xref: /llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision a8b8e9476451e125e81bd24fbde6605246c59a0e)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     // Assume instructions that aren't listed aren't compressible.
22     bool Compressed = false;
23     switch (Instr.getOpcode()) {
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.getImm());
32       break;
33     }
34     // Two RVC instructions take the same space as one RVI instruction, but
35     // can take longer to execute than the single RVI instruction. Thus, we
36     // consider that two RVC instruction are slightly more costly than one
37     // RVI instruction. For longer sequences of RVC instructions the space
38     // savings can be worth it, though. The costs below try to model that.
39     if (!Compressed)
40       Cost += 100; // Baseline cost of one RVI instruction: 100%.
41     else
42       Cost += 70; // 70% cost of baseline.
43   }
44   return Cost;
45 }
46 
47 // Recursively generate a sequence for materializing an integer.
48 static void generateInstSeqImpl(int64_t Val,
49                                 const FeatureBitset &ActiveFeatures,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce the
118     // shift amount in order to use LUI which will zero the lower 12 bits.
119     if (ShiftAmount > 12 && !isInt<12>(Val)) {
120       if (isInt<32>((uint64_t)Val << 12)) {
121         // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
122         ShiftAmount -= 12;
123         Val = (uint64_t)Val << 12;
124       } else if (isUInt<32>((uint64_t)Val << 12) &&
125                  ActiveFeatures[RISCV::FeatureStdExtZba]) {
126         // Reduce the shift amount and add zeros to the LSBs so it will match
127         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
128         ShiftAmount -= 12;
129         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
130         Unsigned = true;
131       }
132     }
133 
134     // Try to use SLLI_UW for Val when it is uint32 but not int32.
135     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
136         ActiveFeatures[RISCV::FeatureStdExtZba]) {
137       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
138       // SLLI_UW.
139       Val = ((uint64_t)Val) | (0xffffffffull << 32);
140       Unsigned = true;
141     }
142   }
143 
144   generateInstSeqImpl(Val, ActiveFeatures, Res);
145 
146   // Skip shift if we were able to use LUI directly.
147   if (ShiftAmount) {
148     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
149     Res.emplace_back(Opc, ShiftAmount);
150   }
151 
152   if (Lo12)
153     Res.emplace_back(RISCV::ADDI, Lo12);
154 }
155 
156 static unsigned extractRotateInfo(int64_t Val) {
157   // for case: 0b111..1..xxxxxx1..1..
158   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
159   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
160   if (TrailingOnes > 0 && TrailingOnes < 64 &&
161       (LeadingOnes + TrailingOnes) > (64 - 12))
162     return 64 - TrailingOnes;
163 
164   // for case: 0bxxx1..1..1...xxx
165   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
166   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
167   if (UpperTrailingOnes < 32 &&
168       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
169     return 32 - UpperTrailingOnes;
170 
171   return 0;
172 }
173 
174 static void generateInstSeqLeadingZeros(int64_t Val,
175                                         const FeatureBitset &ActiveFeatures,
176                                         RISCVMatInt::InstSeq &Res) {
177   assert(Val > 0 && "Expected postive val");
178 
179   unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
180   uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
181   // Fill in the bits that will be shifted out with 1s. An example where this
182   // helps is trailing one masks with 32 or more ones. This will generate
183   // ADDI -1 and an SRLI.
184   ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
185 
186   RISCVMatInt::InstSeq TmpSeq;
187   generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
188 
189   // Keep the new sequence if it is an improvement or the original is empty.
190   if ((TmpSeq.size() + 1) < Res.size() ||
191       (Res.empty() && TmpSeq.size() < 8)) {
192     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
193     Res = TmpSeq;
194   }
195 
196   // Some cases can benefit from filling the lower bits with zeros instead.
197   ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
198   TmpSeq.clear();
199   generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
200 
201   // Keep the new sequence if it is an improvement or the original is empty.
202   if ((TmpSeq.size() + 1) < Res.size() ||
203       (Res.empty() && TmpSeq.size() < 8)) {
204     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
205     Res = TmpSeq;
206   }
207 
208   // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
209   // the end of the sequence.
210   if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
211     // Try replacing upper bits with 1.
212     uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
213     TmpSeq.clear();
214     generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
215 
216     // Keep the new sequence if it is an improvement.
