1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/MC/MCInstBuilder.h" 13 #include "llvm/Support/MathExtras.h" 14 using namespace llvm; 15 16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 17 if (!HasRVC) 18 return Res.size(); 19 20 int Cost = 0; 21 for (auto Instr : Res) { 22 // Assume instructions that aren't listed aren't compressible. 23 bool Compressed = false; 24 switch (Instr.getOpcode()) { 25 case RISCV::SLLI: 26 case RISCV::SRLI: 27 Compressed = true; 28 break; 29 case RISCV::ADDI: 30 case RISCV::ADDIW: 31 case RISCV::LUI: 32 Compressed = isInt<6>(Instr.getImm()); 33 break; 34 } 35 // Two RVC instructions take the same space as one RVI instruction, but 36 // can take longer to execute than the single RVI instruction. Thus, we 37 // consider that two RVC instruction are slightly more costly than one 38 // RVI instruction. For longer sequences of RVC instructions the space 39 // savings can be worth it, though. The costs below try to model that. 40 if (!Compressed) 41 Cost += 100; // Baseline cost of one RVI instruction: 100%. 42 else 43 Cost += 70; // 70% cost of baseline. 44 } 45 return Cost; 46 } 47 48 // Recursively generate a sequence for materializing an integer. 49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); 52 53 // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. 54 if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) && 55 (!isInt<32>(Val) || Val == 0x800)) { 56 Res.emplace_back(RISCV::BSETI, Log2_64(Val)); 57 return; 58 } 59 60 if (isInt<32>(Val)) { 61 // Depending on the active bits in the immediate Value v, the following 62 // instruction sequences are emitted: 63 // 64 // v == 0 : ADDI 65 // v[0,12) != 0 && v[12,32) == 0 : ADDI 66 // v[0,12) == 0 && v[12,32) != 0 : LUI 67 // v[0,32) != 0 : LUI+ADDI(W) 68 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 69 int64_t Lo12 = SignExtend64<12>(Val); 70 71 if (Hi20) 72 Res.emplace_back(RISCV::LUI, Hi20); 73 74 if (Lo12 || Hi20 == 0) { 75 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 76 Res.emplace_back(AddiOpc, Lo12); 77 } 78 return; 79 } 80 81 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 82 83 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 84 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 85 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 86 // while the following ADDI instructions contribute up to 12 bits each. 87 // 88 // On the first glance, implementing this seems to be possible by simply 89 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 90 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 91 // fact that ADDI performs a sign extended addition, doing it like that would 92 // only be possible when at most 11 bits of the ADDI instructions are used. 93 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 94 // requires that the constant is processed starting with the least significant 95 // bit. 96 // 97 // In the following, constants are processed from LSB to MSB but instruction 98 // emission is performed from MSB to LSB by recursively calling 99 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 100 // from the constant and the optimal shift amount, which can be greater than 101 // 12 bits if the constant is sparse, is determined. Then, the shifted 102 // remaining constant is processed recursively and gets emitted as soon as it 103 // fits into 32 bits. The emission of the shifts and additions is subsequently 104 // performed when the recursion returns. 105 106 int64_t Lo12 = SignExtend64<12>(Val); 107 Val = (uint64_t)Val - (uint64_t)Lo12; 108 109 int ShiftAmount = 0; 110 bool Unsigned = false; 111 112 // Val might now be valid for LUI without needing a shift. 113 if (!isInt<32>(Val)) { 114 ShiftAmount = llvm::countr_zero((uint64_t)Val); 115 Val >>= ShiftAmount; 116 117 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 118 // shift amount in order to use LUI which will zero the lower 12 bits. 119 if (ShiftAmount > 12 && !isInt<12>(Val)) { 120 if (isInt<32>((uint64_t)Val << 12)) { 121 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 122 ShiftAmount -= 12; 123 Val = (uint64_t)Val << 12; 124 } else if (isUInt<32>((uint64_t)Val << 12) && 125 STI.hasFeature(RISCV::FeatureStdExtZba)) { 126 // Reduce the shift amount and add zeros to the LSBs so it will match 127 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 128 ShiftAmount -= 12; 129 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); 130 Unsigned = true; 131 } 132 } 133 134 // Try to use SLLI_UW for Val when it is uint32 but not int32. 135 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && 136 STI.hasFeature(RISCV::FeatureStdExtZba)) { 137 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 138 // SLLI_UW. 139 Val = ((uint64_t)Val) | (0xffffffffull << 32); 140 Unsigned = true; 141 } 142 } 143 144 generateInstSeqImpl(Val, STI, Res); 145 146 // Skip shift if we were able to use LUI directly. 