xref: /llvm-project/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.cpp (revision 4a6ecd38218219ede3df34eeea72f3ffccec3413)
1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
11 //
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SPIRVModuleAnalysis.h"
18 #include "MCTargetDesc/SPIRVBaseInfo.h"
19 #include "MCTargetDesc/SPIRVMCTargetDesc.h"
20 #include "SPIRV.h"
21 #include "SPIRVSubtarget.h"
22 #include "SPIRVTargetMachine.h"
23 #include "SPIRVUtils.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "spirv-module-analysis"
31 
32 static cl::opt<bool>
33     SPVDumpDeps("spv-dump-deps",
34                 cl::desc("Dump MIR with SPIR-V dependencies info"),
35                 cl::Optional, cl::init(false));
36 
37 static cl::list<SPIRV::Capability::Capability>
38     AvoidCapabilities("avoid-spirv-capabilities",
39                       cl::desc("SPIR-V capabilities to avoid if there are "
40                                "other options enabling a feature"),
41                       cl::ZeroOrMore, cl::Hidden,
42                       cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
43                                             "SPIR-V Shader capability")));
44 // Use sets instead of cl::list to check "if contains" condition
45 struct AvoidCapabilitiesSet {
46   SmallSet<SPIRV::Capability::Capability, 4> S;
47   AvoidCapabilitiesSet() {
48     for (auto Cap : AvoidCapabilities)
49       S.insert(Cap);
50   }
51 };
52 
53 char llvm::SPIRVModuleAnalysis::ID = 0;
54 
55 namespace llvm {
56 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
57 } // namespace llvm
58 
59 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
60                 true)
61 
62 // Retrieve an unsigned from an MDNode with a list of them as operands.
63 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
64                                 unsigned DefaultVal = 0) {
65   if (MdNode && OpIndex < MdNode->getNumOperands()) {
66     const auto &Op = MdNode->getOperand(OpIndex);
67     return mdconst::extract<ConstantInt>(Op)->getZExtValue();
68   }
69   return DefaultVal;
70 }
71 
72 static SPIRV::Requirements
73 getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
74                                unsigned i, const SPIRVSubtarget &ST,
75                                SPIRV::RequirementHandler &Reqs) {
76   static AvoidCapabilitiesSet
77       AvoidCaps; // contains capabilities to avoid if there is another option
78 
79   VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
80   VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
81   VersionTuple SPIRVVersion = ST.getSPIRVVersion();
82   bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
83   bool MaxVerOK =
84       ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
85   CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
86   ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
87   if (ReqCaps.empty()) {
88     if (ReqExts.empty()) {
89       if (MinVerOK && MaxVerOK)
90         return {true, {}, {}, ReqMinVer, ReqMaxVer};
91       return {false, {}, {}, VersionTuple(), VersionTuple()};
92     }
93   } else if (MinVerOK && MaxVerOK) {
94     if (ReqCaps.size() == 1) {
95       auto Cap = ReqCaps[0];
96       if (Reqs.isCapabilityAvailable(Cap))
97         return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
98     } else {
99       // By SPIR-V specification: "If an instruction, enumerant, or other
100       // feature specifies multiple enabling capabilities, only one such
101       // capability needs to be declared to use the feature." However, one
102       // capability may be preferred over another. We use command line
103       // argument(s) and AvoidCapabilities to avoid selection of certain
104       // capabilities if there are other options.
105       CapabilityList UseCaps;
106       for (auto Cap : ReqCaps)
107         if (Reqs.isCapabilityAvailable(Cap))
108           UseCaps.push_back(Cap);
109       for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
110         auto Cap = UseCaps[i];
111         if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
112           return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
113       }
114     }
115   }
116   // If there are no capabilities, or we can't satisfy the version or
117   // capability requirements, use the list of extensions (if the subtarget
118   // can handle them all).
119   if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
120         return ST.canUseExtension(Ext);
121       })) {
122     return {true,
123             {},
124             ReqExts,
125             VersionTuple(),
126             VersionTuple()}; // TODO: add versions to extensions.
127   }
128   return {false, {}, {}, VersionTuple(), VersionTuple()};
129 }
130 
131 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
132   MAI.MaxID = 0;
133   for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
134     MAI.MS[i].clear();
135   MAI.RegisterAliasTable.clear();
136   MAI.InstrsToDelete.clear();
137   MAI.FuncMap.clear();
138   MAI.GlobalVarList.clear();
139   MAI.ExtInstSetMap.clear();
140   MAI.Reqs.clear();
141   MAI.Reqs.initAvailableCapabilities(*ST);
142 
143   // TODO: determine memory model and source language from the configuratoin.
144   if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
145     auto MemMD = MemModel->getOperand(0);
146     MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
147         getMetadataUInt(MemMD, 0));
148     MAI.Mem =
149         static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
150   } else {
151     // TODO: Add support for VulkanMemoryModel.
152     MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
153                                 : SPIRV::MemoryModel::GLSL450;
154     if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
155       unsigned PtrSize = ST->getPointerSize();
156       MAI.Addr = PtrSize == 32   ? SPIRV::AddressingModel::Physical32
157                  : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
158                                  : SPIRV::AddressingModel::Logical;
159     } else {
160       // TODO: Add support for PhysicalStorageBufferAddress.
161       MAI.Addr = SPIRV::AddressingModel::Logical;
162     }
163   }
164   // Get the OpenCL version number from metadata.
165   // TODO: support other source languages.
166   if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
167     MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
168     // Construct version literal in accordance with SPIRV-LLVM-Translator.
169     // TODO: support multiple OCL version metadata.
170     assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
171     auto VersionMD = VerNode->getOperand(0);
172     unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
173     unsigned MinorNum = getMetadataUInt(VersionMD, 1);
174     unsigned RevNum = getMetadataUInt(VersionMD, 2);
175     // Prevent Major part of OpenCL version to be 0
176     MAI.SrcLangVersion =
177         (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
178   } else {
179     // If there is no information about OpenCL version we are forced to generate
180     // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
181     // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
182     // Translator avoids potential issues with run-times in a similar manner.
183     if (ST->isOpenCLEnv()) {
184       MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
185       MAI.SrcLangVersion = 100000;
186     } else {
187       MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
188       MAI.SrcLangVersion = 0;
189     }
190   }
191 
192   if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
193     for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
194       MDNode *MD = ExtNode->getOperand(I);
195       if (!MD || MD->getNumOperands() == 0)
196         continue;
197       for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
198         MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
199     }
200   }
201 
202   // Update required capabilities for this memory model, addressing model and
203   // source language.
204   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
205                                  MAI.Mem, *ST);
206   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
207                                  MAI.SrcLang, *ST);
208   MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
209                                  MAI.Addr, *ST);
210 
211   if (ST->isOpenCLEnv()) {
212     // TODO: check if it's required by default.
213     MAI.ExtInstSetMap[static_cast<unsigned>(
214         SPIRV::InstructionSet::OpenCL_std)] =
215         Register::index2VirtReg(MAI.getNextID());
216   }
217 }
218 
219 // Collect MI which defines the register in the given machine function.
220 static void collectDefInstr(Register Reg, const MachineFunction *MF,
221                             SPIRV::ModuleAnalysisInfo *MAI,
222                             SPIRV::ModuleSectionType MSType,
223                             bool DoInsert = true) {
224   assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
225   MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
226   assert(MI && "There should be an instruction that defines the register");
227   MAI->setSkipEmission(MI);
228   if (DoInsert)
229     MAI->MS[MSType].push_back(MI);
230 }
231 
232 void SPIRVModuleAnalysis::collectGlobalEntities(
233     const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
234     SPIRV::ModuleSectionType MSType,
235     std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
236     bool UsePreOrder = false) {
237   DenseSet<const SPIRV::DTSortableEntry *> Visited;
238   for (const auto *E : DepsGraph) {
239     std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
240     // NOTE: here we prefer recursive approach over iterative because
241     // we don't expect depchains long enough to cause SO.
