xref: /llvm-project/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.cpp (revision bc6c0681271788ca7078fb679ac67b56944de1a6)
1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
11 //
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SPIRVModuleAnalysis.h"
18 #include "MCTargetDesc/SPIRVBaseInfo.h"
19 #include "MCTargetDesc/SPIRVMCTargetDesc.h"
20 #include "SPIRV.h"
21 #include "SPIRVSubtarget.h"
22 #include "SPIRVTargetMachine.h"
23 #include "SPIRVUtils.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "spirv-module-analysis"
31 
32 static cl::opt<bool>
33     SPVDumpDeps("spv-dump-deps",
34                 cl::desc("Dump MIR with SPIR-V dependencies info"),
35                 cl::Optional, cl::init(false));
36 
37 static cl::list<SPIRV::Capability::Capability>
38     AvoidCapabilities("avoid-spirv-capabilities",
39                       cl::desc("SPIR-V capabilities to avoid if there are "
40                                "other options enabling a feature"),
41                       cl::ZeroOrMore, cl::Hidden,
42                       cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
43                                             "SPIR-V Shader capability")));
44 // Use sets instead of cl::list to check "if contains" condition
45 struct AvoidCapabilitiesSet {
46   SmallSet<SPIRV::Capability::Capability, 4> S;
47   AvoidCapabilitiesSet() {
48     for (auto Cap : AvoidCapabilities)
49       S.insert(Cap);
50   }
51 };
52 
53 char llvm::SPIRVModuleAnalysis::ID = 0;
54 
55 namespace llvm {
56 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
57 } // namespace llvm
58 
59 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
60                 true)
61 
62 // Retrieve an unsigned from an MDNode with a list of them as operands.
63 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
64                                 unsigned DefaultVal = 0) {
65   if (MdNode && OpIndex < MdNode->getNumOperands()) {
66     const auto &Op = MdNode->getOperand(OpIndex);
67     return mdconst::extract<ConstantInt>(Op)->getZExtValue();
68   }
69   return DefaultVal;
70 }
71 
72 static SPIRV::Requirements
73 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
74                                unsigned i, const SPIRVSubtarget &ST,
75                                SPIRV::RequirementHandler &Reqs) {
76   static AvoidCapabilitiesSet
77       AvoidCaps; // contains capabilities to avoid if there is another option
78 
79   VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
80   VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
81   VersionTuple SPIRVVersion = ST.getSPIRVVersion();
82   bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
83   bool MaxVerOK =
84       ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
85   CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
86   ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
87   if (ReqCaps.empty()) {
88     if (ReqExts.empty()) {
89       if (MinVerOK && MaxVerOK)
90         return {true, {}, {}, ReqMinVer, ReqMaxVer};
91       return {false, {}, {}, VersionTuple(), VersionTuple()};
92     }
93   } else if (MinVerOK && MaxVerOK) {
94     if (ReqCaps.size() == 1) {
95       auto Cap = ReqCaps[0];
96       if (Reqs.isCapabilityAvailable(Cap))
97         return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
98     } else {
99       // By SPIR-V specification: "If an instruction, enumerant, or other
100       // feature specifies multiple enabling capabilities, only one such
101       // capability needs to be declared to use the feature." However, one
102       // capability may be preferred over another. We use command line
103       // argument(s) and AvoidCapabilities to avoid selection of certain
104       // capabilities if there are other options.
105       CapabilityList UseCaps;
106       for (auto Cap : ReqCaps)
107         if (Reqs.isCapabilityAvailable(Cap))
108           UseCaps.push_back(Cap);
109       for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
110         auto Cap = UseCaps[i];
111         if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
112           return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
113       }
114     }
115   }
116   // If there are no capabilities, or we can't satisfy the version or
117   // capability requirements, use the list of extensions (if the subtarget
118   // can handle them all).
119   if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
120         return ST.canUseExtension(Ext);
121       })) {
122     return {true,
123             {},
124             ReqExts,
125             VersionTuple(),
126             VersionTuple()}; // TODO: add versions to extensions.
127   }
128   return {false, {}, {}, VersionTuple(), VersionTuple()};
129 }
130 
131 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
132   MAI.MaxID = 0;
133   for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
134     MAI.MS[i].clear();
135   MAI.RegisterAliasTable.clear();
136   MAI.InstrsToDelete.clear();
137   MAI.FuncMap.clear();
138   MAI.GlobalVarList.clear();
139   MAI.ExtInstSetMap.clear();
140   MAI.Reqs.clear();
141   MAI.Reqs.initAvailableCapabilities(*ST);
142 
143   // TODO: determine memory model and source language from the configuratoin.
144   if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
145     auto MemMD = MemModel->getOperand(0);
146     MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
147         getMetadataUInt(MemMD, 0));
148     MAI.Mem =
149         static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
150   } else {
151     // TODO: Add support for VulkanMemoryModel.
152     MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
153                                 : SPIRV::MemoryModel::GLSL450;
154     if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
155       unsigned PtrSize = ST->getPointerSize();
156       MAI.Addr = PtrSize == 32   ? SPIRV::AddressingModel::Physical32
157                  : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
158                                  : SPIRV::AddressingModel::Logical;
159     } else {
160       // TODO: Add support for PhysicalStorageBufferAddress.
161       MAI.Addr = SPIRV::AddressingModel::Logical;
162     }
163   }
164   // Get the OpenCL version number from metadata.
165   // TODO: support other source languages.
166   if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
167     MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
168     // Construct version literal in accordance with SPIRV-LLVM-Translator.
169     // TODO: support multiple OCL version metadata.
170     assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
171     auto VersionMD = VerNode->getOperand(0);
172     unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
173     unsigned MinorNum = getMetadataUInt(VersionMD, 1);
174     unsigned RevNum = getMetadataUInt(VersionMD, 2);
175     // Prevent Major part of OpenCL version to be 0
176     MAI.SrcLangVersion =
177         (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
178   } else {
179     // If there is no information about OpenCL version we are forced to generate
180     // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
181     // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
182     // Translator avoids potential issues with run-times in a similar manner.
183     if (ST->isOpenCLEnv()) {
184       MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
185       MAI.SrcLangVersion = 100000;
186     } else {
187       MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
188       MAI.SrcLangVersion = 0;
189     }
190   }
191 
192   if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
193     for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
194       MDNode *MD = ExtNode->getOperand(I);
195       if (!MD || MD->getNumOperands() == 0)
196         continue;
197       for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
198         MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
199     }
200   }
201 
202   // Update required capabilities for this memory model, addressing model and
203   // source language.
204   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
205                                  MAI.Mem, *ST);
206   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
207                                  MAI.SrcLang, *ST);
208   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
209                                  MAI.Addr, *ST);
210 
211   if (ST->isOpenCLEnv()) {
212     // TODO: check if it's required by default.
213     MAI.ExtInstSetMap[static_cast<unsigned>(
214         SPIRV::InstructionSet::OpenCL_std)] =
215         Register::index2VirtReg(MAI.getNextID());
216   }
217 }
218 
219 // Collect MI which defines the register in the given machine function.
220 static void collectDefInstr(Register Reg, const MachineFunction *MF,
221                             SPIRV::ModuleAnalysisInfo *MAI,
222                             SPIRV::ModuleSectionType MSType,
223                             bool DoInsert = true) {
224   assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
225   MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
226   assert(MI && "There should be an instruction that defines the register");
227   MAI->setSkipEmission(MI);
228   if (DoInsert)
229     MAI->MS[MSType].push_back(MI);
230 }
231 
232 void SPIRVModuleAnalysis::collectGlobalEntities(
233     const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
234     SPIRV::ModuleSectionType MSType,
235     std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
236     bool UsePreOrder = false) {
237   DenseSet<const SPIRV::DTSortableEntry *> Visited;
238   for (const auto *E : DepsGraph) {
239     std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
240     // NOTE: here we prefer recursive approach over iterative because
241     // we don't expect depchains long enough to cause SO.