147 if (ShiftAmount) { 148 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; 149 Res.emplace_back(Opc, ShiftAmount); 150 } 151 152 if (Lo12) 153 Res.emplace_back(RISCV::ADDI, Lo12); 154 } 155 156 static unsigned extractRotateInfo(int64_t Val) { 157 // for case: 0b111..1..xxxxxx1..1.. 158 unsigned LeadingOnes = llvm::countl_one((uint64_t)Val); 159 unsigned TrailingOnes = llvm::countr_one((uint64_t)Val); 160 if (TrailingOnes > 0 && TrailingOnes < 64 && 161 (LeadingOnes + TrailingOnes) > (64 - 12)) 162 return 64 - TrailingOnes; 163 164 // for case: 0bxxx1..1..1...xxx 165 unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val)); 166 unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val)); 167 if (UpperTrailingOnes < 32 && 168 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 169 return 32 - UpperTrailingOnes; 170 171 return 0; 172 } 173 174 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI, 175 RISCVMatInt::InstSeq &Res) { 176 assert(Val > 0 && "Expected postive val"); 177 178 unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val); 179 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 180 // Fill in the bits that will be shifted out with 1s. An example where this 181 // helps is trailing one masks with 32 or more ones. This will generate 182 // ADDI -1 and an SRLI. 183 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 184 185 RISCVMatInt::InstSeq TmpSeq; 186 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 187 188 // Keep the new sequence if it is an improvement or the original is empty. 189 if ((TmpSeq.size() + 1) < Res.size() || 190 (Res.empty() && TmpSeq.size() < 8)) { 191 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 192 Res = TmpSeq; 193 } 194 195 // Some cases can benefit from filling the lower bits with zeros instead. 196 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 197 TmpSeq.clear(); 198 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 199 200 // Keep the new sequence if it is an improvement or the original is empty. 201 if ((TmpSeq.size() + 1) < Res.size() || 202 (Res.empty() && TmpSeq.size() < 8)) { 203 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 204 Res = TmpSeq; 205 } 206 207 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 208 // the end of the sequence. 209 if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) { 210 // Try replacing upper bits with 1. 211 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 212 TmpSeq.clear(); 213 generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq); 214 215 // Keep the new sequence if it is an improvement. 216 if ((TmpSeq.size() + 1) < Res.size() || 217 (Res.empty() && TmpSeq.size() < 8)) { 218 TmpSeq.emplace_back(RISCV::ADD_UW, 0); 219 Res = TmpSeq; 220 } 221 } 222 } 223 224 namespace llvm::RISCVMatInt { 225 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) { 226 RISCVMatInt::InstSeq Res; 227 generateInstSeqImpl(Val, STI, Res); 228 229 // If the low 12 bits are non-zero, the first expansion may end with an ADDI 230 // or ADDIW. If there are trailing zeros, try generating a sign extended 231 // constant with no trailing zeros and use a final SLLI to restore them. 232 if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { 233 unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val); 234 int64_t ShiftedVal = Val >> TrailingZeros; 235 // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since 236 // its more compressible. But only if LUI+ADDI(W) isn't fusable. 237 // NOTE: We don't check for C extension to minimize differences in generated 238 // code. 239 bool IsShiftedCompressible = 240 isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion); 241 RISCVMatInt::InstSeq TmpSeq; 242 generateInstSeqImpl(ShiftedVal, STI, TmpSeq); 243 244 // Keep the new sequence if it is an improvement. 245 if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { 246 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); 247 Res = TmpSeq; 248 } 249 } 250 251 // If we have a 1 or 2 instruction sequence this is the best we can do. This 252 // will always be true for RV32 and will often be true for RV64. 253 if (Res.size() <= 2) 254 return Res; 255 256 assert(STI.hasFeature(RISCV::Feature64Bit) && 257 "Expected RV32 to only need 2 instructions"); 258 259 // If the lower 13 bits are something like 0x17ff, try to add 1 to change the 260 // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end 261 // of the sequence. Call generateInstSeqImpl on the new constant which may 262 // subtract 0xfffffffffffff800 to create another ADDI. This will leave a 263 // constant with more than 12 trailing zeros for the next recursive step. 264 if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) { 265 int64_t Imm12 = -(0x800 - (Val & 0xfff)); 266 int64_t AdjustedVal = Val - Imm12; 267 RISCVMatInt::InstSeq TmpSeq; 268 generateInstSeqImpl(AdjustedVal, STI, TmpSeq); 269 270 // Keep the new sequence if it is an improvement. 