1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 // Assume instructions that aren't listed aren't compressible. 22 bool Compressed = false; 23 switch (Instr.Opc) { 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.Imm); 32 break; 33 } 34 // Two RVC instructions take the same space as one RVI instruction, but 35 // can take longer to execute than the single RVI instruction. Thus, we 36 // consider that two RVC instruction are slightly more costly than one 37 // RVI instruction. For longer sequences of RVC instructions the space 38 // savings can be worth it, though. The costs below try to model that. 39 if (!Compressed) 40 Cost += 100; // Baseline cost of one RVI instruction: 100%. 41 else 42 Cost += 70; // 70% cost of baseline. 43 } 44 return Cost; 45 } 46 47 // Recursively generate a sequence for materializing an integer. 48 static void generateInstSeqImpl(int64_t Val, 49 const FeatureBitset &ActiveFeatures, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 52 53 if (isInt<32>(Val)) { 54 // Depending on the active bits in the immediate Value v, the following 55 // instruction sequences are emitted: 56 // 57 // v == 0 : ADDI 58 // v[0,12) != 0 && v[12,32) == 0 : ADDI 59 // v[0,12) == 0 && v[12,32) != 0 : LUI 60 // v[0,32) != 0 : LUI+ADDI(W) 61 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 62 int64_t Lo12 = SignExtend64<12>(Val); 63 64 if (Hi20) 65 Res.emplace_back(RISCV::LUI, Hi20); 66 67 if (Lo12 || Hi20 == 0) { 68 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 69 Res.emplace_back(AddiOpc, Lo12); 70 } 71 return; 72 } 73 74 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 75 76 // Use BSETI for a single bit. 77 if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val)) { 78 Res.emplace_back(RISCV::BSETI, Log2_64(Val)); 79 return; 80 } 81 82 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 83 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 84 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 85 // while the following ADDI instructions contribute up to 12 bits each. 86 // 87 // On the first glance, implementing this seems to be possible by simply 88 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 89 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 90 // fact that ADDI performs a sign extended addition, doing it like that would 91 // only be possible when at most 11 bits of the ADDI instructions are used. 92 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 93 // requires that the constant is processed starting with the least significant 94 // bit. 95 // 96 // In the following, constants are processed from LSB to MSB but instruction 97 // emission is performed from MSB to LSB by recursively calling 98 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 99 // from the constant and the optimal shift amount, which can be greater than 100 // 12 bits if the constant is sparse, is determined. Then, the shifted 101 // remaining constant is processed recursively and gets emitted as soon as it 102 // fits into 32 bits. The emission of the shifts and additions is subsequently 103 // performed when the recursion returns. 104 105 int64_t Lo12 = SignExtend64<12>(Val); 106 Val = (uint64_t)Val - (uint64_t)Lo12; 107 108 int ShiftAmount = 0; 109 bool Unsigned = false; 110 111 // Val might now be valid for LUI without needing a shift. 112 if (!isInt<32>(Val)) { 113 ShiftAmount = findFirstSet((uint64_t)Val); 114 Val >>= ShiftAmount; 115 116 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 117 // shift amount in order to use LUI which will zero the lower 12 bits. 118 if (ShiftAmount > 12 && !isInt<12>(Val)) { 119 if (isInt<32>((uint64_t)Val << 12)) { 120 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 121 ShiftAmount -= 12; 122 Val = (uint64_t)Val << 12; 123 } else if (isUInt<32>((uint64_t)Val << 12) && 124 ActiveFeatures[RISCV::FeatureStdExtZba]) { 125 // Reduce the shift amount and add zeros to the LSBs so it will match 126 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 127 ShiftAmount -= 12; 128 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); 129 Unsigned = true; 130 } 131 } 132 133 // Try to use SLLI_UW for Val when it is uint32 but not int32. 134 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && 135 ActiveFeatures[RISCV::FeatureStdExtZba]) { 136 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 137 // SLLI_UW. 138 Val = ((uint64_t)Val) | (0xffffffffull << 32); 139 Unsigned = true; 140 } 141 } 142 143 generateInstSeqImpl(Val, ActiveFeatures, Res); 144 145 // Skip shift if we were able to use LUI directly. 