242     RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
243                     &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
244       if (Visited.count(E) || !Pred(E))
245         return;
246       Visited.insert(E);
247 
248       // Traversing deps graph in post-order allows us to get rid of
249       // register aliases preprocessing.
250       // But pre-order is required for correct processing of function
251       // declaration and arguments processing.
252       if (!UsePreOrder)
253         for (auto *S : E->getDeps())
254           RecHoistUtil(S);
255 
256       Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
257       bool IsFirst = true;
258       for (auto &U : *E) {
259         const MachineFunction *MF = U.first;
260         Register Reg = U.second;
261         MAI.setRegisterAlias(MF, Reg, GlobalReg);
262         if (!MF->getRegInfo().getUniqueVRegDef(Reg))
263           continue;
264         collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
265         IsFirst = false;
266         if (E->getIsGV())
267           MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
268       }
269 
270       if (UsePreOrder)
271         for (auto *S : E->getDeps())
272           RecHoistUtil(S);
273     };
274     RecHoistUtil(E);
275   }
276 }
277 
278 // The function initializes global register alias table for types, consts,
279 // global vars and func decls and collects these instruction for output
280 // at module level. Also it collects explicit OpExtension/OpCapability
281 // instructions.
282 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
283   std::vector<SPIRV::DTSortableEntry *> DepsGraph;
284 
285   GR->buildDepsGraph(DepsGraph, TII, SPVDumpDeps ? MMI : nullptr);
286 
287   collectGlobalEntities(
288       DepsGraph, SPIRV::MB_TypeConstVars,
289       [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
290 
291   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
292     MachineFunction *MF = MMI->getMachineFunction(*F);
293     if (!MF)
294       continue;
295     // Iterate through and collect OpExtension/OpCapability instructions.
296     for (MachineBasicBlock &MBB : *MF) {
297       for (MachineInstr &MI : MBB) {
298         if (MI.getOpcode() == SPIRV::OpExtension) {
299           // Here, OpExtension just has a single enum operand, not a string.
300           auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm());
301           MAI.Reqs.addExtension(Ext);
302           MAI.setSkipEmission(&MI);
303         } else if (MI.getOpcode() == SPIRV::OpCapability) {
304           auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm());
305           MAI.Reqs.addCapability(Cap);
306           MAI.setSkipEmission(&MI);
307         }
308       }
309     }
310   }
311 
312   collectGlobalEntities(
313       DepsGraph, SPIRV::MB_ExtFuncDecls,
314       [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
315 }
316 
317 // Look for IDs declared with Import linkage, and map the corresponding function
318 // to the register defining that variable (which will usually be the result of
319 // an OpFunction). This lets us call externally imported functions using
320 // the correct ID registers.
321 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
322                                            const Function *F) {
323   if (MI.getOpcode() == SPIRV::OpDecorate) {
324     // If it's got Import linkage.
325     auto Dec = MI.getOperand(1).getImm();
326     if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
327       auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
328       if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
329         // Map imported function name to function ID register.
330         const Function *ImportedFunc =
331             F->getParent()->getFunction(getStringImm(MI, 2));
332         Register Target = MI.getOperand(0).getReg();
333         MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
334       }
335     }
336   } else if (MI.getOpcode() == SPIRV::OpFunction) {
337     // Record all internal OpFunction declarations.
338     Register Reg = MI.defs().begin()->getReg();
339     Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
340     assert(GlobalReg.isValid());
341     MAI.FuncMap[F] = GlobalReg;
342   }
343 }
344 
345 // References to a function via function pointers generate virtual
346 // registers without a definition. We are able to resolve this
347 // reference using Globar Register info into an OpFunction instruction
348 // and replace dummy operands by the corresponding global register references.
349 void SPIRVModuleAnalysis::collectFuncPtrs() {
350   for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars])
351     if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL)
352       collectFuncPtrs(MI);
353 }
354 
355 void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) {
356   const MachineOperand *FunUse = &MI->getOperand(2);
357   if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) {
358     const MachineInstr *FunDefMI = FunDef->getParent();
359     assert(FunDefMI->getOpcode() == SPIRV::OpFunction &&
360            "Constant function pointer must refer to function definition");
361     Register FunDefReg = FunDef->getReg();
362     Register GlobalFunDefReg =
363         MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg);
364     assert(GlobalFunDefReg.isValid() &&
365            "Function definition must refer to a global register");
366     Register FunPtrReg = FunUse->getReg();
367     MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg);
368   }
369 }
370 
371 using InstrSignature = SmallVector<size_t>;
372 using InstrTraces = std::set<InstrSignature>;
373 
374 // Returns a representation of an instruction as a vector of MachineOperand
375 // hash values, see llvm::hash_value(const MachineOperand &MO) for details.
376 // This creates a signature of the instruction with the same content
377 // that MachineOperand::isIdenticalTo uses for comparison.
378 static InstrSignature instrToSignature(MachineInstr &MI,
379                                        SPIRV::ModuleAnalysisInfo &MAI) {
380   InstrSignature Signature;
381   for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
382     const MachineOperand &MO = MI.getOperand(i);
383     size_t h;
384     if (MO.isReg()) {
385       Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
386       // mimic llvm::hash_value(const MachineOperand &MO)
387       h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
388                        MO.isDef());
389     } else {
390       h = hash_value(MO);
391     }
392     Signature.push_back(h);
393   }
394   return Signature;
395 }
396 
397 // Collect the given instruction in the specified MS. We assume global register
398 // numbering has already occurred by this point. We can directly compare reg
399 // arguments when detecting duplicates.
400 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
401                               SPIRV::ModuleSectionType MSType, InstrTraces &IS,
402                               bool Append = true) {
403   MAI.setSkipEmission(&MI);
404   InstrSignature MISign = instrToSignature(MI, MAI);
405   auto FoundMI = IS.insert(MISign);
406   if (!FoundMI.second)
407     return; // insert failed, so we found a duplicate; don't add it to MAI.MS
408   // No duplicates, so add it.
409   if (Append)
410     MAI.MS[MSType].push_back(&MI);
411   else
412     MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
413 }
414 
415 // Some global instructions make reference to function-local ID regs, so cannot
416 // be correctly collected until these registers are globally numbered.
417 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
418   InstrTraces IS;
419   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
420     if ((*F).isDeclaration())
421       continue;
422     MachineFunction *MF = MMI->getMachineFunction(*F);
423     assert(MF);
424     for (MachineBasicBlock &MBB : *MF)
425       for (MachineInstr &MI : MBB) {
426         if (MAI.getSkipEmission(&MI))
427           continue;
428         const unsigned OpCode = MI.getOpcode();
429         if (OpCode == SPIRV::OpString) {
430           collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS);
431         } else if (OpCode == SPIRV::OpExtInst && MI.getOperand(2).isImm() &&
432                    MI.getOperand(2).getImm() ==
433                        SPIRV::InstructionSet::
434                            NonSemantic_Shader_DebugInfo_100) {
435           MachineOperand Ins = MI.getOperand(3);
436           namespace NS = SPIRV::NonSemanticExtInst;
437           static constexpr int64_t GlobalNonSemanticDITy[] = {
438               NS::DebugSource, NS::DebugCompilationUnit, NS::DebugInfoNone,
439               NS::DebugTypeBasic, NS::DebugTypePointer};
440           bool IsGlobalDI = false;
441           for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx)
442             IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx];
443           if (IsGlobalDI)
444             collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS);
445         } else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
446           collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
447         } else if (OpCode == SPIRV::OpEntryPoint) {
448           collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
449         } else if (TII->isDecorationInstr(MI)) {
450           collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
451           collectFuncNames(MI, &*F);
452         } else if (TII->isConstantInstr(MI)) {
453           // Now OpSpecConstant*s are not in DT,
454           // but they need to be collected anyway.