217     if ((TmpSeq.size() + 1) < Res.size() ||
218         (Res.empty() && TmpSeq.size() < 8)) {
219       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
220       Res = TmpSeq;
221     }
222   }
223 }
224 
225 namespace llvm::RISCVMatInt {
226 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
227   RISCVMatInt::InstSeq Res;
228   generateInstSeqImpl(Val, ActiveFeatures, Res);
229 
230   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
231   // or ADDIW. If there are trailing zeros, try generating a sign extended
232   // constant with no trailing zeros and use a final SLLI to restore them.
233   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
234     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
235     int64_t ShiftedVal = Val >> TrailingZeros;
236     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
237     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
238     // NOTE: We don't check for C extension to minimize differences in generated
239     // code.
240     bool IsShiftedCompressible =
241               isInt<6>(ShiftedVal) && !ActiveFeatures[RISCV::TuneLUIADDIFusion];
242     RISCVMatInt::InstSeq TmpSeq;
243     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
244 
245     // Keep the new sequence if it is an improvement.
246     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
247       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
248       Res = TmpSeq;
249     }
250   }
251 
252   // If we have a 1 or 2 instruction sequence this is the best we can do. This
253   // will always be true for RV32 and will often be true for RV64.
254   if (Res.size() <= 2)
255     return Res;
256 
257   assert(ActiveFeatures[RISCV::Feature64Bit] &&
258          "Expected RV32 to only need 2 instructions");
259 
260   // If the constant is positive we might be able to generate a shifted constant
261   // with no leading zeros and use a final SRLI to restore them.
262   if (Val > 0) {
263     assert(Res.size() > 2 && "Expected longer sequence");
264     generateInstSeqLeadingZeros(Val, ActiveFeatures, Res);
265   }
266 
267   // If the constant is negative, trying inverting and using our trailing zero
268   // optimizations. Use an xori to invert the final value.
269   if (Val < 0 && Res.size() > 3) {
270     uint64_t InvertedVal = ~(uint64_t)Val;
271     RISCVMatInt::InstSeq TmpSeq;
272     generateInstSeqLeadingZeros(InvertedVal, ActiveFeatures, TmpSeq);
273 
274     // Keep it if we found a sequence that is smaller after inverting.
275     if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
276       TmpSeq.emplace_back(RISCV::XORI, -1);
277       Res = TmpSeq;
278     }
279   }
280 
281   // If the Low and High halves are the same, use pack. The pack instruction
282   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
283   // lower half and rs2 in the upper half.
284   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbkb]) {
285     int64_t LoVal = SignExtend64<32>(Val);
286     int64_t HiVal = SignExtend64<32>(Val >> 32);
287     if (LoVal == HiVal) {
288       RISCVMatInt::InstSeq TmpSeq;
289       generateInstSeqImpl(LoVal, ActiveFeatures, TmpSeq);
290       if ((TmpSeq.size() + 1) < Res.size()) {
291         TmpSeq.emplace_back(RISCV::PACK, 0);
292         Res = TmpSeq;
293       }
294     }
295   }
296 
297   // Perform optimization with BCLRI/BSETI in the Zbs extension.
298   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
299     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
300     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
301     //    an int32), then emit (BCLRI r, 31).
302     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
303     //    with Val&~0x80000000 (which is expected to be an int32), then
304     //    emit (BSETI r, 31).
305     int64_t NewVal;
306     unsigned Opc;
307     if (Val < 0) {
308       Opc = RISCV::BCLRI;
309       NewVal = Val | 0x80000000ll;
310     } else {
311       Opc = RISCV::BSETI;
312       NewVal = Val & ~0x80000000ll;
313     }
314     if (isInt<32>(NewVal)) {
315       RISCVMatInt::InstSeq TmpSeq;
316       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
317       if ((TmpSeq.size() + 1) < Res.size()) {
318         TmpSeq.emplace_back(Opc, 31);
319         Res = TmpSeq;
320       }
321     }
322 
323     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
324     // negative int32, or use BSETI for upper 32 bits if the original lower
325     // 32 bits are positive int32.
326     int32_t Lo = Lo_32(Val);
327     uint32_t Hi = Hi_32(Val);
328     Opc = 0;
329     RISCVMatInt::InstSeq TmpSeq;
330     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
331     // Check if it is profitable to use BCLRI/BSETI.
332     if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
333       Opc = RISCV::BSETI;
334     } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
335       Opc = RISCV::BCLRI;
336       Hi = ~Hi;
337     }
338     // Search for each bit and build corresponding BCLRI/BSETI.
