1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The analysis collects instructions that should be output at the module level 10 // and performs the global register numbering. 11 // 12 // The results of this analysis are used in AsmPrinter to rename registers 13 // globally and to output required instructions at the module level. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SPIRVModuleAnalysis.h" 18 #include "MCTargetDesc/SPIRVBaseInfo.h" 19 #include "MCTargetDesc/SPIRVMCTargetDesc.h" 20 #include "SPIRV.h" 21 #include "SPIRVSubtarget.h" 22 #include "SPIRVTargetMachine.h" 23 #include "SPIRVUtils.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "spirv-module-analysis" 31 32 static cl::opt<bool> 33 SPVDumpDeps("spv-dump-deps", 34 cl::desc("Dump MIR with SPIR-V dependencies info"), 35 cl::Optional, cl::init(false)); 36 37 static cl::list<SPIRV::Capability::Capability> 38 AvoidCapabilities("avoid-spirv-capabilities", 39 cl::desc("SPIR-V capabilities to avoid if there are " 40 "other options enabling a feature"), 41 cl::ZeroOrMore, cl::Hidden, 42 cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader", 43 "SPIR-V Shader capability"))); 44 // Use sets instead of cl::list to check "if contains" condition 45 struct AvoidCapabilitiesSet { 46 SmallSet<SPIRV::Capability::Capability, 4> S; 47 AvoidCapabilitiesSet() { 48 for (auto Cap : AvoidCapabilities) 49 S.insert(Cap); 50 } 51 }; 52 53 char llvm::SPIRVModuleAnalysis::ID = 0; 54 55 namespace llvm { 56 void initializeSPIRVModuleAnalysisPass(PassRegistry &); 57 } // namespace llvm 58 59 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true, 60 true) 61 62 // Retrieve an unsigned from an MDNode with a list of them as operands. 63 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex, 64 unsigned DefaultVal = 0) { 65 if (MdNode && OpIndex < MdNode->getNumOperands()) { 66 const auto &Op = MdNode->getOperand(OpIndex); 67 return mdconst::extract<ConstantInt>(Op)->getZExtValue(); 68 } 69 return DefaultVal; 70 } 71 72 static SPIRV::Requirements 73 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category, 74 unsigned i, const SPIRVSubtarget &ST, 75 SPIRV::RequirementHandler &Reqs) { 76 static AvoidCapabilitiesSet 77 AvoidCaps; // contains capabilities to avoid if there is another option 78 79 VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i); 80 VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i); 81 VersionTuple SPIRVVersion = ST.getSPIRVVersion(); 82 bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer; 83 bool MaxVerOK = 84 ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer; 85 CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i); 86 ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i); 87 if (ReqCaps.empty()) { 88 if (ReqExts.empty()) { 89 if (MinVerOK && MaxVerOK) 90 return {true, {}, {}, ReqMinVer, ReqMaxVer}; 91 return {false, {}, {}, VersionTuple(), VersionTuple()}; 92 } 93 } else if (MinVerOK && MaxVerOK) { 94 if (ReqCaps.size() == 1) { 95 auto Cap = ReqCaps[0]; 96 if (Reqs.isCapabilityAvailable(Cap)) 97 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; 98 } else { 99 // By SPIR-V specification: "If an instruction, enumerant, or other 100 // feature specifies multiple enabling capabilities, only one such 101 // capability needs to be declared to use the feature." However, one 102 // capability may be preferred over another. We use command line 103 // argument(s) and AvoidCapabilities to avoid selection of certain 104 // capabilities if there are other options. 105 CapabilityList UseCaps; 106 for (auto Cap : ReqCaps) 107 if (Reqs.isCapabilityAvailable(Cap)) 108 UseCaps.push_back(Cap); 109 for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) { 110 auto Cap = UseCaps[i]; 111 if (i == Sz - 1 || !AvoidCaps.S.contains(Cap)) 112 return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; 113 } 114 } 115 } 116 // If there are no capabilities, or we can't satisfy the version or 117 // capability requirements, use the list of extensions (if the subtarget 118 // can handle them all). 119 if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) { 120 return ST.canUseExtension(Ext); 121 })) { 122 return {true, 123 {}, 124 ReqExts, 125 VersionTuple(), 126 VersionTuple()}; // TODO: add versions to extensions. 127 } 128 return {false, {}, {}, VersionTuple(), VersionTuple()}; 129 } 130 131 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) { 132 MAI.MaxID = 0; 133 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++) 134 MAI.MS[i].clear(); 135 MAI.RegisterAliasTable.clear(); 136 MAI.InstrsToDelete.clear(); 137 MAI.FuncMap.clear(); 138 MAI.GlobalVarList.clear(); 139 MAI.ExtInstSetMap.clear(); 140 MAI.Reqs.clear(); 141 MAI.Reqs.initAvailableCapabilities(*ST); 142 143 // TODO: determine memory model and source language from the configuratoin. 144 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) { 145 auto MemMD = MemModel->getOperand(0); 146 MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>( 147 getMetadataUInt(MemMD, 0)); 148 MAI.Mem = 149 static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1)); 150 } else { 151 // TODO: Add support for VulkanMemoryModel. 152 MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL 153 : SPIRV::MemoryModel::GLSL450; 154 if (MAI.Mem == SPIRV::MemoryModel::OpenCL) { 155 unsigned PtrSize = ST->getPointerSize(); 156 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32 157 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64 158 : SPIRV::AddressingModel::Logical; 159 } else { 160 // TODO: Add support for PhysicalStorageBufferAddress. 161 MAI.Addr = SPIRV::AddressingModel::Logical; 162 } 163 } 164 // Get the OpenCL version number from metadata. 165 // TODO: support other source languages. 166 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) { 167 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C; 168 // Construct version literal in accordance with SPIRV-LLVM-Translator. 169 // TODO: support multiple OCL version metadata. 170 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR"); 171 auto VersionMD = VerNode->getOperand(0); 172 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2); 173 unsigned MinorNum = getMetadataUInt(VersionMD, 1); 174 unsigned RevNum = getMetadataUInt(VersionMD, 2); 175 // Prevent Major part of OpenCL version to be 0 176 MAI.SrcLangVersion = 177 (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum; 178 } else { 179 // If there is no information about OpenCL version we are forced to generate 180 // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling 181 // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV 182 // Translator avoids potential issues with run-times in a similar manner. 