455           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
456         } else if (OpCode == SPIRV::OpFunction) {
457           collectFuncNames(MI, &*F);
458         } else if (OpCode == SPIRV::OpTypeForwardPointer) {
459           collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
460         }
461       }
462   }
463 }
464 
465 // Number registers in all functions globally from 0 onwards and store
466 // the result in global register alias table. Some registers are already
467 // numbered in collectGlobalEntities.
468 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
469   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
470     if ((*F).isDeclaration())
471       continue;
472     MachineFunction *MF = MMI->getMachineFunction(*F);
473     assert(MF);
474     for (MachineBasicBlock &MBB : *MF) {
475       for (MachineInstr &MI : MBB) {
476         for (MachineOperand &Op : MI.operands()) {
477           if (!Op.isReg())
478             continue;
479           Register Reg = Op.getReg();
480           if (MAI.hasRegisterAlias(MF, Reg))
481             continue;
482           Register NewReg = Register::index2VirtReg(MAI.getNextID());
483           MAI.setRegisterAlias(MF, Reg, NewReg);
484         }
485         if (MI.getOpcode() != SPIRV::OpExtInst)
486           continue;
487         auto Set = MI.getOperand(2).getImm();
488         if (!MAI.ExtInstSetMap.contains(Set))
489           MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
490       }
491     }
492   }
493 }
494 
495 // RequirementHandler implementations.
496 void SPIRV::RequirementHandler::getAndAddRequirements(
497     SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
498     const SPIRVSubtarget &ST) {
499   addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
500 }
501 
502 void SPIRV::RequirementHandler::recursiveAddCapabilities(
503     const CapabilityList &ToPrune) {
504   for (const auto &Cap : ToPrune) {
505     AllCaps.insert(Cap);
506     CapabilityList ImplicitDecls =
507         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
508     recursiveAddCapabilities(ImplicitDecls);
509   }
510 }
511 
512 void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
513   for (const auto &Cap : ToAdd) {
514     bool IsNewlyInserted = AllCaps.insert(Cap).second;
515     if (!IsNewlyInserted) // Don't re-add if it's already been declared.
516       continue;
517     CapabilityList ImplicitDecls =
518         getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
519     recursiveAddCapabilities(ImplicitDecls);
520     MinimalCaps.push_back(Cap);
521   }
522 }
523 
524 void SPIRV::RequirementHandler::addRequirements(
525     const SPIRV::Requirements &Req) {
526   if (!Req.IsSatisfiable)
527     report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
528 
529   if (Req.Cap.has_value())
530     addCapabilities({Req.Cap.value()});
531 
532   addExtensions(Req.Exts);
533 
534   if (!Req.MinVer.empty()) {
535     if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
536       LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
537                         << " and <= " << MaxVersion << "\n");
538       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
539     }
540 
541     if (MinVersion.empty() || Req.MinVer > MinVersion)
542       MinVersion = Req.MinVer;
543   }
544 
545   if (!Req.MaxVer.empty()) {
546     if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
547       LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
548                         << " and >= " << MinVersion << "\n");
549       report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
550     }
551 
552     if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
553       MaxVersion = Req.MaxVer;
554   }
555 }
556 
557 void SPIRV::RequirementHandler::checkSatisfiable(
558     const SPIRVSubtarget &ST) const {
559   // Report as many errors as possible before aborting the compilation.
560   bool IsSatisfiable = true;
561   auto TargetVer = ST.getSPIRVVersion();
562 
563   if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
564     LLVM_DEBUG(
565         dbgs() << "Target SPIR-V version too high for required features\n"
566                << "Required max version: " << MaxVersion << " target version "
567                << TargetVer << "\n");
568     IsSatisfiable = false;
569   }
570 
571   if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
572     LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
573                       << "Required min version: " << MinVersion
574                       << " target version " << TargetVer << "\n");
575     IsSatisfiable = false;
576   }
577 
578   if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
579     LLVM_DEBUG(
580         dbgs()
581         << "Version is too low for some features and too high for others.\n"
582         << "Required SPIR-V min version: " << MinVersion
583         << " required SPIR-V max version " << MaxVersion << "\n");
584     IsSatisfiable = false;
585   }
586 
587   for (auto Cap : MinimalCaps) {
588     if (AvailableCaps.contains(Cap))
589       continue;
590     LLVM_DEBUG(dbgs() << "Capability not supported: "
591                       << getSymbolicOperandMnemonic(
592                              OperandCategory::CapabilityOperand, Cap)
593                       << "\n");
594     IsSatisfiable = false;
595   }
596 
597   for (auto Ext : AllExtensions) {
598     if (ST.canUseExtension(Ext))
599       continue;
600     LLVM_DEBUG(dbgs() << "Extension not supported: "
601                       << getSymbolicOperandMnemonic(
602                              OperandCategory::ExtensionOperand, Ext)
603                       << "\n");
604     IsSatisfiable = false;
605   }
606 
607   if (!IsSatisfiable)
608     report_fatal_error("Unable to meet SPIR-V requirements for this target.");
609 }
610 
611 // Add the given capabilities and all their implicitly defined capabilities too.
612 void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
613   for (const auto Cap : ToAdd)
614     if (AvailableCaps.insert(Cap).second)
615       addAvailableCaps(getSymbolicOperandCapabilities(
616           SPIRV::OperandCategory::CapabilityOperand, Cap));
617 }
618 
619 void SPIRV::RequirementHandler::removeCapabilityIf(
620     const Capability::Capability ToRemove,
621     const Capability::Capability IfPresent) {
622   if (AllCaps.contains(IfPresent))
623     AllCaps.erase(ToRemove);
624 }
625 
626 namespace llvm {
627 namespace SPIRV {
628 void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
629   // Provided by both all supported Vulkan versions and OpenCl.
630   addAvailableCaps({Capability::Shader, Capability::Linkage, Capability::Int8,
631                     Capability::Int16});
632 
633   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
634     addAvailableCaps({Capability::GroupNonUniform,
635                       Capability::GroupNonUniformVote,
636                       Capability::GroupNonUniformArithmetic,
637                       Capability::GroupNonUniformBallot,
638                       Capability::GroupNonUniformClustered,
639                       Capability::GroupNonUniformShuffle,
640                       Capability::GroupNonUniformShuffleRelative});
641 
642   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
643     addAvailableCaps({Capability::DotProduct, Capability::DotProductInputAll,
644                       Capability::DotProductInput4x8Bit,
645                       Capability::DotProductInput4x8BitPacked,
646                       Capability::DemoteToHelperInvocation});
647 
648   // Add capabilities enabled by extensions.
649   for (auto Extension : ST.getAllAvailableExtensions()) {
650     CapabilityList EnabledCapabilities =
651         getCapabilitiesEnabledByExtension(Extension);
652     addAvailableCaps(EnabledCapabilities);
653   }
654 
655   if (ST.isOpenCLEnv()) {
656     initAvailableCapabilitiesForOpenCL(ST);
657     return;
658   }
659 
660   if (ST.isVulkanEnv()) {
661     initAvailableCapabilitiesForVulkan(ST);
662     return;
663   }
664 
665   report_fatal_error("Unimplemented environment for SPIR-V generation.");
666 }
667 
668 void RequirementHandler::initAvailableCapabilitiesForOpenCL(
669     const SPIRVSubtarget &ST) {
670   // Add the min requirements for different OpenCL and SPIR-V versions.
671   addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
672                     Capability::Kernel, Capability::Vector16,
673                     Capability::Groups, Capability::GenericPointer,
674                     Capability::StorageImageWriteWithoutFormat,
675                     Capability::StorageImageReadWithoutFormat});
676   if (ST.hasOpenCLFullProfile())
677     addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
678   if (ST.hasOpenCLImageSupport()) {
679     addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
680                       Capability::Image1D, Capability::SampledBuffer,
681                       Capability::ImageBuffer});
682     if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
683       addAvailableCaps({Capability::ImageReadWrite});
684   }
685   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
686       ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
687     addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
688   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
689     addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
690                       Capability::SignedZeroInfNanPreserve,
691                       Capability::RoundingModeRTE,
692                       Capability::RoundingModeRTZ});
693   // TODO: verify if this needs some checks.