271 if ((TmpSeq.size() + 1) < Res.size()) { 272 TmpSeq.emplace_back(RISCV::ADDI, Imm12); 273 Res = TmpSeq; 274 } 275 } 276 277 // If the constant is positive we might be able to generate a shifted constant 278 // with no leading zeros and use a final SRLI to restore them. 279 if (Val > 0 && Res.size() > 2) { 280 generateInstSeqLeadingZeros(Val, STI, Res); 281 } 282 283 // If the constant is negative, trying inverting and using our trailing zero 284 // optimizations. Use an xori to invert the final value. 285 if (Val < 0 && Res.size() > 3) { 286 uint64_t InvertedVal = ~(uint64_t)Val; 287 RISCVMatInt::InstSeq TmpSeq; 288 generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq); 289 290 // Keep it if we found a sequence that is smaller after inverting. 291 if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) { 292 TmpSeq.emplace_back(RISCV::XORI, -1); 293 Res = TmpSeq; 294 } 295 } 296 297 // If the Low and High halves are the same, use pack. The pack instruction 298 // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the 299 // lower half and rs2 in the upper half. 300 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) { 301 int64_t LoVal = SignExtend64<32>(Val); 302 int64_t HiVal = SignExtend64<32>(Val >> 32); 303 if (LoVal == HiVal) { 304 RISCVMatInt::InstSeq TmpSeq; 305 generateInstSeqImpl(LoVal, STI, TmpSeq); 306 if ((TmpSeq.size() + 1) < Res.size()) { 307 TmpSeq.emplace_back(RISCV::PACK, 0); 308 Res = TmpSeq; 309 } 310 } 311 } 312 313 // Perform optimization with BCLRI/BSETI in the Zbs extension. 314 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) { 315 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 316 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 317 // an int32), then emit (BCLRI r, 31). 318 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 319 // with Val&~0x80000000 (which is expected to be an int32), then 320 // emit (BSETI r, 31). 321 int64_t NewVal; 322 unsigned Opc; 323 if (Val < 0) { 324 Opc = RISCV::BCLRI; 325 NewVal = Val | 0x80000000ll; 326 } else { 327 Opc = RISCV::BSETI; 328 NewVal = Val & ~0x80000000ll; 329 } 330 if (isInt<32>(NewVal)) { 331 RISCVMatInt::InstSeq TmpSeq; 332 generateInstSeqImpl(NewVal, STI, TmpSeq); 333 if ((TmpSeq.size() + 1) < Res.size()) { 334 TmpSeq.emplace_back(Opc, 31); 335 Res = TmpSeq; 336 } 337 } 338 339 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 340 // negative int32, or use BSETI for upper 32 bits if the original lower 341 // 32 bits are positive int32. 342 int32_t Lo = Lo_32(Val); 343 uint32_t Hi = Hi_32(Val); 344 Opc = 0; 345 RISCVMatInt::InstSeq TmpSeq; 346 generateInstSeqImpl(Lo, STI, TmpSeq); 347 // Check if it is profitable to use BCLRI/BSETI. 348 if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { 349 Opc = RISCV::BSETI; 350 } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) { 351 Opc = RISCV::BCLRI; 352 Hi = ~Hi; 353 } 354 // Search for each bit and build corresponding BCLRI/BSETI. 355 if (Opc > 0) { 356 while (Hi != 0) { 357 unsigned Bit = llvm::countr_zero(Hi); 358 TmpSeq.emplace_back(Opc, Bit + 32); 359 Hi &= (Hi - 1); // Clear lowest set bit. 360 } 361 if (TmpSeq.size() < Res.size()) 362 Res = TmpSeq; 363 } 364 } 365 366 // Perform optimization with SH*ADD in the Zba extension. 367 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) { 368 int64_t Div = 0; 369 unsigned Opc = 0; 370 RISCVMatInt::InstSeq TmpSeq; 371 // Select the opcode and divisor. 372 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 373 Div = 3; 374 Opc = RISCV::SH1ADD; 375 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 376 Div = 5; 377 Opc = RISCV::SH2ADD; 378 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 379 Div = 9; 380 Opc = RISCV::SH3ADD; 381 } 382 // Build the new instruction sequence. 383 if (Div > 0) { 384 generateInstSeqImpl(Val / Div, STI, TmpSeq); 385 if ((TmpSeq.size() + 1) < Res.size()) { 386 TmpSeq.emplace_back(Opc, 0); 387 Res = TmpSeq; 388 } 389 } else { 390 // Try to use LUI+SH*ADD+ADDI. 391 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 392 int64_t Lo12 = SignExtend64<12>(Val); 393 Div = 0; 394 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 395 Div = 3; 396 Opc = RISCV::SH1ADD; 397 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 398 Div = 5; 399 Opc = RISCV::SH2ADD; 400 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 401 Div = 9; 402 Opc = RISCV::SH3ADD; 403 } 404 // Build the new instruction sequence. 