xref: /llvm-project/llvm/lib/Target/SPIRV/SPIRVInstructionSelector.cpp (revision e520b28397fa7ad39a9934df65f45cbdf5514a84)
1 //===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the targeting of the InstructionSelector class for
10 // SPIRV.
11 // TODO: This should be generated by TableGen.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/SPIRVBaseInfo.h"
16 #include "MCTargetDesc/SPIRVMCTargetDesc.h"
17 #include "SPIRV.h"
18 #include "SPIRVGlobalRegistry.h"
19 #include "SPIRVInstrInfo.h"
20 #include "SPIRVRegisterBankInfo.h"
21 #include "SPIRVRegisterInfo.h"
22 #include "SPIRVTargetMachine.h"
23 #include "SPIRVUtils.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
26 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
27 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Register.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/IR/IntrinsicsSPIRV.h"
34 #include "llvm/Support/Debug.h"
35 
36 #define DEBUG_TYPE "spirv-isel"
37 
38 using namespace llvm;
39 namespace CL = SPIRV::OpenCLExtInst;
40 namespace GL = SPIRV::GLSLExtInst;
41 
42 using ExtInstList =
43     std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44 
45 namespace {
46 
47 #define GET_GLOBALISEL_PREDICATE_BITSET
48 #include "SPIRVGenGlobalISel.inc"
49 #undef GET_GLOBALISEL_PREDICATE_BITSET
50 
51 class SPIRVInstructionSelector : public InstructionSelector {
52   const SPIRVSubtarget &STI;
53   const SPIRVInstrInfo &TII;
54   const SPIRVRegisterInfo &TRI;
55   const RegisterBankInfo &RBI;
56   SPIRVGlobalRegistry &GR;
57   MachineRegisterInfo *MRI;
58   MachineFunction *HasVRegsReset = nullptr;
59 
60   /// We need to keep track of the number we give to anonymous global values to
61   /// generate the same name every time when this is needed.
62   mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
63 
64 public:
65   SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
66                            const SPIRVSubtarget &ST,
67                            const RegisterBankInfo &RBI);
68   void setupMF(MachineFunction &MF, GISelKnownBits *KB,
69                CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
70                BlockFrequencyInfo *BFI) override;
71   // Common selection code. Instruction-specific selection occurs in spvSelect.
72   bool select(MachineInstr &I) override;
73   static const char *getName() { return DEBUG_TYPE; }
74 
75 #define GET_GLOBALISEL_PREDICATES_DECL
76 #include "SPIRVGenGlobalISel.inc"
77 #undef GET_GLOBALISEL_PREDICATES_DECL
78 
79 #define GET_GLOBALISEL_TEMPORARIES_DECL
80 #include "SPIRVGenGlobalISel.inc"
81 #undef GET_GLOBALISEL_TEMPORARIES_DECL
82 
83 private:
84   void resetVRegsType(MachineFunction &MF);
85 
86   // tblgen-erated 'select' implementation, used as the initial selector for
87   // the patterns that don't require complex C++.
88   bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
89 
90   // All instruction-specific selection that didn't happen in "select()".
91   // Is basically a large Switch/Case delegating to all other select method.
92   bool spvSelect(Register ResVReg, const SPIRVType *ResType,
93                  MachineInstr &I) const;
94 
95   bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
96                           MachineInstr &I, bool IsSigned) const;
97 
98   bool selectFirstBitHigh16(Register ResVReg, const SPIRVType *ResType,
99                             MachineInstr &I, bool IsSigned) const;
100 
101   bool selectFirstBitHigh32(Register ResVReg, const SPIRVType *ResType,
102                             MachineInstr &I, Register SrcReg,
103                             bool IsSigned) const;
104 
105   bool selectFirstBitHigh64(Register ResVReg, const SPIRVType *ResType,
106                             MachineInstr &I, bool IsSigned) const;
107 
108   bool selectGlobalValue(Register ResVReg, MachineInstr &I,
109                          const MachineInstr *Init = nullptr) const;
110 
111   bool selectNAryOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
112                             MachineInstr &I, std::vector<Register> SrcRegs,
113                             unsigned Opcode) const;
114 
115   bool selectUnOpWithSrc(Register ResVReg, const SPIRVType *ResType,
116                          MachineInstr &I, Register SrcReg,
117                          unsigned Opcode) const;
118   bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
119                   unsigned Opcode) const;
120 
121   bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
122                      MachineInstr &I) const;
123 
124   bool selectLoad(Register ResVReg, const SPIRVType *ResType,
125                   MachineInstr &I) const;
126   bool selectStore(MachineInstr &I) const;
127 
128   bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
129                        MachineInstr &I) const;
130   bool selectStackRestore(MachineInstr &I) const;
131 
132   bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
133 
134   bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
135                        MachineInstr &I, unsigned NewOpcode,
136                        unsigned NegateOpcode = 0) const;
137 
138   bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
139                            MachineInstr &I) const;
140 
141   bool selectFence(MachineInstr &I) const;
142 
143   bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
144                            MachineInstr &I) const;
145 
146   bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
147                       MachineInstr &I, unsigned OpType) const;
148 
149   bool selectAll(Register ResVReg, const SPIRVType *ResType,
150                  MachineInstr &I) const;
151 
152   bool selectAny(Register ResVReg, const SPIRVType *ResType,
153                  MachineInstr &I) const;
154 
155   bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
156                         MachineInstr &I) const;
157 
158   bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
159                          MachineInstr &I) const;
160   bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
161                          MachineInstr &I) const;
162 
163   bool selectCmp(Register ResVReg, const SPIRVType *ResType,
164                  unsigned comparisonOpcode, MachineInstr &I) const;
165   bool selectCross(Register ResVReg, const SPIRVType *ResType,
166                    MachineInstr &I) const;
167   bool selectICmp(Register ResVReg, const SPIRVType *ResType,
168                   MachineInstr &I) const;
169   bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
170                   MachineInstr &I) const;
171 
172   bool selectSign(Register ResVReg, const SPIRVType *ResType,
173                   MachineInstr &I) const;
174 
175   bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
176                       MachineInstr &I) const;
177 
178   bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
179                            MachineInstr &I, unsigned Opcode) const;
180 
181   bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
182                         MachineInstr &I) const;
183 
184   template <bool Signed>
185   bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
186                            MachineInstr &I) const;
187   template <bool Signed>
188   bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
189                                     MachineInstr &I) const;
190 
191   void renderImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
192                    int OpIdx) const;
193   void renderFImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
194                     int OpIdx) const;
195 
196   bool selectConst(Register ResVReg, const SPIRVType *ResType, const APInt &Imm,
197                    MachineInstr &I) const;
198 
199   bool selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
200                     bool IsSigned) const;
201   bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
202                   bool IsSigned, unsigned Opcode) const;
203   bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
204                  bool IsSigned) const;
205 
206   bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
207                    MachineInstr &I) const;
208 
209   bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
210                        const SPIRVType *intTy, const SPIRVType *boolTy) const;
211 
212   bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
213                      MachineInstr &I) const;
214   bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
215                     MachineInstr &I) const;
216   bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
217                        MachineInstr &I) const;
218   bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
219                         MachineInstr &I) const;
220   bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
221                        MachineInstr &I) const;
222   bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
223                         MachineInstr &I) const;
224   bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
225                        MachineInstr &I) const;
226   bool selectGEP(Register ResVReg, const SPIRVType *ResType,
227                  MachineInstr &I) const;
228 
229   bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
230                         MachineInstr &I) const;
231   bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
232                          MachineInstr &I) const;
233 
234   bool selectBranch(MachineInstr &I) const;
235   bool selectBranchCond(MachineInstr &I) const;
236 
237   bool selectPhi(Register ResVReg, const SPIRVType *ResType,
238                  MachineInstr &I) const;
239 
240   bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
241                      MachineInstr &I, GL::GLSLExtInst GLInst) const;
242   bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
243                      MachineInstr &I, CL::OpenCLExtInst CLInst) const;
244   bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
245                      MachineInstr &I, CL::OpenCLExtInst CLInst,
246                      GL::GLSLExtInst GLInst) const;
247   bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
248                      MachineInstr &I, const ExtInstList &ExtInsts) const;
249 
250   bool selectLog10(Register ResVReg, const SPIRVType *ResType,
251                    MachineInstr &I) const;
252 
253   bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
254                       MachineInstr &I) const;
255 
256   bool selectSpvThreadId(Register ResVReg, const SPIRVType *ResType,
257                          MachineInstr &I) const;
258 
259   bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
260                                  MachineInstr &I) const;
261 
262   bool selectWaveReadLaneAt(Register ResVReg, const SPIRVType *ResType,
263                             MachineInstr &I) const;
264 
265   bool selectUnmergeValues(MachineInstr &I) const;
266 
267   void selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
268                                MachineInstr &I) const;
269 
270   // Utilities
271   Register buildI32Constant(uint32_t Val, MachineInstr &I,
272                             const SPIRVType *ResType = nullptr) const;
273 
274   Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
275   Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
276   Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
277                         MachineInstr &I) const;
278   Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
279 
280   bool wrapIntoSpecConstantOp(MachineInstr &I,
281                               SmallVector<Register> &CompositeArgs) const;
282 
283   Register getUcharPtrTypeReg(MachineInstr &I,
284                               SPIRV::StorageClass::StorageClass SC) const;
285   MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
286                                           Register Src, Register DestType,
287                                           uint32_t Opcode) const;
288   MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
289                                            SPIRVType *SrcPtrTy) const;
290   Register buildPointerToResource(const SPIRVType *ResType, uint32_t Set,
291                                   uint32_t Binding, uint32_t ArraySize,
292                                   Register IndexReg, bool IsNonUniform,
293                                   MachineIRBuilder MIRBuilder) const;
294 };
295 
296 } // end anonymous namespace
297 
298 #define GET_GLOBALISEL_IMPL
299 #include "SPIRVGenGlobalISel.inc"
300 #undef GET_GLOBALISEL_IMPL
301 
302 SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
303                                                    const SPIRVSubtarget &ST,
304                                                    const RegisterBankInfo &RBI)
305     : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
306       TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
307 #define GET_GLOBALISEL_PREDICATES_INIT
308 #include "SPIRVGenGlobalISel.inc"
309 #undef GET_GLOBALISEL_PREDICATES_INIT
310 #define GET_GLOBALISEL_TEMPORARIES_INIT
311 #include "SPIRVGenGlobalISel.inc"
312 #undef GET_GLOBALISEL_TEMPORARIES_INIT
313 {
314 }
315 
316 void SPIRVInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits *KB,
317                                        CodeGenCoverage *CoverageInfo,
318                                        ProfileSummaryInfo *PSI,
319                                        BlockFrequencyInfo *BFI) {
320   MRI = &MF.getRegInfo();
321   GR.setCurrentFunc(MF);
322   InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
323 }
324 
325 // Ensure that register classes correspond to pattern matching rules.
326 void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
327   if (HasVRegsReset == &MF)
328     return;
329   HasVRegsReset = &MF;
330 
331   MachineRegisterInfo &MRI = MF.getRegInfo();
332   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
333     Register Reg = Register::index2VirtReg(I);
334     LLT RegType = MRI.getType(Reg);
335     if (RegType.isScalar())
336       MRI.setType(Reg, LLT::scalar(64));
337     else if (RegType.isPointer())
338       MRI.setType(Reg, LLT::pointer(0, 64));
339     else if (RegType.isVector())
340       MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
341   }
342   for (const auto &MBB : MF) {
343     for (const auto &MI : MBB) {
344       if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
345         continue;
346       Register DstReg = MI.getOperand(0).getReg();
347       LLT DstType = MRI.getType(DstReg);
348       Register SrcReg = MI.getOperand(1).getReg();
349       LLT SrcType = MRI.getType(SrcReg);
350       if (DstType != SrcType)
351         MRI.setType(DstReg, MRI.getType(SrcReg));
352 
353       const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
354       const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
355       if (DstRC != SrcRC && SrcRC)
356         MRI.setRegClass(DstReg, SrcRC);
357     }
358   }
359 }
360 
361 static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI);
362 
363 // Defined in SPIRVLegalizerInfo.cpp.
364 extern bool isTypeFoldingSupported(unsigned Opcode);
365 
366 bool SPIRVInstructionSelector::select(MachineInstr &I) {
367   resetVRegsType(*I.getParent()->getParent());
368 
369   assert(I.getParent() && "Instruction should be in a basic block!");
370   assert(I.getParent()->getParent() && "Instruction should be in a function!");
371 
372   Register Opcode = I.getOpcode();
373   // If it's not a GMIR instruction, we've selected it already.
374   if (!isPreISelGenericOpcode(Opcode)) {
375     if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
376       Register DstReg = I.getOperand(0).getReg();
377       Register SrcReg = I.getOperand(1).getReg();
378       auto *Def = MRI->getVRegDef(SrcReg);
379       if (isTypeFoldingSupported(Def->getOpcode())) {
380         bool Res = selectImpl(I, *CoverageInfo);
381         LLVM_DEBUG({
382           if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
383             dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
384             I.print(dbgs());
385           }
386         });
387         assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
388         if (Res)
389           return Res;
390       }
391       MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
392       MRI->replaceRegWith(SrcReg, DstReg);
393       I.removeFromParent();
394       return true;
395     } else if (I.getNumDefs() == 1) {
396       // Make all vregs 64 bits (for SPIR-V IDs).
397       MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
398     }
399     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
400   }
401 
402   if (I.getNumOperands() != I.getNumExplicitOperands()) {
403     LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
404     return false;
405   }
406 
407   // Common code for getting return reg+type, and removing selected instr
408   // from parent occurs here. Instr-specific selection happens in spvSelect().