694   addAvailableCaps({Capability::Float16, Capability::Float64});
695 
696   // TODO: add OpenCL extensions.
697 }
698 
699 void RequirementHandler::initAvailableCapabilitiesForVulkan(
700     const SPIRVSubtarget &ST) {
701 
702   // Core in Vulkan 1.1 and earlier.
703   addAvailableCaps({Capability::Int64, Capability::Float16, Capability::Float64,
704                     Capability::GroupNonUniform, Capability::Image1D,
705                     Capability::SampledBuffer, Capability::ImageBuffer,
706                     Capability::UniformBufferArrayDynamicIndexing,
707                     Capability::SampledImageArrayDynamicIndexing,
708                     Capability::StorageBufferArrayDynamicIndexing,
709                     Capability::StorageImageArrayDynamicIndexing});
710 
711   // Became core in Vulkan 1.2
712   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 5))) {
713     addAvailableCaps(
714         {Capability::ShaderNonUniformEXT, Capability::RuntimeDescriptorArrayEXT,
715          Capability::InputAttachmentArrayDynamicIndexingEXT,
716          Capability::UniformTexelBufferArrayDynamicIndexingEXT,
717          Capability::StorageTexelBufferArrayDynamicIndexingEXT,
718          Capability::UniformBufferArrayNonUniformIndexingEXT,
719          Capability::SampledImageArrayNonUniformIndexingEXT,
720          Capability::StorageBufferArrayNonUniformIndexingEXT,
721          Capability::StorageImageArrayNonUniformIndexingEXT,
722          Capability::InputAttachmentArrayNonUniformIndexingEXT,
723          Capability::UniformTexelBufferArrayNonUniformIndexingEXT,
724          Capability::StorageTexelBufferArrayNonUniformIndexingEXT});
725   }
726 
727   // Became core in Vulkan 1.3
728   if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
729     addAvailableCaps({Capability::StorageImageWriteWithoutFormat,
730                       Capability::StorageImageReadWithoutFormat});
731 }
732 
733 } // namespace SPIRV
734 } // namespace llvm
735 
736 // Add the required capabilities from a decoration instruction (including
737 // BuiltIns).
738 static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
739                               SPIRV::RequirementHandler &Reqs,
740                               const SPIRVSubtarget &ST) {
741   int64_t DecOp = MI.getOperand(DecIndex).getImm();
742   auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
743   Reqs.addRequirements(getSymbolicOperandRequirements(
744       SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
745 
746   if (Dec == SPIRV::Decoration::BuiltIn) {
747     int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
748     auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
749     Reqs.addRequirements(getSymbolicOperandRequirements(
750         SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
751   } else if (Dec == SPIRV::Decoration::LinkageAttributes) {
752     int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
753     SPIRV::LinkageType::LinkageType LnkType =
754         static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
755     if (LnkType == SPIRV::LinkageType::LinkOnceODR)
756       Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
757   } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL ||
758              Dec == SPIRV::Decoration::CacheControlStoreINTEL) {
759     Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls);
760   } else if (Dec == SPIRV::Decoration::HostAccessINTEL) {
761     Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access);
762   } else if (Dec == SPIRV::Decoration::InitModeINTEL ||
763              Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) {
764     Reqs.addExtension(
765         SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations);
766   } else if (Dec == SPIRV::Decoration::NonUniformEXT) {
767     Reqs.addRequirements(SPIRV::Capability::ShaderNonUniformEXT);
768   }
769 }
770 
771 // Add requirements for image handling.
772 static void addOpTypeImageReqs(const MachineInstr &MI,
773                                SPIRV::RequirementHandler &Reqs,
774                                const SPIRVSubtarget &ST) {
775   assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
776   // The operand indices used here are based on the OpTypeImage layout, which
777   // the MachineInstr follows as well.
778   int64_t ImgFormatOp = MI.getOperand(7).getImm();
779   auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
780   Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
781                              ImgFormat, ST);
782 
783   bool IsArrayed = MI.getOperand(4).getImm() == 1;
784   bool IsMultisampled = MI.getOperand(5).getImm() == 1;
785   bool NoSampler = MI.getOperand(6).getImm() == 2;
786   // Add dimension requirements.
787   assert(MI.getOperand(2).isImm());
788   switch (MI.getOperand(2).getImm()) {
789   case SPIRV::Dim::DIM_1D:
790     Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
791                                    : SPIRV::Capability::Sampled1D);
792     break;
793   case SPIRV::Dim::DIM_2D:
794     if (IsMultisampled && NoSampler)
795       Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
796     break;
797   case SPIRV::Dim::DIM_Cube:
798     Reqs.addRequirements(SPIRV::Capability::Shader);
799     if (IsArrayed)
800       Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
801                                      : SPIRV::Capability::SampledCubeArray);
802     break;
803   case SPIRV::Dim::DIM_Rect:
804     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
805                                    : SPIRV::Capability::SampledRect);
806     break;
807   case SPIRV::Dim::DIM_Buffer:
808     Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
809                                    : SPIRV::Capability::SampledBuffer);
810     break;
811   case SPIRV::Dim::DIM_SubpassData:
812     Reqs.addRequirements(SPIRV::Capability::InputAttachment);
813     break;
814   }
815 
816   // Has optional access qualifier.
817   if (ST.isOpenCLEnv()) {
818     if (MI.getNumOperands() > 8 &&
819         MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
820       Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
821     else
822       Reqs.addRequirements(SPIRV::Capability::ImageBasic);
823   }
824 }
825 
826 // Add requirements for handling atomic float instructions
827 #define ATOM_FLT_REQ_EXT_MSG(ExtName)                                          \
828   "The atomic float instruction requires the following SPIR-V "                \
829   "extension: SPV_EXT_shader_atomic_float" ExtName
830 static void AddAtomicFloatRequirements(const MachineInstr &MI,
831                                        SPIRV::RequirementHandler &Reqs,
832                                        const SPIRVSubtarget &ST) {
833   assert(MI.getOperand(1).isReg() &&
834          "Expect register operand in atomic float instruction");
835   Register TypeReg = MI.getOperand(1).getReg();
836   SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
837   if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
838     report_fatal_error("Result type of an atomic float instruction must be a "
839                        "floating-point type scalar");
840 
841   unsigned BitWidth = TypeDef->getOperand(1).getImm();
842   unsigned Op = MI.getOpcode();
843   if (Op == SPIRV::OpAtomicFAddEXT) {
844     if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
845       report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
846     Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
847     switch (BitWidth) {
848     case 16:
849       if (!ST.canUseExtension(
850               SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
851         report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
852       Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
853       Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
854       break;
855     case 32:
856       Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
857       break;
858     case 64:
859       Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
860       break;
861     default:
862       report_fatal_error(
863           "Unexpected floating-point type width in atomic float instruction");
864     }
865   } else {
866     if (!ST.canUseExtension(
867             SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
868       report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
869     Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
870     switch (BitWidth) {
871     case 16:
872       Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
873       break;
874     case 32:
875       Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
876       break;
877     case 64:
878       Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
879       break;
880     default:
881       report_fatal_error(
882           "Unexpected floating-point type width in atomic float instruction");
883     }
884   }
885 }
886 
887 bool isUniformTexelBuffer(MachineInstr *ImageInst) {
888   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
889     return false;
890   uint32_t Dim = ImageInst->getOperand(2).getImm();
891   uint32_t Sampled = ImageInst->getOperand(6).getImm();
892   return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 1;
893 }
894 
895 bool isStorageTexelBuffer(MachineInstr *ImageInst) {
896   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
897     return false;
898   uint32_t Dim = ImageInst->getOperand(2).getImm();
899   uint32_t Sampled = ImageInst->getOperand(6).getImm();
900   return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 2;
901 }
902 
903 bool isSampledImage(MachineInstr *ImageInst) {
904   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
905     return false;
906   uint32_t Dim = ImageInst->getOperand(2).getImm();
907   uint32_t Sampled = ImageInst->getOperand(6).getImm();
908   return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 1;
909 }
910 
911 bool isInputAttachment(MachineInstr *ImageInst) {
912   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
913     return false;
914   uint32_t Dim = ImageInst->getOperand(2).getImm();
915   uint32_t Sampled = ImageInst->getOperand(6).getImm();
916   return Dim == SPIRV::Dim::DIM_SubpassData && Sampled == 2;
917 }
918 
919 bool isStorageImage(MachineInstr *ImageInst) {
920   if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
921     return false;
922   uint32_t Dim = ImageInst->getOperand(2).getImm();
923   uint32_t Sampled = ImageInst->getOperand(6).getImm();
924   return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 2;
925 }
926 
927 bool isCombinedImageSampler(MachineInstr *SampledImageInst) {
928   if (SampledImageInst->getOpcode() != SPIRV::OpTypeSampledImage)
929     return false;
930 
931   const MachineRegisterInfo &MRI = SampledImageInst->getMF()->getRegInfo();
932   Register ImageReg = SampledImageInst->getOperand(1).getReg();
933   auto *ImageInst = MRI.getUniqueVRegDef(ImageReg);
934   return isSampledImage(ImageInst);
935 }
936 
937 bool hasNonUniformDecoration(Register Reg, const MachineRegisterInfo &MRI) {
938   for (const auto &MI : MRI.reg_instructions(Reg)) {
939     if (MI.getOpcode() != SPIRV::OpDecorate)
940       continue;
941 
942     uint32_t Dec = MI.getOperand(1).getImm();
943     if (Dec == SPIRV::Decoration::NonUniformEXT)
944       return true;
945   }
946   return false;
947 }
948 
949 void addOpAccessChainReqs(const MachineInstr &Instr,
950                           SPIRV::RequirementHandler &Handler,
951                           const SPIRVSubtarget &Subtarget) {
952   const MachineRegisterInfo &MRI = Instr.getMF()->getRegInfo();
953   // Get the result type. If it is an image type, then the shader uses
954   // descriptor indexing. The appropriate capabilities will be added based
955   // on the specifics of the image.
