1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVMatInt.h" 10 #include "MCTargetDesc/RISCVMCTargetDesc.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/Support/MathExtras.h" 13 using namespace llvm; 14 15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { 16 if (!HasRVC) 17 return Res.size(); 18 19 int Cost = 0; 20 for (auto Instr : Res) { 21 // Assume instructions that aren't listed aren't compressible. 22 bool Compressed = false; 23 switch (Instr.getOpcode()) { 24 case RISCV::SLLI: 25 case RISCV::SRLI: 26 Compressed = true; 27 break; 28 case RISCV::ADDI: 29 case RISCV::ADDIW: 30 case RISCV::LUI: 31 Compressed = isInt<6>(Instr.getImm()); 32 break; 33 } 34 // Two RVC instructions take the same space as one RVI instruction, but 35 // can take longer to execute than the single RVI instruction. Thus, we 36 // consider that two RVC instruction are slightly more costly than one 37 // RVI instruction. For longer sequences of RVC instructions the space 38 // savings can be worth it, though. The costs below try to model that. 39 if (!Compressed) 40 Cost += 100; // Baseline cost of one RVI instruction: 100%. 41 else 42 Cost += 70; // 70% cost of baseline. 43 } 44 return Cost; 45 } 46 47 // Recursively generate a sequence for materializing an integer. 48 static void generateInstSeqImpl(int64_t Val, 49 const FeatureBitset &ActiveFeatures, 50 RISCVMatInt::InstSeq &Res) { 51 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 52 53 // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI. 54 if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val) && 55 (!isInt<32>(Val) || Val == 0x800)) { 56 Res.emplace_back(RISCV::BSETI, Log2_64(Val)); 57 return; 58 } 59 60 if (isInt<32>(Val)) { 61 // Depending on the active bits in the immediate Value v, the following 62 // instruction sequences are emitted: 63 // 64 // v == 0 : ADDI 65 // v[0,12) != 0 && v[12,32) == 0 : ADDI 66 // v[0,12) == 0 && v[12,32) != 0 : LUI 67 // v[0,32) != 0 : LUI+ADDI(W) 68 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; 69 int64_t Lo12 = SignExtend64<12>(Val); 70 71 if (Hi20) 72 Res.emplace_back(RISCV::LUI, Hi20); 73 74 if (Lo12 || Hi20 == 0) { 75 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; 76 Res.emplace_back(AddiOpc, Lo12); 77 } 78 return; 79 } 80 81 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); 82 83 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions 84 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note 85 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits 86 // while the following ADDI instructions contribute up to 12 bits each. 87 // 88 // On the first glance, implementing this seems to be possible by simply 89 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left 90 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the 91 // fact that ADDI performs a sign extended addition, doing it like that would 92 // only be possible when at most 11 bits of the ADDI instructions are used. 93 // Using all 12 bits of the ADDI instructions, like done by GAS, actually 94 // requires that the constant is processed starting with the least significant 95 // bit. 96 // 97 // In the following, constants are processed from LSB to MSB but instruction 98 // emission is performed from MSB to LSB by recursively calling 99 // generateInstSeq. In each recursion, first the lowest 12 bits are removed 100 // from the constant and the optimal shift amount, which can be greater than 101 // 12 bits if the constant is sparse, is determined. Then, the shifted 102 // remaining constant is processed recursively and gets emitted as soon as it 103 // fits into 32 bits. The emission of the shifts and additions is subsequently 104 // performed when the recursion returns. 105 106 int64_t Lo12 = SignExtend64<12>(Val); 107 Val = (uint64_t)Val - (uint64_t)Lo12; 108 109 int ShiftAmount = 0; 110 bool Unsigned = false; 111 112 // Val might now be valid for LUI without needing a shift. 