409   bool HasDefs = I.getNumDefs() > 0;
410   Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
411   SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
412   assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
413   if (spvSelect(ResVReg, ResType, I)) {
414     if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
415       for (unsigned i = 0; i < I.getNumDefs(); ++i)
416         MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
417     I.removeFromParent();
418     return true;
419   }
420   return false;
421 }
422 
423 static bool mayApplyGenericSelection(unsigned Opcode) {
424   switch (Opcode) {
425   case TargetOpcode::G_CONSTANT:
426     return false;
427   case TargetOpcode::G_SADDO:
428   case TargetOpcode::G_SSUBO:
429     return true;
430   }
431   return isTypeFoldingSupported(Opcode);
432 }
433 
434 bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
435                                          const SPIRVType *ResType,
436                                          MachineInstr &I) const {
437   const unsigned Opcode = I.getOpcode();
438   if (mayApplyGenericSelection(Opcode))
439     return selectImpl(I, *CoverageInfo);
440   switch (Opcode) {
441   case TargetOpcode::G_CONSTANT:
442     return selectConst(ResVReg, ResType, I.getOperand(1).getCImm()->getValue(),
443                        I);
444   case TargetOpcode::G_GLOBAL_VALUE:
445     return selectGlobalValue(ResVReg, I);
446   case TargetOpcode::G_IMPLICIT_DEF:
447     return selectOpUndef(ResVReg, ResType, I);
448   case TargetOpcode::G_FREEZE:
449     return selectFreeze(ResVReg, ResType, I);
450 
451   case TargetOpcode::G_INTRINSIC:
452   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
453   case TargetOpcode::G_INTRINSIC_CONVERGENT:
454   case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
455     return selectIntrinsic(ResVReg, ResType, I);
456   case TargetOpcode::G_BITREVERSE:
457     return selectBitreverse(ResVReg, ResType, I);
458 
459   case TargetOpcode::G_BUILD_VECTOR:
460     return selectBuildVector(ResVReg, ResType, I);
461   case TargetOpcode::G_SPLAT_VECTOR:
462     return selectSplatVector(ResVReg, ResType, I);
463 
464   case TargetOpcode::G_SHUFFLE_VECTOR: {
465     MachineBasicBlock &BB = *I.getParent();
466     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
467                    .addDef(ResVReg)
468                    .addUse(GR.getSPIRVTypeID(ResType))
469                    .addUse(I.getOperand(1).getReg())
470                    .addUse(I.getOperand(2).getReg());
471     for (auto V : I.getOperand(3).getShuffleMask())
472       MIB.addImm(V);
473     return MIB.constrainAllUses(TII, TRI, RBI);
474   }
475   case TargetOpcode::G_MEMMOVE:
476   case TargetOpcode::G_MEMCPY:
477   case TargetOpcode::G_MEMSET:
478     return selectMemOperation(ResVReg, I);
479 
480   case TargetOpcode::G_ICMP:
481     return selectICmp(ResVReg, ResType, I);
482   case TargetOpcode::G_FCMP:
483     return selectFCmp(ResVReg, ResType, I);
484 
485   case TargetOpcode::G_FRAME_INDEX:
486     return selectFrameIndex(ResVReg, ResType, I);
487 
488   case TargetOpcode::G_LOAD:
489     return selectLoad(ResVReg, ResType, I);
490   case TargetOpcode::G_STORE:
491     return selectStore(I);
492 
493   case TargetOpcode::G_BR:
494     return selectBranch(I);
495   case TargetOpcode::G_BRCOND:
496     return selectBranchCond(I);
497 
498   case TargetOpcode::G_PHI:
499     return selectPhi(ResVReg, ResType, I);
500 
501   case TargetOpcode::G_FPTOSI:
502     return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
503   case TargetOpcode::G_FPTOUI:
504     return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
505 
506   case TargetOpcode::G_SITOFP:
507     return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
508   case TargetOpcode::G_UITOFP:
509     return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
510 
511   case TargetOpcode::G_CTPOP:
512     return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
513   case TargetOpcode::G_SMIN:
514     return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
515   case TargetOpcode::G_UMIN:
516     return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
517 
518   case TargetOpcode::G_SMAX:
519     return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
520   case TargetOpcode::G_UMAX:
521     return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
522 
523   case TargetOpcode::G_FMA:
524     return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
525 
526   case TargetOpcode::G_FPOW:
527     return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
528   case TargetOpcode::G_FPOWI:
529     return selectExtInst(ResVReg, ResType, I, CL::pown);
530 
531   case TargetOpcode::G_FEXP:
532     return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
533   case TargetOpcode::G_FEXP2:
534     return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
535 
536   case TargetOpcode::G_FLOG:
537     return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
538   case TargetOpcode::G_FLOG2:
539     return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
540   case TargetOpcode::G_FLOG10:
541     return selectLog10(ResVReg, ResType, I);
542 
543   case TargetOpcode::G_FABS:
544     return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
545   case TargetOpcode::G_ABS:
546     return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
547 
548   case TargetOpcode::G_FMINNUM:
549   case TargetOpcode::G_FMINIMUM:
550     return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
551   case TargetOpcode::G_FMAXNUM:
552   case TargetOpcode::G_FMAXIMUM:
553     return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
554 
555   case TargetOpcode::G_FCOPYSIGN:
556     return selectExtInst(ResVReg, ResType, I, CL::copysign);
557 
558   case TargetOpcode::G_FCEIL:
559     return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
560   case TargetOpcode::G_FFLOOR:
561     return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
562 
563   case TargetOpcode::G_FCOS:
564     return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
565   case TargetOpcode::G_FSIN:
566     return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
567   case TargetOpcode::G_FTAN:
568     return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
569   case TargetOpcode::G_FACOS:
570     return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
571   case TargetOpcode::G_FASIN:
572     return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
573   case TargetOpcode::G_FATAN:
574     return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
575   case TargetOpcode::G_FATAN2:
576     return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
577   case TargetOpcode::G_FCOSH:
578     return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
579   case TargetOpcode::G_FSINH:
580     return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
581   case TargetOpcode::G_FTANH:
582     return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
583 
584   case TargetOpcode::G_FSQRT:
585     return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
586 
587   case TargetOpcode::G_CTTZ:
588   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
589     return selectExtInst(ResVReg, ResType, I, CL::ctz);
590   case TargetOpcode::G_CTLZ:
591   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
592     return selectExtInst(ResVReg, ResType, I, CL::clz);
593 
594   case TargetOpcode::G_INTRINSIC_ROUND:
595     return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
596   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
597     return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
598   case TargetOpcode::G_INTRINSIC_TRUNC:
599     return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
600   case TargetOpcode::G_FRINT:
601   case TargetOpcode::G_FNEARBYINT:
602     return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
603 
604   case TargetOpcode::G_SMULH:
605     return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
606   case TargetOpcode::G_UMULH:
607     return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
608 
609   case TargetOpcode::G_SADDSAT:
610     return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
611   case TargetOpcode::G_UADDSAT:
612     return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
613   case TargetOpcode::G_SSUBSAT:
614     return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
615   case TargetOpcode::G_USUBSAT:
616     return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
617 
618   case TargetOpcode::G_UADDO:
619     return selectOverflowArith(ResVReg, ResType, I,
620                                ResType->getOpcode() == SPIRV::OpTypeVector
621                                    ? SPIRV::OpIAddCarryV
622                                    : SPIRV::OpIAddCarryS);
623   case TargetOpcode::G_USUBO:
624     return selectOverflowArith(ResVReg, ResType, I,
625                                ResType->getOpcode() == SPIRV::OpTypeVector
626                                    ? SPIRV::OpISubBorrowV
627                                    : SPIRV::OpISubBorrowS);
628   case TargetOpcode::G_UMULO:
629     return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
630   case TargetOpcode::G_SMULO:
631     return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
632 
633   case TargetOpcode::G_SEXT:
634     return selectExt(ResVReg, ResType, I, true);
635   case TargetOpcode::G_ANYEXT:
636   case TargetOpcode::G_ZEXT:
637     return selectExt(ResVReg, ResType, I, false);
638   case TargetOpcode::G_TRUNC:
639     return selectTrunc(ResVReg, ResType, I);
640   case TargetOpcode::G_FPTRUNC:
641   case TargetOpcode::G_FPEXT:
642     return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
643 
644   case TargetOpcode::G_PTRTOINT:
645     return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
646   case TargetOpcode::G_INTTOPTR:
647     return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
648   case TargetOpcode::G_BITCAST:
649     return selectBitcast(ResVReg, ResType, I);
650   case TargetOpcode::G_ADDRSPACE_CAST:
651     return selectAddrSpaceCast(ResVReg, ResType, I);
652   case TargetOpcode::G_PTR_ADD: {
653     // Currently, we get G_PTR_ADD only applied to global variables.
654     assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
655     Register GV = I.getOperand(1).getReg();
656     MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
657     (void)II;
658     assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
659             (*II).getOpcode() == TargetOpcode::COPY ||
660             (*II).getOpcode() == SPIRV::OpVariable) &&
661            isImm(I.getOperand(2), MRI));
662     // It may be the initialization of a global variable.
663     bool IsGVInit = false;
664     for (MachineRegisterInfo::use_instr_iterator
665              UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
666              UseEnd = MRI->use_instr_end();
667          UseIt != UseEnd; UseIt = std::next(UseIt)) {
668       if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
669           (*UseIt).getOpcode() == SPIRV::OpVariable) {
670         IsGVInit = true;
671         break;
672       }
673     }
674     MachineBasicBlock &BB = *I.getParent();
675     if (!IsGVInit) {
676       SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
677       SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
678       SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
679       if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
680         // Build a new virtual register that is associated with the required
681         // data type.
682         Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
683         MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
684         //  Having a correctly typed base we are ready to build the actually
685         //  required GEP. It may not be a constant though, because all Operands
686         //  of OpSpecConstantOp is to originate from other const instructions,
687         //  and only the AccessChain named opcodes accept a global OpVariable
688         //  instruction. We can't use an AccessChain opcode because of the type
689         //  mismatch between result and base types.
690         if (!GR.isBitcastCompatible(ResType, GVType))
691           report_fatal_error(
692               "incompatible result and operand types in a bitcast");
693         Register ResTypeReg = GR.getSPIRVTypeID(ResType);
694         MachineInstrBuilder MIB =
695             BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
696                 .addDef(NewVReg)
697                 .addUse(ResTypeReg)
698                 .addUse(GV);
699         return MIB.constrainAllUses(TII, TRI, RBI) &&
700                BuildMI(BB, I, I.getDebugLoc(),
701                        TII.get(STI.isVulkanEnv()
702                                    ? SPIRV::OpInBoundsAccessChain
703                                    : SPIRV::OpInBoundsPtrAccessChain))
704                    .addDef(ResVReg)
705                    .addUse(ResTypeReg)
706                    .addUse(NewVReg)
707                    .addUse(I.getOperand(2).getReg())
708                    .constrainAllUses(TII, TRI, RBI);
709       } else {
710         return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
711             .addDef(ResVReg)
712             .addUse(GR.getSPIRVTypeID(ResType))
713             .addImm(
714                 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
715             .addUse(GV)
716             .addUse(I.getOperand(2).getReg())
717             .constrainAllUses(TII, TRI, RBI);
718       }
719     }
720     // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
721     // initialize a global variable with a constant expression (e.g., the test
722     // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
723     Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
724     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
725                    .addDef(ResVReg)
726                    .addUse(GR.getSPIRVTypeID(ResType))
727                    .addImm(static_cast<uint32_t>(
728                        SPIRV::Opcode::InBoundsPtrAccessChain))
729                    .addUse(GV)
730                    .addUse(Idx)
731                    .addUse(I.getOperand(2).getReg());
732     return MIB.constrainAllUses(TII, TRI, RBI);
733   }
734 
735   case TargetOpcode::G_ATOMICRMW_OR:
736     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
737   case TargetOpcode::G_ATOMICRMW_ADD:
738     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
739   case TargetOpcode::G_ATOMICRMW_AND:
740     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
741   case TargetOpcode::G_ATOMICRMW_MAX:
742     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
743   case TargetOpcode::G_ATOMICRMW_MIN:
744     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
745   case TargetOpcode::G_ATOMICRMW_SUB:
746     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
747   case TargetOpcode::G_ATOMICRMW_XOR:
748     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
749   case TargetOpcode::G_ATOMICRMW_UMAX:
750     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
751   case TargetOpcode::G_ATOMICRMW_UMIN:
752     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
753   case TargetOpcode::G_ATOMICRMW_XCHG:
754     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
755   case TargetOpcode::G_ATOMIC_CMPXCHG:
756     return selectAtomicCmpXchg(ResVReg, ResType, I);
757 
758   case TargetOpcode::G_ATOMICRMW_FADD:
759     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
760   case TargetOpcode::G_ATOMICRMW_FSUB:
761     // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
762     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
763                            SPIRV::OpFNegate);
764   case TargetOpcode::G_ATOMICRMW_FMIN:
765     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
766   case TargetOpcode::G_ATOMICRMW_FMAX:
767     return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
768 
769   case TargetOpcode::G_FENCE:
770     return selectFence(I);
771 
772   case TargetOpcode::G_STACKSAVE:
773     return selectStackSave(ResVReg, ResType, I);
774   case TargetOpcode::G_STACKRESTORE:
775     return selectStackRestore(I);
776 
777   case TargetOpcode::G_UNMERGE_VALUES:
778     return selectUnmergeValues(I);
779 
780   // Discard gen opcodes for intrinsics which we do not expect to actually
781   // represent code after lowering or intrinsics which are not implemented but
782   // should not crash when found in a customer's LLVM IR input.
783   case TargetOpcode::G_TRAP:
784   case TargetOpcode::G_DEBUGTRAP:
785   case TargetOpcode::G_UBSANTRAP:
786   case TargetOpcode::DBG_LABEL:
787     return true;
788 
789   default:
790     return false;
791   }
792 }
793 
794 bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
795                                              const SPIRVType *ResType,
796                                              MachineInstr &I,
797                                              GL::GLSLExtInst GLInst) const {
798   return selectExtInst(ResVReg, ResType, I,
799                        {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
800 }
801 
802 bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
803                                              const SPIRVType *ResType,
804                                              MachineInstr &I,
805                                              CL::OpenCLExtInst CLInst) const {
806   return selectExtInst(ResVReg, ResType, I,
807                        {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
808 }
809 
810 bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
811                                              const SPIRVType *ResType,
812                                              MachineInstr &I,
813                                              CL::OpenCLExtInst CLInst,
814                                              GL::GLSLExtInst GLInst) const {
815   ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
816                           {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
817   return selectExtInst(ResVReg, ResType, I, ExtInsts);
818 }
819 
820 bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
821                                              const SPIRVType *ResType,
822                                              MachineInstr &I,
823                                              const ExtInstList &Insts) const {
824 
825   for (const auto &Ex : Insts) {
826     SPIRV::InstructionSet::InstructionSet Set = Ex.first;
827     uint32_t Opcode = Ex.second;
828     if (STI.canUseExtInstSet(Set)) {
829       MachineBasicBlock &BB = *I.getParent();
830       auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
831                      .addDef(ResVReg)
832                      .addUse(GR.getSPIRVTypeID(ResType))
833                      .addImm(static_cast<uint32_t>(Set))
834                      .addImm(Opcode);
835       const unsigned NumOps = I.getNumOperands();
836       unsigned Index = 1;
837       if (Index < NumOps &&
838           I.getOperand(Index).getType() ==
839               MachineOperand::MachineOperandType::MO_IntrinsicID)
840         Index = 2;
841       for (; Index < NumOps; ++Index)
842         MIB.add(I.getOperand(Index));
843       return MIB.constrainAllUses(TII, TRI, RBI);
844     }
845   }
846   return false;
847 }
848 
849 bool SPIRVInstructionSelector::selectNAryOpWithSrcs(Register ResVReg,
850                                                     const SPIRVType *ResType,
851                                                     MachineInstr &I,
852                                                     std::vector<Register> Srcs,
853                                                     unsigned Opcode) const {
854   auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
855                  .addDef(ResVReg)
856                  .addUse(GR.getSPIRVTypeID(ResType));
857   for (Register SReg : Srcs) {
858     MIB.addUse(SReg);
859   }
860   return MIB.constrainAllUses(TII, TRI, RBI);
861 }
862 
863 bool SPIRVInstructionSelector::selectUnOpWithSrc(Register ResVReg,
864                                                  const SPIRVType *ResType,
865                                                  MachineInstr &I,
866                                                  Register SrcReg,
867                                                  unsigned Opcode) const {
868   return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
869       .addDef(ResVReg)
870       .addUse(GR.getSPIRVTypeID(ResType))
871       .addUse(SrcReg)
872       .constrainAllUses(TII, TRI, RBI);
873 }
874 
875 bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
876                                           const SPIRVType *ResType,
877                                           MachineInstr &I,
878                                           unsigned Opcode) const {
879   if (STI.isOpenCLEnv() && I.getOperand(1).isReg()) {
880     Register SrcReg = I.getOperand(1).getReg();
881     bool IsGV = false;
882     for (MachineRegisterInfo::def_instr_iterator DefIt =
883              MRI->def_instr_begin(SrcReg);
884          DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
885       if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
886         IsGV = true;
887         break;
888       }
889     }
890     if (IsGV) {
891       uint32_t SpecOpcode = 0;
892       switch (Opcode) {
893       case SPIRV::OpConvertPtrToU:
894         SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
895         break;
896       case SPIRV::OpConvertUToPtr:
897         SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
898         break;
899       }
900       if (SpecOpcode)
901         return BuildMI(*I.getParent(), I, I.getDebugLoc(),
902                        TII.get(SPIRV::OpSpecConstantOp))
903             .addDef(ResVReg)
904             .addUse(GR.getSPIRVTypeID(ResType))
905             .addImm(SpecOpcode)
906             .addUse(SrcReg)
907             .constrainAllUses(TII, TRI, RBI);
908     }
909   }
910   return selectUnOpWithSrc(ResVReg, ResType, I, I.getOperand(1).getReg(),
911                            Opcode);
912 }
913 
914 bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
915                                              const SPIRVType *ResType,
916                                              MachineInstr &I) const {
917   Register OpReg = I.getOperand(1).getReg();
918   SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
919   if (!GR.isBitcastCompatible(ResType, OpType))
920     report_fatal_error("incompatible result and operand types in a bitcast");
921   return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
922 }
923 
924 static void addMemoryOperands(MachineMemOperand *MemOp,
925                               MachineInstrBuilder &MIB) {
926   uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
927   if (MemOp->isVolatile())
928     SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
929   if (MemOp->isNonTemporal())
930     SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
931   if (MemOp->getAlign().value())
932     SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
933 
934   if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
935     MIB.addImm(SpvMemOp);
936     if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
937       MIB.addImm(MemOp->getAlign().value());
938   }
939 }
940 
941 static void addMemoryOperands(uint64_t Flags, MachineInstrBuilder &MIB) {
942   uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
943   if (Flags & MachineMemOperand::Flags::MOVolatile)
944     SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
945   if (Flags & MachineMemOperand::Flags::MONonTemporal)
946     SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
947 
948   if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
949     MIB.addImm(SpvMemOp);
950 }
951 
952 bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
953                                           const SPIRVType *ResType,
954                                           MachineInstr &I) const {
955   unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
956   Register Ptr = I.getOperand(1 + OpOffset).getReg();
957   auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
958                  .addDef(ResVReg)
959                  .addUse(GR.getSPIRVTypeID(ResType))
960                  .addUse(Ptr);
961   if (!I.getNumMemOperands()) {
962     assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
963            I.getOpcode() ==
964                TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
965     addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
966   } else {
967     addMemoryOperands(*I.memoperands_begin(), MIB);
968   }
969   return MIB.constrainAllUses(TII, TRI, RBI);
970 }
971 
972 bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
973   unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
974   Register StoreVal = I.getOperand(0 + OpOffset).getReg();
975   Register Ptr = I.getOperand(1 + OpOffset).getReg();
976   MachineBasicBlock &BB = *I.getParent();
977   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
978                  .addUse(Ptr)
979                  .addUse(StoreVal);
980   if (!I.getNumMemOperands()) {
981     assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
982            I.getOpcode() ==
983                TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
984     addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
985   } else {
986     addMemoryOperands(*I.memoperands_begin(), MIB);
987   }
988   return MIB.constrainAllUses(TII, TRI, RBI);
989 }
990 
991 bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
992                                                const SPIRVType *ResType,
993                                                MachineInstr &I) const {
994   if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
995     report_fatal_error(
996         "llvm.stacksave intrinsic: this instruction requires the following "
997         "SPIR-V extension: SPV_INTEL_variable_length_array",
998         false);
999   MachineBasicBlock &BB = *I.getParent();
1000   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1001       .addDef(ResVReg)
1002       .addUse(GR.getSPIRVTypeID(ResType))
1003       .constrainAllUses(TII, TRI, RBI);
1004 }
1005 
1006 bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1007   if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1008     report_fatal_error(
1009         "llvm.stackrestore intrinsic: this instruction requires the following "
1010         "SPIR-V extension: SPV_INTEL_variable_length_array",
1011         false);
1012   if (!I.getOperand(0).isReg())
1013     return false;
1014   MachineBasicBlock &BB = *I.getParent();
1015   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1016       .addUse(I.getOperand(0).getReg())
1017       .constrainAllUses(TII, TRI, RBI);
1018 }
1019 
1020 bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1021                                                   MachineInstr &I) const {
1022   MachineBasicBlock &BB = *I.getParent();
1023   Register SrcReg = I.getOperand(1).getReg();
1024   if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1025     assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1026     unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1027     unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1028     SPIRVType *ValTy = GR.getOrCreateSPIRVIntegerType(8, I, TII);
1029     SPIRVType *ArrTy = GR.getOrCreateSPIRVArrayType(ValTy, Num, I, TII);
1030     Register Const = GR.getOrCreateConstIntArray(Val, Num, I, ArrTy, TII);
1031     SPIRVType *VarTy = GR.getOrCreateSPIRVPointerType(
1032         ArrTy, I, TII, SPIRV::StorageClass::UniformConstant);
1033     // TODO: check if we have such GV, add init, use buildGlobalVariable.