183 if (ST->isOpenCLEnv()) { 184 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP; 185 MAI.SrcLangVersion = 100000; 186 } else { 187 MAI.SrcLang = SPIRV::SourceLanguage::Unknown; 188 MAI.SrcLangVersion = 0; 189 } 190 } 191 192 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) { 193 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) { 194 MDNode *MD = ExtNode->getOperand(I); 195 if (!MD || MD->getNumOperands() == 0) 196 continue; 197 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J) 198 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString()); 199 } 200 } 201 202 // Update required capabilities for this memory model, addressing model and 203 // source language. 204 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, 205 MAI.Mem, *ST); 206 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand, 207 MAI.SrcLang, *ST); 208 MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 209 MAI.Addr, *ST); 210 211 if (ST->isOpenCLEnv()) { 212 // TODO: check if it's required by default. 213 MAI.ExtInstSetMap[static_cast<unsigned>( 214 SPIRV::InstructionSet::OpenCL_std)] = 215 Register::index2VirtReg(MAI.getNextID()); 216 } 217 } 218 219 // Collect MI which defines the register in the given machine function. 220 static void collectDefInstr(Register Reg, const MachineFunction *MF, 221 SPIRV::ModuleAnalysisInfo *MAI, 222 SPIRV::ModuleSectionType MSType, 223 bool DoInsert = true) { 224 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias"); 225 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg); 226 assert(MI && "There should be an instruction that defines the register"); 227 MAI->setSkipEmission(MI); 228 if (DoInsert) 229 MAI->MS[MSType].push_back(MI); 230 } 231 232 void SPIRVModuleAnalysis::collectGlobalEntities( 233 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph, 234 SPIRV::ModuleSectionType MSType, 235 std::function<bool(const SPIRV::DTSortableEntry *)> Pred, 236 bool UsePreOrder = false) { 237 DenseSet<const SPIRV::DTSortableEntry *> Visited; 238 for (const auto *E : DepsGraph) { 239 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil; 240 // NOTE: here we prefer recursive approach over iterative because 241 // we don't expect depchains long enough to cause SO. 242 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred, 243 &RecHoistUtil](const SPIRV::DTSortableEntry *E) { 244 if (Visited.count(E) || !Pred(E)) 245 return; 246 Visited.insert(E); 247 248 // Traversing deps graph in post-order allows us to get rid of 249 // register aliases preprocessing. 250 // But pre-order is required for correct processing of function 251 // declaration and arguments processing. 252 if (!UsePreOrder) 253 for (auto *S : E->getDeps()) 254 RecHoistUtil(S); 255 256 Register GlobalReg = Register::index2VirtReg(MAI.getNextID()); 257 bool IsFirst = true; 258 for (auto &U : *E) { 259 const MachineFunction *MF = U.first; 260 Register Reg = U.second; 261 MAI.setRegisterAlias(MF, Reg, GlobalReg); 262 if (!MF->getRegInfo().getUniqueVRegDef(Reg)) 263 continue; 264 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst); 265 IsFirst = false; 266 if (E->getIsGV()) 267 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg)); 268 } 269 270 if (UsePreOrder) 271 for (auto *S : E->getDeps()) 272 RecHoistUtil(S); 273 }; 274 RecHoistUtil(E); 275 } 276 } 277 278 // The function initializes global register alias table for types, consts, 279 // global vars and func decls and collects these instruction for output 280 // at module level. Also it collects explicit OpExtension/OpCapability 281 // instructions. 282 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) { 283 std::vector<SPIRV::DTSortableEntry *> DepsGraph; 284 285 GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr); 286 287 collectGlobalEntities( 288 DepsGraph, SPIRV::MB_TypeConstVars, 289 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); }); 290 291 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 292 MachineFunction *MF = MMI->getMachineFunction(*F); 293 if (!MF) 294 continue; 295 // Iterate through and collect OpExtension/OpCapability instructions. 296 for (MachineBasicBlock &MBB : *MF) { 297 for (MachineInstr &MI : MBB) { 298 if (MI.getOpcode() == SPIRV::OpExtension) { 299 // Here, OpExtension just has a single enum operand, not a string. 300 auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm()); 301 MAI.Reqs.addExtension(Ext); 302 MAI.setSkipEmission(&MI); 303 } else if (MI.getOpcode() == SPIRV::OpCapability) { 304 auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm()); 305 MAI.Reqs.addCapability(Cap); 306 MAI.setSkipEmission(&MI); 307 } 308 } 309 } 310 } 311 312 collectGlobalEntities( 313 DepsGraph, SPIRV::MB_ExtFuncDecls, 314 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true); 315 } 316 317 // Look for IDs declared with Import linkage, and map the corresponding function 318 // to the register defining that variable (which will usually be the result of 319 // an OpFunction). This lets us call externally imported functions using 320 // the correct ID registers. 321 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI, 322 const Function *F) { 323 if (MI.getOpcode() == SPIRV::OpDecorate) { 324 // If it's got Import linkage. 325 auto Dec = MI.getOperand(1).getImm(); 326 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) { 327 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm(); 328 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) { 329 // Map imported function name to function ID register. 330 const Function *ImportedFunc = 331 F->getParent()->getFunction(getStringImm(MI, 2)); 332 Register Target = MI.getOperand(0).getReg(); 333 MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target); 334 } 335 } 336 } else if (MI.getOpcode() == SPIRV::OpFunction) { 337 // Record all internal OpFunction declarations. 338 Register Reg = MI.defs().begin()->getReg(); 339 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg); 340 assert(GlobalReg.isValid()); 341 MAI.FuncMap[F] = GlobalReg; 342 } 343 } 344 345 // References to a function via function pointers generate virtual 346 // registers without a definition. We are able to resolve this 347 // reference using Globar Register info into an OpFunction instruction 348 // and replace dummy operands by the corresponding global register references. 