xref: /llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision 98b866892d657010795cb6416454bc33ebf0cc2b)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     // Assume instructions that aren't listed aren't compressible.
22     bool Compressed = false;
23     switch (Instr.Opc) {
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.Imm);
32       break;
33     }
34     // Two RVC instructions take the same space as one RVI instruction, but
35     // can take longer to execute than the single RVI instruction. Thus, we
36     // consider that two RVC instruction are slightly more costly than one
37     // RVI instruction. For longer sequences of RVC instructions the space
38     // savings can be worth it, though. The costs below try to model that.
39     if (!Compressed)
40       Cost += 100; // Baseline cost of one RVI instruction: 100%.
41     else
42       Cost += 70; // 70% cost of baseline.
43   }
44   return Cost;
45 }
46 
47 // Recursively generate a sequence for materializing an integer.
48 static void generateInstSeqImpl(int64_t Val,
49                                 const FeatureBitset &ActiveFeatures,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
52 
53   if (isInt<32>(Val)) {
54     // Depending on the active bits in the immediate Value v, the following
55     // instruction sequences are emitted:
56     //
57     // v == 0                        : ADDI
58     // v[0,12) != 0 && v[12,32) == 0 : ADDI
59     // v[0,12) == 0 && v[12,32) != 0 : LUI
60     // v[0,32) != 0                  : LUI+ADDI(W)
61     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
62     int64_t Lo12 = SignExtend64<12>(Val);
63 
64     if (Hi20)
65       Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
66 
67     if (Lo12 || Hi20 == 0) {
68       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
69       Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
70     }
71     return;
72   }
73 
74   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
75 
76   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
77   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
78   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
79   // while the following ADDI instructions contribute up to 12 bits each.
80   //
81   // On the first glance, implementing this seems to be possible by simply
82   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
83   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
84   // fact that ADDI performs a sign extended addition, doing it like that would
85   // only be possible when at most 11 bits of the ADDI instructions are used.
86   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
87   // requires that the constant is processed starting with the least significant
88   // bit.
89   //
90   // In the following, constants are processed from LSB to MSB but instruction
91   // emission is performed from MSB to LSB by recursively calling
92   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
93   // from the constant and the optimal shift amount, which can be greater than
94   // 12 bits if the constant is sparse, is determined. Then, the shifted
95   // remaining constant is processed recursively and gets emitted as soon as it
96   // fits into 32 bits. The emission of the shifts and additions is subsequently
97   // performed when the recursion returns.
98 
99   int64_t Lo12 = SignExtend64<12>(Val);
100   int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
101   int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
102   Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
103 
104   // If the remaining bits don't fit in 12 bits, we might be able to reduce the
105   // shift amount in order to use LUI which will zero the lower 12 bits.
106   bool Unsigned = false;
107   if (ShiftAmount > 12 && !isInt<12>(Hi52)) {
108     if (isInt<32>((uint64_t)Hi52 << 12)) {
109       // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
110       ShiftAmount -= 12;
111       Hi52 = (uint64_t)Hi52 << 12;
112     } else if (isUInt<32>((uint64_t)Hi52 << 12) &&
113                ActiveFeatures[RISCV::FeatureStdExtZba]) {
114       // Reduce the shift amount and add zeros to the LSBs so it will match
115       // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
116       ShiftAmount -= 12;
117       Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32);
118       Unsigned = true;
119     }
120   }
121 
122   // Try to use SLLI_UW for Hi52 when it is uint32 but not int32.
123   if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) &&
124       ActiveFeatures[RISCV::FeatureStdExtZba]) {
125     // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
126     // SLLI_UW.
127     Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32);
128     Unsigned = true;
129   }
130 
131   generateInstSeqImpl(Hi52, ActiveFeatures, Res);
132 
133   if (Unsigned)
134     Res.push_back(RISCVMatInt::Inst(RISCV::SLLI_UW, ShiftAmount));
135   else
136     Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
137   if (Lo12)
138     Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
139 }
140 
141 static unsigned extractRotateInfo(int64_t Val) {
142   // for case: 0b111..1..xxxxxx1..1..