1034     Function &CurFunction = GR.CurMF->getFunction();
1035     Type *LLVMArrTy =
1036         ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1037     // Module takes ownership of the global var.
1038     GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1039                                             true, GlobalValue::InternalLinkage,
1040                                             Constant::getNullValue(LLVMArrTy));
1041     Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1042     GR.add(GV, GR.CurMF, VarReg);
1043 
1044     BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1045         .addDef(VarReg)
1046         .addUse(GR.getSPIRVTypeID(VarTy))
1047         .addImm(SPIRV::StorageClass::UniformConstant)
1048         .addUse(Const)
1049         .constrainAllUses(TII, TRI, RBI);
1050     buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1051     SPIRVType *SourceTy = GR.getOrCreateSPIRVPointerType(
1052         ValTy, I, TII, SPIRV::StorageClass::UniformConstant);
1053     SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1054     selectUnOpWithSrc(SrcReg, SourceTy, I, VarReg, SPIRV::OpBitcast);
1055   }
1056   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1057                  .addUse(I.getOperand(0).getReg())
1058                  .addUse(SrcReg)
1059                  .addUse(I.getOperand(2).getReg());
1060   if (I.getNumMemOperands())
1061     addMemoryOperands(*I.memoperands_begin(), MIB);
1062   bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1063   if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
1064     BuildMI(BB, I, I.getDebugLoc(), TII.get(TargetOpcode::COPY), ResVReg)
1065         .addUse(MIB->getOperand(0).getReg());
1066   return Result;
1067 }
1068 
1069 bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1070                                                const SPIRVType *ResType,
1071                                                MachineInstr &I,
1072                                                unsigned NewOpcode,
1073                                                unsigned NegateOpcode) const {
1074   assert(I.hasOneMemOperand());
1075   const MachineMemOperand *MemOp = *I.memoperands_begin();
1076   uint32_t Scope = static_cast<uint32_t>(getMemScope(
1077       GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1078   Register ScopeReg = buildI32Constant(Scope, I);
1079 
1080   Register Ptr = I.getOperand(1).getReg();
1081   // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1082   // auto ScSem =
1083   // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1084   AtomicOrdering AO = MemOp->getSuccessOrdering();
1085   uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1086   Register MemSemReg = buildI32Constant(MemSem /*| ScSem*/, I);
1087 
1088   bool Result = false;
1089   Register ValueReg = I.getOperand(2).getReg();
1090   if (NegateOpcode != 0) {
1091     // Translation with negative value operand is requested
1092     Register TmpReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1093     Result |= selectUnOpWithSrc(TmpReg, ResType, I, ValueReg, NegateOpcode);
1094     ValueReg = TmpReg;
1095   }
1096 
1097   Result |= BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1098                 .addDef(ResVReg)
1099                 .addUse(GR.getSPIRVTypeID(ResType))
1100                 .addUse(Ptr)
1101                 .addUse(ScopeReg)
1102                 .addUse(MemSemReg)
1103                 .addUse(ValueReg)
1104                 .constrainAllUses(TII, TRI, RBI);
1105   return Result;
1106 }
1107 
1108 bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1109   unsigned ArgI = I.getNumOperands() - 1;
1110   Register SrcReg =
1111       I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1112   SPIRVType *DefType =
1113       SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1114   if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
1115     report_fatal_error(
1116         "cannot select G_UNMERGE_VALUES with a non-vector argument");
1117 
1118   SPIRVType *ScalarType =
1119       GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
1120   MachineBasicBlock &BB = *I.getParent();
1121   bool Res = false;
1122   for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1123     Register ResVReg = I.getOperand(i).getReg();
1124     SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1125     if (!ResType) {
1126       // There was no "assign type" actions, let's fix this now
1127       ResType = ScalarType;
1128       MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1129       MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
1130       GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1131     }
1132     auto MIB =
1133         BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1134             .addDef(ResVReg)
1135             .addUse(GR.getSPIRVTypeID(ResType))
1136             .addUse(SrcReg)
1137             .addImm(static_cast<int64_t>(i));
1138     Res |= MIB.constrainAllUses(TII, TRI, RBI);
1139   }
1140   return Res;
1141 }
1142 
1143 bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1144   AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1145   uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1146   Register MemSemReg = buildI32Constant(MemSem, I);
1147   SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1148   uint32_t Scope = static_cast<uint32_t>(
1149       getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1150   Register ScopeReg = buildI32Constant(Scope, I);
1151   MachineBasicBlock &BB = *I.getParent();
1152   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1153       .addUse(ScopeReg)
1154       .addUse(MemSemReg)
1155       .constrainAllUses(TII, TRI, RBI);
1156 }
1157 
1158 bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1159                                                    const SPIRVType *ResType,
1160                                                    MachineInstr &I,
1161                                                    unsigned Opcode) const {
1162   Type *ResTy = nullptr;
1163   StringRef ResName;
1164   if (!GR.findValueAttrs(&I, ResTy, ResName))
1165     report_fatal_error(
1166         "Not enough info to select the arithmetic with overflow instruction");
1167   if (!ResTy || !ResTy->isStructTy())
1168     report_fatal_error("Expect struct type result for the arithmetic "
1169                        "with overflow instruction");
1170   // "Result Type must be from OpTypeStruct. The struct must have two members,
1171   // and the two members must be the same type."
1172   Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1173   ResTy = StructType::create(SmallVector<Type *, 2>{ResElemTy, ResElemTy});
1174   // Build SPIR-V types and constant(s) if needed.
1175   MachineIRBuilder MIRBuilder(I);
1176   SPIRVType *StructType = GR.getOrCreateSPIRVType(
1177       ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1178   assert(I.getNumDefs() > 1 && "Not enought operands");
1179   SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1180   unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1181   if (N > 1)
1182     BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1183   Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1184   Register ZeroReg = buildZerosVal(ResType, I);
1185   // A new virtual register to store the result struct.
1186   Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1187   MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1188   // Build the result name if needed.
1189   if (ResName.size() > 0)
1190     buildOpName(StructVReg, ResName, MIRBuilder);
1191   // Build the arithmetic with overflow instruction.
1192   MachineBasicBlock &BB = *I.getParent();
1193   auto MIB =
1194       BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1195           .addDef(StructVReg)
1196           .addUse(GR.getSPIRVTypeID(StructType));
1197   for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1198     MIB.addUse(I.getOperand(i).getReg());
1199   bool Status = MIB.constrainAllUses(TII, TRI, RBI);
1200   // Build instructions to extract fields of the instruction's result.
1201   // A new virtual register to store the higher part of the result struct.
1202   Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1203   MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1204   for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1205     auto MIB =
1206         BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1207             .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1208             .addUse(GR.getSPIRVTypeID(ResType))
1209             .addUse(StructVReg)
1210             .addImm(i);
1211     Status &= MIB.constrainAllUses(TII, TRI, RBI);
1212   }
1213   // Build boolean value from the higher part.
1214   Status &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1215                 .addDef(I.getOperand(1).getReg())
1216                 .addUse(BoolTypeReg)
1217                 .addUse(HigherVReg)
1218                 .addUse(ZeroReg)
1219                 .constrainAllUses(TII, TRI, RBI);
1220   return Status;
1221 }
1222 
1223 bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1224                                                    const SPIRVType *ResType,
1225                                                    MachineInstr &I) const {
1226   Register ScopeReg;
1227   Register MemSemEqReg;
1228   Register MemSemNeqReg;
1229   Register Ptr = I.getOperand(2).getReg();
1230   if (!isa<GIntrinsic>(I)) {
1231     assert(I.hasOneMemOperand());
1232     const MachineMemOperand *MemOp = *I.memoperands_begin();
1233     unsigned Scope = static_cast<uint32_t>(getMemScope(
1234         GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1235     ScopeReg = buildI32Constant(Scope, I);
1236 
1237     unsigned ScSem = static_cast<uint32_t>(
1238         getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr)));
1239     AtomicOrdering AO = MemOp->getSuccessOrdering();
1240     unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1241     MemSemEqReg = buildI32Constant(MemSemEq, I);
1242     AtomicOrdering FO = MemOp->getFailureOrdering();
1243     unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1244     MemSemNeqReg =
1245         MemSemEq == MemSemNeq ? MemSemEqReg : buildI32Constant(MemSemNeq, I);
1246   } else {
1247     ScopeReg = I.getOperand(5).getReg();
1248     MemSemEqReg = I.getOperand(6).getReg();
1249     MemSemNeqReg = I.getOperand(7).getReg();
1250   }
1251 
1252   Register Cmp = I.getOperand(3).getReg();
1253   Register Val = I.getOperand(4).getReg();
1254   SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1255   Register ACmpRes = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1256   const DebugLoc &DL = I.getDebugLoc();
1257   bool Result =
1258       BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1259           .addDef(ACmpRes)
1260           .addUse(GR.getSPIRVTypeID(SpvValTy))
1261           .addUse(Ptr)
1262           .addUse(ScopeReg)
1263           .addUse(MemSemEqReg)
1264           .addUse(MemSemNeqReg)
1265           .addUse(Val)
1266           .addUse(Cmp)
1267           .constrainAllUses(TII, TRI, RBI);
1268   Register CmpSuccReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1269   SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1270   Result |= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1271                 .addDef(CmpSuccReg)
1272                 .addUse(GR.getSPIRVTypeID(BoolTy))
1273                 .addUse(ACmpRes)
1274                 .addUse(Cmp)
1275                 .constrainAllUses(TII, TRI, RBI);
1276   Register TmpReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1277   Result |= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1278                 .addDef(TmpReg)
1279                 .addUse(GR.getSPIRVTypeID(ResType))
1280                 .addUse(ACmpRes)
1281                 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1282                 .addImm(0)
1283                 .constrainAllUses(TII, TRI, RBI);
1284   Result |= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1285                 .addDef(ResVReg)
1286                 .addUse(GR.getSPIRVTypeID(ResType))
1287                 .addUse(CmpSuccReg)
1288                 .addUse(TmpReg)
1289                 .addImm(1)
1290                 .constrainAllUses(TII, TRI, RBI);
1291   return Result;
1292 }
1293 
1294 static bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC) {
1295   switch (SC) {
1296   case SPIRV::StorageClass::Workgroup:
1297   case SPIRV::StorageClass::CrossWorkgroup:
1298   case SPIRV::StorageClass::Function:
1299     return true;
1300   default:
1301     return false;
1302   }
1303 }
1304 
1305 static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
1306   switch (SC) {
1307   case SPIRV::StorageClass::DeviceOnlyINTEL:
1308   case SPIRV::StorageClass::HostOnlyINTEL:
1309     return true;
1310   default:
1311     return false;
1312   }
1313 }
1314 
1315 // Returns true ResVReg is referred only from global vars and OpName's.
1316 static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg) {
1317   bool IsGRef = false;
1318   bool IsAllowedRefs =
1319       std::all_of(MRI->use_instr_begin(ResVReg), MRI->use_instr_end(),
1320                   [&IsGRef](auto const &It) {
1321                     unsigned Opcode = It.getOpcode();
1322                     if (Opcode == SPIRV::OpConstantComposite ||
1323                         Opcode == SPIRV::OpVariable ||
1324                         isSpvIntrinsic(It, Intrinsic::spv_init_global))
1325                       return IsGRef = true;
1326                     return Opcode == SPIRV::OpName;
1327                   });
1328   return IsAllowedRefs && IsGRef;
1329 }
1330 
1331 Register SPIRVInstructionSelector::getUcharPtrTypeReg(
1332     MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
1333   return GR.getSPIRVTypeID(GR.getOrCreateSPIRVPointerType(
1334       GR.getOrCreateSPIRVIntegerType(8, I, TII), I, TII, SC));
1335 }
1336 
1337 MachineInstrBuilder
1338 SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
1339                                               Register Src, Register DestType,
1340                                               uint32_t Opcode) const {
1341   return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1342                  TII.get(SPIRV::OpSpecConstantOp))
1343       .addDef(Dest)
1344       .addUse(DestType)
1345       .addImm(Opcode)
1346       .addUse(Src);
1347 }
1348 
1349 MachineInstrBuilder
1350 SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
1351                                                SPIRVType *SrcPtrTy) const {
1352   SPIRVType *GenericPtrTy = GR.getOrCreateSPIRVPointerType(
1353       GR.getPointeeType(SrcPtrTy), I, TII, SPIRV::StorageClass::Generic);
1354   Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
1355   MRI->setType(Tmp, LLT::pointer(storageClassToAddressSpace(
1356                                      SPIRV::StorageClass::Generic),
1357                                  GR.getPointerSize()));
1358   MachineFunction *MF = I.getParent()->getParent();
1359   GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
1360   MachineInstrBuilder MIB = buildSpecConstantOp(
1361       I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
1362       static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
1363   GR.add(MIB.getInstr(), MF, Tmp);
1364   return MIB;
1365 }
1366 
1367 // In SPIR-V address space casting can only happen to and from the Generic
1368 // storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
1369 // pointers to and from Generic pointers. As such, we can convert e.g. from
1370 // Workgroup to Function by going via a Generic pointer as an intermediary. All
1371 // other combinations can only be done by a bitcast, and are probably not safe.