242     RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
243                     &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
244       if (Visited.count(E) || !Pred(E))
245         return;
246       Visited.insert(E);
247 
248       // Traversing deps graph in post-order allows us to get rid of
249       // register aliases preprocessing.
250       // But pre-order is required for correct processing of function
251       // declaration and arguments processing.
252       if (!UsePreOrder)
253         for (auto *S : E->getDeps())
254           RecHoistUtil(S);
255 
256       Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
257       bool IsFirst = true;
258       for (auto &U : *E) {
259         const MachineFunction *MF = U.first;
260         Register Reg = U.second;
261         MAI.setRegisterAlias(MF, Reg, GlobalReg);
262         if (!MF->getRegInfo().getUniqueVRegDef(Reg))
263           continue;
264         collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
265         IsFirst = false;
266         if (E->getIsGV())
267           MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
268       }
269 
270       if (UsePreOrder)
271         for (auto *S : E->getDeps())
272           RecHoistUtil(S);
273     };
274     RecHoistUtil(E);
275   }
276 }
277 
278 // The function initializes global register alias table for types, consts,
279 // global vars and func decls and collects these instruction for output
280 // at module level. Also it collects explicit OpExtension/OpCapability
281 // instructions.
282 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
283   std::vector<SPIRV::DTSortableEntry *> DepsGraph;
284 
285   GR->buildDepsGraph(DepsGraph, TII, SPVDumpDeps ? MMI : nullptr);
286 
287   collectGlobalEntities(
288       DepsGraph, SPIRV::MB_TypeConstVars,
289       [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
290 
291   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
292     MachineFunction *MF = MMI->getMachineFunction(*F);
293     if (!MF)
294       continue;
295     // Iterate through and collect OpExtension/OpCapability instructions.
296     for (MachineBasicBlock &MBB : *MF) {
297       for (MachineInstr &MI : MBB) {
298         if (MI.getOpcode() == SPIRV::OpExtension) {
299           // Here, OpExtension just has a single enum operand, not a string.
300           auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
301           MAI.Reqs.addExtension(Ext);
302           MAI.setSkipEmission(&MI);
303         } else if (MI.getOpcode() == SPIRV::OpCapability) {
304           auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
305           MAI.Reqs.addCapability(Cap);
306           MAI.setSkipEmission(&MI);
307         }
308       }
309     }
310   }
311 
312   collectGlobalEntities(
313       DepsGraph, SPIRV::MB_ExtFuncDecls,
314       [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
315 }
316 
317 // Look for IDs declared with Import linkage, and map the corresponding function
318 // to the register defining that variable (which will usually be the result of
319 // an OpFunction). This lets us call externally imported functions using
320 // the correct ID registers.
321 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
322                                            const Function *F) {
323   if (MI.getOpcode() == SPIRV::OpDecorate) {
324     // If it's got Import linkage.
325     auto Dec = MI.getOperand(1).getImm();
326     if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
327       auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
328       if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
329         // Map imported function name to function ID register.
330         const Function *ImportedFunc =
331             F->getParent()->getFunction(getStringImm(MI, 2));
332         Register Target = MI.getOperand(0).getReg();
333         MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
334       }
335     }
336   } else if (MI.getOpcode() == SPIRV::OpFunction) {
337     // Record all internal OpFunction declarations.
338     Register Reg = MI.defs().begin()->getReg();
339     Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
340     assert(GlobalReg.isValid());
341     MAI.FuncMap[F] = GlobalReg;
342   }
343 }
344 
345 // References to a function via function pointers generate virtual
346 // registers without a definition. We are able to resolve this
347 // reference using Globar Register info into an OpFunction instruction
348 // and replace dummy operands by the corresponding global register references.
349 void SPIRVModuleAnalysis::collectFuncPtrs() {
350   for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars])
351     if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL)
352       collectFuncPtrs(MI);
353 }
354 
355 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) {
356   const MachineOperand *FunUse = &MI->getOperand(2);
357   if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) {
358     const MachineInstr *FunDefMI = FunDef->getParent();
359     assert(FunDefMI->getOpcode() == SPIRV::OpFunction &&
360            "Constant function pointer must refer to function definition");
361     Register FunDefReg = FunDef->getReg();
362     Register GlobalFunDefReg =
363         MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg);
364     assert(GlobalFunDefReg.isValid() &&
365            "Function definition must refer to a global register");
366     Register FunPtrReg = FunUse->getReg();
367     MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg);
368   }
369 }
370 
371 using InstrSignature = SmallVector<size_t>;
372 using InstrTraces = std::set<InstrSignature>;
373 
374 // Returns a representation of an instruction as a vector of MachineOperand
375 // hash values, see llvm::hash_value(const MachineOperand &MO) for details.
376 // This creates a signature of the instruction with the same content
377 // that MachineOperand::isIdenticalTo uses for comparison.
378 static InstrSignature instrToSignature(MachineInstr &MI,
379                                        SPIRV::ModuleAnalysisInfo &MAI) {
380   InstrSignature Signature;
381   for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
382     const MachineOperand &MO = MI.getOperand(i);
383     size_t h;
384     if (MO.isReg()) {
385       Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
386       // mimic llvm::hash_value(const MachineOperand &MO)
387       h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
388                        MO.isDef());
389     } else {
390       h = hash_value(MO);
391     }
392     Signature.push_back(h);
393   }
394   return Signature;
395 }
396 
397 // Collect the given instruction in the specified MS. We assume global register
398 // numbering has already occurred by this point. We can directly compare reg
399 // arguments when detecting duplicates.
400 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
401                               SPIRV::ModuleSectionType MSType, InstrTraces &IS,
402                               bool Append = true) {
403   MAI.setSkipEmission(&MI);
404   InstrSignature MISign = instrToSignature(MI, MAI);
405   auto FoundMI = IS.insert(MISign);
406   if (!FoundMI.second)
407     return; // insert failed, so we found a duplicate; don't add it to MAI.MS
408   // No duplicates, so add it.
409   if (Append)
410     MAI.MS[MSType].push_back(&MI);
411   else
412     MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
413 }
414 
415 // Some global instructions make reference to function-local ID regs, so cannot
416 // be correctly collected until these registers are globally numbered.
417 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
418   InstrTraces IS;
419   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
420     if ((*F).isDeclaration())
421       continue;
422     MachineFunction *MF = MMI->getMachineFunction(*F);
423     assert(MF);
424     for (MachineBasicBlock &MBB : *MF)
425       for (MachineInstr &MI : MBB) {
426         if (MAI.getSkipEmission(&MI))
427           continue;
428         const unsigned OpCode = MI.getOpcode();
429         if (OpCode == SPIRV::OpString) {
430           collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS);
431         } else if (OpCode == SPIRV::OpExtInst && MI.getOperand(2).isImm() &&
432                    MI.getOperand(2).getImm() ==
433                        SPIRV::InstructionSet::
434                            NonSemantic_Shader_DebugInfo_100) {
435           MachineOperand Ins = MI.getOperand(3);
436           namespace NS = SPIRV::NonSemanticExtInst;
437           static constexpr int64_t GlobalNonSemanticDITy[] = {
438               NS::DebugSource, NS::DebugCompilationUnit, NS::DebugInfoNone,
439               NS::DebugTypeBasic, NS::DebugTypePointer};
440           bool IsGlobalDI = false;
441           for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx)
442             IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx];
443           if (IsGlobalDI)
444             collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS);
445         } else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
446           collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
447         } else if (OpCode == SPIRV::OpEntryPoint) {
448           collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
449         } else if (TII->isDecorationInstr(MI)) {
450           collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
451           collectFuncNames(MI, &*F);
452         } else if (TII->isConstantInstr(MI)) {
453           // Now OpSpecConstant*s are not in DT,
454           // but they need to be collected anyway.