405 if (Div > 0) { 406 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 407 // already been processed to LUI+SH*ADD by previous optimization. 408 assert(Lo12 != 0 && 409 "unexpected instruction sequence for immediate materialisation"); 410 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 411 generateInstSeqImpl(Hi52 / Div, STI, TmpSeq); 412 if ((TmpSeq.size() + 2) < Res.size()) { 413 TmpSeq.emplace_back(Opc, 0); 414 TmpSeq.emplace_back(RISCV::ADDI, Lo12); 415 Res = TmpSeq; 416 } 417 } 418 } 419 } 420 421 // Perform optimization with rori in the Zbb and th.srri in the XTheadBb 422 // extension. 423 if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) || 424 STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) { 425 if (unsigned Rotate = extractRotateInfo(Val)) { 426 RISCVMatInt::InstSeq TmpSeq; 427 uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate); 428 assert(isInt<12>(NegImm12)); 429 TmpSeq.emplace_back(RISCV::ADDI, NegImm12); 430 TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb) 431 ? RISCV::RORI 432 : RISCV::TH_SRRI, 433 Rotate); 434 Res = TmpSeq; 435 } 436 } 437 return Res; 438 } 439 440 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI, 441 MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) { 442 RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI); 443 444 MCRegister SrcReg = RISCV::X0; 445 for (RISCVMatInt::Inst &Inst : Seq) { 446 switch (Inst.getOpndKind()) { 447 case RISCVMatInt::Imm: 448 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 449 .addReg(DestReg) 450 .addImm(Inst.getImm())); 451 break; 452 case RISCVMatInt::RegX0: 453 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 454 .addReg(DestReg) 455 .addReg(SrcReg) 456 .addReg(RISCV::X0)); 457 break; 458 case RISCVMatInt::RegReg: 459 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 460 .addReg(DestReg) 461 .addReg(SrcReg) 462 .addReg(SrcReg)); 463 break; 464 case RISCVMatInt::RegImm: 465 Insts.push_back(MCInstBuilder(Inst.getOpcode()) 466 .addReg(DestReg) 467 .addReg(SrcReg) 468 .addImm(Inst.getImm())); 469 break; 470 } 471 472 // Only the first instruction has X0 as its source. 473 SrcReg = DestReg; 474 } 475 } 476 477 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI, 478 unsigned &ShiftAmt, unsigned &AddOpc) { 479 int64_t LoVal = SignExtend64<32>(Val); 480 if (LoVal == 0) 481 return RISCVMatInt::InstSeq(); 482 483 // Subtract the LoVal to emulate the effect of the final ADD. 484 uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal; 485 assert(Tmp != 0); 486 487 // Use trailing zero counts to figure how far we need to shift LoVal to line 488 // up with the remaining constant. 489 // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the 490 // final constant come from LoVal. 491 unsigned TzLo = llvm::countr_zero((uint64_t)LoVal); 492 unsigned TzHi = llvm::countr_zero(Tmp); 493 assert(TzLo < 32 && TzHi >= 32); 494 ShiftAmt = TzHi - TzLo; 495 AddOpc = RISCV::ADD; 496 497 if (Tmp == ((uint64_t)LoVal << ShiftAmt)) 498 return RISCVMatInt::generateInstSeq(LoVal, STI); 499 500 // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)). 501 if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) { 502 ShiftAmt = 32; 503 AddOpc = RISCV::ADD_UW; 504 return RISCVMatInt::generateInstSeq(LoVal, STI); 505 } 506 507 return RISCVMatInt::InstSeq(); 508 } 509 510 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, 511 bool CompressionCost) { 512 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit); 513 bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) || 514 STI.hasFeature(RISCV::FeatureStdExtZca)); 515 int PlatRegSize = IsRV64 ? 64 : 32; 516 517 // Split the constant into platform register sized chunks, and calculate cost 518 // of each chunk. 519 int Cost = 0; 520 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 521 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 522 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI); 523 Cost += getInstSeqCost(MatSeq, HasRVC); 524 } 525 return std::max(1, Cost); 526 } 527 528 OpndKind Inst::getOpndKind() const { 529 switch (Opc) { 530 default: 531 llvm_unreachable("Unexpected opcode!"); 532 case RISCV::LUI: 533 return RISCVMatInt::Imm; 534 case RISCV::ADD_UW: 535 return RISCVMatInt::RegX0; 536 case RISCV::SH1ADD: 537 case RISCV::SH2ADD: 538 case RISCV::SH3ADD: 539 case RISCV::PACK: 540 return RISCVMatInt::RegReg; 541 case RISCV::ADDI: 542 case RISCV::ADDIW: 543 case RISCV::XORI: 544 case RISCV::SLLI: 545 case RISCV::SRLI: 546 case RISCV::SLLI_UW: 547 case RISCV::RORI: 548 case RISCV::BSETI: 549 case RISCV::BCLRI: 550 case RISCV::TH_SRRI: 551 return RISCVMatInt::RegImm; 552 } 553 } 554 555 } // namespace llvm::RISCVMatInt 556