1372 bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
1373                                                    const SPIRVType *ResType,
1374                                                    MachineInstr &I) const {
1375   MachineBasicBlock &BB = *I.getParent();
1376   const DebugLoc &DL = I.getDebugLoc();
1377 
1378   Register SrcPtr = I.getOperand(1).getReg();
1379   SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
1380 
1381   // don't generate a cast for a null that may be represented by OpTypeInt
1382   if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
1383       ResType->getOpcode() != SPIRV::OpTypePointer)
1384     return BuildMI(BB, I, DL, TII.get(TargetOpcode::COPY))
1385         .addDef(ResVReg)
1386         .addUse(SrcPtr)
1387         .constrainAllUses(TII, TRI, RBI);
1388 
1389   SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
1390   SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
1391 
1392   if (isASCastInGVar(MRI, ResVReg)) {
1393     // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
1394     // are expressed by OpSpecConstantOp with an Opcode.
1395     // TODO: maybe insert a check whether the Kernel capability was declared and
1396     // so PtrCastToGeneric/GenericCastToPtr are available.
1397     unsigned SpecOpcode =
1398         DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
1399             ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
1400             : (SrcSC == SPIRV::StorageClass::Generic &&
1401                        isGenericCastablePtr(DstSC)
1402                    ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
1403                    : 0);
1404     // TODO: OpConstantComposite expects i8*, so we are forced to forget a
1405     // correct value of ResType and use general i8* instead. Maybe this should
1406     // be addressed in the emit-intrinsic step to infer a correct
1407     // OpConstantComposite type.
1408     if (SpecOpcode) {
1409       return buildSpecConstantOp(I, ResVReg, SrcPtr,
1410                                  getUcharPtrTypeReg(I, DstSC), SpecOpcode)
1411           .constrainAllUses(TII, TRI, RBI);
1412     } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1413       MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
1414       return MIB.constrainAllUses(TII, TRI, RBI) &&
1415              buildSpecConstantOp(
1416                  I, ResVReg, MIB->getOperand(0).getReg(),
1417                  getUcharPtrTypeReg(I, DstSC),
1418                  static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
1419                  .constrainAllUses(TII, TRI, RBI);
1420     }
1421   }
1422 
1423   // don't generate a cast between identical storage classes
1424   if (SrcSC == DstSC)
1425     return BuildMI(BB, I, DL, TII.get(TargetOpcode::COPY))
1426         .addDef(ResVReg)
1427         .addUse(SrcPtr)
1428         .constrainAllUses(TII, TRI, RBI);
1429 
1430   // Casting from an eligible pointer to Generic.
1431   if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
1432     return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1433   // Casting from Generic to an eligible pointer.
1434   if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
1435     return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1436   // Casting between 2 eligible pointers using Generic as an intermediary.
1437   if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1438     Register Tmp = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1439     SPIRVType *GenericPtrTy = GR.getOrCreateSPIRVPointerType(
1440         GR.getPointeeType(SrcPtrTy), I, TII, SPIRV::StorageClass::Generic);
1441     bool Success = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
1442                        .addDef(Tmp)
1443                        .addUse(GR.getSPIRVTypeID(GenericPtrTy))
1444                        .addUse(SrcPtr)
1445                        .constrainAllUses(TII, TRI, RBI);
1446     return Success && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
1447                           .addDef(ResVReg)
1448                           .addUse(GR.getSPIRVTypeID(ResType))
1449                           .addUse(Tmp)
1450                           .constrainAllUses(TII, TRI, RBI);
1451   }
1452 
1453   // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
1454   // be applied
1455   if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
1456     return selectUnOp(ResVReg, ResType, I,
1457                       SPIRV::OpPtrCastToCrossWorkgroupINTEL);
1458   if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
1459     return selectUnOp(ResVReg, ResType, I,
1460                       SPIRV::OpCrossWorkgroupCastToPtrINTEL);
1461   if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
1462     return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1463   if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
1464     return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1465 
1466   // Bitcast for pointers requires that the address spaces must match
1467   return false;
1468 }
1469 
1470 static unsigned getFCmpOpcode(unsigned PredNum) {
1471   auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1472   switch (Pred) {
1473   case CmpInst::FCMP_OEQ:
1474     return SPIRV::OpFOrdEqual;
1475   case CmpInst::FCMP_OGE:
1476     return SPIRV::OpFOrdGreaterThanEqual;
1477   case CmpInst::FCMP_OGT:
1478     return SPIRV::OpFOrdGreaterThan;
1479   case CmpInst::FCMP_OLE:
1480     return SPIRV::OpFOrdLessThanEqual;
1481   case CmpInst::FCMP_OLT:
1482     return SPIRV::OpFOrdLessThan;
1483   case CmpInst::FCMP_ONE:
1484     return SPIRV::OpFOrdNotEqual;
1485   case CmpInst::FCMP_ORD:
1486     return SPIRV::OpOrdered;
1487   case CmpInst::FCMP_UEQ:
1488     return SPIRV::OpFUnordEqual;
1489   case CmpInst::FCMP_UGE:
1490     return SPIRV::OpFUnordGreaterThanEqual;
1491   case CmpInst::FCMP_UGT:
1492     return SPIRV::OpFUnordGreaterThan;
1493   case CmpInst::FCMP_ULE:
1494     return SPIRV::OpFUnordLessThanEqual;
1495   case CmpInst::FCMP_ULT:
1496     return SPIRV::OpFUnordLessThan;
1497   case CmpInst::FCMP_UNE:
1498     return SPIRV::OpFUnordNotEqual;
1499   case CmpInst::FCMP_UNO:
1500     return SPIRV::OpUnordered;
1501   default:
1502     llvm_unreachable("Unknown predicate type for FCmp");
1503   }
1504 }
1505 
1506 static unsigned getICmpOpcode(unsigned PredNum) {
1507   auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1508   switch (Pred) {
1509   case CmpInst::ICMP_EQ:
1510     return SPIRV::OpIEqual;
1511   case CmpInst::ICMP_NE:
1512     return SPIRV::OpINotEqual;
1513   case CmpInst::ICMP_SGE:
1514     return SPIRV::OpSGreaterThanEqual;
1515   case CmpInst::ICMP_SGT:
1516     return SPIRV::OpSGreaterThan;
1517   case CmpInst::ICMP_SLE:
1518     return SPIRV::OpSLessThanEqual;
1519   case CmpInst::ICMP_SLT:
1520     return SPIRV::OpSLessThan;
1521   case CmpInst::ICMP_UGE:
1522     return SPIRV::OpUGreaterThanEqual;
1523   case CmpInst::ICMP_UGT:
1524     return SPIRV::OpUGreaterThan;
1525   case CmpInst::ICMP_ULE:
1526     return SPIRV::OpULessThanEqual;
1527   case CmpInst::ICMP_ULT:
1528     return SPIRV::OpULessThan;
1529   default:
1530     llvm_unreachable("Unknown predicate type for ICmp");
1531   }
1532 }
1533 
1534 static unsigned getPtrCmpOpcode(unsigned Pred) {
1535   switch (static_cast<CmpInst::Predicate>(Pred)) {
1536   case CmpInst::ICMP_EQ:
1537     return SPIRV::OpPtrEqual;
1538   case CmpInst::ICMP_NE:
1539     return SPIRV::OpPtrNotEqual;
1540   default:
1541     llvm_unreachable("Unknown predicate type for pointer comparison");
1542   }
1543 }
1544 
1545 // Return the logical operation, or abort if none exists.
1546 static unsigned getBoolCmpOpcode(unsigned PredNum) {
1547   auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1548   switch (Pred) {
1549   case CmpInst::ICMP_EQ:
1550     return SPIRV::OpLogicalEqual;
1551   case CmpInst::ICMP_NE:
1552     return SPIRV::OpLogicalNotEqual;
1553   default:
1554     llvm_unreachable("Unknown predicate type for Bool comparison");
1555   }
1556 }
1557 
1558 static APFloat getZeroFP(const Type *LLVMFloatTy) {
1559   if (!LLVMFloatTy)
1560     return APFloat::getZero(APFloat::IEEEsingle());
1561   switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1562   case Type::HalfTyID:
1563     return APFloat::getZero(APFloat::IEEEhalf());
1564   default:
1565   case Type::FloatTyID:
1566     return APFloat::getZero(APFloat::IEEEsingle());
1567   case Type::DoubleTyID:
1568     return APFloat::getZero(APFloat::IEEEdouble());
1569   }
1570 }
1571 
1572 static APFloat getOneFP(const Type *LLVMFloatTy) {
1573   if (!LLVMFloatTy)
1574     return APFloat::getOne(APFloat::IEEEsingle());
1575   switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1576   case Type::HalfTyID:
1577     return APFloat::getOne(APFloat::IEEEhalf());
1578   default:
1579   case Type::FloatTyID:
1580     return APFloat::getOne(APFloat::IEEEsingle());
1581   case Type::DoubleTyID:
1582     return APFloat::getOne(APFloat::IEEEdouble());
1583   }
1584 }
1585 
1586 bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
1587                                               const SPIRVType *ResType,
1588                                               MachineInstr &I,
1589                                               unsigned OpAnyOrAll) const {
1590   assert(I.getNumOperands() == 3);
1591   assert(I.getOperand(2).isReg());
1592   MachineBasicBlock &BB = *I.getParent();
1593   Register InputRegister = I.getOperand(2).getReg();
1594   SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
1595 
1596   if (!InputType)
1597     report_fatal_error("Input Type could not be determined.");
1598 
1599   bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
1600   bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
1601   if (IsBoolTy && !IsVectorTy) {
1602     assert(ResVReg == I.getOperand(0).getReg());
1603     return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1604                    TII.get(TargetOpcode::COPY))
1605         .addDef(ResVReg)
1606         .addUse(InputRegister)
1607         .constrainAllUses(TII, TRI, RBI);
1608   }
1609 
1610   bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
1611   unsigned SpirvNotEqualId =
1612       IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
1613   SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
1614   SPIRVType *SpvBoolTy = SpvBoolScalarTy;
1615   Register NotEqualReg = ResVReg;
1616 
1617   if (IsVectorTy) {
1618     NotEqualReg = IsBoolTy ? InputRegister
1619                            : MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1620     const unsigned NumElts = InputType->getOperand(2).getImm();
1621     SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
1622   }
1623 
1624   if (!IsBoolTy) {
1625     Register ConstZeroReg =
1626         IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
1627 
1628     BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
1629         .addDef(NotEqualReg)
1630         .addUse(GR.getSPIRVTypeID(SpvBoolTy))
1631         .addUse(InputRegister)
1632         .addUse(ConstZeroReg)
1633         .constrainAllUses(TII, TRI, RBI);
1634   }
1635 
1636   if (!IsVectorTy)
1637     return true;
1638 
1639   return BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
1640       .addDef(ResVReg)
1641       .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
1642       .addUse(NotEqualReg)
1643       .constrainAllUses(TII, TRI, RBI);
1644 }
1645 
1646 bool SPIRVInstructionSelector::selectAll(Register ResVReg,
1647                                          const SPIRVType *ResType,
1648                                          MachineInstr &I) const {
1649   return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
1650 }
1651 
1652 bool SPIRVInstructionSelector::selectAny(Register ResVReg,
1653                                          const SPIRVType *ResType,
1654                                          MachineInstr &I) const {
1655   return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
1656 }
1657 
1658 // Select the OpDot instruction for the given float dot
1659 bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
1660                                               const SPIRVType *ResType,
1661                                               MachineInstr &I) const {
1662   assert(I.getNumOperands() == 4);
1663   assert(I.getOperand(2).isReg());
1664   assert(I.getOperand(3).isReg());
1665 
1666   [[maybe_unused]] SPIRVType *VecType =
1667       GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
1668 
1669   assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
1670          GR.getScalarOrVectorComponentCount(VecType) > 1 &&
1671          "dot product requires a vector of at least 2 components");
1672 
1673   [[maybe_unused]] SPIRVType *EltType =
1674       GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
1675 
1676   assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
1677 
1678   MachineBasicBlock &BB = *I.getParent();
1679   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
1680       .addDef(ResVReg)
1681       .addUse(GR.getSPIRVTypeID(ResType))
1682       .addUse(I.getOperand(2).getReg())
1683       .addUse(I.getOperand(3).getReg())
1684       .constrainAllUses(TII, TRI, RBI);
1685 }
1686 
1687 // Since pre-1.6 SPIRV has no integer dot implementation,
1688 // expand by piecewise multiplying and adding the results
1689 bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
1690                                                 const SPIRVType *ResType,
1691                                                 MachineInstr &I) const {
1692   assert(I.getNumOperands() == 4);
1693   assert(I.getOperand(2).isReg());
1694   assert(I.getOperand(3).isReg());
1695   MachineBasicBlock &BB = *I.getParent();
1696 
1697   // Multiply the vectors, then sum the results
1698   Register Vec0 = I.getOperand(2).getReg();
1699   Register Vec1 = I.getOperand(3).getReg();
1700   Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
1701   SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
1702 
1703   bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
1704                     .addDef(TmpVec)
1705                     .addUse(GR.getSPIRVTypeID(VecType))
1706                     .addUse(Vec0)
1707                     .addUse(Vec1)
1708                     .constrainAllUses(TII, TRI, RBI);
1709 
1710   assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
1711          GR.getScalarOrVectorComponentCount(VecType) > 1 &&
1712          "dot product requires a vector of at least 2 components");
1713 
1714   Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
1715   Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1716                 .addDef(Res)
1717                 .addUse(GR.getSPIRVTypeID(ResType))
1718                 .addUse(TmpVec)
1719                 .addImm(0)
1720                 .constrainAllUses(TII, TRI, RBI);
1721 
1722   for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
1723     Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
1724 
1725     Result &=
1726         BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1727             .addDef(Elt)
1728             .addUse(GR.getSPIRVTypeID(ResType))
1729             .addUse(TmpVec)
1730             .addImm(i)
1731             .constrainAllUses(TII, TRI, RBI);
1732 
1733     Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
1734                        ? MRI->createVirtualRegister(GR.getRegClass(ResType))
1735                        : ResVReg;
1736 
1737     Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
1738                   .addDef(Sum)
1739                   .addUse(GR.getSPIRVTypeID(ResType))
1740                   .addUse(Res)
1741                   .addUse(Elt)
1742                   .constrainAllUses(TII, TRI, RBI);
1743     Res = Sum;
1744   }
1745 
1746   return Result;
1747 }
1748 
1749 template <bool Signed>
1750 bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
1751                                                    const SPIRVType *ResType,
1752                                                    MachineInstr &I) const {
1753   assert(I.getNumOperands() == 5);
1754   assert(I.getOperand(2).isReg());
1755   assert(I.getOperand(3).isReg());
1756   assert(I.getOperand(4).isReg());
1757   MachineBasicBlock &BB = *I.getParent();
1758 
1759   auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
1760   Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
1761   bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
1762                     .addDef(Dot)
1763                     .addUse(GR.getSPIRVTypeID(ResType))
1764                     .addUse(I.getOperand(2).getReg())
1765                     .addUse(I.getOperand(3).getReg())
1766                     .constrainAllUses(TII, TRI, RBI);
1767 
1768   Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
1769                 .addDef(ResVReg)
1770                 .addUse(GR.getSPIRVTypeID(ResType))
1771                 .addUse(Dot)
1772                 .addUse(I.getOperand(4).getReg())
1773                 .constrainAllUses(TII, TRI, RBI);
1774 
1775   return Result;
1776 }
1777 
1778 // Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
1779 // extract the elements of the packed inputs, multiply them and add the result
1780 // to the accumulator.