349 void SPIRVModuleAnalysis::collectFuncPtrs() { 350 for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars]) 351 if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL) 352 collectFuncPtrs(MI); 353 } 354 355 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) { 356 const MachineOperand *FunUse = &MI->getOperand(2); 357 if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) { 358 const MachineInstr *FunDefMI = FunDef->getParent(); 359 assert(FunDefMI->getOpcode() == SPIRV::OpFunction && 360 "Constant function pointer must refer to function definition"); 361 Register FunDefReg = FunDef->getReg(); 362 Register GlobalFunDefReg = 363 MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg); 364 assert(GlobalFunDefReg.isValid() && 365 "Function definition must refer to a global register"); 366 Register FunPtrReg = FunUse->getReg(); 367 MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg); 368 } 369 } 370 371 using InstrSignature = SmallVector<size_t>; 372 using InstrTraces = std::set<InstrSignature>; 373 374 // Returns a representation of an instruction as a vector of MachineOperand 375 // hash values, see llvm::hash_value(const MachineOperand &MO) for details. 376 // This creates a signature of the instruction with the same content 377 // that MachineOperand::isIdenticalTo uses for comparison. 378 static InstrSignature instrToSignature(MachineInstr &MI, 379 SPIRV::ModuleAnalysisInfo &MAI) { 380 InstrSignature Signature; 381 for (unsigned i = 0; i < MI.getNumOperands(); ++i) { 382 const MachineOperand &MO = MI.getOperand(i); 383 size_t h; 384 if (MO.isReg()) { 385 Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg()); 386 // mimic llvm::hash_value(const MachineOperand &MO) 387 h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(), 388 MO.isDef()); 389 } else { 390 h = hash_value(MO); 391 } 392 Signature.push_back(h); 393 } 394 return Signature; 395 } 396 397 // Collect the given instruction in the specified MS. We assume global register 398 // numbering has already occurred by this point. We can directly compare reg 399 // arguments when detecting duplicates. 400 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI, 401 SPIRV::ModuleSectionType MSType, InstrTraces &IS, 402 bool Append = true) { 403 MAI.setSkipEmission(&MI); 404 InstrSignature MISign = instrToSignature(MI, MAI); 405 auto FoundMI = IS.insert(MISign); 406 if (!FoundMI.second) 407 return; // insert failed, so we found a duplicate; don't add it to MAI.MS 408 // No duplicates, so add it. 409 if (Append) 410 MAI.MS[MSType].push_back(&MI); 411 else 412 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI); 413 } 414 415 // Some global instructions make reference to function-local ID regs, so cannot 416 // be correctly collected until these registers are globally numbered. 417 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) { 418 InstrTraces IS; 419 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 420 if ((*F).isDeclaration()) 421 continue; 422 MachineFunction *MF = MMI->getMachineFunction(*F); 423 assert(MF); 424 for (MachineBasicBlock &MBB : *MF) 425 for (MachineInstr &MI : MBB) { 426 if (MAI.getSkipEmission(&MI)) 427 continue; 428 const unsigned OpCode = MI.getOpcode(); 429 if (OpCode == SPIRV::OpString) { 430 collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS); 431 } else if (OpCode == SPIRV::OpExtInst) { 432 MachineOperand Ins = MI.getOperand(3); 433 namespace NS = SPIRV::NonSemanticExtInst; 434 static constexpr int64_t GlobalNonSemanticDITy[] = { 435 NS::DebugSource, NS::DebugCompilationUnit}; 436 bool IsGlobalDI = false; 437 for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx) 438 IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx]; 439 if (IsGlobalDI) 440 collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS); 441 } else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) { 442 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS); 443 } else if (OpCode == SPIRV::OpEntryPoint) { 444 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS); 445 } else if (TII->isDecorationInstr(MI)) { 446 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS); 447 collectFuncNames(MI, &*F); 448 } else if (TII->isConstantInstr(MI)) { 449 // Now OpSpecConstant*s are not in DT, 450 // but they need to be collected anyway. 451 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS); 452 } else if (OpCode == SPIRV::OpFunction) { 453 collectFuncNames(MI, &*F); 454 } else if (OpCode == SPIRV::OpTypeForwardPointer) { 455 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false); 456 } 457 } 458 } 459 } 460 461 // Number registers in all functions globally from 0 onwards and store 462 // the result in global register alias table. Some registers are already 463 // numbered in collectGlobalEntities. 464 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) { 465 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 466 if ((*F).isDeclaration()) 467 continue; 468 MachineFunction *MF = MMI->getMachineFunction(*F); 469 assert(MF); 470 for (MachineBasicBlock &MBB : *MF) { 471 for (MachineInstr &MI : MBB) { 472 for (MachineOperand &Op : MI.operands()) { 473 if (!Op.isReg()) 474 continue; 475 Register Reg = Op.getReg(); 476 if (MAI.hasRegisterAlias(MF, Reg)) 477 continue; 478 Register NewReg = Register::index2VirtReg(MAI.getNextID()); 479 MAI.setRegisterAlias(MF, Reg, NewReg); 480 } 481 if (MI.getOpcode() != SPIRV::OpExtInst) 482 continue; 483 auto Set = MI.getOperand(2).getImm(); 484 if (!MAI.ExtInstSetMap.contains(Set)) 485 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID()); 486 } 487 } 488 } 489 } 490 491 // RequirementHandler implementations. 492 void SPIRV::RequirementHandler::getAndAddRequirements( 493 SPIRV::OperandCategory::OperandCategory Category, uint32_t i, 494 const SPIRVSubtarget &ST) { 495 addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this)); 496 } 497 498 void SPIRV::RequirementHandler::recursiveAddCapabilities( 499 const CapabilityList &ToPrune) { 500 for (const auto &Cap : ToPrune) { 501 AllCaps.insert(Cap); 502 CapabilityList ImplicitDecls = 503 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 504 recursiveAddCapabilities(ImplicitDecls); 505 } 506 } 507 508 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) { 509 for (const auto &Cap : ToAdd) { 510 bool IsNewlyInserted = AllCaps.insert(Cap).second; 511 if (!IsNewlyInserted) // Don't re-add if it's already been declared. 