146 if (ShiftAmount) { 147 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; 148 Res.emplace_back(Opc, ShiftAmount); 149 } 150 151 if (Lo12) 152 Res.emplace_back(RISCV::ADDI, Lo12); 153 } 154 155 static unsigned extractRotateInfo(int64_t Val) { 156 // for case: 0b111..1..xxxxxx1..1.. 157 unsigned LeadingOnes = countLeadingOnes((uint64_t)Val); 158 unsigned TrailingOnes = countTrailingOnes((uint64_t)Val); 159 if (TrailingOnes > 0 && TrailingOnes < 64 && 160 (LeadingOnes + TrailingOnes) > (64 - 12)) 161 return 64 - TrailingOnes; 162 163 // for case: 0bxxx1..1..1...xxx 164 unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val)); 165 unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val)); 166 if (UpperTrailingOnes < 32 && 167 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 168 return 32 - UpperTrailingOnes; 169 170 return 0; 171 } 172 173 namespace llvm::RISCVMatInt { 174 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 175 RISCVMatInt::InstSeq Res; 176 generateInstSeqImpl(Val, ActiveFeatures, Res); 177 178 // If there are trailing zeros, try generating a sign extended constant with 179 // no trailing zeros and use a final SLLI to restore them. 180 if ((Val & 1) == 0 && Res.size() > 2) { 181 unsigned TrailingZeros = countTrailingZeros((uint64_t)Val); 182 int64_t ShiftedVal = Val >> TrailingZeros; 183 RISCVMatInt::InstSeq TmpSeq; 184 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 185 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); 186 187 // Keep the new sequence if it is an improvement. 188 if (TmpSeq.size() < Res.size()) 189 Res = TmpSeq; 190 } 191 192 // If the constant is positive we might be able to generate a shifted constant 193 // with no leading zeros and use a final SRLI to restore them. 194 if (Val > 0 && Res.size() > 2) { 195 assert(ActiveFeatures[RISCV::Feature64Bit] && 196 "Expected RV32 to only need 2 instructions"); 197 unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); 198 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 199 // Fill in the bits that will be shifted out with 1s. An example where this 200 // helps is trailing one masks with 32 or more ones. This will generate 201 // ADDI -1 and an SRLI. 202 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 203 204 RISCVMatInt::InstSeq TmpSeq; 205 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 206 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 207 208 // Keep the new sequence if it is an improvement. 209 if (TmpSeq.size() < Res.size()) 210 Res = TmpSeq; 211 212 // Some cases can benefit from filling the lower bits with zeros instead. 213 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 214 TmpSeq.clear(); 215 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 216 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 217 218 // Keep the new sequence if it is an improvement. 219 if (TmpSeq.size() < Res.size()) 220 Res = TmpSeq; 221 222 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 223 // the end of the sequence. 224 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 225 // Try replacing upper bits with 1. 226 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 227 TmpSeq.clear(); 228 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 229 TmpSeq.emplace_back(RISCV::ADD_UW, 0); 230 231 // Keep the new sequence if it is an improvement. 232 if (TmpSeq.size() < Res.size()) 233 Res = TmpSeq; 234 } 235 } 236 237 // Perform optimization with BCLRI/BSETI in the Zbs extension. 238 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { 239 assert(ActiveFeatures[RISCV::Feature64Bit] && 240 "Expected RV32 to only need 2 instructions"); 241 242 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 243 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 244 // an int32), then emit (BCLRI r, 31). 245 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 246 // with Val&~0x80000000 (which is expected to be an int32), then 247 // emit (BSETI r, 31). 248 int64_t NewVal; 249 unsigned Opc; 250 if (Val < 0) { 251 Opc = RISCV::BCLRI; 252 NewVal = Val | 0x80000000ll; 253 } else { 254 Opc = RISCV::BSETI; 255 NewVal = Val & ~0x80000000ll; 256 } 257 if (isInt<32>(NewVal)) { 258 RISCVMatInt::InstSeq TmpSeq; 259 generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); 260 TmpSeq.emplace_back(Opc, 31); 261 if (TmpSeq.size() < Res.size()) 262 Res = TmpSeq; 263 } 264 265 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 266 // negative int32, or use BSETI for upper 32 bits if the original lower 267 // 32 bits are positive int32. 