1781 template <bool Signed>
1782 bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
1783     Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
1784   assert(I.getNumOperands() == 5);
1785   assert(I.getOperand(2).isReg());
1786   assert(I.getOperand(3).isReg());
1787   assert(I.getOperand(4).isReg());
1788   MachineBasicBlock &BB = *I.getParent();
1789 
1790   bool Result = false;
1791 
1792   // Acc = C
1793   Register Acc = I.getOperand(4).getReg();
1794   SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
1795   auto ExtractOp =
1796       Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
1797 
1798   // Extract the i8 element, multiply and add it to the accumulator
1799   for (unsigned i = 0; i < 4; i++) {
1800     // A[i]
1801     Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1802     Result |= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
1803                   .addDef(AElt)
1804                   .addUse(GR.getSPIRVTypeID(ResType))
1805                   .addUse(I.getOperand(2).getReg())
1806                   .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII))
1807                   .addUse(GR.getOrCreateConstInt(8, I, EltType, TII))
1808                   .constrainAllUses(TII, TRI, RBI);
1809 
1810     // B[i]
1811     Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1812     Result |= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
1813                   .addDef(BElt)
1814                   .addUse(GR.getSPIRVTypeID(ResType))
1815                   .addUse(I.getOperand(3).getReg())
1816                   .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII))
1817                   .addUse(GR.getOrCreateConstInt(8, I, EltType, TII))
1818                   .constrainAllUses(TII, TRI, RBI);
1819 
1820     // A[i] * B[i]
1821     Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1822     Result |= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
1823                   .addDef(Mul)
1824                   .addUse(GR.getSPIRVTypeID(ResType))
1825                   .addUse(AElt)
1826                   .addUse(BElt)
1827                   .constrainAllUses(TII, TRI, RBI);
1828 
1829     // Discard 24 highest-bits so that stored i32 register is i8 equivalent
1830     Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
1831     Result |= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
1832                   .addDef(MaskMul)
1833                   .addUse(GR.getSPIRVTypeID(ResType))
1834                   .addUse(Mul)
1835                   .addUse(GR.getOrCreateConstInt(0, I, EltType, TII))
1836                   .addUse(GR.getOrCreateConstInt(8, I, EltType, TII))
1837                   .constrainAllUses(TII, TRI, RBI);
1838 
1839     // Acc = Acc + A[i] * B[i]
1840     Register Sum =
1841         i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
1842     Result |= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
1843                   .addDef(Sum)
1844                   .addUse(GR.getSPIRVTypeID(ResType))
1845                   .addUse(Acc)
1846                   .addUse(MaskMul)
1847                   .constrainAllUses(TII, TRI, RBI);
1848 
1849     Acc = Sum;
1850   }
1851 
1852   return Result;
1853 }
1854 
1855 /// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
1856 /// does not have a saturate builtin.
1857 bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
1858                                               const SPIRVType *ResType,
1859                                               MachineInstr &I) const {
1860   assert(I.getNumOperands() == 3);
1861   assert(I.getOperand(2).isReg());
1862   MachineBasicBlock &BB = *I.getParent();
1863   Register VZero = buildZerosValF(ResType, I);
1864   Register VOne = buildOnesValF(ResType, I);
1865 
1866   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1867       .addDef(ResVReg)
1868       .addUse(GR.getSPIRVTypeID(ResType))
1869       .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
1870       .addImm(GL::FClamp)
1871       .addUse(I.getOperand(2).getReg())
1872       .addUse(VZero)
1873       .addUse(VOne)
1874       .constrainAllUses(TII, TRI, RBI);
1875 }
1876 
1877 bool SPIRVInstructionSelector::selectSign(Register ResVReg,
1878                                           const SPIRVType *ResType,
1879                                           MachineInstr &I) const {
1880   assert(I.getNumOperands() == 3);
1881   assert(I.getOperand(2).isReg());
1882   MachineBasicBlock &BB = *I.getParent();
1883   Register InputRegister = I.getOperand(2).getReg();
1884   SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
1885   auto &DL = I.getDebugLoc();
1886 
1887   if (!InputType)
1888     report_fatal_error("Input Type could not be determined.");
1889 
1890   bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
1891 
1892   unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
1893   unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
1894 
1895   bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
1896 
1897   auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
1898   Register SignReg = NeedsConversion
1899                          ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
1900                          : ResVReg;
1901 
1902   bool Result =
1903       BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
1904           .addDef(SignReg)
1905           .addUse(GR.getSPIRVTypeID(InputType))
1906           .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
1907           .addImm(SignOpcode)
1908           .addUse(InputRegister)
1909           .constrainAllUses(TII, TRI, RBI);
1910 
1911   if (NeedsConversion) {
1912     auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
1913     Result |= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
1914                   .addDef(ResVReg)
1915                   .addUse(GR.getSPIRVTypeID(ResType))
1916                   .addUse(SignReg)
1917                   .constrainAllUses(TII, TRI, RBI);
1918   }
1919 
1920   return Result;
1921 }
1922 
1923 bool SPIRVInstructionSelector::selectWaveActiveCountBits(
1924     Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
1925   assert(I.getNumOperands() == 3);
1926   assert(I.getOperand(2).isReg());
1927   MachineBasicBlock &BB = *I.getParent();
1928 
1929   SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
1930   SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
1931   Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
1932 
1933   bool Result =
1934       BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpGroupNonUniformBallot))
1935           .addDef(BallotReg)
1936           .addUse(GR.getSPIRVTypeID(BallotType))
1937           .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII))
1938           .addUse(I.getOperand(2).getReg())
1939           .constrainAllUses(TII, TRI, RBI);
1940 
1941   Result &=
1942       BuildMI(BB, I, I.getDebugLoc(),
1943               TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
1944           .addDef(ResVReg)
1945           .addUse(GR.getSPIRVTypeID(ResType))
1946           .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII))
1947           .addImm(SPIRV::GroupOperation::Reduce)
1948           .addUse(BallotReg)
1949           .constrainAllUses(TII, TRI, RBI);
1950 
1951   return Result;
1952 }
1953 
1954 bool SPIRVInstructionSelector::selectWaveReadLaneAt(Register ResVReg,
1955                                                     const SPIRVType *ResType,
1956                                                     MachineInstr &I) const {
1957   assert(I.getNumOperands() == 4);
1958   assert(I.getOperand(2).isReg());
1959   assert(I.getOperand(3).isReg());
1960   MachineBasicBlock &BB = *I.getParent();
1961 
1962   // IntTy is used to define the execution scope, set to 3 to denote a
1963   // cross-lane interaction equivalent to a SPIR-V subgroup.
1964   SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
1965   return BuildMI(BB, I, I.getDebugLoc(),
1966                  TII.get(SPIRV::OpGroupNonUniformShuffle))
1967       .addDef(ResVReg)
1968       .addUse(GR.getSPIRVTypeID(ResType))
1969       .addUse(GR.getOrCreateConstInt(3, I, IntTy, TII))
1970       .addUse(I.getOperand(2).getReg())
1971       .addUse(I.getOperand(3).getReg());
1972 }
1973 
1974 bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
1975                                                 const SPIRVType *ResType,
1976                                                 MachineInstr &I) const {
1977   MachineBasicBlock &BB = *I.getParent();
1978   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
1979       .addDef(ResVReg)
1980       .addUse(GR.getSPIRVTypeID(ResType))
1981       .addUse(I.getOperand(1).getReg())
1982       .constrainAllUses(TII, TRI, RBI);
1983 }
1984 
1985 bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
1986                                             const SPIRVType *ResType,
1987                                             MachineInstr &I) const {
1988   // There is no way to implement `freeze` correctly without support on SPIR-V
1989   // standard side, but we may at least address a simple (static) case when
1990   // undef/poison value presence is obvious. The main benefit of even
1991   // incomplete `freeze` support is preventing of translation from crashing due
1992   // to lack of support on legalization and instruction selection steps.
1993   if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
1994     return false;
1995   Register OpReg = I.getOperand(1).getReg();
1996   if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
1997     Register Reg;
1998     switch (Def->getOpcode()) {
1999     case SPIRV::ASSIGN_TYPE:
2000       if (MachineInstr *AssignToDef =
2001               MRI->getVRegDef(Def->getOperand(1).getReg())) {
2002         if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2003           Reg = Def->getOperand(2).getReg();
2004       }
2005       break;
2006     case SPIRV::OpUndef:
2007       Reg = Def->getOperand(1).getReg();
2008       break;
2009     }
2010     unsigned DestOpCode;
2011     if (Reg.isValid()) {
2012       DestOpCode = SPIRV::OpConstantNull;
2013     } else {
2014       DestOpCode = TargetOpcode::COPY;
2015       Reg = OpReg;
2016     }
2017     return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2018         .addDef(I.getOperand(0).getReg())
2019         .addUse(Reg)
2020         .constrainAllUses(TII, TRI, RBI);
2021   }
2022   return false;
2023 }
2024 
2025 static unsigned getArrayComponentCount(MachineRegisterInfo *MRI,
2026                                        const SPIRVType *ResType) {
2027   Register OpReg = ResType->getOperand(2).getReg();
2028   SPIRVType *OpDef = MRI->getVRegDef(OpReg);
2029   if (!OpDef)
2030     return 0;
2031   if (OpDef->getOpcode() == SPIRV::ASSIGN_TYPE &&
2032       OpDef->getOperand(1).isReg()) {
2033     if (SPIRVType *RefDef = MRI->getVRegDef(OpDef->getOperand(1).getReg()))
2034       OpDef = RefDef;
2035   }
2036   unsigned N = OpDef->getOpcode() == TargetOpcode::G_CONSTANT
2037                    ? OpDef->getOperand(1).getCImm()->getValue().getZExtValue()
2038                    : 0;
2039   return N;
2040 }
2041 
2042 // Return true if the type represents a constant register
2043 static bool isConstReg(MachineRegisterInfo *MRI, SPIRVType *OpDef,
2044                        SmallPtrSet<SPIRVType *, 4> &Visited) {
2045   if (OpDef->getOpcode() == SPIRV::ASSIGN_TYPE &&
2046       OpDef->getOperand(1).isReg()) {
2047     if (SPIRVType *RefDef = MRI->getVRegDef(OpDef->getOperand(1).getReg()))
2048       OpDef = RefDef;
2049   }
2050 
2051   if (Visited.contains(OpDef))
2052     return true;
2053   Visited.insert(OpDef);
2054 
2055   unsigned Opcode = OpDef->getOpcode();
2056   switch (Opcode) {
2057   case TargetOpcode::G_CONSTANT:
2058   case TargetOpcode::G_FCONSTANT:
2059     return true;
2060   case TargetOpcode::G_INTRINSIC:
2061   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
2062   case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
2063     return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
2064            Intrinsic::spv_const_composite;
2065   case TargetOpcode::G_BUILD_VECTOR:
2066   case TargetOpcode::G_SPLAT_VECTOR: {
2067     for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
2068          i++) {
2069       SPIRVType *OpNestedDef =
2070           OpDef->getOperand(i).isReg()
2071               ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
2072               : nullptr;
2073       if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
2074         return false;
2075     }
2076     return true;
2077   }
2078   }
2079   return false;
2080 }
2081 
2082 // Return true if the virtual register represents a constant
2083 static bool isConstReg(MachineRegisterInfo *MRI, Register OpReg) {
2084   SmallPtrSet<SPIRVType *, 4> Visited;
2085   if (SPIRVType *OpDef = MRI->getVRegDef(OpReg))
2086     return isConstReg(MRI, OpDef, Visited);
2087   return false;
2088 }
2089 
2090 bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2091                                                  const SPIRVType *ResType,
2092                                                  MachineInstr &I) const {
2093   unsigned N = 0;
2094   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2095     N = GR.getScalarOrVectorComponentCount(ResType);
2096   else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2097     N = getArrayComponentCount(MRI, ResType);
2098   else
2099     report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2100   if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2101     report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2102 
2103   // check if we may construct a constant vector
2104   bool IsConst = true;
2105   for (unsigned i = I.getNumExplicitDefs();
2106        i < I.getNumExplicitOperands() && IsConst; ++i)
2107     if (!isConstReg(MRI, I.getOperand(i).getReg()))
2108       IsConst = false;
2109 
2110   if (!IsConst && N < 2)
2111     report_fatal_error(
2112         "There must be at least two constituent operands in a vector");
2113 
2114   auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2115                      TII.get(IsConst ? SPIRV::OpConstantComposite
2116                                      : SPIRV::OpCompositeConstruct))
2117                  .addDef(ResVReg)
2118                  .addUse(GR.getSPIRVTypeID(ResType));
2119   for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2120     MIB.addUse(I.getOperand(i).getReg());
2121   return MIB.constrainAllUses(TII, TRI, RBI);
2122 }
2123 
2124 bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2125                                                  const SPIRVType *ResType,
2126                                                  MachineInstr &I) const {
2127   unsigned N = 0;
2128   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2129     N = GR.getScalarOrVectorComponentCount(ResType);
2130   else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2131     N = getArrayComponentCount(MRI, ResType);
2132   else
2133     report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2134 
2135   unsigned OpIdx = I.getNumExplicitDefs();
2136   if (!I.getOperand(OpIdx).isReg())
2137     report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2138 
2139   // check if we may construct a constant vector
2140   Register OpReg = I.getOperand(OpIdx).getReg();
2141   bool IsConst = isConstReg(MRI, OpReg);
2142 
2143   if (!IsConst && N < 2)
2144     report_fatal_error(
2145         "There must be at least two constituent operands in a vector");
2146 
2147   auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2148                      TII.get(IsConst ? SPIRV::OpConstantComposite
2149                                      : SPIRV::OpCompositeConstruct))
2150                  .addDef(ResVReg)
2151                  .addUse(GR.getSPIRVTypeID(ResType));
2152   for (unsigned i = 0; i < N; ++i)
2153     MIB.addUse(OpReg);
2154   return MIB.constrainAllUses(TII, TRI, RBI);
2155 }
2156 
2157 bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2158                                          const SPIRVType *ResType,
2159                                          unsigned CmpOpc,
2160                                          MachineInstr &I) const {
2161   Register Cmp0 = I.getOperand(2).getReg();
2162   Register Cmp1 = I.getOperand(3).getReg();
2163   assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2164              GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2165          "CMP operands should have the same type");
2166   return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2167       .addDef(ResVReg)
2168       .addUse(GR.getSPIRVTypeID(ResType))
2169       .addUse(Cmp0)
2170       .addUse(Cmp1)
2171       .constrainAllUses(TII, TRI, RBI);
2172 }
2173 
2174 bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2175                                           const SPIRVType *ResType,
2176                                           MachineInstr &I) const {
2177   auto Pred = I.getOperand(1).getPredicate();
2178   unsigned CmpOpc;
2179 
2180   Register CmpOperand = I.getOperand(2).getReg();
2181   if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2182     CmpOpc = getPtrCmpOpcode(Pred);
2183   else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2184     CmpOpc = getBoolCmpOpcode(Pred);
2185   else
2186     CmpOpc = getICmpOpcode(Pred);
2187   return selectCmp(ResVReg, ResType, CmpOpc, I);
2188 }
2189 
2190 void SPIRVInstructionSelector::renderFImm64(MachineInstrBuilder &MIB,
2191                                             const MachineInstr &I,
2192                                             int OpIdx) const {
2193   assert(I.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
2194          "Expected G_FCONSTANT");
2195   const ConstantFP *FPImm = I.getOperand(1).getFPImm();
2196   addNumImm(FPImm->getValueAPF().bitcastToAPInt(), MIB);
2197 }
2198 
2199 void SPIRVInstructionSelector::renderImm32(MachineInstrBuilder &MIB,
2200                                            const MachineInstr &I,
2201                                            int OpIdx) const {
2202   assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
2203          "Expected G_CONSTANT");
2204   addNumImm(I.getOperand(1).getCImm()->getValue(), MIB);
2205 }
2206 
2207 Register
2208 SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2209                                            const SPIRVType *ResType) const {
2210   Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2211   const SPIRVType *SpvI32Ty =
2212       ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2213   // Find a constant in DT or build a new one.