956   Register ResTypeReg = Instr.getOperand(1).getReg();
957   MachineInstr *ResTypeInst = MRI.getUniqueVRegDef(ResTypeReg);
958 
959   assert(ResTypeInst->getOpcode() == SPIRV::OpTypePointer);
960   uint32_t StorageClass = ResTypeInst->getOperand(1).getImm();
961   if (StorageClass != SPIRV::StorageClass::StorageClass::UniformConstant &&
962       StorageClass != SPIRV::StorageClass::StorageClass::Uniform &&
963       StorageClass != SPIRV::StorageClass::StorageClass::StorageBuffer) {
964     return;
965   }
966 
967   Register PointeeTypeReg = ResTypeInst->getOperand(2).getReg();
968   MachineInstr *PointeeType = MRI.getUniqueVRegDef(PointeeTypeReg);
969   if (PointeeType->getOpcode() != SPIRV::OpTypeImage &&
970       PointeeType->getOpcode() != SPIRV::OpTypeSampledImage &&
971       PointeeType->getOpcode() != SPIRV::OpTypeSampler) {
972     return;
973   }
974 
975   bool IsNonUniform =
976       hasNonUniformDecoration(Instr.getOperand(0).getReg(), MRI);
977   if (isUniformTexelBuffer(PointeeType)) {
978     if (IsNonUniform)
979       Handler.addRequirements(
980           SPIRV::Capability::UniformTexelBufferArrayNonUniformIndexingEXT);
981     else
982       Handler.addRequirements(
983           SPIRV::Capability::UniformTexelBufferArrayDynamicIndexingEXT);
984   } else if (isInputAttachment(PointeeType)) {
985     if (IsNonUniform)
986       Handler.addRequirements(
987           SPIRV::Capability::InputAttachmentArrayNonUniformIndexingEXT);
988     else
989       Handler.addRequirements(
990           SPIRV::Capability::InputAttachmentArrayDynamicIndexingEXT);
991   } else if (isStorageTexelBuffer(PointeeType)) {
992     if (IsNonUniform)
993       Handler.addRequirements(
994           SPIRV::Capability::StorageTexelBufferArrayNonUniformIndexingEXT);
995     else
996       Handler.addRequirements(
997           SPIRV::Capability::StorageTexelBufferArrayDynamicIndexingEXT);
998   } else if (isSampledImage(PointeeType) ||
999              isCombinedImageSampler(PointeeType) ||
1000              PointeeType->getOpcode() == SPIRV::OpTypeSampler) {
1001     if (IsNonUniform)
1002       Handler.addRequirements(
1003           SPIRV::Capability::SampledImageArrayNonUniformIndexingEXT);
1004     else
1005       Handler.addRequirements(
1006           SPIRV::Capability::SampledImageArrayDynamicIndexing);
1007   } else if (isStorageImage(PointeeType)) {
1008     if (IsNonUniform)
1009       Handler.addRequirements(
1010           SPIRV::Capability::StorageImageArrayNonUniformIndexingEXT);
1011     else
1012       Handler.addRequirements(
1013           SPIRV::Capability::StorageImageArrayDynamicIndexing);
1014   }
1015 }
1016 
1017 static bool isImageTypeWithUnknownFormat(SPIRVType *TypeInst) {
1018   if (TypeInst->getOpcode() != SPIRV::OpTypeImage)
1019     return false;
1020   assert(TypeInst->getOperand(7).isImm() && "The image format must be an imm.");
1021   return TypeInst->getOperand(7).getImm() == 0;
1022 }
1023 
1024 static void AddDotProductRequirements(const MachineInstr &MI,
1025                                       SPIRV::RequirementHandler &Reqs,
1026                                       const SPIRVSubtarget &ST) {
1027   if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product))
1028     Reqs.addExtension(SPIRV::Extension::SPV_KHR_integer_dot_product);
1029   Reqs.addCapability(SPIRV::Capability::DotProduct);
1030 
1031   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1032   assert(MI.getOperand(2).isReg() && "Unexpected operand in dot");
1033   // We do not consider what the previous instruction is. This is just used
1034   // to get the input register and to check the type.
1035   const MachineInstr *Input = MRI.getVRegDef(MI.getOperand(2).getReg());
1036   assert(Input->getOperand(1).isReg() && "Unexpected operand in dot input");
1037   Register InputReg = Input->getOperand(1).getReg();
1038 
1039   SPIRVType *TypeDef = MRI.getVRegDef(InputReg);
1040   if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
1041     assert(TypeDef->getOperand(1).getImm() == 32);
1042     Reqs.addCapability(SPIRV::Capability::DotProductInput4x8BitPacked);
1043   } else if (TypeDef->getOpcode() == SPIRV::OpTypeVector) {
1044     SPIRVType *ScalarTypeDef = MRI.getVRegDef(TypeDef->getOperand(1).getReg());
1045     assert(ScalarTypeDef->getOpcode() == SPIRV::OpTypeInt);
1046     if (ScalarTypeDef->getOperand(1).getImm() == 8) {
1047       assert(TypeDef->getOperand(2).getImm() == 4 &&
1048              "Dot operand of 8-bit integer type requires 4 components");
1049       Reqs.addCapability(SPIRV::Capability::DotProductInput4x8Bit);
1050     } else {
1051       Reqs.addCapability(SPIRV::Capability::DotProductInputAll);
1052     }
1053   }
1054 }
1055 
1056 void addInstrRequirements(const MachineInstr &MI,
1057                           SPIRV::RequirementHandler &Reqs,
1058                           const SPIRVSubtarget &ST) {
1059   switch (MI.getOpcode()) {
1060   case SPIRV::OpMemoryModel: {
1061     int64_t Addr = MI.getOperand(0).getImm();
1062     Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
1063                                Addr, ST);
1064     int64_t Mem = MI.getOperand(1).getImm();
1065     Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
1066                                ST);
1067     break;
1068   }
1069   case SPIRV::OpEntryPoint: {
1070     int64_t Exe = MI.getOperand(0).getImm();
1071     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
1072                                Exe, ST);
1073     break;
1074   }
1075   case SPIRV::OpExecutionMode:
1076   case SPIRV::OpExecutionModeId: {
1077     int64_t Exe = MI.getOperand(1).getImm();
1078     Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
1079                                Exe, ST);
1080     break;
1081   }
1082   case SPIRV::OpTypeMatrix:
1083     Reqs.addCapability(SPIRV::Capability::Matrix);
1084     break;
1085   case SPIRV::OpTypeInt: {
1086     unsigned BitWidth = MI.getOperand(1).getImm();
1087     if (BitWidth == 64)
1088       Reqs.addCapability(SPIRV::Capability::Int64);
1089     else if (BitWidth == 16)
1090       Reqs.addCapability(SPIRV::Capability::Int16);
1091     else if (BitWidth == 8)
1092       Reqs.addCapability(SPIRV::Capability::Int8);
1093     break;
1094   }
1095   case SPIRV::OpTypeFloat: {
1096     unsigned BitWidth = MI.getOperand(1).getImm();
1097     if (BitWidth == 64)
1098       Reqs.addCapability(SPIRV::Capability::Float64);
1099     else if (BitWidth == 16)
1100       Reqs.addCapability(SPIRV::Capability::Float16);
1101     break;
1102   }
1103   case SPIRV::OpTypeVector: {
1104     unsigned NumComponents = MI.getOperand(2).getImm();
1105     if (NumComponents == 8 || NumComponents == 16)
1106       Reqs.addCapability(SPIRV::Capability::Vector16);
1107     break;
1108   }
1109   case SPIRV::OpTypePointer: {
1110     auto SC = MI.getOperand(1).getImm();
1111     Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
1112                                ST);
1113     // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
1114     // capability.