339     if (Opc > 0) {
340       while (Hi != 0) {
341         unsigned Bit = llvm::countr_zero(Hi);
342         TmpSeq.emplace_back(Opc, Bit + 32);
343         Hi &= (Hi - 1); // Clear lowest set bit.
344       }
345       if (TmpSeq.size() < Res.size())
346         Res = TmpSeq;
347     }
348   }
349 
350   // Perform optimization with SH*ADD in the Zba extension.
351   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
352     int64_t Div = 0;
353     unsigned Opc = 0;
354     RISCVMatInt::InstSeq TmpSeq;
355     // Select the opcode and divisor.
356     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
357       Div = 3;
358       Opc = RISCV::SH1ADD;
359     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
360       Div = 5;
361       Opc = RISCV::SH2ADD;
362     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
363       Div = 9;
364       Opc = RISCV::SH3ADD;
365     }
366     // Build the new instruction sequence.
367     if (Div > 0) {
368       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
369       if ((TmpSeq.size() + 1) < Res.size()) {
370         TmpSeq.emplace_back(Opc, 0);
371         Res = TmpSeq;
372       }
373     } else {
374       // Try to use LUI+SH*ADD+ADDI.
375       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
376       int64_t Lo12 = SignExtend64<12>(Val);
377       Div = 0;
378       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
379         Div = 3;
380         Opc = RISCV::SH1ADD;
381       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
382         Div = 5;
383         Opc = RISCV::SH2ADD;
384       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
385         Div = 9;
386         Opc = RISCV::SH3ADD;
387       }
388       // Build the new instruction sequence.
389       if (Div > 0) {
390         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
391         // already been processed to LUI+SH*ADD by previous optimization.
392         assert(Lo12 != 0 &&
393                "unexpected instruction sequence for immediate materialisation");
394         assert(TmpSeq.empty() && "Expected empty TmpSeq");
395         generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
396         if ((TmpSeq.size() + 2) < Res.size()) {
397           TmpSeq.emplace_back(Opc, 0);
398           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
399           Res = TmpSeq;
400         }
401       }
402     }
403   }
404 
405   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
406   // extension.
407   if (Res.size() > 2 && (ActiveFeatures[RISCV::FeatureStdExtZbb] ||
408                          ActiveFeatures[RISCV::FeatureVendorXTHeadBb])) {
409     if (unsigned Rotate = extractRotateInfo(Val)) {
410       RISCVMatInt::InstSeq TmpSeq;
411       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
412       assert(isInt<12>(NegImm12));
413       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
414       TmpSeq.emplace_back(ActiveFeatures[RISCV::FeatureStdExtZbb]
415                               ? RISCV::RORI
416                               : RISCV::TH_SRRI,
417                           Rotate);
418       Res = TmpSeq;
419     }
420   }
421   return Res;
422 }
423 
424 int getIntMatCost(const APInt &Val, unsigned Size,
425                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
426   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
427   bool HasRVC = CompressionCost && (ActiveFeatures[RISCV::FeatureStdExtC] ||
428                                     ActiveFeatures[RISCV::FeatureStdExtZca]);
429   int PlatRegSize = IsRV64 ? 64 : 32;
430 
431   // Split the constant into platform register sized chunks, and calculate cost
432   // of each chunk.
433   int Cost = 0;
434   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
435     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
436     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
437     Cost += getInstSeqCost(MatSeq, HasRVC);
438   }
439   return std::max(1, Cost);
440 }
441 
442 OpndKind Inst::getOpndKind() const {
443   switch (Opc) {
444   default:
445     llvm_unreachable("Unexpected opcode!");
446   case RISCV::LUI:
447     return RISCVMatInt::Imm;
448   case RISCV::ADD_UW:
449     return RISCVMatInt::RegX0;
450   case RISCV::SH1ADD:
451   case RISCV::SH2ADD:
452   case RISCV::SH3ADD:
453   case RISCV::PACK:
454     return RISCVMatInt::RegReg;
455   case RISCV::ADDI:
456   case RISCV::ADDIW:
457   case RISCV::XORI:
458   case RISCV::SLLI:
459   case RISCV::SRLI:
460   case RISCV::SLLI_UW:
461   case RISCV::RORI:
462   case RISCV::BSETI:
463   case RISCV::BCLRI:
464   case RISCV::TH_SRRI:
465     return RISCVMatInt::RegImm;
466   }
467 }
468 
469 } // namespace llvm::RISCVMatInt
470