512 continue; 513 CapabilityList ImplicitDecls = 514 getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); 515 recursiveAddCapabilities(ImplicitDecls); 516 MinimalCaps.push_back(Cap); 517 } 518 } 519 520 void SPIRV::RequirementHandler::addRequirements( 521 const SPIRV::Requirements &Req) { 522 if (!Req.IsSatisfiable) 523 report_fatal_error("Adding SPIR-V requirements this target can't satisfy."); 524 525 if (Req.Cap.has_value()) 526 addCapabilities({Req.Cap.value()}); 527 528 addExtensions(Req.Exts); 529 530 if (!Req.MinVer.empty()) { 531 if (!MaxVersion.empty() && Req.MinVer > MaxVersion) { 532 LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer 533 << " and <= " << MaxVersion << "\n"); 534 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 535 } 536 537 if (MinVersion.empty() || Req.MinVer > MinVersion) 538 MinVersion = Req.MinVer; 539 } 540 541 if (!Req.MaxVer.empty()) { 542 if (!MinVersion.empty() && Req.MaxVer < MinVersion) { 543 LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer 544 << " and >= " << MinVersion << "\n"); 545 report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); 546 } 547 548 if (MaxVersion.empty() || Req.MaxVer < MaxVersion) 549 MaxVersion = Req.MaxVer; 550 } 551 } 552 553 void SPIRV::RequirementHandler::checkSatisfiable( 554 const SPIRVSubtarget &ST) const { 555 // Report as many errors as possible before aborting the compilation. 556 bool IsSatisfiable = true; 557 auto TargetVer = ST.getSPIRVVersion(); 558 559 if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) { 560 LLVM_DEBUG( 561 dbgs() << "Target SPIR-V version too high for required features\n" 562 << "Required max version: " << MaxVersion << " target version " 563 << TargetVer << "\n"); 564 IsSatisfiable = false; 565 } 566 567 if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) { 568 LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n" 569 << "Required min version: " << MinVersion 570 << " target version " << TargetVer << "\n"); 571 IsSatisfiable = false; 572 } 573 574 if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) { 575 LLVM_DEBUG( 576 dbgs() 577 << "Version is too low for some features and too high for others.\n" 578 << "Required SPIR-V min version: " << MinVersion 579 << " required SPIR-V max version " << MaxVersion << "\n"); 580 IsSatisfiable = false; 581 } 582 583 for (auto Cap : MinimalCaps) { 584 if (AvailableCaps.contains(Cap)) 585 continue; 586 LLVM_DEBUG(dbgs() << "Capability not supported: " 587 << getSymbolicOperandMnemonic( 588 OperandCategory::CapabilityOperand, Cap) 589 << "\n"); 590 IsSatisfiable = false; 591 } 592 593 for (auto Ext : AllExtensions) { 594 if (ST.canUseExtension(Ext)) 595 continue; 596 LLVM_DEBUG(dbgs() << "Extension not supported: " 597 << getSymbolicOperandMnemonic( 598 OperandCategory::ExtensionOperand, Ext) 599 << "\n"); 600 IsSatisfiable = false; 601 } 602 603 if (!IsSatisfiable) 604 report_fatal_error("Unable to meet SPIR-V requirements for this target."); 605 } 606 607 // Add the given capabilities and all their implicitly defined capabilities too. 608 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) { 609 for (const auto Cap : ToAdd) 610 if (AvailableCaps.insert(Cap).second) 611 addAvailableCaps(getSymbolicOperandCapabilities( 612 SPIRV::OperandCategory::CapabilityOperand, Cap)); 613 } 614 615 void SPIRV::RequirementHandler::removeCapabilityIf( 616 const Capability::Capability ToRemove, 617 const Capability::Capability IfPresent) { 618 if (AllCaps.contains(IfPresent)) 619 AllCaps.erase(ToRemove); 620 } 621 622 namespace llvm { 623 namespace SPIRV { 624 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) { 625 if (ST.isOpenCLEnv()) { 626 initAvailableCapabilitiesForOpenCL(ST); 627 return; 628 } 629 630 if (ST.isVulkanEnv()) { 631 initAvailableCapabilitiesForVulkan(ST); 632 return; 633 } 634 635 report_fatal_error("Unimplemented environment for SPIR-V generation."); 636 } 637 638 void RequirementHandler::initAvailableCapabilitiesForOpenCL( 639 const SPIRVSubtarget &ST) { 640 // Add the min requirements for different OpenCL and SPIR-V versions. 641 addAvailableCaps({Capability::Addresses, Capability::Float16Buffer, 642 Capability::Int16, Capability::Int8, Capability::Kernel, 643 Capability::Linkage, Capability::Vector16, 644 Capability::Groups, Capability::GenericPointer, 645 Capability::Shader}); 646 if (ST.hasOpenCLFullProfile()) 647 addAvailableCaps({Capability::Int64, Capability::Int64Atomics}); 648 if (ST.hasOpenCLImageSupport()) { 649 addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler, 650 Capability::Image1D, Capability::SampledBuffer, 651 Capability::ImageBuffer}); 652 if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0))) 653 addAvailableCaps({Capability::ImageReadWrite}); 654 } 655 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) && 656 ST.isAtLeastOpenCLVer(VersionTuple(2, 2))) 657 addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage}); 658 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3))) 659 addAvailableCaps({Capability::GroupNonUniform, 660 Capability::GroupNonUniformVote, 661 Capability::GroupNonUniformArithmetic, 662 Capability::GroupNonUniformBallot, 663 Capability::GroupNonUniformClustered, 664 Capability::GroupNonUniformShuffle, 665 Capability::GroupNonUniformShuffleRelative}); 666 if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4))) 667 addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero, 668 Capability::SignedZeroInfNanPreserve, 669 Capability::RoundingModeRTE, 670 Capability::RoundingModeRTZ}); 671 // TODO: verify if this needs some checks. 672 addAvailableCaps({Capability::Float16, Capability::Float64}); 673 674 // Add capabilities enabled by extensions. 675 for (auto Extension : ST.getAllAvailableExtensions()) { 676 CapabilityList EnabledCapabilities = 677 getCapabilitiesEnabledByExtension(Extension); 678 addAvailableCaps(EnabledCapabilities); 679 } 680 681 // TODO: add OpenCL extensions. 682 } 683 684 void RequirementHandler::initAvailableCapabilitiesForVulkan( 685 const SPIRVSubtarget &ST) { 686 addAvailableCaps({Capability::Shader, Capability::Linkage}); 687 688 // Provided by all supported Vulkan versions. 689 addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16, 690 Capability::Float64, Capability::GroupNonUniform}); 691 } 692 693 } // namespace SPIRV 694 } // namespace llvm 695 696 // Add the required capabilities from a decoration instruction (including 697 // BuiltIns). 