1115     if (!ST.isOpenCLEnv())
1116       break;
1117     assert(MI.getOperand(2).isReg());
1118     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1119     SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
1120     if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
1121         TypeDef->getOperand(1).getImm() == 16)
1122       Reqs.addCapability(SPIRV::Capability::Float16Buffer);
1123     break;
1124   }
1125   case SPIRV::OpExtInst: {
1126     if (MI.getOperand(2).getImm() ==
1127         static_cast<int64_t>(
1128             SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) {
1129       Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info);
1130     }
1131     break;
1132   }
1133   case SPIRV::OpBitReverse:
1134   case SPIRV::OpBitFieldInsert:
1135   case SPIRV::OpBitFieldSExtract:
1136   case SPIRV::OpBitFieldUExtract:
1137     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
1138       Reqs.addCapability(SPIRV::Capability::Shader);
1139       break;
1140     }
1141     Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
1142     Reqs.addCapability(SPIRV::Capability::BitInstructions);
1143     break;
1144   case SPIRV::OpTypeRuntimeArray:
1145     Reqs.addCapability(SPIRV::Capability::Shader);
1146     break;
1147   case SPIRV::OpTypeOpaque:
1148   case SPIRV::OpTypeEvent:
1149     Reqs.addCapability(SPIRV::Capability::Kernel);
1150     break;
1151   case SPIRV::OpTypePipe:
1152   case SPIRV::OpTypeReserveId:
1153     Reqs.addCapability(SPIRV::Capability::Pipes);
1154     break;
1155   case SPIRV::OpTypeDeviceEvent:
1156   case SPIRV::OpTypeQueue:
1157   case SPIRV::OpBuildNDRange:
1158     Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
1159     break;
1160   case SPIRV::OpDecorate:
1161   case SPIRV::OpDecorateId:
1162   case SPIRV::OpDecorateString:
1163     addOpDecorateReqs(MI, 1, Reqs, ST);
1164     break;
1165   case SPIRV::OpMemberDecorate:
1166   case SPIRV::OpMemberDecorateString:
1167     addOpDecorateReqs(MI, 2, Reqs, ST);
1168     break;
1169   case SPIRV::OpInBoundsPtrAccessChain:
1170     Reqs.addCapability(SPIRV::Capability::Addresses);
1171     break;
1172   case SPIRV::OpConstantSampler:
1173     Reqs.addCapability(SPIRV::Capability::LiteralSampler);
1174     break;
1175   case SPIRV::OpInBoundsAccessChain:
1176   case SPIRV::OpAccessChain:
1177     addOpAccessChainReqs(MI, Reqs, ST);
1178     break;
1179   case SPIRV::OpTypeImage:
1180     addOpTypeImageReqs(MI, Reqs, ST);
1181     break;
1182   case SPIRV::OpTypeSampler:
1183     if (!ST.isVulkanEnv()) {
1184       Reqs.addCapability(SPIRV::Capability::ImageBasic);
1185     }
1186     break;
1187   case SPIRV::OpTypeForwardPointer:
1188     // TODO: check if it's OpenCL's kernel.
1189     Reqs.addCapability(SPIRV::Capability::Addresses);
1190     break;
1191   case SPIRV::OpAtomicFlagTestAndSet:
1192   case SPIRV::OpAtomicLoad:
1193   case SPIRV::OpAtomicStore:
1194   case SPIRV::OpAtomicExchange:
1195   case SPIRV::OpAtomicCompareExchange:
1196   case SPIRV::OpAtomicIIncrement:
1197   case SPIRV::OpAtomicIDecrement:
1198   case SPIRV::OpAtomicIAdd:
1199   case SPIRV::OpAtomicISub:
1200   case SPIRV::OpAtomicUMin:
1201   case SPIRV::OpAtomicUMax:
1202   case SPIRV::OpAtomicSMin:
1203   case SPIRV::OpAtomicSMax:
1204   case SPIRV::OpAtomicAnd:
1205   case SPIRV::OpAtomicOr:
1206   case SPIRV::OpAtomicXor: {
1207     const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1208     const MachineInstr *InstrPtr = &MI;
1209     if (MI.getOpcode() == SPIRV::OpAtomicStore) {
1210       assert(MI.getOperand(3).isReg());
1211       InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
1212       assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
1213     }
1214     assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
1215     Register TypeReg = InstrPtr->getOperand(1).getReg();
1216     SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
1217     if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
1218       unsigned BitWidth = TypeDef->getOperand(1).getImm();
1219       if (BitWidth == 64)
1220         Reqs.addCapability(SPIRV::Capability::Int64Atomics);
1221     }
1222     break;
1223   }
1224   case SPIRV::OpGroupNonUniformIAdd:
1225   case SPIRV::OpGroupNonUniformFAdd:
1226   case SPIRV::OpGroupNonUniformIMul:
1227   case SPIRV::OpGroupNonUniformFMul:
1228   case SPIRV::OpGroupNonUniformSMin:
1229   case SPIRV::OpGroupNonUniformUMin:
1230   case SPIRV::OpGroupNonUniformFMin:
1231   case SPIRV::OpGroupNonUniformSMax:
1232   case SPIRV::OpGroupNonUniformUMax:
1233   case SPIRV::OpGroupNonUniformFMax:
1234   case SPIRV::OpGroupNonUniformBitwiseAnd:
1235   case SPIRV::OpGroupNonUniformBitwiseOr:
1236   case SPIRV::OpGroupNonUniformBitwiseXor:
1237   case SPIRV::OpGroupNonUniformLogicalAnd:
1238   case SPIRV::OpGroupNonUniformLogicalOr:
1239   case SPIRV::OpGroupNonUniformLogicalXor: {
1240     assert(MI.getOperand(3).isImm());
1241     int64_t GroupOp = MI.getOperand(3).getImm();
1242     switch (GroupOp) {
1243     case SPIRV::GroupOperation::Reduce:
1244     case SPIRV::GroupOperation::InclusiveScan:
1245     case SPIRV::GroupOperation::ExclusiveScan:
1246       Reqs.addCapability(SPIRV::Capability::Kernel);
1247       Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
1248       Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1249       break;
1250     case SPIRV::GroupOperation::ClusteredReduce:
1251       Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
1252       break;
1253     case SPIRV::GroupOperation::PartitionedReduceNV:
1254     case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
1255     case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
1256       Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
1257       break;
1258     }
1259     break;
1260   }
1261   case SPIRV::OpGroupNonUniformShuffle:
1262   case SPIRV::OpGroupNonUniformShuffleXor:
1263     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
1264     break;
1265   case SPIRV::OpGroupNonUniformShuffleUp:
1266   case SPIRV::OpGroupNonUniformShuffleDown:
1267     Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
1268     break;
1269   case SPIRV::OpGroupAll:
1270   case SPIRV::OpGroupAny:
1271   case SPIRV::OpGroupBroadcast:
1272   case SPIRV::OpGroupIAdd:
1273   case SPIRV::OpGroupFAdd:
1274   case SPIRV::OpGroupFMin:
1275   case SPIRV::OpGroupUMin:
1276   case SPIRV::OpGroupSMin:
1277   case SPIRV::OpGroupFMax:
1278   case SPIRV::OpGroupUMax:
1279   case SPIRV::OpGroupSMax:
1280     Reqs.addCapability(SPIRV::Capability::Groups);
1281     break;
1282   case SPIRV::OpGroupNonUniformElect:
1283     Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1284     break;
1285   case SPIRV::OpGroupNonUniformAll:
1286   case SPIRV::OpGroupNonUniformAny:
1287   case SPIRV::OpGroupNonUniformAllEqual:
1288     Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
1289     break;
1290   case SPIRV::OpGroupNonUniformBroadcast:
1291   case SPIRV::OpGroupNonUniformBroadcastFirst:
1292   case SPIRV::OpGroupNonUniformBallot:
1293   case SPIRV::OpGroupNonUniformInverseBallot:
1294   case SPIRV::OpGroupNonUniformBallotBitExtract:
1295   case SPIRV::OpGroupNonUniformBallotBitCount:
1296   case SPIRV::OpGroupNonUniformBallotFindLSB:
1297   case SPIRV::OpGroupNonUniformBallotFindMSB:
1298     Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
1299     break;
1300   case SPIRV::OpSubgroupShuffleINTEL:
1301   case SPIRV::OpSubgroupShuffleDownINTEL:
1302   case SPIRV::OpSubgroupShuffleUpINTEL:
1303   case SPIRV::OpSubgroupShuffleXorINTEL:
1304     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1305       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1306       Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