455           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
456         } else if (OpCode == SPIRV::OpFunction) {
457           collectFuncNames(MI, &*F);
458         } else if (OpCode == SPIRV::OpTypeForwardPointer) {
459           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
460         }
461       }
462   }
463 }
464 
465 // Number registers in all functions globally from 0 onwards and store
466 // the result in global register alias table. Some registers are already
467 // numbered in collectGlobalEntities.
468 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
469   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
470     if ((*F).isDeclaration())
471       continue;
472     MachineFunction *MF = MMI->getMachineFunction(*F);
473     assert(MF);
474     for (MachineBasicBlock &MBB : *MF) {
475       for (MachineInstr &MI : MBB) {
476         for (MachineOperand &Op : MI.operands()) {
477           if (!Op.isReg())
478             continue;
479           Register Reg = Op.getReg();
480           if (MAI.hasRegisterAlias(MF, Reg))
481             continue;
482           Register NewReg = Register::index2VirtReg(MAI.getNextID());
483           MAI.setRegisterAlias(MF, Reg, NewReg);
484         }
485         if (MI.getOpcode() != SPIRV::OpExtInst)
486           continue;
487         auto Set = MI.getOperand(2).getImm();
488         if (!MAI.ExtInstSetMap.contains(Set))
489           MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
490       }
491     }
492   }
493 }
494 
495 // RequirementHandler implementations.
496 void SPIRV::RequirementHandler::getAndAddRequirements(
497     SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
498     const SPIRVSubtarget &ST) {
499   addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
500 }
501 
502 void SPIRV::RequirementHandler::recursiveAddCapabilities(
503     const CapabilityList &ToPrune) {
504   for (const auto &Cap : ToPrune) {
505     AllCaps.insert(Cap);
506     CapabilityList ImplicitDecls =
507         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
508     recursiveAddCapabilities(ImplicitDecls);
509   }
510 }
511 
512 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
513   for (const auto &Cap : ToAdd) {
514     bool IsNewlyInserted = AllCaps.insert(Cap).second;
515     if (!IsNewlyInserted) // Don't re-add if it's already been declared.
516       continue;
517     CapabilityList ImplicitDecls =
518         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
519     recursiveAddCapabilities(ImplicitDecls);
520     MinimalCaps.push_back(Cap);
521   }
522 }
523 
524 void SPIRV::RequirementHandler::addRequirements(
525     const SPIRV::Requirements &Req) {
526   if (!Req.IsSatisfiable)
527     report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
528 
529   if (Req.Cap.has_value())
530     addCapabilities({Req.Cap.value()});
531 
532   addExtensions(Req.Exts);
533 
534   if (!Req.MinVer.empty()) {
535     if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
536       LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
537                         << " and <= " << MaxVersion << "\n");
538       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
539     }
540 
541     if (MinVersion.empty() || Req.MinVer > MinVersion)
542       MinVersion = Req.MinVer;
543   }
544 
545   if (!Req.MaxVer.empty()) {
546     if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
547       LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
548                         << " and >= " << MinVersion << "\n");
549       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
550     }
551 
552     if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
553       MaxVersion = Req.MaxVer;
554   }
555 }
556 
557 void SPIRV::RequirementHandler::checkSatisfiable(
558     const SPIRVSubtarget &ST) const {
559   // Report as many errors as possible before aborting the compilation.
560   bool IsSatisfiable = true;
561   auto TargetVer = ST.getSPIRVVersion();
562 
563   if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
564     LLVM_DEBUG(
565         dbgs() << "Target SPIR-V version too high for required features\n"
566                << "Required max version: " << MaxVersion << " target version "
567                << TargetVer << "\n");
568     IsSatisfiable = false;
569   }
570 
571   if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
572     LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
573                       << "Required min version: " << MinVersion
574                       << " target version " << TargetVer << "\n");
575     IsSatisfiable = false;
576   }
577 
578   if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
579     LLVM_DEBUG(
580         dbgs()
581         << "Version is too low for some features and too high for others.\n"
582         << "Required SPIR-V min version: " << MinVersion
583         << " required SPIR-V max version " << MaxVersion << "\n");
584     IsSatisfiable = false;
585   }
586 
587   for (auto Cap : MinimalCaps) {
588     if (AvailableCaps.contains(Cap))
589       continue;
590     LLVM_DEBUG(dbgs() << "Capability not supported: "
591                       << getSymbolicOperandMnemonic(
592                              OperandCategory::CapabilityOperand, Cap)
593                       << "\n");
594     IsSatisfiable = false;
595   }
596 
597   for (auto Ext : AllExtensions) {
598     if (ST.canUseExtension(Ext))
599       continue;
600     LLVM_DEBUG(dbgs() << "Extension not supported: "
601                       << getSymbolicOperandMnemonic(
602                              OperandCategory::ExtensionOperand, Ext)
603                       << "\n");
604     IsSatisfiable = false;
605   }
606 
607   if (!IsSatisfiable)
608     report_fatal_error("Unable to meet SPIR-V requirements for this target.");
609 }
610 
611 // Add the given capabilities and all their implicitly defined capabilities too.
612 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
613   for (const auto Cap : ToAdd)
614     if (AvailableCaps.insert(Cap).second)
615       addAvailableCaps(getSymbolicOperandCapabilities(
616           SPIRV::OperandCategory::CapabilityOperand, Cap));
617 }
618 
619 void SPIRV::RequirementHandler::removeCapabilityIf(
620     const Capability::Capability ToRemove,
621     const Capability::Capability IfPresent) {
622   if (AllCaps.contains(IfPresent))
623     AllCaps.erase(ToRemove);
624 }
625 
626 namespace llvm {
627 namespace SPIRV {
628 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
629   // Provided by both all supported Vulkan versions and OpenCl.
630   addAvailableCaps({Capability::Shader, Capability::Linkage, Capability::Int8,
631                     Capability::Int16});
632 
633   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
634     addAvailableCaps({Capability::DotProduct, Capability::DotProductInputAll,
635                       Capability::DotProductInput4x8Bit,
636                       Capability::DotProductInput4x8BitPacked,
637                       Capability::DemoteToHelperInvocation});
638 
639   // Add capabilities enabled by extensions.
640   for (auto Extension : ST.getAllAvailableExtensions()) {
641     CapabilityList EnabledCapabilities =
642         getCapabilitiesEnabledByExtension(Extension);
643     addAvailableCaps(EnabledCapabilities);
644   }
645 
646   if (ST.isOpenCLEnv()) {
647     initAvailableCapabilitiesForOpenCL(ST);
648     return;
649   }
650 
651   if (ST.isVulkanEnv()) {
652     initAvailableCapabilitiesForVulkan(ST);
653     return;
654   }
655 
656   report_fatal_error("Unimplemented environment for SPIR-V generation.");
657 }
658 
659 void RequirementHandler::initAvailableCapabilitiesForOpenCL(
660     const SPIRVSubtarget &ST) {
661   // Add the min requirements for different OpenCL and SPIR-V versions.
662   addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
663                     Capability::Kernel, Capability::Vector16,
664                     Capability::Groups, Capability::GenericPointer,
665                     Capability::StorageImageReadWithoutFormat});
666   if (ST.hasOpenCLFullProfile())
667     addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
668   if (ST.hasOpenCLImageSupport()) {
669     addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
670                       Capability::Image1D, Capability::SampledBuffer,
671                       Capability::ImageBuffer});
672     if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
673       addAvailableCaps({Capability::ImageReadWrite});
674   }
675   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
676       ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
677     addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
678   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
679     addAvailableCaps({Capability::GroupNonUniform,
680                       Capability::GroupNonUniformVote,
681                       Capability::GroupNonUniformArithmetic,
682                       Capability::GroupNonUniformBallot,
683                       Capability::GroupNonUniformClustered,
684                       Capability::GroupNonUniformShuffle,
685                       Capability::GroupNonUniformShuffleRelative});
686   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
687     addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
688                       Capability::SignedZeroInfNanPreserve,
689                       Capability::RoundingModeRTE,
690                       Capability::RoundingModeRTZ});
691   // TODO: verify if this needs some checks.
