIRV::Dim::DIM_Rect: 768 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect 769 : SPIRV::Capability::SampledRect); 770 break; 771 case SPIRV::Dim::DIM_Buffer: 772 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer 773 : SPIRV::Capability::SampledBuffer); 774 break; 775 case SPIRV::Dim::DIM_SubpassData: 776 Reqs.addRequirements(SPIRV::Capability::InputAttachment); 777 break; 778 } 779 780 // Has optional access qualifier. 781 if (ST.isOpenCLEnv()) { 782 if (MI.getNumOperands() > 8 && 783 MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite) 784 Reqs.addRequirements(SPIRV::Capability::ImageReadWrite); 785 else 786 Reqs.addRequirements(SPIRV::Capability::ImageBasic); 787 } 788 } 789 790 // Add requirements for handling atomic float instructions 791 #define ATOM_FLT_REQ_EXT_MSG(ExtName) \ 792 "The atomic float instruction requires the following SPIR-V " \ 793 "extension: SPV_EXT_shader_atomic_float" ExtName 794 static void AddAtomicFloatRequirements(const MachineInstr &MI, 795 SPIRV::RequirementHandler &Reqs, 796 const SPIRVSubtarget &ST) { 797 assert(MI.getOperand(1).isReg() && 798 "Expect register operand in atomic float instruction"); 799 Register TypeReg = MI.getOperand(1).getReg(); 800 SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg); 801 if (TypeDef->getOpcode() != SPIRV::OpTypeFloat) 802 report_fatal_error("Result type of an atomic float instruction must be a " 803 "floating-point type scalar"); 804 805 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 806 unsigned Op = MI.getOpcode(); 807 if (Op == SPIRV::OpAtomicFAddEXT) { 808 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add)) 809 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false); 810 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add); 811 switch (BitWidth) { 812 case 16: 813 if (!ST.canUseExtension( 814 SPIRV::Extension::SPV_EXT_shader_atomic_float16_add)) 815 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false); 816 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add); 817 Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT); 818 break; 819 case 32: 820 Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT); 821 break; 822 case 64: 823 Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT); 824 break; 825 default: 826 report_fatal_error( 827 "Unexpected floating-point type width in atomic float instruction"); 828 } 829 } else { 830 if (!ST.canUseExtension( 831 SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max)) 832 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false); 833 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max); 834 switch (BitWidth) { 835 case 16: 836 Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT); 837 break; 838 case 32: 839 Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT); 840 break; 841 case 64: 842 Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT); 843 break; 844 default: 845 report_fatal_error( 846 "Unexpected floating-point type width in atomic float instruction"); 847 } 848 } 849 } 850 851 void addInstrRequirements(const MachineInstr &MI, 852 SPIRV::RequirementHandler &Reqs, 853 const SPIRVSubtarget &ST) { 854 switch (MI.getOpcode()) { 855 case SPIRV::OpMemoryModel: { 856 int64_t Addr = MI.getOperand(0).getImm(); 857 Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 858 Addr, ST); 859 int64_t Mem = MI.getOperand(1).getImm(); 860 Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem, 861 ST); 862 break; 863 } 864 case SPIRV::OpEntryPoint: { 865 int64_t Exe = MI.getOperand(0).getImm(); 866 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand, 867 Exe, ST); 868 break; 869 } 870 case SPIRV::OpExecutionMode: 871 case SPIRV::OpExecutionModeId: { 872 int64_t Exe = MI.getOperand(1).getImm(); 873 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand, 874 Exe, ST); 875 break; 876 } 877 case SPIRV::OpTypeMatrix: 878 Reqs.addCapability(SPIRV::Capability::Matrix); 879 break; 880 case SPIRV::OpTypeInt: { 881 unsigned BitWidth = MI.getOperand(1).getImm(); 882 if (BitWidth == 64) 883 Reqs.addCapability(SPIRV::Capability::Int64); 884 else if (BitWidth == 16) 885 Reqs.addCapability(SPIRV::Capability::Int16); 886 else if (BitWidth == 8) 887 Reqs.addCapability(SPIRV::Capability::Int8); 888 break; 889 } 890 case SPIRV::OpTypeFloat: { 891 unsigned BitWidth = MI.getOperand(1).getImm(); 892 if (BitWidth == 64) 893 Reqs.addCapability(SPIRV::Capability::Float64); 894 else if (BitWidth == 16) 895 Reqs.addCapability(SPIRV::Capability::Float16); 896 break; 897 } 898 case SPIRV::OpTypeVector: { 899 unsigned NumComponents = MI.getOperand(2).getImm(); 900 if (NumComponents == 8 || NumComponents == 16) 901 Reqs.addCapability(SPIRV::Capability::Vector16); 902 break; 903 } 904 case SPIRV::OpTypePointer: { 905 auto SC = MI.getOperand(1).getImm(); 906 Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC, 907 ST); 908 // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer 909 // capability. 910 if (!ST.isOpenCLEnv()) 911 break; 912 assert(MI.getOperand(2).isReg()); 913 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 914 SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg()); 915 if (TypeDef->getOpcode() == SPIRV::OpTypeFloat && 916 TypeDef->getOperand(1).getImm() == 16) 917 Reqs.addCapability(SPIRV::Capability::Float16Buffer); 918 break; 919 } 920 case SPIRV::OpExtInst: { 921 if (MI.getOperand(2).getImm() == 922 static_cast<int64_t>( 923 SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) { 924 Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info); 925 } 926 break; 927 } 928 case SPIRV::OpBitReverse: 929 case SPIRV::OpBitFieldInsert: 930 case SPIRV::OpBitFieldSExtract: 931 case SPIRV::OpBitFieldUExtract: 932 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) { 933 Reqs.addCapability(SPIRV::Capability::Shader); 934 break; 935 } 936 Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions); 937 Reqs.addCapability(SPIRV::Capability::BitInstructions); 938 break; 939 case SPIRV::OpTypeRuntimeArray: 940 Reqs.addCapability(SPIRV::Capability::Shader); 941 break; 942 case SPIRV::OpTypeOpaque: 943 case SPIRV::OpTypeEvent: 944 Reqs.addCapability(SPIRV::Capability::Kernel); 945 break; 946 case SPIRV::OpTypePipe: 947 case SPIRV::OpTypeReserveId: 948 Reqs.addCapability(SPIRV::Capability::Pipes); 949 break; 950 case SPIRV::OpTypeDeviceEvent: 951 case SPIRV::OpTypeQueue: 952 case SPIRV::OpBuildNDRange: 953 Reqs.addCapability(SPIRV::Capability::DeviceEnqueue); 954 break; 955 case SPIRV::OpDecorate: 956 case SPIRV::OpDecorateId: 957 case SPIRV::OpDecorateString: 958 addOpDecorateReqs(MI, 1, Reqs, ST); 959 break; 960 case SPIRV::OpMemberDecorate: 961 case SPIRV::OpMemberDecorateString: 962 addOpDecorateReqs(MI, 2, Reqs, ST); 963 break; 964 case SPIRV::OpInBoundsPtrAccessChain: 965 Reqs.addCapability(SPIRV::Capability::Addresses); 966 break; 967 case SPIRV::OpConstantSampler: 968 Reqs.addCapability(SPIRV::Capability::LiteralSampler); 969 break; 970 case SPIRV::OpTypeImage: 971 addOpTypeImageReqs(MI, Reqs, ST); 972 break; 973 case SPIRV::OpTypeSampler: 974 Reqs.addCapability(SPIRV::Capability::ImageBasic); 975 break; 976 case SPIRV::OpTypeForwardPointer: 977 // TODO: check if it's OpenCL's kernel. 978 Reqs.addCapability(SPIRV::Capability::Addresses); 979 break; 980 case SPIRV::OpAtomicFlagTestAndSet: 981 case SPIRV::OpAtomicLoad: 982 case SPIRV::OpAtomicStore: 983 case SPIRV::OpAtomicExchange: 984 case SPIRV::OpAtomicCompareExchange: 985 case SPIRV::OpAtomicIIncrement: 986 case SPIRV::OpAtomicIDecrement: 987 case SPIRV::OpAtomicIAdd: 988 case SPIRV::OpAtomicISub: 989 case SPIRV::OpAtomicUMin: 990 case SPIRV::OpAtomicUMax: 991 case SPIRV::OpAtomicSMin: 992 case SPIRV::OpAtomicSMax: 993 case SPIRV::OpAtomicAnd: 994 case SPIRV::OpAtomicOr: 995 case SPIRV::OpAtomicXor: { 996 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 997 const MachineInstr *InstrPtr = &MI; 998 if (MI.getOpcode() == SPIRV::OpAtomicStore) { 999 assert(MI.getOperand(3).isReg()); 1000 InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg()); 1001 assert(InstrPtr && "Unexpected type instruction for OpAtomicStore"); 1002 } 1003 assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic"); 1004 Register TypeReg = InstrPtr->getOperand(1).getReg(); 1005 SPIRVType *TypeDef = MRI.getVRegDef(TypeReg); 1006 if (TypeDef->getOpcode() == SPIRV::OpTypeInt) { 1007 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 1008 if (BitWidth == 64) 1009 Reqs.addCapability(SPIRV::Capability::Int64Atomics); 1010 } 1011 break; 1012 } 1013 case SPIRV::OpGroupNonUniformIAdd: 1014 case SPIRV::OpGroupNonUniformFAdd: 1015 case SPIRV::OpGroupNonUniformIMul: 1016 case SPIRV::OpGroupNonUniformFMul: 1017 case SPIRV::OpGroupNonUniformSMin: 1018 case SPIRV::OpGroupNonUniformUMin: 1019 case SPIRV::OpGroupNonUniformFMin: 1020 case SPIRV::OpGroupNonUniformSMax: 1021 case SPIRV::OpGroupNonUniformUMax: 1022 case SPIRV::OpGroupNonUniformFMax: 1023 case SPIRV::OpGroupNonUniformBitwiseAnd: 1024 case SPIRV::OpGroupNonUniformBitwiseOr: 1025 case SPIRV::OpGroupNonUniformBitwiseXor: 1026 case SPIRV::OpGroupNonUniformLogicalAnd: 1027 case SPIRV::OpGroupNonUniformLogicalOr: 1028 case SPIRV::OpGroupNonUniformLogicalXor: { 1029 assert(MI.getOperand(3).isImm()); 1030 int64_t GroupOp = MI.getOperand(3).getImm(); 1031 switch (GroupOp) { 1032 case SPIRV::GroupOperation::Reduce: 1033 case SPIRV::GroupOperation::InclusiveScan: 1034 case SPIRV::GroupOperation::ExclusiveScan: 1035 Reqs.addCapability(SPIRV::Capability::Kernel); 1036 Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic); 1037 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1038 break; 1039 case SPIRV::GroupOperation::ClusteredReduce: 1040 Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered); 1041 break; 1042 case SPIRV::GroupOperation::PartitionedReduceNV: 1043 case SPIRV::GroupOperation::PartitionedInclusiveScanNV: 1044 case SPIRV::GroupOperation::PartitionedExclusiveScanNV: 1045 Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV); 1046 break; 1047 } 1048 break; 1049 } 1050 case SPIRV::OpGroupNonUniformShuffle: 1051 case SPIRV::OpGroupNonUniformShuffleXor: 1052 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle); 1053 break; 1054 case SPIRV::OpGroupNonUniformShuffleUp: 1055 case SPIRV::OpGroupNonUniformShuffleDown: 1056 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative); 1057 break; 1058 case SPIRV::OpGroupAll: 1059 case SPIRV::OpGroupAny: 1060 case SPIRV::OpGroupBroadcast: 1061 case SPIRV::OpGroupIAdd: 1062 case SPIRV::OpGroupFAdd: 1063 case SPIRV::OpGroupFMin: 1064 case SPIRV::OpGroupUMin: 1065 case SPIRV::OpGroupSMin: 1066 case SPIRV::OpGroupFMax: 1067 case SPIRV::OpGroupUMax: 1068 case SPIRV::OpGroupSMax: 1069 Reqs.addCapability(SPIRV::Capability::Groups); 1070 break; 1071 case SPIRV::OpGroupNonUniformElect: 1072 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1073 break; 1074 case SPIRV::OpGroupNonUniformAll: 1075 case SPIRV::OpGroupNonUniformAny: 1076 case SPIRV::OpGroupNonUniformAllEqual: 1077 Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote); 1078 break; 1079 case SPIRV::OpGroupNonUniformBroadcast: 1080 case SPIRV::OpGroupNonUniformBroadcastFirst: 1081 case SPIRV::OpGroupNonUniformBallot: 1082 case SPIRV::OpGroupNonUniformInverseBallot: 1083 case SPIRV::OpGroupNonUniformBallotBitExtract: 1084 case SPIRV::OpGroupNonUniformBallotBitCount: 1085 case SPIRV::OpGroupNonUniformBallotFindLSB: 1086 case SPIRV::OpGroupNonUniformBallotFindMSB: 1087 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1088 break; 1089 case SPIRV::OpSubgroupShuffleINTEL: 1090 case SPIRV::OpSubgroupShuffleDownINTEL: 1091 case SPIRV::OpSubgroupShuffleUpINTEL: 1092 case SPIRV::OpSubgroupShuffleXorINTEL: 1093 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1094 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1095 Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL); 1096 } 1097 break; 1098 case SPIRV::OpSubgroupBlockReadINTEL: 1099 case SPIRV::OpSubgroupBlockWriteINTEL: 1100 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1101 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1102 Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL); 1103 } 1104 break; 1105 case SPIRV::OpSubgroupImageBlockReadINTEL: 1106 case SPIRV::OpSubgroupImageBlockWriteINTEL: 1107 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1108 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1109 Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL); 1110 } 1111 break; 1112 case SPIRV::OpAssumeTrueKHR: 1113 case SPIRV::OpExpectKHR: 1114 if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) { 1115 Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume); 1116 Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR); 1117 } 1118 break; 1119 case SPIRV::OpPtrCastToCrossWorkgroupINTEL: 1120 case SPIRV::OpCrossWorkgroupCastToPtrINTEL: 1121 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) { 1122 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes); 1123 Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL); 1124 } 1125 break; 1126 case SPIRV::OpConstantFunctionPointerINTEL: 1127 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1128 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1129 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1130 } 1131 break; 1132 case SPIRV::OpGroupNonUniformRotateKHR: 1133 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate)) 1134 report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the " 1135 "following SPIR-V extension: SPV_KHR_subgroup_rotate", 1136 false); 1137 Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate); 1138 Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR); 1139 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1140 break; 1141 case SPIRV::OpGroupIMulKHR: 1142 case SPIRV::OpGroupFMulKHR: 1143 case SPIRV::OpGroupBitwiseAndKHR: 1144 case SPIRV::OpGroupBitwiseOrKHR: 1145 case SPIRV::OpGroupBitwiseXorKHR: 1146 case SPIRV::OpGroupLogicalAndKHR: 1147 case SPIRV::OpGroupLogicalOrKHR: 1148 case SPIRV::OpGroupLogicalXorKHR: 1149 if (ST.canUseExtension( 1150 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) { 1151 Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions); 1152 Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR); 1153 } 1154 break; 1155 case SPIRV::OpReadClockKHR: 1156 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock)) 1157 report_fatal_error("OpReadClockKHR instruction requires the " 1158 "following SPIR-V extension: SPV_KHR_shader_clock", 1159 false); 1160 Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock); 1161 Reqs.addCapability(SPIRV::Capability::ShaderClockKHR); 1162 break; 1163 case SPIRV::OpFunctionPointerCallINTEL: 1164 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1165 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1166 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1167 } 1168 break; 1169 case SPIRV::OpAtomicFAddEXT: 1170 case SPIRV::OpAtomicFMinEXT: 1171 case SPIRV::OpAtomicFMaxEXT: 1172 AddAtomicFloatRequirements(MI, Reqs, ST); 1173 break; 1174 case SPIRV::OpConvertBF16ToFINTEL: 1175 case SPIRV::OpConvertFToBF16INTEL: 1176 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) { 1177 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion); 1178 Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL); 1179 } 1180 break; 1181 case SPIRV::OpVariableLengthArrayINTEL: 1182 case SPIRV::OpSaveMemoryINTEL: 1183 case SPIRV::OpRestoreMemoryINTEL: 1184 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) { 1185 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array); 1186 Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL); 1187 } 1188 break; 1189 case SPIRV::OpAsmTargetINTEL: 1190 case SPIRV::OpAsmINTEL: 1191 case SPIRV::OpAsmCallINTEL: 1192 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) { 1193 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly); 1194 Reqs.addCapability(SPIRV::Capability::AsmINTEL); 1195 } 1196 break; 1197 case SPIRV::OpTypeCooperativeMatrixKHR: 1198 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix)) 1199 report_fatal_error( 1200 "OpTypeCooperativeMatrixKHR type requires the " 1201 "following SPIR-V extension: SPV_KHR_cooperative_matrix", 1202 false); 1203 Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix); 1204 Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR); 1205 break; 1206 case SPIRV::OpArithmeticFenceEXT: 1207 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence)) 1208 report_fatal_error("OpArithmeticFenceEXT requires the " 1209 "following SPIR-V extension: SPV_EXT_arithmetic_fence", 1210 false); 1211 Reqs.addExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence); 1212 Reqs.addCapability(SPIRV::Capability::ArithmeticFenceEXT); 1213 break; 1214 case SPIRV::OpControlBarrierArriveINTEL: 1215 case SPIRV::OpControlBarrierWaitINTEL: 1216 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_split_barrier)) { 1217 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_split_barrier); 1218 Reqs.addCapability(SPIRV::Capability::SplitBarrierINTEL); 1219 } 1220 break; 1221 default: 1222 break; 1223 } 1224 1225 // If we require capability Shader, then we can remove the requirement for 1226 // the BitInstructions capability, since Shader is a superset capability 1227 // of BitInstructions. 1228 Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions, 1229 SPIRV::Capability::Shader); 1230 } 1231 1232 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI, 1233 MachineModuleInfo *MMI, const SPIRVSubtarget &ST) { 1234 // Collect requirements for existing instructions. 1235 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1236 MachineFunction *MF = MMI->getMachineFunction(*F); 1237 if (!MF) 1238 continue; 1239 for (const MachineBasicBlock &MBB : *MF) 1240 for (const MachineInstr &MI : MBB) 1241 addInstrRequirements(MI, MAI.Reqs, ST); 1242 } 1243 // Collect requirements for OpExecutionMode instructions. 1244 auto Node = M.getNamedMetadata("spirv.ExecutionMode"); 1245 if (Node) { 1246 // SPV_KHR_float_controls is not available until v1.4 1247 bool RequireFloatControls = false, 1248 VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4)); 1249 for (unsigned i = 0; i < Node->getNumOperands(); i++) { 1250 MDNode *MDN = cast<MDNode>(Node->getOperand(i)); 1251 const MDOperand &MDOp = MDN->getOperand(1); 1252 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) { 1253 Constant *C = CMeta->getValue(); 1254 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) { 1255 auto EM = Const->getZExtValue(); 1256 MAI.Reqs.getAndAddRequirements( 1257 SPIRV::OperandCategory::ExecutionModeOperand, EM, ST); 1258 // add SPV_KHR_float_controls if the version is too low 1259 switch (EM) { 1260 case SPIRV::ExecutionMode::DenormPreserve: 1261 case SPIRV::ExecutionMode::DenormFlushToZero: 1262 case SPIRV::ExecutionMode::SignedZeroInfNanPreserve: 1263 case SPIRV::ExecutionMode::RoundingModeRTE: 1264 case SPIRV::ExecutionMode::RoundingModeRTZ: 1265 RequireFloatControls = VerLower14; 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 if (RequireFloatControls && 1272 ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls)) 1273 MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls); 1274 } 1275 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) { 1276 const Function &F = *FI; 1277 if (F.isDeclaration()) 1278 continue; 1279 if (F.getMetadata("reqd_work_group_size")) 1280 MAI.Reqs.getAndAddRequirements( 1281 SPIRV::OperandCategory::ExecutionModeOperand, 1282 SPIRV::ExecutionMode::LocalSize, ST); 1283 if (F.getFnAttribute("hlsl.numthreads").isValid()) { 1284 MAI.Reqs.getAndAddRequirements( 1285 SPIRV::OperandCategory::ExecutionModeOperand, 1286 SPIRV::ExecutionMode::LocalSize, ST); 1287 } 1288 if (F.getMetadata("work_group_size_hint")) 1289 MAI.Reqs.getAndAddRequirements( 1290 SPIRV::OperandCategory::ExecutionModeOperand, 1291 SPIRV::ExecutionMode::LocalSizeHint, ST); 1292 if (F.getMetadata("intel_reqd_sub_group_size")) 1293 MAI.Reqs.getAndAddRequirements( 1294 SPIRV::OperandCategory::ExecutionModeOperand, 1295 SPIRV::ExecutionMode::SubgroupSize, ST); 1296 if (F.getMetadata("vec_type_hint")) 1297 MAI.Reqs.getAndAddRequirements( 1298 SPIRV::OperandCategory::ExecutionModeOperand, 1299 SPIRV::ExecutionMode::VecTypeHint, ST); 1300 1301 if (F.hasOptNone() && 1302 ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) { 1303 // Output OpCapability OptNoneINTEL. 