113 if (!isInt<32>(Val)) { 114 ShiftAmount = llvm::countr_zero((uint64_t)Val); 115 Val >>= ShiftAmount; 116 117 // If the remaining bits don't fit in 12 bits, we might be able to reduce the 118 // shift amount in order to use LUI which will zero the lower 12 bits. 119 if (ShiftAmount > 12 && !isInt<12>(Val)) { 120 if (isInt<32>((uint64_t)Val << 12)) { 121 // Reduce the shift amount and add zeros to the LSBs so it will match LUI. 122 ShiftAmount -= 12; 123 Val = (uint64_t)Val << 12; 124 } else if (isUInt<32>((uint64_t)Val << 12) && 125 ActiveFeatures[RISCV::FeatureStdExtZba]) { 126 // Reduce the shift amount and add zeros to the LSBs so it will match 127 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. 128 ShiftAmount -= 12; 129 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32); 130 Unsigned = true; 131 } 132 } 133 134 // Try to use SLLI_UW for Val when it is uint32 but not int32. 135 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) && 136 ActiveFeatures[RISCV::FeatureStdExtZba]) { 137 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with 138 // SLLI_UW. 139 Val = ((uint64_t)Val) | (0xffffffffull << 32); 140 Unsigned = true; 141 } 142 } 143 144 generateInstSeqImpl(Val, ActiveFeatures, Res); 145 146 // Skip shift if we were able to use LUI directly. 147 if (ShiftAmount) { 148 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI; 149 Res.emplace_back(Opc, ShiftAmount); 150 } 151 152 if (Lo12) 153 Res.emplace_back(RISCV::ADDI, Lo12); 154 } 155 156 static unsigned extractRotateInfo(int64_t Val) { 157 // for case: 0b111..1..xxxxxx1..1.. 158 unsigned LeadingOnes = llvm::countl_one((uint64_t)Val); 159 unsigned TrailingOnes = llvm::countr_one((uint64_t)Val); 160 if (TrailingOnes > 0 && TrailingOnes < 64 && 161 (LeadingOnes + TrailingOnes) > (64 - 12)) 162 return 64 - TrailingOnes; 163 164 // for case: 0bxxx1..1..1...xxx 165 unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val)); 166 unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val)); 167 if (UpperTrailingOnes < 32 && 168 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12)) 169 return 32 - UpperTrailingOnes; 170 171 return 0; 172 } 173 174 static void generateInstSeqLeadingZeros(int64_t Val, 175 const FeatureBitset &ActiveFeatures, 176 RISCVMatInt::InstSeq &Res) { 177 assert(Val > 0 && "Expected postive val"); 178 179 unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val); 180 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; 181 // Fill in the bits that will be shifted out with 1s. An example where this 182 // helps is trailing one masks with 32 or more ones. This will generate 183 // ADDI -1 and an SRLI. 184 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); 185 186 RISCVMatInt::InstSeq TmpSeq; 187 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 188 189 // Keep the new sequence if it is an improvement or the original is empty. 190 if ((TmpSeq.size() + 1) < Res.size() || 191 (Res.empty() && TmpSeq.size() < 8)) { 192 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 193 Res = TmpSeq; 194 } 195 196 // Some cases can benefit from filling the lower bits with zeros instead. 197 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); 198 TmpSeq.clear(); 199 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 200 201 // Keep the new sequence if it is an improvement or the original is empty. 202 if ((TmpSeq.size() + 1) < Res.size() || 203 (Res.empty() && TmpSeq.size() < 8)) { 204 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros); 205 Res = TmpSeq; 206 } 207 208 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at 209 // the end of the sequence. 210 if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 211 // Try replacing upper bits with 1. 212 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); 213 TmpSeq.clear(); 214 generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); 215 216 // Keep the new sequence if it is an improvement. 