692   addAvailableCaps({Capability::Float16, Capability::Float64});
693 
694   // TODO: add OpenCL extensions.
695 }
696 
697 void RequirementHandler::initAvailableCapabilitiesForVulkan(
698     const SPIRVSubtarget &ST) {
699 
700   // Core in Vulkan 1.1 and earlier.
701   addAvailableCaps({Capability::Int64, Capability::Float16, Capability::Float64,
702                     Capability::GroupNonUniform, Capability::Image1D,
703                     Capability::SampledBuffer, Capability::ImageBuffer,
704                     Capability::UniformBufferArrayDynamicIndexing,
705                     Capability::SampledImageArrayDynamicIndexing,
706                     Capability::StorageBufferArrayDynamicIndexing,
707                     Capability::StorageImageArrayDynamicIndexing});
708 
709   // Became core in Vulkan 1.2
710   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 5))) {
711     addAvailableCaps(
712         {Capability::ShaderNonUniformEXT, Capability::RuntimeDescriptorArrayEXT,
713          Capability::InputAttachmentArrayDynamicIndexingEXT,
714          Capability::UniformTexelBufferArrayDynamicIndexingEXT,
715          Capability::StorageTexelBufferArrayDynamicIndexingEXT,
716          Capability::UniformBufferArrayNonUniformIndexingEXT,
717          Capability::SampledImageArrayNonUniformIndexingEXT,
718          Capability::StorageBufferArrayNonUniformIndexingEXT,
719          Capability::StorageImageArrayNonUniformIndexingEXT,
720          Capability::InputAttachmentArrayNonUniformIndexingEXT,
721          Capability::UniformTexelBufferArrayNonUniformIndexingEXT,
722          Capability::StorageTexelBufferArrayNonUniformIndexingEXT});
723   }
724 
725   // Became core in Vulkan 1.3
726   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
727     addAvailableCaps({Capability::StorageImageReadWithoutFormat});
728 }
729 
730 } // namespace SPIRV
731 } // namespace llvm
732 
733 // Add the required capabilities from a decoration instruction (including
734 // BuiltIns).
735 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
736                               SPIRV::RequirementHandler &Reqs,
737                               const SPIRVSubtarget &ST) {
738   int64_t DecOp = MI.getOperand(DecIndex).getImm();
739   auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
740   Reqs.addRequirements(getSymbolicOperandRequirements(
741       SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
742 
743   if (Dec == SPIRV::Decoration::BuiltIn) {
744     int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
745     auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
746     Reqs.addRequirements(getSymbolicOperandRequirements(
747         SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
748   } else if (Dec == SPIRV::Decoration::LinkageAttributes) {
749     int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
750     SPIRV::LinkageType::LinkageType LnkType =
751         static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
752     if (LnkType == SPIRV::LinkageType::LinkOnceODR)
753       Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
754   } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL ||
755              Dec == SPIRV::Decoration::CacheControlStoreINTEL) {
756     Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls);
757   } else if (Dec == SPIRV::Decoration::HostAccessINTEL) {
758     Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access);
759   } else if (Dec == SPIRV::Decoration::InitModeINTEL ||
760              Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) {
761     Reqs.addExtension(
762         SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations);
763   } else if (Dec == SPIRV::Decoration::NonUniformEXT) {
764     Reqs.addRequirements(SPIRV::Capability::ShaderNonUniformEXT);
765   }
766 }
767 
768 // Add requirements for image handling.
769 static void addOpTypeImageReqs(const MachineInstr &MI,
770                                SPIRV::RequirementHandler &Reqs,
771                                const SPIRVSubtarget &ST) {
772   assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
773   // The operand indices used here are based on the OpTypeImage layout, which
774   // the MachineInstr follows as well.
775   int64_t ImgFormatOp = MI.getOperand(7).getImm();
776   auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
777   Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
778                              ImgFormat, ST);
779 
780   bool IsArrayed = MI.getOperand(4).getImm() == 1;
781   bool IsMultisampled = MI.getOperand(5).getImm() == 1;
782   bool NoSampler = MI.getOperand(6).getImm() == 2;
783   // Add dimension requirements.
784   assert(MI.getOperand(2).isImm());
785   switch (MI.getOperand(2).getImm()) {
786   case SPIRV::Dim::DIM_1D:
787     Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
788                                    : SPIRV::Capability::Sampled1D);
789     break;
790   case SPIRV::Dim::DIM_2D:
791     if (IsMultisampled && NoSampler)
792       Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
793     break;
794   case SPIRV::Dim::DIM_Cube:
795     Reqs.addRequirements(SPIRV::Capability::Shader);
796     if (IsArrayed)
797       Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
798                                      : SPIRV::Capability::SampledCubeArray);
799     break;
800   case SPIRV::Dim::DIM_Rect:
801     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
802                                    : SPIRV::Capability::SampledRect);
803     break;
804   case SPIRV::Dim::DIM_Buffer:
805     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
806                                    : SPIRV::Capability::SampledBuffer);
807     break;
808   case SPIRV::Dim::DIM_SubpassData:
809     Reqs.addRequirements(SPIRV::Capability::InputAttachment);
810     break;
811   }
812 
813   // Has optional access qualifier.