1304 MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone); 1305 MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL); 1306 } 1307 } 1308 } 1309 1310 static unsigned getFastMathFlags(const MachineInstr &I) { 1311 unsigned Flags = SPIRV::FPFastMathMode::None; 1312 if (I.getFlag(MachineInstr::MIFlag::FmNoNans)) 1313 Flags |= SPIRV::FPFastMathMode::NotNaN; 1314 if (I.getFlag(MachineInstr::MIFlag::FmNoInfs)) 1315 Flags |= SPIRV::FPFastMathMode::NotInf; 1316 if (I.getFlag(MachineInstr::MIFlag::FmNsz)) 1317 Flags |= SPIRV::FPFastMathMode::NSZ; 1318 if (I.getFlag(MachineInstr::MIFlag::FmArcp)) 1319 Flags |= SPIRV::FPFastMathMode::AllowRecip; 1320 if (I.getFlag(MachineInstr::MIFlag::FmReassoc)) 1321 Flags |= SPIRV::FPFastMathMode::Fast; 1322 return Flags; 1323 } 1324 1325 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST, 1326 const SPIRVInstrInfo &TII, 1327 SPIRV::RequirementHandler &Reqs) { 1328 if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) && 1329 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1330 SPIRV::Decoration::NoSignedWrap, ST, Reqs) 1331 .IsSatisfiable) { 1332 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1333 SPIRV::Decoration::NoSignedWrap, {}); 1334 } 1335 if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) && 1336 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1337 SPIRV::Decoration::NoUnsignedWrap, ST, 1338 Reqs) 1339 .IsSatisfiable) { 1340 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1341 SPIRV::Decoration::NoUnsignedWrap, {}); 1342 } 1343 if (!TII.canUseFastMathFlags(I)) 1344 return; 1345 unsigned FMFlags = getFastMathFlags(I); 1346 if (FMFlags == SPIRV::FPFastMathMode::None) 1347 return; 1348 Register DstReg = I.getOperand(0).getReg(); 1349 buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags}); 1350 } 1351 1352 // Walk all functions and add decorations related to MI flags. 1353 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII, 1354 MachineModuleInfo *MMI, const SPIRVSubtarget &ST, 1355 SPIRV::ModuleAnalysisInfo &MAI) { 1356 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1357 MachineFunction *MF = MMI->getMachineFunction(*F); 1358 if (!MF) 1359 continue; 1360 for (auto &MBB : *MF) 1361 for (auto &MI : MBB) 1362 handleMIFlagDecoration(MI, ST, TII, MAI.Reqs); 1363 } 1364 } 1365 1366 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI; 1367 1368 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1369 AU.addRequired<TargetPassConfig>(); 1370 AU.addRequired<MachineModuleInfoWrapperPass>(); 1371 } 1372 1373 bool SPIRVModuleAnalysis::runOnModule(Module &M) { 1374 SPIRVTargetMachine &TM = 1375 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>(); 1376 ST = TM.getSubtargetImpl(); 1377 GR = ST->getSPIRVGlobalRegistry(); 1378 TII = ST->getInstrInfo(); 1379 1380 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1381 1382 setBaseInfo(M); 1383 1384 addDecorations(M, *TII, MMI, *ST, MAI); 1385 1386 collectReqs(M, MAI, MMI, *ST); 1387 1388 // Process type/const/global var/func decl instructions, number their 1389 // destination registers from 0 to N, collect Extensions and Capabilities. 1390 processDefInstrs(M); 1391 1392 // Number rest of registers from N+1 onwards. 1393 numberRegistersGlobally(M); 1394 1395 // Update references to OpFunction instructions to use Global Registers 1396 if (GR->hasConstFunPtr()) 1397 collectFuncPtrs(); 1398 1399 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions. 1400 processOtherInstrs(M); 1401 1402 // If there are no entry points, we need the Linkage capability. 1403 if (MAI.MS[SPIRV::MB_EntryPoints].empty()) 1404 MAI.Reqs.addCapability(SPIRV::Capability::Linkage); 1405 1406 // Set maximum ID used. 1407 GR->setBound(MAI.MaxID); 1408 1409 return false; 1410 } 1411