2214   auto ConstInt = ConstantInt::get(LLVMTy, Val);
2215   Register NewReg = GR.find(ConstInt, GR.CurMF);
2216   if (!NewReg.isValid()) {
2217     NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2218     GR.add(ConstInt, GR.CurMF, NewReg);
2219     MachineInstr *MI;
2220     MachineBasicBlock &BB = *I.getParent();
2221     if (Val == 0) {
2222       MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2223                .addDef(NewReg)
2224                .addUse(GR.getSPIRVTypeID(SpvI32Ty));
2225     } else {
2226       MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2227                .addDef(NewReg)
2228                .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2229                .addImm(APInt(32, Val).getZExtValue());
2230     }
2231     constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
2232   }
2233   return NewReg;
2234 }
2235 
2236 bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
2237                                           const SPIRVType *ResType,
2238                                           MachineInstr &I) const {
2239   unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
2240   return selectCmp(ResVReg, ResType, CmpOp, I);
2241 }
2242 
2243 Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
2244                                                  MachineInstr &I) const {
2245   // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2246   bool ZeroAsNull = STI.isOpenCLEnv();
2247   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2248     return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
2249   return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2250 }
2251 
2252 Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
2253                                                   MachineInstr &I) const {
2254   // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2255   bool ZeroAsNull = STI.isOpenCLEnv();
2256   APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
2257   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2258     return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
2259   return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
2260 }
2261 
2262 Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
2263                                                  MachineInstr &I) const {
2264   // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2265   bool ZeroAsNull = STI.isOpenCLEnv();
2266   APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
2267   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2268     return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
2269   return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
2270 }
2271 
2272 Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
2273                                                 const SPIRVType *ResType,
2274                                                 MachineInstr &I) const {
2275   unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2276   APInt One =
2277       AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
2278   if (ResType->getOpcode() == SPIRV::OpTypeVector)
2279     return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
2280   return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
2281 }
2282 
2283 bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
2284                                             const SPIRVType *ResType,
2285                                             MachineInstr &I,
2286                                             bool IsSigned) const {
2287   // To extend a bool, we need to use OpSelect between constants.
2288   Register ZeroReg = buildZerosVal(ResType, I);
2289   Register OneReg = buildOnesVal(IsSigned, ResType, I);
2290   bool IsScalarBool =
2291       GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2292   unsigned Opcode =
2293       IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectSIVCond;
2294   return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2295       .addDef(ResVReg)
2296       .addUse(GR.getSPIRVTypeID(ResType))
2297       .addUse(I.getOperand(1).getReg())
2298       .addUse(OneReg)
2299       .addUse(ZeroReg)
2300       .constrainAllUses(TII, TRI, RBI);
2301 }
2302 
2303 bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
2304                                           const SPIRVType *ResType,
2305                                           MachineInstr &I, bool IsSigned,
2306                                           unsigned Opcode) const {
2307   Register SrcReg = I.getOperand(1).getReg();
2308   // We can convert bool value directly to float type without OpConvert*ToF,
2309   // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
2310   if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
2311     unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2312     SPIRVType *TmpType = GR.getOrCreateSPIRVIntegerType(BitWidth, I, TII);
2313     if (ResType->getOpcode() == SPIRV::OpTypeVector) {
2314       const unsigned NumElts = ResType->getOperand(2).getImm();
2315       TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
2316     }
2317     SrcReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2318     selectSelect(SrcReg, TmpType, I, false);
2319   }
2320   return selectUnOpWithSrc(ResVReg, ResType, I, SrcReg, Opcode);
2321 }
2322 
2323 bool SPIRVInstructionSelector::selectExt(Register ResVReg,
2324                                          const SPIRVType *ResType,
2325                                          MachineInstr &I, bool IsSigned) const {
2326   Register SrcReg = I.getOperand(1).getReg();
2327   if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
2328     return selectSelect(ResVReg, ResType, I, IsSigned);
2329 
2330   SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
2331   if (SrcType == ResType) {
2332     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(ResVReg);
2333     const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
2334     if (DstRC != SrcRC && SrcRC)
2335       MRI->setRegClass(ResVReg, SrcRC);
2336     return BuildMI(*I.getParent(), I, I.getDebugLoc(),
2337                    TII.get(TargetOpcode::COPY))
2338         .addDef(ResVReg)
2339         .addUse(SrcReg)
2340         .constrainAllUses(TII, TRI, RBI);
2341   }
2342 
2343   unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2344   return selectUnOp(ResVReg, ResType, I, Opcode);
2345 }
2346 
2347 bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
2348                                                Register ResVReg,
2349                                                MachineInstr &I,
2350                                                const SPIRVType *IntTy,
2351                                                const SPIRVType *BoolTy) const {
2352   // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
2353   Register BitIntReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2354   bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
2355   unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
2356   Register Zero = buildZerosVal(IntTy, I);
2357   Register One = buildOnesVal(false, IntTy, I);
2358   MachineBasicBlock &BB = *I.getParent();
2359   BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2360       .addDef(BitIntReg)
2361       .addUse(GR.getSPIRVTypeID(IntTy))
2362       .addUse(IntReg)
2363       .addUse(One)
2364       .constrainAllUses(TII, TRI, RBI);
2365   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
2366       .addDef(ResVReg)
2367       .addUse(GR.getSPIRVTypeID(BoolTy))
2368       .addUse(BitIntReg)
2369       .addUse(Zero)
2370       .constrainAllUses(TII, TRI, RBI);
2371 }
2372 
2373 bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
2374                                            const SPIRVType *ResType,
2375                                            MachineInstr &I) const {
2376   Register IntReg = I.getOperand(1).getReg();
2377   const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
2378   if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
2379     return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
2380   if (ArgType == ResType) {
2381     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(ResVReg);
2382     const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(IntReg);
2383     if (DstRC != SrcRC && SrcRC)
2384       MRI->setRegClass(ResVReg, SrcRC);
2385     return BuildMI(*I.getParent(), I, I.getDebugLoc(),
2386                    TII.get(TargetOpcode::COPY))
2387         .addDef(ResVReg)
2388         .addUse(IntReg)
2389         .constrainAllUses(TII, TRI, RBI);
2390   }
2391   bool IsSigned = GR.isScalarOrVectorSigned(ResType);
2392   unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2393   return selectUnOp(ResVReg, ResType, I, Opcode);
2394 }
2395 
2396 bool SPIRVInstructionSelector::selectConst(Register ResVReg,
2397                                            const SPIRVType *ResType,
2398                                            const APInt &Imm,
2399                                            MachineInstr &I) const {
2400   unsigned TyOpcode = ResType->getOpcode();
2401   assert(TyOpcode != SPIRV::OpTypePointer || Imm.isZero());
2402   MachineBasicBlock &BB = *I.getParent();
2403   if ((TyOpcode == SPIRV::OpTypePointer || TyOpcode == SPIRV::OpTypeEvent) &&
2404       Imm.isZero())
2405     return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2406         .addDef(ResVReg)
2407         .addUse(GR.getSPIRVTypeID(ResType))
2408         .constrainAllUses(TII, TRI, RBI);
2409   if (TyOpcode == SPIRV::OpTypeInt) {
2410     assert(Imm.getBitWidth() <= 64 && "Unsupported integer width!");
2411     Register Reg = GR.getOrCreateConstInt(Imm.getZExtValue(), I, ResType, TII);
2412     if (Reg == ResVReg)
2413       return true;
2414     return BuildMI(BB, I, I.getDebugLoc(), TII.get(TargetOpcode::COPY))
2415         .addDef(ResVReg)
2416         .addUse(Reg)
2417         .constrainAllUses(TII, TRI, RBI);
2418   }
2419   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2420                  .addDef(ResVReg)
2421                  .addUse(GR.getSPIRVTypeID(ResType));
2422   // <=32-bit integers should be caught by the sdag pattern.
2423   assert(Imm.getBitWidth() > 32);
2424   addNumImm(Imm, MIB);
2425   return MIB.constrainAllUses(TII, TRI, RBI);
2426 }
2427 
2428 bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
2429                                              const SPIRVType *ResType,
2430                                              MachineInstr &I) const {
2431   return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2432       .addDef(ResVReg)
2433       .addUse(GR.getSPIRVTypeID(ResType))
2434       .constrainAllUses(TII, TRI, RBI);
2435 }
2436 
2437 static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI) {
2438   assert(MO.isReg());
2439   const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg());
2440   if (TypeInst->getOpcode() == SPIRV::ASSIGN_TYPE) {
2441     assert(TypeInst->getOperand(1).isReg());
2442     MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg());
2443     return ImmInst->getOpcode() == TargetOpcode::G_CONSTANT;
2444   }
2445   return TypeInst->getOpcode() == SPIRV::OpConstantI;
2446 }
2447 
2448 static int64_t foldImm(const MachineOperand &MO, MachineRegisterInfo *MRI) {
2449   const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg());
2450   if (TypeInst->getOpcode() == SPIRV::OpConstantI)
2451     return TypeInst->getOperand(2).getImm();
2452   MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg());
2453   assert(ImmInst->getOpcode() == TargetOpcode::G_CONSTANT);
2454   return ImmInst->getOperand(1).getCImm()->getZExtValue();
2455 }
2456 
2457 bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
2458                                                const SPIRVType *ResType,
2459                                                MachineInstr &I) const {
2460   MachineBasicBlock &BB = *I.getParent();
2461   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
2462                  .addDef(ResVReg)
2463                  .addUse(GR.getSPIRVTypeID(ResType))
2464                  // object to insert
2465                  .addUse(I.getOperand(3).getReg())
2466                  // composite to insert into
2467                  .addUse(I.getOperand(2).getReg());
2468   for (unsigned i = 4; i < I.getNumOperands(); i++)
2469     MIB.addImm(foldImm(I.getOperand(i), MRI));
2470   return MIB.constrainAllUses(TII, TRI, RBI);
2471 }
2472 
2473 bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
2474                                                 const SPIRVType *ResType,
2475                                                 MachineInstr &I) const {
2476   MachineBasicBlock &BB = *I.getParent();
2477   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2478                  .addDef(ResVReg)
2479                  .addUse(GR.getSPIRVTypeID(ResType))
2480                  .addUse(I.getOperand(2).getReg());
2481   for (unsigned i = 3; i < I.getNumOperands(); i++)
2482     MIB.addImm(foldImm(I.getOperand(i), MRI));
2483   return MIB.constrainAllUses(TII, TRI, RBI);
2484 }
2485 
2486 bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
2487                                                const SPIRVType *ResType,
2488                                                MachineInstr &I) const {
2489   if (isImm(I.getOperand(4), MRI))
2490     return selectInsertVal(ResVReg, ResType, I);
2491   MachineBasicBlock &BB = *I.getParent();
2492   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
2493       .addDef(ResVReg)
2494       .addUse(GR.getSPIRVTypeID(ResType))
2495       .addUse(I.getOperand(2).getReg())
2496       .addUse(I.getOperand(3).getReg())
2497       .addUse(I.getOperand(4).getReg())
2498       .constrainAllUses(TII, TRI, RBI);
2499 }
2500 
2501 bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
2502                                                 const SPIRVType *ResType,
2503                                                 MachineInstr &I) const {
2504   if (isImm(I.getOperand(3), MRI))
2505     return selectExtractVal(ResVReg, ResType, I);
2506   MachineBasicBlock &BB = *I.getParent();
2507   return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
2508       .addDef(ResVReg)
2509       .addUse(GR.getSPIRVTypeID(ResType))
2510       .addUse(I.getOperand(2).getReg())
2511       .addUse(I.getOperand(3).getReg())
2512       .constrainAllUses(TII, TRI, RBI);
2513 }
2514 
2515 bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
2516                                          const SPIRVType *ResType,
2517                                          MachineInstr &I) const {
2518   const bool IsGEPInBounds = I.getOperand(2).getImm();
2519 
2520   // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
2521   // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
2522   // we have to use Op[InBounds]AccessChain.
2523   const unsigned Opcode = STI.isVulkanEnv()
2524                               ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
2525                                                : SPIRV::OpAccessChain)
2526                               : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
2527                                                : SPIRV::OpPtrAccessChain);
2528 
2529   auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2530                  .addDef(ResVReg)
2531                  .addUse(GR.getSPIRVTypeID(ResType))
2532                  // Object to get a pointer to.
2533                  .addUse(I.getOperand(3).getReg());
2534   // Adding indices.
2535   const unsigned StartingIndex =
2536       (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
2537           ? 5
2538           : 4;
2539   for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
2540     Res.addUse(I.getOperand(i).getReg());
2541   return Res.constrainAllUses(TII, TRI, RBI);
2542 }
2543 
2544 // Maybe wrap a value into OpSpecConstantOp
2545 bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
2546     MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
2547   bool Result = true;
2548   unsigned Lim = I.getNumExplicitOperands();
2549   for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
2550     Register OpReg = I.getOperand(i).getReg();
2551     SPIRVType *OpDefine = MRI->getVRegDef(OpReg);
2552     SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
2553     SmallPtrSet<SPIRVType *, 4> Visited;
2554     if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
2555         OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2556         GR.isAggregateType(OpType)) {
2557       // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
2558       // by selectAddrSpaceCast()
2559       CompositeArgs.push_back(OpReg);
2560       continue;
2561     }
2562     MachineFunction *MF = I.getMF();
2563     Register WrapReg = GR.find(OpDefine, MF);
2564     if (WrapReg.isValid()) {
2565       CompositeArgs.push_back(WrapReg);
2566       continue;
2567     }
2568     // Create a new register for the wrapper
2569     WrapReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2570     GR.add(OpDefine, MF, WrapReg);
2571     CompositeArgs.push_back(WrapReg);
2572     // Decorate the wrapper register and generate a new instruction
2573     MRI->setType(WrapReg, LLT::pointer(0, 64));
2574     GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
2575     MachineBasicBlock &BB = *I.getParent();
2576     Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
2577                  .addDef(WrapReg)
2578                  .addUse(GR.getSPIRVTypeID(OpType))
2579                  .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
2580                  .addUse(OpReg)
2581                  .constrainAllUses(TII, TRI, RBI);
2582     if (!Result)
2583       break;
2584   }
2585   return Result;
2586 }
2587 
2588 bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
2589                                                const SPIRVType *ResType,
2590                                                MachineInstr &I) const {
2591   MachineBasicBlock &BB = *I.getParent();
2592   Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
2593   switch (IID) {
2594   case Intrinsic::spv_load:
2595     return selectLoad(ResVReg, ResType, I);
2596   case Intrinsic::spv_store:
2597     return selectStore(I);
2598   case Intrinsic::spv_extractv:
2599     return selectExtractVal(ResVReg, ResType, I);
2600   case Intrinsic::spv_insertv:
2601     return selectInsertVal(ResVReg, ResType, I);
2602   case Intrinsic::spv_extractelt:
2603     return selectExtractElt(ResVReg, ResType, I);
2604   case Intrinsic::spv_insertelt:
2605     return selectInsertElt(ResVReg, ResType, I);
2606   case Intrinsic::spv_gep:
2607     return selectGEP(ResVReg, ResType, I);
2608   case Intrinsic::spv_unref_global:
2609   case Intrinsic::spv_init_global: {
2610     MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
2611     MachineInstr *Init = I.getNumExplicitOperands() > 2
2612                              ? MRI->getVRegDef(I.getOperand(2).getReg())
2613                              : nullptr;
2614     assert(MI);
2615     return selectGlobalValue(MI->getOperand(0).getReg(), *MI, Init);
2616   }
2617   case Intrinsic::spv_undef: {
2618     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2619                    .addDef(ResVReg)
2620                    .addUse(GR.getSPIRVTypeID(ResType));
2621     return MIB.constrainAllUses(TII, TRI, RBI);
2622   }
2623   case Intrinsic::spv_const_composite: {
2624     // If no values are attached, the composite is null constant.