814   if (ST.isOpenCLEnv()) {
815     if (MI.getNumOperands() > 8 &&
816         MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
817       Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
818     else
819       Reqs.addRequirements(SPIRV::Capability::ImageBasic);
820   }
821 }
822 
823 // Add requirements for handling atomic float instructions
824 #define ATOM_FLT_REQ_EXT_MSG(ExtName)                                          \
825   "The atomic float instruction requires the following SPIR-V "                \
826   "extension: SPV_EXT_shader_atomic_float" ExtName
827 static void AddAtomicFloatRequirements(const MachineInstr &MI,
828                                        SPIRV::RequirementHandler &Reqs,
829                                        const SPIRVSubtarget &ST) {
830   assert(MI.getOperand(1).isReg() &&
831          "Expect register operand in atomic float instruction");
832   Register TypeReg = MI.getOperand(1).getReg();
833   SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
834   if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
835     report_fatal_error("Result type of an atomic float instruction must be a "
836                        "floating-point type scalar");
837 
838   unsigned BitWidth = TypeDef->getOperand(1).getImm();
839   unsigned Op = MI.getOpcode();
840   if (Op == SPIRV::OpAtomicFAddEXT) {
841     if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
842       report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
843     Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
844     switch (BitWidth) {
845     case 16:
846       if (!ST.canUseExtension(
847               SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
848         report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
849       Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
850       Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
851       break;
852     case 32:
853       Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
854       break;
855     case 64:
856       Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
857       break;
858     default:
859       report_fatal_error(
860           "Unexpected floating-point type width in atomic float instruction");
861     }
862   } else {
863     if (!ST.canUseExtension(
864             SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
865       report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
866     Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
867     switch (BitWidth) {
868     case 16:
869       Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
870       break;
871     case 32:
872       Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
873       break;
874     case 64:
875       Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
876       break;
877     default:
878       report_fatal_error(
879           "Unexpected floating-point type width in atomic float instruction");
880     }
881   }
882 }
883 
884 bool isUniformTexelBuffer(MachineInstr *ImageInst) {
885   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
886     return false;
887   uint32_t Dim = ImageInst->getOperand(2).getImm();
888   uint32_t Sampled = ImageInst->getOperand(6).getImm();
889   return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 1;
890 }
891 
892 bool isStorageTexelBuffer(MachineInstr *ImageInst) {
893   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
894     return false;
895   uint32_t Dim = ImageInst->getOperand(2).getImm();
896   uint32_t Sampled = ImageInst->getOperand(6).getImm();
897   return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 2;
898 }
899 
900 bool isSampledImage(MachineInstr *ImageInst) {
901   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
902     return false;
903   uint32_t Dim = ImageInst->getOperand(2).getImm();
904   uint32_t Sampled = ImageInst->getOperand(6).getImm();
905   return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 1;
906 }
907 
908 bool isInputAttachment(MachineInstr *ImageInst) {
909   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
910     return false;
911   uint32_t Dim = ImageInst->getOperand(2).getImm();
912   uint32_t Sampled = ImageInst->getOperand(6).getImm();
913   return Dim == SPIRV::Dim::DIM_SubpassData && Sampled == 2;
914 }
915 
916 bool isStorageImage(MachineInstr *ImageInst) {
917   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
918     return false;
919   uint32_t Dim = ImageInst->getOperand(2).getImm();
920   uint32_t Sampled = ImageInst->getOperand(6).getImm();
921   return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 2;
922 }
923 
924 bool isCombinedImageSampler(MachineInstr *SampledImageInst) {
925   if (SampledImageInst->getOpcode() != SPIRV::OpTypeSampledImage)
926     return false;
927 
928   const MachineRegisterInfo &MRI = SampledImageInst->getMF()->getRegInfo();
929   Register ImageReg = SampledImageInst->getOperand(1).getReg();
930   auto *ImageInst = MRI.getUniqueVRegDef(ImageReg);
931   return isSampledImage(ImageInst);
932 }
933 
934 bool hasNonUniformDecoration(Register Reg, const MachineRegisterInfo &MRI) {
935   for (const auto &MI : MRI.reg_instructions(Reg)) {
936     if (MI.getOpcode() != SPIRV::OpDecorate)
937       continue;
938 
939     uint32_t Dec = MI.getOperand(1).getImm();
940     if (Dec == SPIRV::Decoration::NonUniformEXT)
941       return true;
942   }
943   return false;
944 }
945 
946 void addOpAccessChainReqs(const MachineInstr &Instr,
947                           SPIRV::RequirementHandler &Handler,
948                           const SPIRVSubtarget &Subtarget) {
949   const MachineRegisterInfo &MRI = Instr.getMF()->getRegInfo();
950   // Get the result type. If it is an image type, then the shader uses
951   // descriptor indexing. The appropriate capabilities will be added based
952   // on the specifics of the image.
953   Register ResTypeReg = Instr.getOperand(1).getReg();
954   MachineInstr *ResTypeInst = MRI.getUniqueVRegDef(ResTypeReg);
955 
956   assert(ResTypeInst->getOpcode() == SPIRV::OpTypePointer);
957   uint32_t StorageClass = ResTypeInst->getOperand(1).getImm();
958   if (StorageClass != SPIRV::StorageClass::StorageClass::UniformConstant &&
959       StorageClass != SPIRV::StorageClass::StorageClass::Uniform &&
960       StorageClass != SPIRV::StorageClass::StorageClass::StorageBuffer) {
961     return;
962   }
963 
964   Register PointeeTypeReg = ResTypeInst->getOperand(2).getReg();
965   MachineInstr *PointeeType = MRI.getUniqueVRegDef(PointeeTypeReg);
966   if (PointeeType->getOpcode() != SPIRV::OpTypeImage &&
967       PointeeType->getOpcode() != SPIRV::OpTypeSampledImage &&
968       PointeeType->getOpcode() != SPIRV::OpTypeSampler) {
969     return;
970   }
971 
972   bool IsNonUniform =
973       hasNonUniformDecoration(Instr.getOperand(0).getReg(), MRI);
974   if (isUniformTexelBuffer(PointeeType)) {
975     if (IsNonUniform)
976       Handler.addRequirements(
977           SPIRV::Capability::UniformTexelBufferArrayNonUniformIndexingEXT);
978     else
979       Handler.addRequirements(
980           SPIRV::Capability::UniformTexelBufferArrayDynamicIndexingEXT);
981   } else if (isInputAttachment(PointeeType)) {
982     if (IsNonUniform)
983       Handler.addRequirements(
984           SPIRV::Capability::InputAttachmentArrayNonUniformIndexingEXT);
985     else
986       Handler.addRequirements(
987           SPIRV::Capability::InputAttachmentArrayDynamicIndexingEXT);
988   } else if (isStorageTexelBuffer(PointeeType)) {
989     if (IsNonUniform)
990       Handler.addRequirements(
991           SPIRV::Capability::StorageTexelBufferArrayNonUniformIndexingEXT);
992     else
993       Handler.addRequirements(
994           SPIRV::Capability::StorageTexelBufferArrayDynamicIndexingEXT);
995   } else if (isSampledImage(PointeeType) ||
996              isCombinedImageSampler(PointeeType) ||
997              PointeeType->getOpcode() == SPIRV::OpTypeSampler) {
998     if (IsNonUniform)
999       Handler.addRequirements(
1000           SPIRV::Capability::SampledImageArrayNonUniformIndexingEXT);
1001     else
1002       Handler.addRequirements(
1003           SPIRV::Capability::SampledImageArrayDynamicIndexing);
1004   } else if (isStorageImage(PointeeType)) {
1005     if (IsNonUniform)
1006       Handler.addRequirements(
1007           SPIRV::Capability::StorageImageArrayNonUniformIndexingEXT);
1008     else
1009       Handler.addRequirements(
1010           SPIRV::Capability::StorageImageArrayDynamicIndexing);
1011   }
1012 }
1013 
1014 static bool isImageTypeWithUnknownFormat(SPIRVType *TypeInst) {
1015   if (TypeInst->getOpcode() != SPIRV::OpTypeImage)
1016     return false;
1017   assert(TypeInst->getOperand(7).isImm() && "The image format must be an imm.");
1018   return TypeInst->getOperand(7).getImm() == 0;
1019 }
1020 
1021 static void AddDotProductRequirements(const MachineInstr &MI,
1022                                       SPIRV::RequirementHandler &Reqs,
1023                                       const SPIRVSubtarget &ST) {
1024   if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product))
1025     Reqs.addExtension(SPIRV::Extension::SPV_KHR_integer_dot_product);
1026   Reqs.addCapability(SPIRV::Capability::DotProduct);
1027 
1028   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1029   const MachineInstr *InstrPtr = &MI;
1030   assert(MI.getOperand(1).isReg() && "Unexpected operand in dot");
1031 
1032   Register TypeReg = InstrPtr->getOperand(1).getReg();
1033   SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
1034   if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
1035     assert(TypeDef->getOperand(1).getImm() == 32);
1036     Reqs.addCapability(SPIRV::Capability::DotProductInput4x8BitPacked);
1037   } else if (TypeDef->getOpcode() == SPIRV::OpTypeVector) {
1038     SPIRVType *ScalarTypeDef = MRI.getVRegDef(TypeDef->getOperand(1).getReg());
1039     assert(ScalarTypeDef->getOpcode() == SPIRV::OpTypeInt);
1040     auto Capability = ScalarTypeDef->getOperand(1).getImm() == 8
1041                           ? SPIRV::Capability::DotProductInput4x8Bit
1042                           : SPIRV::Capability::DotProductInputAll;
1043     Reqs.addCapability(Capability);
1044   }
1045 }
1046 
1047 void addInstrRequirements(const MachineInstr &MI,
1048                           SPIRV::RequirementHandler &Reqs,
1049                           const SPIRVSubtarget &ST) {
1050   switch (MI.getOpcode()) {
1051   case SPIRV::OpMemoryModel: {
1052     int64_t Addr = MI.getOperand(0).getImm();
1053     Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
1054                                Addr, ST);
1055     int64_t Mem = MI.getOperand(1).getImm();
1056     Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
1057                                ST);
1058     break;
1059   }
1060   case SPIRV::OpEntryPoint: {
1061     int64_t Exe = MI.getOperand(0).getImm();
1062     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
1063                                Exe, ST);
1064     break;
1065   }
1066   case SPIRV::OpExecutionMode:
1067   case SPIRV::OpExecutionModeId: {
1068     int64_t Exe = MI.getOperand(1).getImm();
1069     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
1070                                Exe, ST);
1071     break;
1072   }
1073   case SPIRV::OpTypeMatrix:
1074     Reqs.addCapability(SPIRV::Capability::Matrix);
1075     break;
1076   case SPIRV::OpTypeInt: {
1077     unsigned BitWidth = MI.getOperand(1).getImm();
1078     if (BitWidth == 64)
1079       Reqs.addCapability(SPIRV::Capability::Int64);
1080     else if (BitWidth == 16)
1081       Reqs.addCapability(SPIRV::Capability::Int16);
1082     else if (BitWidth == 8)
1083       Reqs.addCapability(SPIRV::Capability::Int8);
1084     break;
1085   }
1086   case SPIRV::OpTypeFloat: {
1087     unsigned BitWidth = MI.getOperand(1).getImm();
1088     if (BitWidth == 64)
1089       Reqs.addCapability(SPIRV::Capability::Float64);
1090     else if (BitWidth == 16)
1091       Reqs.addCapability(SPIRV::Capability::Float16);
1092     break;
1093   }
1094   case SPIRV::OpTypeVector: {
1095     unsigned NumComponents = MI.getOperand(2).getImm();
1096     if (NumComponents == 8 || NumComponents == 16)
1097       Reqs.addCapability(SPIRV::Capability::Vector16);
1098     break;
1099   }
1100   case SPIRV::OpTypePointer: {
1101     auto SC = MI.getOperand(1).getImm();
1102     Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
1103                                ST);
1104     // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
1105     // capability.