217 if ((TmpSeq.size() + 1) < Res.size() || 218 (Res.empty() && TmpSeq.size() < 8)) { 219 TmpSeq.emplace_back(RISCV::ADD_UW, 0); 220 Res = TmpSeq; 221 } 222 } 223 } 224 225 namespace llvm::RISCVMatInt { 226 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { 227 RISCVMatInt::InstSeq Res; 228 generateInstSeqImpl(Val, ActiveFeatures, Res); 229 230 // If the low 12 bits are non-zero, the first expansion may end with an ADDI 231 // or ADDIW. If there are trailing zeros, try generating a sign extended 232 // constant with no trailing zeros and use a final SLLI to restore them. 233 if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) { 234 unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val); 235 int64_t ShiftedVal = Val >> TrailingZeros; 236 // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since 237 // its more compressible. But only if LUI+ADDI(W) isn't fusable. 238 // NOTE: We don't check for C extension to minimize differences in generated 239 // code. 240 bool IsShiftedCompressible = 241 isInt<6>(ShiftedVal) && !ActiveFeatures[RISCV::TuneLUIADDIFusion]; 242 RISCVMatInt::InstSeq TmpSeq; 243 generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); 244 245 // Keep the new sequence if it is an improvement. 246 if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) { 247 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros); 248 Res = TmpSeq; 249 } 250 } 251 252 // If we have a 1 or 2 instruction sequence this is the best we can do. This 253 // will always be true for RV32 and will often be true for RV64. 254 if (Res.size() <= 2) 255 return Res; 256 257 assert(ActiveFeatures[RISCV::Feature64Bit] && 258 "Expected RV32 to only need 2 instructions"); 259 260 // If the constant is positive we might be able to generate a shifted constant 261 // with no leading zeros and use a final SRLI to restore them. 262 if (Val > 0) { 263 assert(Res.size() > 2 && "Expected longer sequence"); 264 generateInstSeqLeadingZeros(Val, ActiveFeatures, Res); 265 } 266 267 // If the constant is negative, trying inverting and using our trailing zero 268 // optimizations. Use an xori to invert the final value. 269 if (Val < 0 && Res.size() > 3) { 270 uint64_t InvertedVal = ~(uint64_t)Val; 271 RISCVMatInt::InstSeq TmpSeq; 272 generateInstSeqLeadingZeros(InvertedVal, ActiveFeatures, TmpSeq); 273 274 // Keep it if we found a sequence that is smaller after inverting. 275 if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) { 276 TmpSeq.emplace_back(RISCV::XORI, -1); 277 Res = TmpSeq; 278 } 279 } 280 281 // If the Low and High halves are the same, use pack. The pack instruction 282 // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the 283 // lower half and rs2 in the upper half. 284 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbkb]) { 285 int64_t LoVal = SignExtend64<32>(Val); 286 int64_t HiVal = SignExtend64<32>(Val >> 32); 287 if (LoVal == HiVal) { 288 RISCVMatInt::InstSeq TmpSeq; 289 generateInstSeqImpl(LoVal, ActiveFeatures, TmpSeq); 290 if ((TmpSeq.size() + 1) < Res.size()) { 291 TmpSeq.emplace_back(RISCV::PACK, 0); 292 Res = TmpSeq; 293 } 294 } 295 } 296 297 // Perform optimization with BCLRI/BSETI in the Zbs extension. 298 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { 299 // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, 300 // call generateInstSeqImpl with Val|0x80000000 (which is expected be 301 // an int32), then emit (BCLRI r, 31). 302 // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl 303 // with Val&~0x80000000 (which is expected to be an int32), then 304 // emit (BSETI r, 31). 305 int64_t NewVal; 306 unsigned Opc; 307 if (Val < 0) { 308 Opc = RISCV::BCLRI; 309 NewVal = Val | 0x80000000ll; 310 } else { 311 Opc = RISCV::BSETI; 312 NewVal = Val & ~0x80000000ll; 313 } 314 if (isInt<32>(NewVal)) { 315 RISCVMatInt::InstSeq TmpSeq; 316 generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); 317 if ((TmpSeq.size() + 1) < Res.size()) { 318 TmpSeq.emplace_back(Opc, 31); 319 Res = TmpSeq; 320 } 321 } 322 323 // Try to use BCLRI for upper 32 bits if the original lower 32 bits are 324 // negative int32, or use BSETI for upper 32 bits if the original lower 325 // 32 bits are positive int32. 326 int32_t Lo = Lo_32(Val); 327 uint32_t Hi = Hi_32(Val); 328 Opc = 0; 329 RISCVMatInt::InstSeq TmpSeq; 330 generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); 331 // Check if it is profitable to use BCLRI/BSETI. 332 if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) { 333 Opc = RISCV::BSETI; 334 } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) { 335 Opc = RISCV::BCLRI; 336 Hi = ~Hi; 337 } 338 // Search for each bit and build corresponding BCLRI/BSETI. 