698 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex, 699 SPIRV::RequirementHandler &Reqs, 700 const SPIRVSubtarget &ST) { 701 int64_t DecOp = MI.getOperand(DecIndex).getImm(); 702 auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp); 703 Reqs.addRequirements(getSymbolicOperandRequirements( 704 SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs)); 705 706 if (Dec == SPIRV::Decoration::BuiltIn) { 707 int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm(); 708 auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp); 709 Reqs.addRequirements(getSymbolicOperandRequirements( 710 SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs)); 711 } else if (Dec == SPIRV::Decoration::LinkageAttributes) { 712 int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm(); 713 SPIRV::LinkageType::LinkageType LnkType = 714 static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp); 715 if (LnkType == SPIRV::LinkageType::LinkOnceODR) 716 Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr); 717 } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL || 718 Dec == SPIRV::Decoration::CacheControlStoreINTEL) { 719 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls); 720 } else if (Dec == SPIRV::Decoration::HostAccessINTEL) { 721 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access); 722 } else if (Dec == SPIRV::Decoration::InitModeINTEL || 723 Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) { 724 Reqs.addExtension( 725 SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations); 726 } 727 } 728 729 // Add requirements for image handling. 730 static void addOpTypeImageReqs(const MachineInstr &MI, 731 SPIRV::RequirementHandler &Reqs, 732 const SPIRVSubtarget &ST) { 733 assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage"); 734 // The operand indices used here are based on the OpTypeImage layout, which 735 // the MachineInstr follows as well. 736 int64_t ImgFormatOp = MI.getOperand(7).getImm(); 737 auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp); 738 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand, 739 ImgFormat, ST); 740 741 bool IsArrayed = MI.getOperand(4).getImm() == 1; 742 bool IsMultisampled = MI.getOperand(5).getImm() == 1; 743 bool NoSampler = MI.getOperand(6).getImm() == 2; 744 // Add dimension requirements. 745 assert(MI.getOperand(2).isImm()); 746 switch (MI.getOperand(2).getImm()) { 747 case SPIRV::Dim::DIM_1D: 748 Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D 749 : SPIRV::Capability::Sampled1D); 750 break; 751 case SPIRV::Dim::DIM_2D: 752 if (IsMultisampled && NoSampler) 753 Reqs.addRequirements(SPIRV::Capability::ImageMSArray); 754 break; 755 case SPIRV::Dim::DIM_Cube: 756 Reqs.addRequirements(SPIRV::Capability::Shader); 757 if (IsArrayed) 758 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray 759 : SPIRV::Capability::SampledCubeArray); 760 break; 761 case SPIRV::Dim::DIM_Rect: 762 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect 763 : SPIRV::Capability::SampledRect); 764 break; 765 case SPIRV::Dim::DIM_Buffer: 766 Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer 767 : SPIRV::Capability::SampledBuffer); 768 break; 769 case SPIRV::Dim::DIM_SubpassData: 770 Reqs.addRequirements(SPIRV::Capability::InputAttachment); 771 break; 772 } 773 774 // Has optional access qualifier. 775 // TODO: check if it's OpenCL's kernel. 776 if (MI.getNumOperands() > 8 && 777 MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite) 778 Reqs.addRequirements(SPIRV::Capability::ImageReadWrite); 779 else 780 Reqs.addRequirements(SPIRV::Capability::ImageBasic); 781 } 782 783 // Add requirements for handling atomic float instructions 784 #define ATOM_FLT_REQ_EXT_MSG(ExtName) \ 785 "The atomic float instruction requires the following SPIR-V " \ 786 "extension: SPV_EXT_shader_atomic_float" ExtName 787 static void AddAtomicFloatRequirements(const MachineInstr &MI, 788 SPIRV::RequirementHandler &Reqs, 789 const SPIRVSubtarget &ST) { 790 assert(MI.getOperand(1).isReg() && 791 "Expect register operand in atomic float instruction"); 792 Register TypeReg = MI.getOperand(1).getReg(); 793 SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg); 794 if (TypeDef->getOpcode() != SPIRV::OpTypeFloat) 795 report_fatal_error("Result type of an atomic float instruction must be a " 796 "floating-point type scalar"); 797 798 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 799 unsigned Op = MI.getOpcode(); 800 if (Op == SPIRV::OpAtomicFAddEXT) { 801 if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add)) 802 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false); 803 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add); 804 switch (BitWidth) { 805 case 16: 806 if (!ST.canUseExtension( 807 SPIRV::Extension::SPV_EXT_shader_atomic_float16_add)) 808 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false); 809 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add); 810 Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT); 811 break; 812 case 32: 813 Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT); 814 break; 815 case 64: 816 Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT); 817 break; 818 default: 819 report_fatal_error( 820 "Unexpected floating-point type width in atomic float instruction"); 821 } 822 } else { 823 if (!ST.canUseExtension( 824 SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max)) 825 report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false); 826 Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max); 827 switch (BitWidth) { 828 case 16: 829 Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT); 830 break; 831 case 32: 832 Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT); 833 break; 834 case 64: 835 Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT); 836 break; 837 default: 838 report_fatal_error( 839 "Unexpected floating-point type width in atomic float instruction"); 840 } 841 } 842 } 843 844 void addInstrRequirements(const MachineInstr &MI, 845 SPIRV::RequirementHandler &Reqs, 846 const SPIRVSubtarget &ST) { 847 switch (MI.getOpcode()) { 848 case SPIRV::OpMemoryModel: { 849 int64_t Addr = MI.getOperand(0).getImm(); 850 Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, 851 Addr, ST); 852 int64_t Mem = MI.getOperand(1).getImm(); 853 Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem, 854 ST); 855 break; 856 } 857 case SPIRV::OpEntryPoint: { 858 int64_t Exe = MI.getOperand(0).getImm(); 859 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand, 860 Exe, ST); 861 break; 862 } 863 case SPIRV::OpExecutionMode: 864 case SPIRV::OpExecutionModeId: { 865 int64_t Exe = MI.getOperand(1).getImm(); 866 Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand, 867 Exe, ST); 868 break; 869 } 870 case