1307     }
1308     break;
1309   case SPIRV::OpSubgroupBlockReadINTEL:
1310   case SPIRV::OpSubgroupBlockWriteINTEL:
1311     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1312       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1313       Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
1314     }
1315     break;
1316   case SPIRV::OpSubgroupImageBlockReadINTEL:
1317   case SPIRV::OpSubgroupImageBlockWriteINTEL:
1318     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1319       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
1320       Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
1321     }
1322     break;
1323   case SPIRV::OpSubgroupImageMediaBlockReadINTEL:
1324   case SPIRV::OpSubgroupImageMediaBlockWriteINTEL:
1325     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_media_block_io)) {
1326       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_media_block_io);
1327       Reqs.addCapability(SPIRV::Capability::SubgroupImageMediaBlockIOINTEL);
1328     }
1329     break;
1330   case SPIRV::OpAssumeTrueKHR:
1331   case SPIRV::OpExpectKHR:
1332     if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
1333       Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
1334       Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
1335     }
1336     break;
1337   case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
1338   case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
1339     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
1340       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
1341       Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
1342     }
1343     break;
1344   case SPIRV::OpConstantFunctionPointerINTEL:
1345     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1346       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1347       Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1348     }
1349     break;
1350   case SPIRV::OpGroupNonUniformRotateKHR:
1351     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
1352       report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
1353                          "following SPIR-V extension: SPV_KHR_subgroup_rotate",
1354                          false);
1355     Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
1356     Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
1357     Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
1358     break;
1359   case SPIRV::OpGroupIMulKHR:
1360   case SPIRV::OpGroupFMulKHR:
1361   case SPIRV::OpGroupBitwiseAndKHR:
1362   case SPIRV::OpGroupBitwiseOrKHR:
1363   case SPIRV::OpGroupBitwiseXorKHR:
1364   case SPIRV::OpGroupLogicalAndKHR:
1365   case SPIRV::OpGroupLogicalOrKHR:
1366   case SPIRV::OpGroupLogicalXorKHR:
1367     if (ST.canUseExtension(
1368             SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1369       Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
1370       Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
1371     }
1372     break;
1373   case SPIRV::OpReadClockKHR:
1374     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock))
1375       report_fatal_error("OpReadClockKHR instruction requires the "
1376                          "following SPIR-V extension: SPV_KHR_shader_clock",
1377                          false);
1378     Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock);
1379     Reqs.addCapability(SPIRV::Capability::ShaderClockKHR);
1380     break;
1381   case SPIRV::OpFunctionPointerCallINTEL:
1382     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
1383       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
1384       Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
1385     }
1386     break;
1387   case SPIRV::OpAtomicFAddEXT:
1388   case SPIRV::OpAtomicFMinEXT:
1389   case SPIRV::OpAtomicFMaxEXT:
1390     AddAtomicFloatRequirements(MI, Reqs, ST);
1391     break;
1392   case SPIRV::OpConvertBF16ToFINTEL:
1393   case SPIRV::OpConvertFToBF16INTEL:
1394     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
1395       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
1396       Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
1397     }
1398     break;
1399   case SPIRV::OpVariableLengthArrayINTEL:
1400   case SPIRV::OpSaveMemoryINTEL:
1401   case SPIRV::OpRestoreMemoryINTEL:
1402     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
1403       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
1404       Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
1405     }
1406     break;
1407   case SPIRV::OpAsmTargetINTEL:
1408   case SPIRV::OpAsmINTEL:
1409   case SPIRV::OpAsmCallINTEL:
1410     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) {
1411       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly);
1412       Reqs.addCapability(SPIRV::Capability::AsmINTEL);
1413     }
1414     break;
1415   case SPIRV::OpTypeCooperativeMatrixKHR:
1416     if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
1417       report_fatal_error(
1418           "OpTypeCooperativeMatrixKHR type requires the "
1419           "following SPIR-V extension: SPV_KHR_cooperative_matrix",
1420           false);
1421     Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
1422     Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
1423     break;
1424   case SPIRV::OpArithmeticFenceEXT:
1425     if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
1426       report_fatal_error("OpArithmeticFenceEXT requires the "
1427                          "following SPIR-V extension: SPV_EXT_arithmetic_fence",
1428                          false);
1429     Reqs.addExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence);
1430     Reqs.addCapability(SPIRV::Capability::ArithmeticFenceEXT);
1431     break;
1432   case SPIRV::OpControlBarrierArriveINTEL:
1433   case SPIRV::OpControlBarrierWaitINTEL:
1434     if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_split_barrier)) {
1435       Reqs.addExtension(SPIRV::Extension::SPV_INTEL_split_barrier);
1436       Reqs.addCapability(SPIRV::Capability::SplitBarrierINTEL);
1437     }
1438     break;
1439   case SPIRV::OpKill: {
1440     Reqs.addCapability(SPIRV::Capability::Shader);
1441   } break;
1442   case SPIRV::OpDemoteToHelperInvocation:
1443     Reqs.addCapability(SPIRV::Capability::DemoteToHelperInvocation);
1444 
1445     if (ST.canUseExtension(
1446             SPIRV::Extension::SPV_EXT_demote_to_helper_invocation)) {
1447       if (!ST.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6)))
1448         Reqs.addExtension(
1449             SPIRV::Extension::SPV_EXT_demote_to_helper_invocation);
1450     }
1451     break;
1452   case SPIRV::OpSDot:
1453   case SPIRV::OpUDot:
1454     AddDotProductRequirements(MI, Reqs, ST);
1455     break;
1456   case SPIRV::OpImageRead: {
1457     Register ImageReg = MI.getOperand(2).getReg();
1458     SPIRVType *TypeDef = ST.getSPIRVGlobalRegistry()->getResultType(ImageReg);
1459     if (isImageTypeWithUnknownFormat(TypeDef))
1460       Reqs.addCapability(SPIRV::Capability::StorageImageReadWithoutFormat);
1461     break;
1462   }
1463   case SPIRV::OpImageWrite: {
1464     Register ImageReg = MI.getOperand(0).getReg();
1465     SPIRVType *TypeDef = ST.getSPIRVGlobalRegistry()->getResultType(ImageReg);
1466     if (isImageTypeWithUnknownFormat(TypeDef))
1467       Reqs.addCapability(SPIRV::Capability::StorageImageWriteWithoutFormat);
1468     break;
1469   }
1470 
1471   default:
1472     break;
1473   }
1474 
1475   // If we require capability Shader, then we can remove the requirement for
1476   // the BitInstructions capability, since Shader is a superset capability
1477   // of BitInstructions.