339 if (Opc > 0) { 340 while (Hi != 0) { 341 unsigned Bit = llvm::countr_zero(Hi); 342 TmpSeq.emplace_back(Opc, Bit + 32); 343 Hi &= (Hi - 1); // Clear lowest set bit. 344 } 345 if (TmpSeq.size() < Res.size()) 346 Res = TmpSeq; 347 } 348 } 349 350 // Perform optimization with SH*ADD in the Zba extension. 351 if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { 352 int64_t Div = 0; 353 unsigned Opc = 0; 354 RISCVMatInt::InstSeq TmpSeq; 355 // Select the opcode and divisor. 356 if ((Val % 3) == 0 && isInt<32>(Val / 3)) { 357 Div = 3; 358 Opc = RISCV::SH1ADD; 359 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { 360 Div = 5; 361 Opc = RISCV::SH2ADD; 362 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { 363 Div = 9; 364 Opc = RISCV::SH3ADD; 365 } 366 // Build the new instruction sequence. 367 if (Div > 0) { 368 generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); 369 if ((TmpSeq.size() + 1) < Res.size()) { 370 TmpSeq.emplace_back(Opc, 0); 371 Res = TmpSeq; 372 } 373 } else { 374 // Try to use LUI+SH*ADD+ADDI. 375 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; 376 int64_t Lo12 = SignExtend64<12>(Val); 377 Div = 0; 378 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { 379 Div = 3; 380 Opc = RISCV::SH1ADD; 381 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { 382 Div = 5; 383 Opc = RISCV::SH2ADD; 384 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { 385 Div = 9; 386 Opc = RISCV::SH3ADD; 387 } 388 // Build the new instruction sequence. 389 if (Div > 0) { 390 // For Val that has zero Lo12 (implies Val equals to Hi52) should has 391 // already been processed to LUI+SH*ADD by previous optimization. 392 assert(Lo12 != 0 && 393 "unexpected instruction sequence for immediate materialisation"); 394 assert(TmpSeq.empty() && "Expected empty TmpSeq"); 395 generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); 396 if ((TmpSeq.size() + 2) < Res.size()) { 397 TmpSeq.emplace_back(Opc, 0); 398 TmpSeq.emplace_back(RISCV::ADDI, Lo12); 399 Res = TmpSeq; 400 } 401 } 402 } 403 } 404 405 // Perform optimization with rori in the Zbb and th.srri in the XTheadBb 406 // extension. 407 if (Res.size() > 2 && (ActiveFeatures[RISCV::FeatureStdExtZbb] || 408 ActiveFeatures[RISCV::FeatureVendorXTHeadBb])) { 409 if (unsigned Rotate = extractRotateInfo(Val)) { 410 RISCVMatInt::InstSeq TmpSeq; 411 uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate); 412 assert(isInt<12>(NegImm12)); 413 TmpSeq.emplace_back(RISCV::ADDI, NegImm12); 414 TmpSeq.emplace_back(ActiveFeatures[RISCV::FeatureStdExtZbb] 415 ? RISCV::RORI 416 : RISCV::TH_SRRI, 417 Rotate); 418 Res = TmpSeq; 419 } 420 } 421 return Res; 422 } 423 424 int getIntMatCost(const APInt &Val, unsigned Size, 425 const FeatureBitset &ActiveFeatures, bool CompressionCost) { 426 bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; 427 bool HasRVC = CompressionCost && (ActiveFeatures[RISCV::FeatureStdExtC] || 428 ActiveFeatures[RISCV::FeatureStdExtZca]); 429 int PlatRegSize = IsRV64 ? 64 : 32; 430 431 // Split the constant into platform register sized chunks, and calculate cost 432 // of each chunk. 433 int Cost = 0; 434 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { 435 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); 436 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); 437 Cost += getInstSeqCost(MatSeq, HasRVC); 438 } 439 return std::max(1, Cost); 440 } 441 442 OpndKind Inst::getOpndKind() const { 443 switch (Opc) { 444 default: 445 llvm_unreachable("Unexpected opcode!"); 446 case RISCV::LUI: 447 return RISCVMatInt::Imm; 448 case RISCV::ADD_UW: 449 return RISCVMatInt::RegX0; 450 case RISCV::SH1ADD: 451 case RISCV::SH2ADD: 452 case RISCV::SH3ADD: 453 case RISCV::PACK: 454 return RISCVMatInt::RegReg; 455 case RISCV::ADDI: 456 case RISCV::ADDIW: 457 case RISCV::XORI: 458 case RISCV::SLLI: 459 case RISCV::SRLI: 460 case RISCV::SLLI_UW: 461 case RISCV::RORI: 462 case RISCV::BSETI: 463 case RISCV::BCLRI: 464 case RISCV::TH_SRRI: 465 return RISCVMatInt::RegImm; 466 } 467 } 468 469 } // namespace llvm::RISCVMatInt 470