SPIRV::OpTypeMatrix: 871 Reqs.addCapability(SPIRV::Capability::Matrix); 872 break; 873 case SPIRV::OpTypeInt: { 874 unsigned BitWidth = MI.getOperand(1).getImm(); 875 if (BitWidth == 64) 876 Reqs.addCapability(SPIRV::Capability::Int64); 877 else if (BitWidth == 16) 878 Reqs.addCapability(SPIRV::Capability::Int16); 879 else if (BitWidth == 8) 880 Reqs.addCapability(SPIRV::Capability::Int8); 881 break; 882 } 883 case SPIRV::OpTypeFloat: { 884 unsigned BitWidth = MI.getOperand(1).getImm(); 885 if (BitWidth == 64) 886 Reqs.addCapability(SPIRV::Capability::Float64); 887 else if (BitWidth == 16) 888 Reqs.addCapability(SPIRV::Capability::Float16); 889 break; 890 } 891 case SPIRV::OpTypeVector: { 892 unsigned NumComponents = MI.getOperand(2).getImm(); 893 if (NumComponents == 8 || NumComponents == 16) 894 Reqs.addCapability(SPIRV::Capability::Vector16); 895 break; 896 } 897 case SPIRV::OpTypePointer: { 898 auto SC = MI.getOperand(1).getImm(); 899 Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC, 900 ST); 901 // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer 902 // capability. 903 if (!ST.isOpenCLEnv()) 904 break; 905 assert(MI.getOperand(2).isReg()); 906 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 907 SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg()); 908 if (TypeDef->getOpcode() == SPIRV::OpTypeFloat && 909 TypeDef->getOperand(1).getImm() == 16) 910 Reqs.addCapability(SPIRV::Capability::Float16Buffer); 911 break; 912 } 913 case SPIRV::OpExtInst: { 914 if (MI.getOperand(2).getImm() == 915 static_cast<int64_t>( 916 SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) { 917 Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info); 918 } 919 break; 920 } 921 case SPIRV::OpBitReverse: 922 case SPIRV::OpBitFieldInsert: 923 case SPIRV::OpBitFieldSExtract: 924 case SPIRV::OpBitFieldUExtract: 925 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) { 926 Reqs.addCapability(SPIRV::Capability::Shader); 927 break; 928 } 929 Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions); 930 Reqs.addCapability(SPIRV::Capability::BitInstructions); 931 break; 932 case SPIRV::OpTypeRuntimeArray: 933 Reqs.addCapability(SPIRV::Capability::Shader); 934 break; 935 case SPIRV::OpTypeOpaque: 936 case SPIRV::OpTypeEvent: 937 Reqs.addCapability(SPIRV::Capability::Kernel); 938 break; 939 case SPIRV::OpTypePipe: 940 case SPIRV::OpTypeReserveId: 941 Reqs.addCapability(SPIRV::Capability::Pipes); 942 break; 943 case SPIRV::OpTypeDeviceEvent: 944 case SPIRV::OpTypeQueue: 945 case SPIRV::OpBuildNDRange: 946 Reqs.addCapability(SPIRV::Capability::DeviceEnqueue); 947 break; 948 case SPIRV::OpDecorate: 949 case SPIRV::OpDecorateId: 950 case SPIRV::OpDecorateString: 951 addOpDecorateReqs(MI, 1, Reqs, ST); 952 break; 953 case SPIRV::OpMemberDecorate: 954 case SPIRV::OpMemberDecorateString: 955 addOpDecorateReqs(MI, 2, Reqs, ST); 956 break; 957 case SPIRV::OpInBoundsPtrAccessChain: 958 Reqs.addCapability(SPIRV::Capability::Addresses); 959 break; 960 case SPIRV::OpConstantSampler: 961 Reqs.addCapability(SPIRV::Capability::LiteralSampler); 962 break; 963 case SPIRV::OpTypeImage: 964 addOpTypeImageReqs(MI, Reqs, ST); 965 break; 966 case SPIRV::OpTypeSampler: 967 Reqs.addCapability(SPIRV::Capability::ImageBasic); 968 break; 969 case SPIRV::OpTypeForwardPointer: 970 // TODO: check if it's OpenCL's kernel. 971 Reqs.addCapability(SPIRV::Capability::Addresses); 972 break; 973 case SPIRV::OpAtomicFlagTestAndSet: 974 case SPIRV::OpAtomicLoad: 975 case SPIRV::OpAtomicStore: 976 case SPIRV::OpAtomicExchange: 977 case SPIRV::OpAtomicCompareExchange: 978 case SPIRV::OpAtomicIIncrement: 979 case SPIRV::OpAtomicIDecrement: 980 case SPIRV::OpAtomicIAdd: 981 case SPIRV::OpAtomicISub: 982 case SPIRV::OpAtomicUMin: 983 case SPIRV::OpAtomicUMax: 984 case SPIRV::OpAtomicSMin: 985 case SPIRV::OpAtomicSMax: 986 case SPIRV::OpAtomicAnd: 987 case SPIRV::OpAtomicOr: 988 case SPIRV::OpAtomicXor: { 989 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 990 const MachineInstr *InstrPtr = &MI; 991 if (MI.getOpcode() == SPIRV::OpAtomicStore) { 992 assert(MI.getOperand(3).isReg()); 993 InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg()); 994 assert(InstrPtr && "Unexpected type instruction for OpAtomicStore"); 995 } 996 assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic"); 997 Register TypeReg = InstrPtr->getOperand(1).getReg(); 998 SPIRVType *TypeDef = MRI.getVRegDef(TypeReg); 999 if (TypeDef->getOpcode() == SPIRV::OpTypeInt) { 1000 unsigned BitWidth = TypeDef->getOperand(1).getImm(); 1001 if (BitWidth == 64) 1002 Reqs.addCapability(SPIRV::Capability::Int64Atomics); 1003 } 1004 break; 1005 } 1006 case SPIRV::OpGroupNonUniformIAdd: 1007 case SPIRV::OpGroupNonUniformFAdd: 1008 case SPIRV::OpGroupNonUniformIMul: 1009 case SPIRV::OpGroupNonUniformFMul: 1010 case SPIRV::OpGroupNonUniformSMin: 1011 case SPIRV::OpGroupNonUniformUMin: 1012 case SPIRV::OpGroupNonUniformFMin: 1013 case SPIRV::OpGroupNonUniformSMax: 1014 case SPIRV::OpGroupNonUniformUMax: 1015 case SPIRV::OpGroupNonUniformFMax: 1016 case SPIRV::OpGroupNonUniformBitwiseAnd: 1017 case SPIRV::OpGroupNonUniformBitwiseOr: 1018 case SPIRV::OpGroupNonUniformBitwiseXor: 1019 case SPIRV::OpGroupNonUniformLogicalAnd: 1020 case SPIRV::OpGroupNonUniformLogicalOr: 1021 case SPIRV::OpGroupNonUniformLogicalXor: { 1022 assert(MI.getOperand(3).isImm()); 1023 int64_t GroupOp = MI.getOperand(3).getImm(); 1024 switch (GroupOp) { 1025 case SPIRV::GroupOperation::Reduce: 1026 case SPIRV::GroupOperation::InclusiveScan: 1027 case SPIRV::GroupOperation::ExclusiveScan: 1028 Reqs.addCapability(SPIRV::Capability::Kernel); 1029 Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic); 1030 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1031 break; 1032 case SPIRV::GroupOperation::ClusteredReduce: 1033 Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered); 1034 break; 1035 case SPIRV::GroupOperation::PartitionedReduceNV: 1036 case SPIRV::GroupOperation::PartitionedInclusiveScanNV: 1037 case SPIRV::GroupOperation::PartitionedExclusiveScanNV: 1038 Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV); 1039 break; 1040 } 1041 break; 1042 } 1043 case SPIRV::OpGroupNonUniformShuffle: 1044 case SPIRV::OpGroupNonUniformShuffleXor: 1045 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle); 1046 break; 1047 case SPIRV::OpGroupNonUniformShuffleUp: 1048 case SPIRV::OpGroupNonUniformShuffleDown: 1049 Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative); 1050 break; 1051 case SPIRV::OpGroupAll: 1052 