1478   Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
1479                           SPIRV::Capability::Shader);
1480 }
1481 
1482 static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
1483                         MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
1484   // Collect requirements for existing instructions.
1485   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1486     MachineFunction *MF = MMI->getMachineFunction(*F);
1487     if (!MF)
1488       continue;
1489     for (const MachineBasicBlock &MBB : *MF)
1490       for (const MachineInstr &MI : MBB)
1491         addInstrRequirements(MI, MAI.Reqs, ST);
1492   }
1493   // Collect requirements for OpExecutionMode instructions.
1494   auto Node = M.getNamedMetadata("spirv.ExecutionMode");
1495   if (Node) {
1496     // SPV_KHR_float_controls is not available until v1.4
1497     bool RequireFloatControls = false,
1498          VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
1499     for (unsigned i = 0; i < Node->getNumOperands(); i++) {
1500       MDNode *MDN = cast<MDNode>(Node->getOperand(i));
1501       const MDOperand &MDOp = MDN->getOperand(1);
1502       if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
1503         Constant *C = CMeta->getValue();
1504         if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
1505           auto EM = Const->getZExtValue();
1506           MAI.Reqs.getAndAddRequirements(
1507               SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
1508           // add SPV_KHR_float_controls if the version is too low
1509           switch (EM) {
1510           case SPIRV::ExecutionMode::DenormPreserve:
1511           case SPIRV::ExecutionMode::DenormFlushToZero:
1512           case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
1513           case SPIRV::ExecutionMode::RoundingModeRTE:
1514           case SPIRV::ExecutionMode::RoundingModeRTZ:
1515             RequireFloatControls = VerLower14;
1516             break;
1517           }
1518         }
1519       }
1520     }
1521     if (RequireFloatControls &&
1522         ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
1523       MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
1524   }
1525   for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
1526     const Function &F = *FI;
1527     if (F.isDeclaration())
1528       continue;
1529     if (F.getMetadata("reqd_work_group_size"))
1530       MAI.Reqs.getAndAddRequirements(
1531           SPIRV::OperandCategory::ExecutionModeOperand,
1532           SPIRV::ExecutionMode::LocalSize, ST);
1533     if (F.getFnAttribute("hlsl.numthreads").isValid()) {
1534       MAI.Reqs.getAndAddRequirements(
1535           SPIRV::OperandCategory::ExecutionModeOperand,
1536           SPIRV::ExecutionMode::LocalSize, ST);
1537     }
1538     if (F.getMetadata("work_group_size_hint"))
1539       MAI.Reqs.getAndAddRequirements(
1540           SPIRV::OperandCategory::ExecutionModeOperand,
1541           SPIRV::ExecutionMode::LocalSizeHint, ST);
1542     if (F.getMetadata("intel_reqd_sub_group_size"))
1543       MAI.Reqs.getAndAddRequirements(
1544           SPIRV::OperandCategory::ExecutionModeOperand,
1545           SPIRV::ExecutionMode::SubgroupSize, ST);
1546     if (F.getMetadata("vec_type_hint"))
1547       MAI.Reqs.getAndAddRequirements(
1548           SPIRV::OperandCategory::ExecutionModeOperand,
1549           SPIRV::ExecutionMode::VecTypeHint, ST);
1550 
1551     if (F.hasOptNone() &&
1552         ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
1553       // Output OpCapability OptNoneINTEL.
1554       MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
1555       MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
1556     }
1557   }
1558 }
1559 
1560 static unsigned getFastMathFlags(const MachineInstr &I) {
1561   unsigned Flags = SPIRV::FPFastMathMode::None;
1562   if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
1563     Flags |= SPIRV::FPFastMathMode::NotNaN;
1564   if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
1565     Flags |= SPIRV::FPFastMathMode::NotInf;
1566   if (I.getFlag(MachineInstr::MIFlag::FmNsz))
1567     Flags |= SPIRV::FPFastMathMode::NSZ;
1568   if (I.getFlag(MachineInstr::MIFlag::FmArcp))
1569     Flags |= SPIRV::FPFastMathMode::AllowRecip;
1570   if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
1571     Flags |= SPIRV::FPFastMathMode::Fast;
1572   return Flags;
1573 }
1574 
1575 static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
1576                                    const SPIRVInstrInfo &TII,
1577                                    SPIRV::RequirementHandler &Reqs) {
1578   if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
1579       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1580                                      SPIRV::Decoration::NoSignedWrap, ST, Reqs)
1581           .IsSatisfiable) {
1582     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1583                     SPIRV::Decoration::NoSignedWrap, {});
1584   }
1585   if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
1586       getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
1587                                      SPIRV::Decoration::NoUnsignedWrap, ST,
1588                                      Reqs)
1589           .IsSatisfiable) {
1590     buildOpDecorate(I.getOperand(0).getReg(), I, TII,
1591                     SPIRV::Decoration::NoUnsignedWrap, {});
1592   }
1593   if (!TII.canUseFastMathFlags(I))
1594     return;
1595   unsigned FMFlags = getFastMathFlags(I);
1596   if (FMFlags == SPIRV::FPFastMathMode::None)
1597     return;
1598   Register DstReg = I.getOperand(0).getReg();
1599   buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
1600 }
1601 
1602 // Walk all functions and add decorations related to MI flags.
1603 static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
1604                            MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
1605                            SPIRV::ModuleAnalysisInfo &MAI) {
1606   for (auto F = M.begin(), E = M.end(); F != E; ++F) {
1607     MachineFunction *MF = MMI->getMachineFunction(*F);
1608     if (!MF)
1609       continue;
1610     for (auto &MBB : *MF)
1611       for (auto &MI : MBB)
1612         handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
1613   }
1614 }
1615 
1616 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
1617 
1618 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1619   AU.addRequired<TargetPassConfig>();
1620   AU.addRequired<MachineModuleInfoWrapperPass>();
1621 }
1622 
1623 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
1624   SPIRVTargetMachine &TM =
1625       getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
1626   ST = TM.getSubtargetImpl();
1627   GR = ST->getSPIRVGlobalRegistry();
1628   TII = ST->getInstrInfo();
1629 
1630   MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1631 
1632   setBaseInfo(M);
1633 
1634   addDecorations(M, *TII, MMI, *ST, MAI);
1635 
1636   collectReqs(M, MAI, MMI, *ST);
1637 
1638   // Process type/const/global var/func decl instructions, number their
1639   // destination registers from 0 to N, collect Extensions and Capabilities.
1640   processDefInstrs(M);
1641 
1642   // Number rest of registers from N+1 onwards.
1643   numberRegistersGlobally(M);
1644 
1645   // Update references to OpFunction instructions to use Global Registers
1646   if (GR->hasConstFunPtr())
1647     collectFuncPtrs();
1648 
1649   // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
1650   processOtherInstrs(M);
1651 
1652   // If there are no entry points, we need the Linkage capability.
1653   if (MAI.MS[SPIRV::MB_EntryPoints].empty())
1654     MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
1655 
1656   // Set maximum ID used.
1657   GR->setBound(MAI.MaxID);
1658 
1659   return false;
1660 }
1661