268 int32_t Lo = Lo_32(Val); 269 uint32_t Hi = Hi_32(Val); 270 Opc = 0; 271 RISCVMatInt::InstSeq TmpSeq; 272 generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); 273 // Check if it is profitable to use BCLRI/BSETI. 274 if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) { 275 Opc = RISCV::BSETI; 276 } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) { 277 Opc = RISCV::BCLRI; 278 Hi = ~Hi; 279 } 280 // Search for each bit and build corresponding BCLRI/BSETI. 281 if (Opc > 0) { 282 while (Hi != 0) { 283 unsigned Bit = findFirstSet(Hi, ZB_Undefined); 284 TmpSeq.emplace_back(Opc, Bit + 32); 285 Hi &= (Hi - 1); // Clear lowest set bit. 286 } 287 if (TmpSeq.size() < Res.size()) 288 Res = TmpSeq; 289 } 290 } 291 292 // Perform optimization with SH*ADD in the Zba extension. 293 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 294 assert(ActiveFeatures[RISCV::Feature64Bit] && 295 "Expected RV32 to only need 2 instructions"); 296 int64_t Div = 0; 297 unsigned Opc = 0; 298 RISCVMatInt::InstSeq TmpSeq; 299 // Select the opcode and divisor. 300 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 301 Div = 3; 302 Opc = RISCV::SH1ADD; 303 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 304 Div = 5; 305 Opc = RISCV::SH2ADD; 306 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 307 Div = 9; 308 Opc = RISCV::SH3ADD; 309 } 310 // Build the new instruction sequence. 311 if (Div > 0) { 312 generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); 313 TmpSeq.emplace_back(Opc, 0); 314 if (TmpSeq.size() < Res.size()) 315 Res = TmpSeq; 316 } else { 317 // Try to use LUI+SH*ADD+ADDI. 318 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 319 int64_t Lo12 = SignExtend64<12>(Val); 320 Div = 0; 321 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 322 Div = 3; 323 Opc = RISCV::SH1ADD; 324 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 325 Div = 5; 326 Opc = RISCV::SH2ADD; 327 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 328 Div = 9; 329 Opc = RISCV::SH3ADD; 330 } 331 // Build the new instruction sequence. 332 if (Div > 0) { 333 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 334 // already been processed to LUI+SH*ADD by previous optimization. 335 assert(Lo12 != 0 && 336 "unexpected instruction sequence for immediate materialisation"); 337 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 338 generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); 339 TmpSeq.emplace_back(Opc, 0); 340 TmpSeq.emplace_back(RISCV::ADDI, Lo12); 341 if (TmpSeq.size() < Res.size()) 342 Res = TmpSeq; 343 } 344 } 345 } 346 347 // Perform optimization with rori in the Zbb extension. 348 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) { 349 if (unsigned Rotate = extractRotateInfo(Val)) { 350 RISCVMatInt::InstSeq TmpSeq; 351 uint64_t NegImm12 = 352 ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate); 353 assert(isInt<12>(NegImm12)); 354 TmpSeq.emplace_back(RISCV::ADDI, NegImm12); 355 TmpSeq.emplace_back(RISCV::RORI, Rotate); 356 Res = TmpSeq; 357 } 358 } 359 return Res; 360 } 361 362 int getIntMatCost(const APInt &Val, unsigned Size, 363 const FeatureBitset &ActiveFeatures, bool CompressionCost) { 364 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 365 bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; 366 int PlatRegSize = IsRV64 ? 64 : 32; 367 368 // Split the constant into platform register sized chunks, and calculate cost 369 // of each chunk. 370 int Cost = 0; 371 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 372 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 373 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 374 Cost += getInstSeqCost(MatSeq, HasRVC); 375 } 376 return std::max(1, Cost); 377 } 378 379 OpndKind Inst::getOpndKind() const { 380 switch (Opc) { 381 default: 382 llvm_unreachable("Unexpected opcode!"); 383 case RISCV::LUI: 384 return RISCVMatInt::Imm; 385 case RISCV::ADD_UW: 386 return RISCVMatInt::RegX0; 387 case RISCV::SH1ADD: 388 case RISCV::SH2ADD: 389 case RISCV::SH3ADD: 390 return RISCVMatInt::RegReg; 391 case RISCV::ADDI: 392 case RISCV::ADDIW: 393 case RISCV::SLLI: 394 case RISCV::SRLI: 395 case RISCV::SLLI_UW: 396 case RISCV::RORI: 397 case RISCV::BSETI: 398 case RISCV::BCLRI: 399 return RISCVMatInt::RegImm; 400 } 401 } 402 403 } // namespace llvm::RISCVMatInt 404