1106     if (!ST.isOpenCLEnv())
1107       break;
1108     assert(MI.getOperand(2).isReg());
1109     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1110     SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
1111     if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
1112         TypeDef->getOperand(1).getImm() == 16)
1113       Reqs.addCapability(SPIRV::Capability::Float16Buffer);
1114     break;
1115   }
1116   case SPIRV::OpExtInst: {
1117     if (MI.getOperand(2).getImm() ==
1118         static_cast<int64_t>(
1119             SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) {
1120       Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info);
1121     }
1122     break;
1123   }
1124   case SPIRV::OpBitReverse:
1125   case SPIRV::OpBitFieldInsert:
1126   case SPIRV::OpBitFieldSExtract:
1127   case SPIRV::OpBitFieldUExtract:
1128     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
1129       Reqs.addCapability(SPIRV::Capability::Shader);
1130       break;
1131     }
1132     Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
1133     Reqs.addCapability(SPIRV::Capability::BitInstructions);
1134     break;
1135   case SPIRV::OpTypeRuntimeArray:
1136     Reqs.addCapability(SPIRV::Capability::Shader);
1137     break;
1138   case SPIRV::OpTypeOpaque:
1139   case SPIRV::OpTypeEvent:
1140     Reqs.addCapability(SPIRV::Capability::Kernel);
1141     break;
1142   case SPIRV::OpTypePipe:
1143   case SPIRV::OpTypeReserveId:
1144     Reqs.addCapability(SPIRV::Capability::Pipes);
1145     break;
1146   case SPIRV::OpTypeDeviceEvent:
1147   case SPIRV::OpTypeQueue:
1148   case SPIRV::OpBuildNDRange:
1149     Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
1150     break;
1151   case SPIRV::OpDecorate:
1152   case SPIRV::OpDecorateId:
1153   case SPIRV::OpDecorateString:
1154     addOpDecorateReqs(MI, 1, Reqs, ST);
1155     break;
1156   case SPIRV::OpMemberDecorate:
1157   case SPIRV::OpMemberDecorateString:
1158     addOpDecorateReqs(MI, 2, Reqs, ST);
1159     break;
1160   case SPIRV::OpInBoundsPtrAccessChain:
1161     Reqs.addCapability(SPIRV::Capability::Addresses);
1162     break;
1163   case SPIRV::OpConstantSampler:
1164     Reqs.addCapability(SPIRV::Capability::LiteralSampler);
1165     break;
1166   case SPIRV::OpInBoundsAccessChain:
1167   case SPIRV::OpAccessChain:
1168     addOpAccessChainReqs(MI, Reqs, ST);
1169     break;
1170   case SPIRV::OpTypeImage:
1171     addOpTypeImageReqs(MI, Reqs, ST);
1172     break;
1173   case SPIRV::OpTypeSampler:
1174     if (!ST.isVulkanEnv()) {
1175       Reqs.addCapability(SPIRV::Capability::ImageBasic);
1176     }
1177     break;
1178   case SPIRV::OpTypeForwardPointer:
1179     // TODO: check if it's OpenCL's kernel.
1180     Reqs.addCapability(SPIRV::Capability::Addresses);
1181     break;
1182   case SPIRV::OpAtomicFlagTestAndSet:
1183   case SPIRV::OpAtomicLoad:
1184   case SPIRV::OpAtomicStore:
1185   case SPIRV::OpAtomicExchange:
1186   case SPIRV::OpAtomicCompareExchange:
1187   case SPIRV::OpAtomicIIncrement:
1188   case SPIRV::OpAtomicIDecrement:
1189   case SPIRV::OpAtomicIAdd:
1190   case SPIRV::OpAtomicISub:
1191   case SPIRV::OpAtomicUMin:
1192   case SPIRV::OpAtomicUMax:
1193   case SPIRV::OpAtomicSMin:
1194   case SPIRV::OpAtomicSMax:
1195   case SPIRV::OpAtomicAnd:
1196   case SPIRV::OpAtomicOr:
1197   case SPIRV::OpAtomicXor: {
1198     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1199     const MachineInstr *InstrPtr = &MI;
1200     if (MI.getOpcode() == SPIRV::OpAtomicStore) {
1201       assert(MI.getOperand(3).isReg());
1202       InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
1203       assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
1204     }
1205     assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
1206     Register TypeReg = InstrPtr->getOperand(1).getReg();
1207     SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
1208     if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
1209       unsigned BitWidth = TypeDef->getOperand(1).getImm();
1210       if (BitWidth == 64)
1211         Reqs.addCapability(SPIRV::Capability::Int64Atomics);
1212     }
1213     break;
1214   }
1215   case SPIRV::OpGroupNonUniformIAdd:
1216   case SPIRV::OpGroupNonUniformFAdd:
1217   case SPIRV::OpGroupNonUniformIMul:
1218   case SPIRV::OpGroupNonUniformFMul:
1219   case SPIRV::OpGroupNonUniformSMin:
1220   case SPIRV::OpGroupNonUniformUMin:
1221   case SPIRV::OpGroupNonUniformFMin:
1222   case SPIRV::OpGroupNonUniformSMax:
1223   case SPIRV::OpGroupNonUniformUMax:
1224   case SPIRV::OpGroupNonUniformFMax:
1225   case SPIRV::OpGroupNonUniformBitwiseAnd:
1226   case SPIRV::OpGroupNonUniformBitwiseOr:
1227   case SPIRV::OpGroupNonUniformBitwiseXor:
1228   case SPIRV::OpGroupNonUniformLogicalAnd:
1229   case SPIRV::OpGroupNonUniformLogicalOr:
1230   case SPIRV::OpGroupNonUniformLogicalXor: {
1231     assert(MI.getOperand(3).isImm());
1232     int64_t GroupOp = MI.getOperand(3).getImm();
1233     switch (GroupOp) {
1234     case SPIRV::GroupOperation::Reduce:
1235     case SPIRV::GroupOperation::InclusiveScan:
1236     case SPIRV::GroupOperation::ExclusiveScan:
1237       Reqs.addCapability(SPIRV::Capability::Kernel);
1238       Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
1239       Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1240       break;
1241     case SPIRV::GroupOperation::ClusteredReduce:
1242       Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
1243       break;
1244     case SPIRV::GroupOperation::PartitionedReduceNV:
1245     case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
1246     case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
1247       Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
1248       break;
1249     }
1250     break;
1251   }
1252   case SPIRV::OpGroupNonUniformShuffle:
1253   case SPIRV::OpGroupNonUniformShuffleXor:
1254     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
1255     break;
1256   case SPIRV::OpGroupNonUniformShuffleUp:
1257   case SPIRV::OpGroupNonUniformShuffleDown:
1258     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
1259     break;
1260   case SPIRV::OpGroupAll:
1261   case SPIRV::OpGroupAny:
1262   case SPIRV::OpGroupBroadcast:
1263   case SPIRV::OpGroupIAdd:
1264   case SPIRV::OpGroupFAdd:
1265   case SPIRV::OpGroupFMin:
1266   case SPIRV::OpGroupUMin:
1267   case SPIRV::OpGroupSMin:
1268   case SPIRV::OpGroupFMax:
1269   case SPIRV::OpGroupUMax:
1270   case SPIRV::OpGroupSMax:
1271     Reqs.addCapability(SPIRV::Capability::Groups);
1272     break;
1273   case SPIRV::OpGroupNonUniformElect:
1274     Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1275     break;
1276   case SPIRV::OpGroupNonUniformAll:
1277   case SPIRV::OpGroupNonUniformAny:
1278   case SPIRV::OpGroupNonUniformAllEqual:
1279     Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
1280     break;
1281   case SPIRV::OpGroupNonUniformBroadcast:
1282   case SPIRV::OpGroupNonUniformBroadcastFirst:
1283   case SPIRV::OpGroupNonUniformBallot:
1284   case SPIRV::OpGroupNonUniformInverseBallot:
1285   case SPIRV::OpGroupNonUniformBallotBitExtract:
1286   case SPIRV::OpGroupNonUniformBallotBitCount:
1287   case SPIRV::OpGroupNonUniformBallotFindLSB:
1288   case SPIRV::OpGroupNonUniformBallotFindMSB:
1289     Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1290     break;