case SPIRV::OpGroupAny: 1053 case SPIRV::OpGroupBroadcast: 1054 case SPIRV::OpGroupIAdd: 1055 case SPIRV::OpGroupFAdd: 1056 case SPIRV::OpGroupFMin: 1057 case SPIRV::OpGroupUMin: 1058 case SPIRV::OpGroupSMin: 1059 case SPIRV::OpGroupFMax: 1060 case SPIRV::OpGroupUMax: 1061 case SPIRV::OpGroupSMax: 1062 Reqs.addCapability(SPIRV::Capability::Groups); 1063 break; 1064 case SPIRV::OpGroupNonUniformElect: 1065 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1066 break; 1067 case SPIRV::OpGroupNonUniformAll: 1068 case SPIRV::OpGroupNonUniformAny: 1069 case SPIRV::OpGroupNonUniformAllEqual: 1070 Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote); 1071 break; 1072 case SPIRV::OpGroupNonUniformBroadcast: 1073 case SPIRV::OpGroupNonUniformBroadcastFirst: 1074 case SPIRV::OpGroupNonUniformBallot: 1075 case SPIRV::OpGroupNonUniformInverseBallot: 1076 case SPIRV::OpGroupNonUniformBallotBitExtract: 1077 case SPIRV::OpGroupNonUniformBallotBitCount: 1078 case SPIRV::OpGroupNonUniformBallotFindLSB: 1079 case SPIRV::OpGroupNonUniformBallotFindMSB: 1080 Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); 1081 break; 1082 case SPIRV::OpSubgroupShuffleINTEL: 1083 case SPIRV::OpSubgroupShuffleDownINTEL: 1084 case SPIRV::OpSubgroupShuffleUpINTEL: 1085 case SPIRV::OpSubgroupShuffleXorINTEL: 1086 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1087 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1088 Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL); 1089 } 1090 break; 1091 case SPIRV::OpSubgroupBlockReadINTEL: 1092 case SPIRV::OpSubgroupBlockWriteINTEL: 1093 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1094 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1095 Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL); 1096 } 1097 break; 1098 case SPIRV::OpSubgroupImageBlockReadINTEL: 1099 case SPIRV::OpSubgroupImageBlockWriteINTEL: 1100 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { 1101 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); 1102 Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL); 1103 } 1104 break; 1105 case SPIRV::OpAssumeTrueKHR: 1106 case SPIRV::OpExpectKHR: 1107 if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) { 1108 Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume); 1109 Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR); 1110 } 1111 break; 1112 case SPIRV::OpPtrCastToCrossWorkgroupINTEL: 1113 case SPIRV::OpCrossWorkgroupCastToPtrINTEL: 1114 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) { 1115 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes); 1116 Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL); 1117 } 1118 break; 1119 case SPIRV::OpConstantFunctionPointerINTEL: 1120 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1121 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1122 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1123 } 1124 break; 1125 case SPIRV::OpGroupNonUniformRotateKHR: 1126 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate)) 1127 report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the " 1128 "following SPIR-V extension: SPV_KHR_subgroup_rotate", 1129 false); 1130 Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate); 1131 Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR); 1132 Reqs.addCapability(SPIRV::Capability::GroupNonUniform); 1133 break; 1134 case SPIRV::OpGroupIMulKHR: 1135 case SPIRV::OpGroupFMulKHR: 1136 case SPIRV::OpGroupBitwiseAndKHR: 1137 case SPIRV::OpGroupBitwiseOrKHR: 1138 case SPIRV::OpGroupBitwiseXorKHR: 1139 case SPIRV::OpGroupLogicalAndKHR: 1140 case SPIRV::OpGroupLogicalOrKHR: 1141 case SPIRV::OpGroupLogicalXorKHR: 1142 if (ST.canUseExtension( 1143 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) { 1144 Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions); 1145 Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR); 1146 } 1147 break; 1148 case SPIRV::OpReadClockKHR: 1149 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock)) 1150 report_fatal_error("OpReadClockKHR instruction requires the " 1151 "following SPIR-V extension: SPV_KHR_shader_clock", 1152 false); 1153 Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock); 1154 Reqs.addCapability(SPIRV::Capability::ShaderClockKHR); 1155 break; 1156 case SPIRV::OpFunctionPointerCallINTEL: 1157 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { 1158 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); 1159 Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); 1160 } 1161 break; 1162 case SPIRV::OpAtomicFAddEXT: 1163 case SPIRV::OpAtomicFMinEXT: 1164 case SPIRV::OpAtomicFMaxEXT: 1165 AddAtomicFloatRequirements(MI, Reqs, ST); 1166 break; 1167 case SPIRV::OpConvertBF16ToFINTEL: 1168 case SPIRV::OpConvertFToBF16INTEL: 1169 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) { 1170 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion); 1171 Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL); 1172 } 1173 break; 1174 case SPIRV::OpVariableLengthArrayINTEL: 1175 case SPIRV::OpSaveMemoryINTEL: 1176 case SPIRV::OpRestoreMemoryINTEL: 1177 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) { 1178 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array); 1179 Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL); 1180 } 1181 break; 1182 case SPIRV::OpAsmTargetINTEL: 1183 case SPIRV::OpAsmINTEL: 1184 case SPIRV::OpAsmCallINTEL: 1185 if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) { 1186 Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly); 1187 Reqs.addCapability(SPIRV::Capability::AsmINTEL); 1188 } 1189 break; 1190 case SPIRV::OpTypeCooperativeMatrixKHR: 1191 if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix)) 1192 report_fatal_error( 1193 "OpTypeCooperativeMatrixKHR type requires the " 1194 "following SPIR-V extension: SPV_KHR_cooperative_matrix", 1195 false); 1196 Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix); 1197 Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR); 1198 break; 1199 default: 1200 break; 1201 } 1202 1203 // If we require capability Shader, then we can remove the requirement for 1204 // the BitInstructions capability, since Shader is a superset capability 1205 // of BitInstructions. 1206 Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions, 1207 SPIRV::Capability::Shader); 1208 } 1209 1210 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI, 1211 MachineModuleInfo *MMI, const SPIRVSubtarget &ST) { 1212 // Collect requirements for existing instructions. 