2625     bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
2626     // Select a proper instruction.
2627     unsigned Opcode = SPIRV::OpConstantNull;
2628     SmallVector<Register> CompositeArgs;
2629     if (!IsNull) {
2630       Opcode = SPIRV::OpConstantComposite;
2631       if (!wrapIntoSpecConstantOp(I, CompositeArgs))
2632         return false;
2633     }
2634     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2635                    .addDef(ResVReg)
2636                    .addUse(GR.getSPIRVTypeID(ResType));
2637     // skip type MD node we already used when generated assign.type for this
2638     if (!IsNull) {
2639       for (Register OpReg : CompositeArgs)
2640         MIB.addUse(OpReg);
2641     }
2642     return MIB.constrainAllUses(TII, TRI, RBI);
2643   }
2644   case Intrinsic::spv_assign_name: {
2645     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
2646     MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
2647     for (unsigned i = I.getNumExplicitDefs() + 2;
2648          i < I.getNumExplicitOperands(); ++i) {
2649       MIB.addImm(I.getOperand(i).getImm());
2650     }
2651     return MIB.constrainAllUses(TII, TRI, RBI);
2652   }
2653   case Intrinsic::spv_switch: {
2654     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
2655     for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
2656       if (I.getOperand(i).isReg())
2657         MIB.addReg(I.getOperand(i).getReg());
2658       else if (I.getOperand(i).isCImm())
2659         addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
2660       else if (I.getOperand(i).isMBB())
2661         MIB.addMBB(I.getOperand(i).getMBB());
2662       else
2663         llvm_unreachable("Unexpected OpSwitch operand");
2664     }
2665     return MIB.constrainAllUses(TII, TRI, RBI);
2666   }
2667   case Intrinsic::spv_loop_merge:
2668   case Intrinsic::spv_selection_merge: {
2669     const auto Opcode = IID == Intrinsic::spv_selection_merge
2670                             ? SPIRV::OpSelectionMerge
2671                             : SPIRV::OpLoopMerge;
2672     auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode));
2673     for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
2674       assert(I.getOperand(i).isMBB());
2675       MIB.addMBB(I.getOperand(i).getMBB());
2676     }
2677     MIB.addImm(SPIRV::SelectionControl::None);
2678     return MIB.constrainAllUses(TII, TRI, RBI);
2679   }
2680   case Intrinsic::spv_cmpxchg:
2681     return selectAtomicCmpXchg(ResVReg, ResType, I);
2682   case Intrinsic::spv_unreachable:
2683     BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable));
2684     break;
2685   case Intrinsic::spv_alloca:
2686     return selectFrameIndex(ResVReg, ResType, I);
2687   case Intrinsic::spv_alloca_array:
2688     return selectAllocaArray(ResVReg, ResType, I);
2689   case Intrinsic::spv_assume:
2690     if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
2691       BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
2692           .addUse(I.getOperand(1).getReg());
2693     break;
2694   case Intrinsic::spv_expect:
2695     if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
2696       BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
2697           .addDef(ResVReg)
2698           .addUse(GR.getSPIRVTypeID(ResType))
2699           .addUse(I.getOperand(2).getReg())
2700           .addUse(I.getOperand(3).getReg());
2701     break;
2702   case Intrinsic::arithmetic_fence:
2703     if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
2704       BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpArithmeticFenceEXT))
2705           .addDef(ResVReg)
2706           .addUse(GR.getSPIRVTypeID(ResType))
2707           .addUse(I.getOperand(2).getReg());
2708     else
2709       BuildMI(BB, I, I.getDebugLoc(), TII.get(TargetOpcode::COPY), ResVReg)
2710           .addUse(I.getOperand(2).getReg());
2711     break;
2712   case Intrinsic::spv_thread_id:
2713     return selectSpvThreadId(ResVReg, ResType, I);
2714   case Intrinsic::spv_fdot:
2715     return selectFloatDot(ResVReg, ResType, I);
2716   case Intrinsic::spv_udot:
2717   case Intrinsic::spv_sdot:
2718     return selectIntegerDot(ResVReg, ResType, I);
2719   case Intrinsic::spv_dot4add_i8packed:
2720     if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
2721         STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
2722       return selectDot4AddPacked<true>(ResVReg, ResType, I);
2723     return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
2724   case Intrinsic::spv_dot4add_u8packed:
2725     if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
2726         STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
2727       return selectDot4AddPacked<false>(ResVReg, ResType, I);
2728     return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
2729   case Intrinsic::spv_all:
2730     return selectAll(ResVReg, ResType, I);
2731   case Intrinsic::spv_any:
2732     return selectAny(ResVReg, ResType, I);
2733   case Intrinsic::spv_cross:
2734     return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
2735   case Intrinsic::spv_lerp:
2736     return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
2737   case Intrinsic::spv_length:
2738     return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
2739   case Intrinsic::spv_degrees:
2740     return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
2741   case Intrinsic::spv_frac:
2742     return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
2743   case Intrinsic::spv_normalize:
2744     return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
2745   case Intrinsic::spv_rsqrt:
2746     return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
2747   case Intrinsic::spv_sign:
2748     return selectSign(ResVReg, ResType, I);
2749   case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
2750     return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
2751   case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
2752     return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
2753   case Intrinsic::spv_group_memory_barrier_with_group_sync: {
2754     Register MemSemReg =
2755         buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
2756     Register ScopeReg = buildI32Constant(SPIRV::Scope::Workgroup, I);
2757     MachineBasicBlock &BB = *I.getParent();
2758     return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
2759         .addUse(ScopeReg)
2760         .addUse(ScopeReg)
2761         .addUse(MemSemReg)
2762         .constrainAllUses(TII, TRI, RBI);
2763   } break;
2764   case Intrinsic::spv_lifetime_start:
2765   case Intrinsic::spv_lifetime_end: {
2766     unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
2767                                                        : SPIRV::OpLifetimeStop;
2768     int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
2769     Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
2770     if (Size == -1)
2771       Size = 0;
2772     BuildMI(BB, I, I.getDebugLoc(), TII.get(Op)).addUse(PtrReg).addImm(Size);
2773   } break;
2774   case Intrinsic::spv_saturate:
2775     return selectSaturate(ResVReg, ResType, I);
2776   case Intrinsic::spv_nclamp:
2777     return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
2778   case Intrinsic::spv_uclamp:
2779     return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
2780   case Intrinsic::spv_sclamp:
2781     return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
2782   case Intrinsic::spv_wave_active_countbits:
2783     return selectWaveActiveCountBits(ResVReg, ResType, I);
2784   case Intrinsic::spv_wave_is_first_lane: {
2785     SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2786     return BuildMI(BB, I, I.getDebugLoc(),
2787                    TII.get(SPIRV::OpGroupNonUniformElect))
2788         .addDef(ResVReg)
2789         .addUse(GR.getSPIRVTypeID(ResType))
2790         .addUse(GR.getOrCreateConstInt(3, I, IntTy, TII));
2791   }
2792   case Intrinsic::spv_wave_readlane:
2793     return selectWaveReadLaneAt(ResVReg, ResType, I);
2794   case Intrinsic::spv_step:
2795     return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
2796   case Intrinsic::spv_radians:
2797     return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
2798   // Discard intrinsics which we do not expect to actually represent code after
2799   // lowering or intrinsics which are not implemented but should not crash when
2800   // found in a customer's LLVM IR input.
2801   case Intrinsic::instrprof_increment:
2802   case Intrinsic::instrprof_increment_step:
2803   case Intrinsic::instrprof_value_profile:
2804     break;
2805   // Discard internal intrinsics.
2806   case Intrinsic::spv_value_md:
2807     break;
2808   case Intrinsic::spv_handle_fromBinding: {
2809     selectHandleFromBinding(ResVReg, ResType, I);
2810     return true;
2811   }
2812   default: {
2813     std::string DiagMsg;
2814     raw_string_ostream OS(DiagMsg);
2815     I.print(OS);
2816     DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
2817     report_fatal_error(DiagMsg.c_str(), false);
2818   }
2819   }
2820   return true;
2821 }
2822 
2823 void SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
2824                                                        const SPIRVType *ResType,
2825                                                        MachineInstr &I) const {
2826 
2827   uint32_t Set = foldImm(I.getOperand(2), MRI);
2828   uint32_t Binding = foldImm(I.getOperand(3), MRI);
2829   uint32_t ArraySize = foldImm(I.getOperand(4), MRI);
2830   Register IndexReg = I.getOperand(5).getReg();
2831   bool IsNonUniform = ArraySize > 1 && foldImm(I.getOperand(6), MRI);
2832 
2833   MachineIRBuilder MIRBuilder(I);
2834   Register VarReg = buildPointerToResource(ResType, Set, Binding, ArraySize,
2835                                            IndexReg, IsNonUniform, MIRBuilder);
2836 
2837   if (IsNonUniform)
2838     buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::NonUniformEXT, {});
2839 
2840   // TODO: For now we assume the resource is an image, which needs to be
2841   // loaded to get the handle. That will not be true for storage buffers.
2842   BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
2843       .addDef(ResVReg)
2844       .addUse(GR.getSPIRVTypeID(ResType))
2845       .addUse(VarReg);
2846 }
2847 
2848 Register SPIRVInstructionSelector::buildPointerToResource(
2849     const SPIRVType *ResType, uint32_t Set, uint32_t Binding,
2850     uint32_t ArraySize, Register IndexReg, bool IsNonUniform,
2851     MachineIRBuilder MIRBuilder) const {
2852   if (ArraySize == 1)
2853     return GR.getOrCreateGlobalVariableWithBinding(ResType, Set, Binding,
2854                                                    MIRBuilder);
2855 
2856   const SPIRVType *VarType = GR.getOrCreateSPIRVArrayType(
2857       ResType, ArraySize, *MIRBuilder.getInsertPt(), TII);
2858   Register VarReg = GR.getOrCreateGlobalVariableWithBinding(
2859       VarType, Set, Binding, MIRBuilder);
2860 
2861   SPIRVType *ResPointerType = GR.getOrCreateSPIRVPointerType(
2862       ResType, MIRBuilder, SPIRV::StorageClass::UniformConstant);
2863 
2864   Register AcReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2865   if (IsNonUniform) {
2866     // It is unclear which value needs to be marked an non-uniform, so both
2867     // the index and the access changed are decorated as non-uniform.
2868     buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
2869     buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
2870   }
2871 
2872   MIRBuilder.buildInstr(SPIRV::OpAccessChain)
2873       .addDef(AcReg)
2874       .addUse(GR.getSPIRVTypeID(ResPointerType))
2875       .addUse(VarReg)
2876       .addUse(IndexReg);
2877 
2878   return AcReg;
2879 }
2880 
2881 bool SPIRVInstructionSelector::selectFirstBitHigh16(Register ResVReg,
2882                                                     const SPIRVType *ResType,
2883                                                     MachineInstr &I,
2884                                                     bool IsSigned) const {
2885   unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2886   // zero or sign extend
2887   Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2888   bool Result =
2889       selectUnOpWithSrc(ExtReg, ResType, I, I.getOperand(2).getReg(), Opcode);
2890   return Result && selectFirstBitHigh32(ResVReg, ResType, I, ExtReg, IsSigned);
2891 }
2892 
2893 bool SPIRVInstructionSelector::selectFirstBitHigh32(Register ResVReg,
2894                                                     const SPIRVType *ResType,
2895                                                     MachineInstr &I,
2896                                                     Register SrcReg,
2897                                                     bool IsSigned) const {
2898   unsigned Opcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
2899   return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2900       .addDef(ResVReg)
2901       .addUse(GR.getSPIRVTypeID(ResType))
2902       .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2903       .addImm(Opcode)
2904       .addUse(SrcReg)
2905       .constrainAllUses(TII, TRI, RBI);
2906 }
2907 
2908 bool SPIRVInstructionSelector::selectFirstBitHigh64(Register ResVReg,
2909                                                     const SPIRVType *ResType,
2910                                                     MachineInstr &I,
2911                                                     bool IsSigned) const {
2912   Register OpReg = I.getOperand(2).getReg();
2913   // 1. split our int64 into 2 pieces using a bitcast
2914   unsigned count = GR.getScalarOrVectorComponentCount(ResType);
2915   SPIRVType *baseType = GR.retrieveScalarOrVectorIntType(ResType);
2916   MachineIRBuilder MIRBuilder(I);
2917   SPIRVType *postCastT =
2918       GR.getOrCreateSPIRVVectorType(baseType, 2 * count, MIRBuilder);
2919   Register bitcastReg = MRI->createVirtualRegister(GR.getRegClass(postCastT));
2920   bool Result =
2921       selectUnOpWithSrc(bitcastReg, postCastT, I, OpReg, SPIRV::OpBitcast);
2922 
2923   // 2. call firstbithigh
2924   Register FBHReg = MRI->createVirtualRegister(GR.getRegClass(postCastT));
2925   Result &= selectFirstBitHigh32(FBHReg, postCastT, I, bitcastReg, IsSigned);
2926 
2927   // 3. split result vector into high bits and low bits
2928   Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2929   Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2930 
2931   bool ZeroAsNull = STI.isOpenCLEnv();
2932   bool isScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
2933   if (isScalarRes) {
2934     // if scalar do a vector extract
2935     Result &= selectNAryOpWithSrcs(
2936         HighReg, ResType, I,
2937         {FBHReg, GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull)},
2938         SPIRV::OpVectorExtractDynamic);
2939     Result &= selectNAryOpWithSrcs(
2940         LowReg, ResType, I,
2941         {FBHReg, GR.getOrCreateConstInt(1, I, ResType, TII, ZeroAsNull)},
2942         SPIRV::OpVectorExtractDynamic);
2943   } else { // vector case do a shufflevector
2944     auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2945                        TII.get(SPIRV::OpVectorShuffle))
2946                    .addDef(HighReg)
2947                    .addUse(GR.getSPIRVTypeID(ResType))
2948                    .addUse(FBHReg)
2949                    .addUse(FBHReg);
2950     // ^^ this vector will not be selected from; could be empty
2951     unsigned j;
2952     for (j = 0; j < count * 2; j += 2) {
2953       MIB.addImm(j);
2954     }
2955     Result &= MIB.constrainAllUses(TII, TRI, RBI);
2956 
2957     // get low bits
2958     MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2959                   TII.get(SPIRV::OpVectorShuffle))
2960               .addDef(LowReg)
2961               .addUse(GR.getSPIRVTypeID(ResType))
2962               .addUse(FBHReg)
2963               .addUse(FBHReg);
2964     // ^^ this vector will not be selected from; could be empty
2965     for (j = 1; j < count * 2; j += 2) {
2966       MIB.addImm(j);
2967     }
2968     Result &= MIB.constrainAllUses(TII, TRI, RBI);
2969   }
2970 
2971   // 4. check if result of each top 32 bits is == -1
2972   SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
2973   Register NegOneReg;
2974   Register Reg0;
2975   Register Reg32;
2976   unsigned selectOp;
2977   unsigned addOp;
2978   if (isScalarRes) {
2979     NegOneReg =
2980         GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
2981     Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2982     Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
2983     selectOp = SPIRV::OpSelectSISCond;
2984     addOp = SPIRV::OpIAddS;
2985   } else {
2986     BoolType = GR.getOrCreateSPIRVVectorType(BoolType, count, MIRBuilder);
2987     NegOneReg =
2988         GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
2989     Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
2990     Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
2991     selectOp = SPIRV::OpSelectVIVCond;
2992     addOp = SPIRV::OpIAddV;
2993   }
2994 
2995   // check if the high bits are == -1; true if -1
2996   Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
2997   Result &= selectNAryOpWithSrcs(BReg, BoolType, I, {HighReg, NegOneReg},
2998                                  SPIRV::OpIEqual);
2999 
3000   // Select low bits if true in BReg, otherwise high bits
3001   Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3002   Result &= selectNAryOpWithSrcs(TmpReg, ResType, I, {BReg, LowReg, HighReg},
3003                                  selectOp);
3004 
3005   // Add 32 for high bits, 0 for low bits
3006   Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3007   Result &=
3008       selectNAryOpWithSrcs(ValReg, ResType, I, {BReg, Reg0, Reg32}, selectOp);
3009 
3010   return Result &&
3011          selectNAryOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, addOp);
3012 }
3013 
3014 bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
3015                                                   const SPIRVType *ResType,
3016                                                   MachineInstr &I,
3017                                                   bool IsSigned) const {
3018   // FindUMsb and FindSMsb intrinsics only support 32 bit integers
3019   Register OpReg = I.getOperand(2).getReg();
3020   SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3021 
3022   switch (GR.getScalarOrVectorBitWidth(OpType)) {
3023   case 16:
3024     return selectFirstBitHigh16(ResVReg, ResType, I, IsSigned);
3025   case 32:
3026     return selectFirstBitHigh32(ResVReg, ResType, I, OpReg, IsSigned);
3027   case 64:
3028     return selectFirstBitHigh64(ResVReg, ResType, I, IsSigned);
3029   default:
3030     report_fatal_error(
3031         "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
3032   }
3033 }
3034 
3035 bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
3036                                                  const SPIRVType *ResType,
3037                                                  MachineInstr &I) const {
3038   // there was an allocation size parameter to the allocation instruction
3039   // that is not 1
3040   MachineBasicBlock &BB = *I.getParent();
3041   return BuildMI(BB, I, I.getDebugLoc(),
3042                  TII.get(SPIRV::OpVariableLengthArrayINTEL))
3043       .addDef(ResVReg)
3044       .addUse(GR.getSPIRVTypeID(ResType))
3045       .addUse(I.getOperand(2).getReg())
3046       .constrainAllUses(TII, TRI, RBI);
3047 }
3048 
3049 bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
3050                                                 const SPIRVType *ResType,
3051                                                 MachineInstr &I) const {
3052   // Change order of instructions if needed: all OpVariable instructions in a
3053   // function must be the first instructions in the first block
3054   MachineFunction *MF = I.getParent()->getParent();
3055   MachineBasicBlock *MBB = &MF->front();
3056   auto It = MBB->SkipPHIsAndLabels(MBB->begin()), E = MBB->end();
3057   bool IsHeader = false;
3058   unsigned Opcode;
3059   for (; It != E && It != I; ++It) {
3060     Opcode = It->getOpcode();
3061     if (Opcode == SPIRV::OpFunction || Opcode == SPIRV::OpFunctionParameter) {
3062       IsHeader = true;
3063     } else if (IsHeader &&
3064                !(Opcode == SPIRV::ASSIGN_TYPE || Opcode == SPIRV::OpLabel)) {
3065       ++It;
3066       break;
3067     }
3068   }
3069   return BuildMI(*MBB, It, It->getDebugLoc(), TII.get(SPIRV::OpVariable))
3070       .addDef(ResVReg)
3071       .addUse(GR.getSPIRVTypeID(ResType))
3072       .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
3073       .constrainAllUses(TII, TRI, RBI);
3074 }
3075 
3076 bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
3077   // InstructionSelector walks backwards through the instructions. We can use
3078   // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
3079   // first, so can generate an OpBranchConditional here. If there is no
3080   // G_BRCOND, we just use OpBranch for a regular unconditional branch.