1291   case SPIRV::OpSubgroupShuffleINTEL:
1292   case SPIRV::OpSubgroupShuffleDownINTEL:
1293   case SPIRV::OpSubgroupShuffleUpINTEL:
1294   case SPIRV::OpSubgroupShuffleXorINTEL:
1295     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1296       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1297       Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
1298     }
1299     break;
1300   case SPIRV::OpSubgroupBlockReadINTEL:
1301   case SPIRV::OpSubgroupBlockWriteINTEL:
1302     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1303       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1304       Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
1305     }
1306     break;
1307   case SPIRV::OpSubgroupImageBlockReadINTEL:
1308   case SPIRV::OpSubgroupImageBlockWriteINTEL:
1309     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1310       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1311       Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
1312     }
1313     break;
1314   case SPIRV::OpAssumeTrueKHR:
1315   case SPIRV::OpExpectKHR:
1316     if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
1317       Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
1318       Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
1319     }
1320     break;
1321   case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
1322   case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
1323     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
1324       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
1325       Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
1326     }
1327     break;
1328   case SPIRV::OpConstantFunctionPointerINTEL:
1329     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1330       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1331       Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1332     }
1333     break;
1334   case SPIRV::OpGroupNonUniformRotateKHR:
1335     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
1336       report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
1337                          "following SPIR-V extension: SPV_KHR_subgroup_rotate",
1338                          false);
1339     Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
1340     Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
1341     Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1342     break;
1343   case SPIRV::OpGroupIMulKHR:
1344   case SPIRV::OpGroupFMulKHR:
1345   case SPIRV::OpGroupBitwiseAndKHR:
1346   case SPIRV::OpGroupBitwiseOrKHR:
1347   case SPIRV::OpGroupBitwiseXorKHR:
1348   case SPIRV::OpGroupLogicalAndKHR:
1349   case SPIRV::OpGroupLogicalOrKHR:
1350   case SPIRV::OpGroupLogicalXorKHR:
1351     if (ST.canUseExtension(
1352             SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1353       Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
1354       Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
1355     }
1356     break;
1357   case SPIRV::OpReadClockKHR:
1358     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock))
1359       report_fatal_error("OpReadClockKHR instruction requires the "
1360                          "following SPIR-V extension: SPV_KHR_shader_clock",
1361                          false);
1362     Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock);
1363     Reqs.addCapability(SPIRV::Capability::ShaderClockKHR);
1364     break;
1365   case SPIRV::OpFunctionPointerCallINTEL:
1366     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1367       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1368       Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1369     }
1370     break;
1371   case SPIRV::OpAtomicFAddEXT:
1372   case SPIRV::OpAtomicFMinEXT:
1373   case SPIRV::OpAtomicFMaxEXT:
1374     AddAtomicFloatRequirements(MI, Reqs, ST);
1375     break;
1376   case SPIRV::OpConvertBF16ToFINTEL:
1377   case SPIRV::OpConvertFToBF16INTEL:
1378     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
1379       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
1380       Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
1381     }
1382     break;
1383   case SPIRV::OpVariableLengthArrayINTEL:
1384   case SPIRV::OpSaveMemoryINTEL:
1385   case SPIRV::OpRestoreMemoryINTEL:
1386     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
1387       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
1388       Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
1389     }
1390     break;
1391   case SPIRV::OpAsmTargetINTEL:
1392   case SPIRV::OpAsmINTEL:
1393   case SPIRV::OpAsmCallINTEL:
1394     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) {
1395       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly);
1396       Reqs.addCapability(SPIRV::Capability::AsmINTEL);
1397     }
1398     break;
1399   case SPIRV::OpTypeCooperativeMatrixKHR:
1400     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
1401       report_fatal_error(
1402           "OpTypeCooperativeMatrixKHR type requires the "
1403           "following SPIR-V extension: SPV_KHR_cooperative_matrix",
1404           false);
1405     Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
1406     Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
1407     break;
1408   case SPIRV::OpArithmeticFenceEXT:
1409     if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
1410       report_fatal_error("OpArithmeticFenceEXT requires the "
1411                          "following SPIR-V extension: SPV_EXT_arithmetic_fence",
1412                          false);
1413     Reqs.addExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence);
1414     Reqs.addCapability(SPIRV::Capability::ArithmeticFenceEXT);
1415     break;
1416   case SPIRV::OpControlBarrierArriveINTEL:
1417   case SPIRV::OpControlBarrierWaitINTEL:
1418     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_split_barrier)) {
1419       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_split_barrier);
1420       Reqs.addCapability(SPIRV::Capability::SplitBarrierINTEL);
1421     }
1422     break;
1423   case SPIRV::OpKill: {
1424     Reqs.addCapability(SPIRV::Capability::Shader);
1425   } break;
1426   case SPIRV::OpDemoteToHelperInvocation:
1427     Reqs.addCapability(SPIRV::Capability::DemoteToHelperInvocation);
1428 
1429     if (ST.canUseExtension(
1430             SPIRV::Extension::SPV_EXT_demote_to_helper_invocation)) {
1431       if (!ST.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6)))
1432         Reqs.addExtension(
1433             SPIRV::Extension::SPV_EXT_demote_to_helper_invocation);
1434     }
1435     break;
1436   case SPIRV::OpSDot:
1437   case SPIRV::OpUDot:
1438     AddDotProductRequirements(MI, Reqs, ST);
1439     break;
1440   case SPIRV::OpImageRead: {
1441     Register ImageReg = MI.getOperand(2).getReg();
1442     SPIRVType *TypeDef = ST.getSPIRVGlobalRegistry()->getResultType(ImageReg);
1443     if (isImageTypeWithUnknownFormat(TypeDef))
1444       Reqs.addCapability(SPIRV::Capability::StorageImageReadWithoutFormat);
1445     break;
1446   }
1447 
1448   default:
1449     break;
1450   }
1451 
1452   // If we require capability Shader, then we can remove the requirement for
1453   // the BitInstructions capability, since Shader is a superset capability
1454   // of BitInstructions.