1213 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1214 MachineFunction *MF = MMI->getMachineFunction(*F); 1215 if (!MF) 1216 continue; 1217 for (const MachineBasicBlock &MBB : *MF) 1218 for (const MachineInstr &MI : MBB) 1219 addInstrRequirements(MI, MAI.Reqs, ST); 1220 } 1221 // Collect requirements for OpExecutionMode instructions. 1222 auto Node = M.getNamedMetadata("spirv.ExecutionMode"); 1223 if (Node) { 1224 // SPV_KHR_float_controls is not available until v1.4 1225 bool RequireFloatControls = false, 1226 VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4)); 1227 for (unsigned i = 0; i < Node->getNumOperands(); i++) { 1228 MDNode *MDN = cast<MDNode>(Node->getOperand(i)); 1229 const MDOperand &MDOp = MDN->getOperand(1); 1230 if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) { 1231 Constant *C = CMeta->getValue(); 1232 if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) { 1233 auto EM = Const->getZExtValue(); 1234 MAI.Reqs.getAndAddRequirements( 1235 SPIRV::OperandCategory::ExecutionModeOperand, EM, ST); 1236 // add SPV_KHR_float_controls if the version is too low 1237 switch (EM) { 1238 case SPIRV::ExecutionMode::DenormPreserve: 1239 case SPIRV::ExecutionMode::DenormFlushToZero: 1240 case SPIRV::ExecutionMode::SignedZeroInfNanPreserve: 1241 case SPIRV::ExecutionMode::RoundingModeRTE: 1242 case SPIRV::ExecutionMode::RoundingModeRTZ: 1243 RequireFloatControls = VerLower14; 1244 break; 1245 } 1246 } 1247 } 1248 } 1249 if (RequireFloatControls && 1250 ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls)) 1251 MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls); 1252 } 1253 for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) { 1254 const Function &F = *FI; 1255 if (F.isDeclaration()) 1256 continue; 1257 if (F.getMetadata("reqd_work_group_size")) 1258 MAI.Reqs.getAndAddRequirements( 1259 SPIRV::OperandCategory::ExecutionModeOperand, 1260 SPIRV::ExecutionMode::LocalSize, ST); 1261 if (F.getFnAttribute("hlsl.numthreads").isValid()) { 1262 MAI.Reqs.getAndAddRequirements( 1263 SPIRV::OperandCategory::ExecutionModeOperand, 1264 SPIRV::ExecutionMode::LocalSize, ST); 1265 } 1266 if (F.getMetadata("work_group_size_hint")) 1267 MAI.Reqs.getAndAddRequirements( 1268 SPIRV::OperandCategory::ExecutionModeOperand, 1269 SPIRV::ExecutionMode::LocalSizeHint, ST); 1270 if (F.getMetadata("intel_reqd_sub_group_size")) 1271 MAI.Reqs.getAndAddRequirements( 1272 SPIRV::OperandCategory::ExecutionModeOperand, 1273 SPIRV::ExecutionMode::SubgroupSize, ST); 1274 if (F.getMetadata("vec_type_hint")) 1275 MAI.Reqs.getAndAddRequirements( 1276 SPIRV::OperandCategory::ExecutionModeOperand, 1277 SPIRV::ExecutionMode::VecTypeHint, ST); 1278 1279 if (F.hasOptNone() && 1280 ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) { 1281 // Output OpCapability OptNoneINTEL. 1282 MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone); 1283 MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL); 1284 } 1285 } 1286 } 1287 1288 static unsigned getFastMathFlags(const MachineInstr &I) { 1289 unsigned Flags = SPIRV::FPFastMathMode::None; 1290 if (I.getFlag(MachineInstr::MIFlag::FmNoNans)) 1291 Flags |= SPIRV::FPFastMathMode::NotNaN; 1292 if (I.getFlag(MachineInstr::MIFlag::FmNoInfs)) 1293 Flags |= SPIRV::FPFastMathMode::NotInf; 1294 if (I.getFlag(MachineInstr::MIFlag::FmNsz)) 1295 Flags |= SPIRV::FPFastMathMode::NSZ; 1296 if (I.getFlag(MachineInstr::MIFlag::FmArcp)) 1297 Flags |= SPIRV::FPFastMathMode::AllowRecip; 1298 if (I.getFlag(MachineInstr::MIFlag::FmReassoc)) 1299 Flags |= SPIRV::FPFastMathMode::Fast; 1300 return Flags; 1301 } 1302 1303 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST, 1304 const SPIRVInstrInfo &TII, 1305 SPIRV::RequirementHandler &Reqs) { 1306 if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) && 1307 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1308 SPIRV::Decoration::NoSignedWrap, ST, Reqs) 1309 .IsSatisfiable) { 1310 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1311 SPIRV::Decoration::NoSignedWrap, {}); 1312 } 1313 if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) && 1314 getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, 1315 SPIRV::Decoration::NoUnsignedWrap, ST, 1316 Reqs) 1317 .IsSatisfiable) { 1318 buildOpDecorate(I.getOperand(0).getReg(), I, TII, 1319 SPIRV::Decoration::NoUnsignedWrap, {}); 1320 } 1321 if (!TII.canUseFastMathFlags(I)) 1322 return; 1323 unsigned FMFlags = getFastMathFlags(I); 1324 if (FMFlags == SPIRV::FPFastMathMode::None) 1325 return; 1326 Register DstReg = I.getOperand(0).getReg(); 1327 buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags}); 1328 } 1329 1330 // Walk all functions and add decorations related to MI flags. 1331 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII, 1332 MachineModuleInfo *MMI, const SPIRVSubtarget &ST, 1333 SPIRV::ModuleAnalysisInfo &MAI) { 1334 for (auto F = M.begin(), E = M.end(); F != E; ++F) { 1335 MachineFunction *MF = MMI->getMachineFunction(*F); 1336 if (!MF) 1337 continue; 1338 for (auto &MBB : *MF) 1339 for (auto &MI : MBB) 1340 handleMIFlagDecoration(MI, ST, TII, MAI.Reqs); 1341 } 1342 } 1343 1344 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI; 1345 1346 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 1347 AU.addRequired<TargetPassConfig>(); 1348 AU.addRequired<MachineModuleInfoWrapperPass>(); 1349 } 1350 1351 bool SPIRVModuleAnalysis::runOnModule(Module &M) { 1352 SPIRVTargetMachine &TM = 1353 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>(); 1354 ST = TM.getSubtargetImpl(); 1355 GR = ST->getSPIRVGlobalRegistry(); 1356 TII = ST->getInstrInfo(); 1357 1358 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1359 1360 setBaseInfo(M); 1361 1362 addDecorations(M, *TII, MMI, *ST, MAI); 1363 1364 collectReqs(M, MAI, MMI, *ST); 1365 1366 // Process type/const/global var/func decl instructions, number their 1367 // destination registers from 0 to N, collect Extensions and Capabilities. 1368 processDefInstrs(M); 1369 1370 // Number rest of registers from N+1 onwards. 1371 numberRegistersGlobally(M); 1372 1373 // Update references to OpFunction instructions to use Global Registers 1374 if (GR->hasConstFunPtr()) 1375 collectFuncPtrs(); 1376 1377 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions. 1378 processOtherInstrs(M); 1379 1380 // If there are no entry points, we need the Linkage capability. 1381 if (MAI.MS[SPIRV::MB_EntryPoints].empty()) 1382 MAI.Reqs.addCapability(SPIRV::Capability::Linkage); 1383 1384 // Set maximum ID used. 1385 GR->setBound(MAI.MaxID); 1386 1387 return false; 1388 } 1389