3081   const MachineInstr *PrevI = I.getPrevNode();
3082   MachineBasicBlock &MBB = *I.getParent();
3083   if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
3084     return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
3085         .addUse(PrevI->getOperand(0).getReg())
3086         .addMBB(PrevI->getOperand(1).getMBB())
3087         .addMBB(I.getOperand(0).getMBB())
3088         .constrainAllUses(TII, TRI, RBI);
3089   }
3090   return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
3091       .addMBB(I.getOperand(0).getMBB())
3092       .constrainAllUses(TII, TRI, RBI);
3093 }
3094 
3095 bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
3096   // InstructionSelector walks backwards through the instructions. For an
3097   // explicit conditional branch with no fallthrough, we use both a G_BR and a
3098   // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
3099   // generate the OpBranchConditional in selectBranch above.
3100   //
3101   // If an OpBranchConditional has been generated, we simply return, as the work
3102   // is alread done. If there is no OpBranchConditional, LLVM must be relying on
3103   // implicit fallthrough to the next basic block, so we need to create an
3104   // OpBranchConditional with an explicit "false" argument pointing to the next
3105   // basic block that LLVM would fall through to.
3106   const MachineInstr *NextI = I.getNextNode();
3107   // Check if this has already been successfully selected.
3108   if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
3109     return true;
3110   // Must be relying on implicit block fallthrough, so generate an
3111   // OpBranchConditional with the "next" basic block as the "false" target.
3112   MachineBasicBlock &MBB = *I.getParent();
3113   unsigned NextMBBNum = MBB.getNextNode()->getNumber();
3114   MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
3115   return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
3116       .addUse(I.getOperand(0).getReg())
3117       .addMBB(I.getOperand(1).getMBB())
3118       .addMBB(NextMBB)
3119       .constrainAllUses(TII, TRI, RBI);
3120 }
3121 
3122 bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
3123                                          const SPIRVType *ResType,
3124                                          MachineInstr &I) const {
3125   auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
3126                  .addDef(ResVReg)
3127                  .addUse(GR.getSPIRVTypeID(ResType));
3128   const unsigned NumOps = I.getNumOperands();
3129   for (unsigned i = 1; i < NumOps; i += 2) {
3130     MIB.addUse(I.getOperand(i + 0).getReg());
3131     MIB.addMBB(I.getOperand(i + 1).getMBB());
3132   }
3133   return MIB.constrainAllUses(TII, TRI, RBI);
3134 }
3135 
3136 bool SPIRVInstructionSelector::selectGlobalValue(
3137     Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
3138   // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
3139   MachineIRBuilder MIRBuilder(I);
3140   const GlobalValue *GV = I.getOperand(1).getGlobal();
3141   Type *GVType = toTypedPointer(GR.getDeducedGlobalValueType(GV));
3142   SPIRVType *PointerBaseType;
3143   if (GVType->isArrayTy()) {
3144     SPIRVType *ArrayElementType =
3145         GR.getOrCreateSPIRVType(GVType->getArrayElementType(), MIRBuilder,
3146                                 SPIRV::AccessQualifier::ReadWrite, false);
3147     PointerBaseType = GR.getOrCreateSPIRVArrayType(
3148         ArrayElementType, GVType->getArrayNumElements(), I, TII);
3149   } else {
3150     PointerBaseType = GR.getOrCreateSPIRVType(
3151         GVType, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
3152   }
3153   SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(
3154       PointerBaseType, I, TII,
3155       addressSpaceToStorageClass(GV->getAddressSpace(), STI));
3156 
3157   std::string GlobalIdent;
3158   if (!GV->hasName()) {
3159     unsigned &ID = UnnamedGlobalIDs[GV];
3160     if (ID == 0)
3161       ID = UnnamedGlobalIDs.size();
3162     GlobalIdent = "__unnamed_" + Twine(ID).str();
3163   } else {
3164     GlobalIdent = GV->getGlobalIdentifier();
3165   }
3166 
3167   // Behaviour of functions as operands depends on availability of the
3168   // corresponding extension (SPV_INTEL_function_pointers):
3169   // - If there is an extension to operate with functions as operands:
3170   // We create a proper constant operand and evaluate a correct type for a
3171   // function pointer.
3172   // - Without the required extension:
3173   // We have functions as operands in tests with blocks of instruction e.g. in
3174   // transcoding/global_block.ll. These operands are not used and should be
3175   // substituted by zero constants. Their type is expected to be always
3176   // OpTypePointer Function %uchar.
3177   if (isa<Function>(GV)) {
3178     const Constant *ConstVal = GV;
3179     MachineBasicBlock &BB = *I.getParent();
3180     Register NewReg = GR.find(ConstVal, GR.CurMF);
3181     if (!NewReg.isValid()) {
3182       Register NewReg = ResVReg;
3183       GR.add(ConstVal, GR.CurMF, NewReg);
3184       const Function *GVFun =
3185           STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
3186               ? dyn_cast<Function>(GV)
3187               : nullptr;
3188       if (GVFun) {
3189         // References to a function via function pointers generate virtual
3190         // registers without a definition. We will resolve it later, during
3191         // module analysis stage.
3192         MachineRegisterInfo *MRI = MIRBuilder.getMRI();
3193         Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
3194         MRI->setRegClass(FuncVReg, &SPIRV::iIDRegClass);
3195         MachineInstrBuilder MB =
3196             BuildMI(BB, I, I.getDebugLoc(),
3197                     TII.get(SPIRV::OpConstantFunctionPointerINTEL))
3198                 .addDef(NewReg)
3199                 .addUse(GR.getSPIRVTypeID(ResType))
3200                 .addUse(FuncVReg);
3201         // mapping the function pointer to the used Function
3202         GR.recordFunctionPointer(&MB.getInstr()->getOperand(2), GVFun);
3203         return MB.constrainAllUses(TII, TRI, RBI);
3204       }
3205       return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3206           .addDef(NewReg)
3207           .addUse(GR.getSPIRVTypeID(ResType))
3208           .constrainAllUses(TII, TRI, RBI);
3209     }
3210     assert(NewReg != ResVReg);
3211     return BuildMI(BB, I, I.getDebugLoc(), TII.get(TargetOpcode::COPY))
3212         .addDef(ResVReg)
3213         .addUse(NewReg)
3214         .constrainAllUses(TII, TRI, RBI);
3215   }
3216   auto GlobalVar = cast<GlobalVariable>(GV);
3217   assert(GlobalVar->getName() != "llvm.global.annotations");
3218 
3219   bool HasInit = GlobalVar->hasInitializer() &&
3220                  !isa<UndefValue>(GlobalVar->getInitializer());
3221   // Skip empty declaration for GVs with initilaizers till we get the decl with
3222   // passed initializer.
3223   if (HasInit && !Init)
3224     return true;
3225 
3226   unsigned AddrSpace = GV->getAddressSpace();
3227   SPIRV::StorageClass::StorageClass Storage =
3228       addressSpaceToStorageClass(AddrSpace, STI);
3229   bool HasLnkTy = GV->getLinkage() != GlobalValue::InternalLinkage &&
3230                   Storage != SPIRV::StorageClass::Function;
3231   SPIRV::LinkageType::LinkageType LnkType =
3232       (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
3233           ? SPIRV::LinkageType::Import
3234           : (GV->getLinkage() == GlobalValue::LinkOnceODRLinkage &&
3235                      STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
3236                  ? SPIRV::LinkageType::LinkOnceODR
3237                  : SPIRV::LinkageType::Export);
3238 
3239   Register Reg = GR.buildGlobalVariable(ResVReg, ResType, GlobalIdent, GV,
3240                                         Storage, Init, GlobalVar->isConstant(),
3241                                         HasLnkTy, LnkType, MIRBuilder, true);
3242   return Reg.isValid();
3243 }
3244 
3245 bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
3246                                            const SPIRVType *ResType,
3247                                            MachineInstr &I) const {
3248   if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
3249     return selectExtInst(ResVReg, ResType, I, CL::log10);
3250   }
3251 
3252   // There is no log10 instruction in the GLSL Extended Instruction set, so it
3253   // is implemented as:
3254   // log10(x) = log2(x) * (1 / log2(10))
3255   //          = log2(x) * 0.30103
3256 
3257   MachineIRBuilder MIRBuilder(I);
3258   MachineBasicBlock &BB = *I.getParent();
3259 
3260   // Build log2(x).
3261   Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3262   bool Result =
3263       BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
3264           .addDef(VarReg)
3265           .addUse(GR.getSPIRVTypeID(ResType))
3266           .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
3267           .addImm(GL::Log2)
3268           .add(I.getOperand(1))
3269           .constrainAllUses(TII, TRI, RBI);
3270 
3271   // Build 0.30103.
3272   assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
3273          ResType->getOpcode() == SPIRV::OpTypeFloat);
3274   // TODO: Add matrix implementation once supported by the HLSL frontend.
3275   const SPIRVType *SpirvScalarType =
3276       ResType->getOpcode() == SPIRV::OpTypeVector
3277           ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
3278           : ResType;
3279   Register ScaleReg =
3280       GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
3281 
3282   // Multiply log2(x) by 0.30103 to get log10(x) result.
3283   auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
3284                     ? SPIRV::OpVectorTimesScalar
3285                     : SPIRV::OpFMulS;
3286   Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
3287                 .addDef(ResVReg)
3288                 .addUse(GR.getSPIRVTypeID(ResType))
3289                 .addUse(VarReg)
3290                 .addUse(ScaleReg)
3291                 .constrainAllUses(TII, TRI, RBI);
3292 
3293   return Result;
3294 }
3295 
3296 bool SPIRVInstructionSelector::selectSpvThreadId(Register ResVReg,
3297                                                  const SPIRVType *ResType,
3298                                                  MachineInstr &I) const {
3299   // DX intrinsic: @llvm.dx.thread.id(i32)
3300   // ID  Name      Description
3301   // 93  ThreadId  reads the thread ID
3302 
3303   MachineIRBuilder MIRBuilder(I);
3304   const SPIRVType *U32Type = GR.getOrCreateSPIRVIntegerType(32, MIRBuilder);
3305   const SPIRVType *Vec3Ty =
3306       GR.getOrCreateSPIRVVectorType(U32Type, 3, MIRBuilder);
3307   const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
3308       Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
3309 
3310   // Create new register for GlobalInvocationID builtin variable.
3311   Register NewRegister =
3312       MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
3313   MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
3314   GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
3315 
3316   // Build GlobalInvocationID global variable with the necessary decorations.
3317   Register Variable = GR.buildGlobalVariable(
3318       NewRegister, PtrType,
3319       getLinkStringForBuiltIn(SPIRV::BuiltIn::GlobalInvocationId), nullptr,
3320       SPIRV::StorageClass::Input, nullptr, true, true,
3321       SPIRV::LinkageType::Import, MIRBuilder, false);
3322 
3323   // Create new register for loading value.
3324   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
3325   Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
3326   MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
3327   GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
3328 
3329   // Load v3uint value from the global variable.
3330   BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
3331       .addDef(LoadedRegister)
3332       .addUse(GR.getSPIRVTypeID(Vec3Ty))
3333       .addUse(Variable);
3334 
3335   // Get Thread ID index. Expecting operand is a constant immediate value,
3336   // wrapped in a type assignment.
3337   assert(I.getOperand(2).isReg());
3338   const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
3339 
3340   // Extract the thread ID from the loaded vector value.
3341   MachineBasicBlock &BB = *I.getParent();
3342   auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
3343                  .addDef(ResVReg)
3344                  .addUse(GR.getSPIRVTypeID(ResType))
3345                  .addUse(LoadedRegister)
3346                  .addImm(ThreadId);
3347   return MIB.constrainAllUses(TII, TRI, RBI);
3348 }
3349 
3350 namespace llvm {
3351 InstructionSelector *
3352 createSPIRVInstructionSelector(const SPIRVTargetMachine &TM,
3353                                const SPIRVSubtarget &Subtarget,
3354                                const RegisterBankInfo &RBI) {
3355   return new SPIRVInstructionSelector(TM, Subtarget, RBI);
3356 }
3357 } // namespace llvm
3358