1455   Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
1456                           SPIRV::Capability::Shader);
1457 }
1458 
1459 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
1460                         MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
1461   // Collect requirements for existing instructions.
1462   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1463     MachineFunction *MF = MMI->getMachineFunction(*F);
1464     if (!MF)
1465       continue;
1466     for (const MachineBasicBlock &MBB : *MF)
1467       for (const MachineInstr &MI : MBB)
1468         addInstrRequirements(MI, MAI.Reqs, ST);
1469   }
1470   // Collect requirements for OpExecutionMode instructions.
1471   auto Node = M.getNamedMetadata("spirv.ExecutionMode");
1472   if (Node) {
1473     // SPV_KHR_float_controls is not available until v1.4
1474     bool RequireFloatControls = false,
1475          VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
1476     for (unsigned i = 0; i < Node->getNumOperands(); i++) {
1477       MDNode *MDN = cast<MDNode>(Node->getOperand(i));
1478       const MDOperand &MDOp = MDN->getOperand(1);
1479       if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
1480         Constant *C = CMeta->getValue();
1481         if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
1482           auto EM = Const->getZExtValue();
1483           MAI.Reqs.getAndAddRequirements(
1484               SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
1485           // add SPV_KHR_float_controls if the version is too low
1486           switch (EM) {
1487           case SPIRV::ExecutionMode::DenormPreserve:
1488           case SPIRV::ExecutionMode::DenormFlushToZero:
1489           case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
1490           case SPIRV::ExecutionMode::RoundingModeRTE:
1491           case SPIRV::ExecutionMode::RoundingModeRTZ:
1492             RequireFloatControls = VerLower14;
1493             break;
1494           }
1495         }
1496       }
1497     }
1498     if (RequireFloatControls &&
1499         ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
1500       MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
1501   }
1502   for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
1503     const Function &F = *FI;
1504     if (F.isDeclaration())
1505       continue;
1506     if (F.getMetadata("reqd_work_group_size"))
1507       MAI.Reqs.getAndAddRequirements(
1508           SPIRV::OperandCategory::ExecutionModeOperand,
1509           SPIRV::ExecutionMode::LocalSize, ST);
1510     if (F.getFnAttribute("hlsl.numthreads").isValid()) {
1511       MAI.Reqs.getAndAddRequirements(
1512           SPIRV::OperandCategory::ExecutionModeOperand,
1513           SPIRV::ExecutionMode::LocalSize, ST);
1514     }
1515     if (F.getMetadata("work_group_size_hint"))
1516       MAI.Reqs.getAndAddRequirements(
1517           SPIRV::OperandCategory::ExecutionModeOperand,
1518           SPIRV::ExecutionMode::LocalSizeHint, ST);
1519     if (F.getMetadata("intel_reqd_sub_group_size"))
1520       MAI.Reqs.getAndAddRequirements(
1521           SPIRV::OperandCategory::ExecutionModeOperand,
1522           SPIRV::ExecutionMode::SubgroupSize, ST);
1523     if (F.getMetadata("vec_type_hint"))
1524       MAI.Reqs.getAndAddRequirements(
1525           SPIRV::OperandCategory::ExecutionModeOperand,
1526           SPIRV::ExecutionMode::VecTypeHint, ST);
1527 
1528     if (F.hasOptNone() &&
1529         ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
1530       // Output OpCapability OptNoneINTEL.
1531       MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
1532       MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
1533     }
1534   }
1535 }
1536 
1537 static unsigned getFastMathFlags(const MachineInstr &I) {
1538   unsigned Flags = SPIRV::FPFastMathMode::None;
1539   if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
1540     Flags |= SPIRV::FPFastMathMode::NotNaN;
1541   if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
1542     Flags |= SPIRV::FPFastMathMode::NotInf;
1543   if (I.getFlag(MachineInstr::MIFlag::FmNsz))
1544     Flags |= SPIRV::FPFastMathMode::NSZ;
1545   if (I.getFlag(MachineInstr::MIFlag::FmArcp))
1546     Flags |= SPIRV::FPFastMathMode::AllowRecip;
1547   if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
1548     Flags |= SPIRV::FPFastMathMode::Fast;
1549   return Flags;
1550 }
1551 
1552 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
1553                                    const SPIRVInstrInfo &TII,
1554                                    SPIRV::RequirementHandler &Reqs) {
1555   if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
1556       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1557                                      SPIRV::Decoration::NoSignedWrap, ST, Reqs)
1558           .IsSatisfiable) {
1559     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1560                     SPIRV::Decoration::NoSignedWrap, {});
1561   }
1562   if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
1563       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1564                                      SPIRV::Decoration::NoUnsignedWrap, ST,
1565                                      Reqs)
1566           .IsSatisfiable) {
1567     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1568                     SPIRV::Decoration::NoUnsignedWrap, {});
1569   }
1570   if (!TII.canUseFastMathFlags(I))
1571     return;
1572   unsigned FMFlags = getFastMathFlags(I);
1573   if (FMFlags == SPIRV::FPFastMathMode::None)
1574     return;
1575   Register DstReg = I.getOperand(0).getReg();
1576   buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
1577 }
1578 
1579 // Walk all functions and add decorations related to MI flags.
1580 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
1581                            MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
1582                            SPIRV::ModuleAnalysisInfo &MAI) {
1583   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1584     MachineFunction *MF = MMI->getMachineFunction(*F);
1585     if (!MF)
1586       continue;
1587     for (auto &MBB : *MF)
1588       for (auto &MI : MBB)
1589         handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
1590   }
1591 }
1592 
1593 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
1594 
1595 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1596   AU.addRequired<TargetPassConfig>();
1597   AU.addRequired<MachineModuleInfoWrapperPass>();
1598 }
1599 
1600 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
1601   SPIRVTargetMachine &TM =
1602       getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
1603   ST = TM.getSubtargetImpl();
1604   GR = ST->getSPIRVGlobalRegistry();
1605   TII = ST->getInstrInfo();
1606 
1607   MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1608 
1609   setBaseInfo(M);
1610 
1611   addDecorations(M, *TII, MMI, *ST, MAI);
1612 
1613   collectReqs(M, MAI, MMI, *ST);
1614 
1615   // Process type/const/global var/func decl instructions, number their
1616   // destination registers from 0 to N, collect Extensions and Capabilities.
1617   processDefInstrs(M);
1618 
1619   // Number rest of registers from N+1 onwards.
1620   numberRegistersGlobally(M);
1621 
1622   // Update references to OpFunction instructions to use Global Registers
1623   if (GR->hasConstFunPtr())
1624     collectFuncPtrs();
1625 
1626   // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
1627   processOtherInstrs(M);
1628 
1629   // If there are no entry points, we need the Linkage capability.
1630   if (MAI.MS[SPIRV::MB_EntryPoints].empty())
1631     MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
1632 
1633   // Set maximum ID used.
1634   GR->setBound(MAI.MaxID);
1635 
1636   return false;
1637 }
1638