143   unsigned LeadingOnes = countLeadingOnes((uint64_t)Val);
144   unsigned TrailingOnes = countTrailingOnes((uint64_t)Val);
145   if (TrailingOnes > 0 && TrailingOnes < 64 &&
146       (LeadingOnes + TrailingOnes) > (64 - 12))
147     return 64 - TrailingOnes;
148 
149   // for case: 0bxxx1..1..1...xxx
150   unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val));
151   unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val));
152   if (UpperTrailingOnes < 32 &&
153       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
154     return 32 - UpperTrailingOnes;
155 
156   return 0;
157 }
158 
159 namespace llvm {
160 namespace RISCVMatInt {
161 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
162   RISCVMatInt::InstSeq Res;
163   generateInstSeqImpl(Val, ActiveFeatures, Res);
164 
165   // If there are trailing zeros, try generating a sign extended constant with
166   // no trailing zeros and use a final SLLI to restore them.
167   if ((Val & 1) == 0 && Res.size() > 2) {
168     unsigned TrailingZeros = countTrailingZeros((uint64_t)Val);
169     int64_t ShiftedVal = Val >> TrailingZeros;
170     RISCVMatInt::InstSeq TmpSeq;
171     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
172     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SLLI, TrailingZeros));
173 
174     // Keep the new sequence if it is an improvement.
175     if (TmpSeq.size() < Res.size()) {
176       Res = TmpSeq;
177       // A 2 instruction sequence is the best we can do.
178       if (Res.size() <= 2)
179         return Res;
180     }
181   }
182 
183   // If the constant is positive we might be able to generate a shifted constant
184   // with no leading zeros and use a final SRLI to restore them.
185   if (Val > 0 && Res.size() > 2) {
186     assert(ActiveFeatures[RISCV::Feature64Bit] &&
187            "Expected RV32 to only need 2 instructions");
188     unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
189     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
190     // Fill in the bits that will be shifted out with 1s. An example where this
191     // helps is trailing one masks with 32 or more ones. This will generate
192     // ADDI -1 and an SRLI.
193     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
194 
195     RISCVMatInt::InstSeq TmpSeq;
196     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
197     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
198 
199     // Keep the new sequence if it is an improvement.
200     if (TmpSeq.size() < Res.size()) {
201       Res = TmpSeq;
202       // A 2 instruction sequence is the best we can do.
203       if (Res.size() <= 2)
204         return Res;
205     }
206 
207     // Some cases can benefit from filling the lower bits with zeros instead.
208     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
209     TmpSeq.clear();
210     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
211     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
212 
213     // Keep the new sequence if it is an improvement.
214     if (TmpSeq.size() < Res.size()) {
215       Res = TmpSeq;
216       // A 2 instruction sequence is the best we can do.
217       if (Res.size() <= 2)
218         return Res;
219     }
220 
221     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
222     // the end of the sequence.
223     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
224       // Try replacing upper bits with 1.
225       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
226       TmpSeq.clear();
227       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
228       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADD_UW, 0));
229 
230       // Keep the new sequence if it is an improvement.
231       if (TmpSeq.size() < Res.size()) {
232         Res = TmpSeq;
233         // A 2 instruction sequence is the best we can do.
234         if (Res.size() <= 2)
235           return Res;
236       }
237     }
238   }
239 
240   // Perform optimization with BCLRI/BSETI in the Zbs extension.
241   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
242     assert(ActiveFeatures[RISCV::Feature64Bit] &&
243            "Expected RV32 to only need 2 instructions");
244 
245     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
246     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
247     //    an int32), then emit (BCLRI r, 31).
248     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
249     //    with Val&~0x80000000 (which is expected to be an int32), then
250     //    emit (BSETI r, 31).
251     int64_t NewVal;
252     unsigned Opc;
253     if (Val < 0) {
254       Opc = RISCV::BCLRI;
255       NewVal = Val | 0x80000000ll;
256     } else {
257       Opc = RISCV::BSETI;
258       NewVal = Val & ~0x80000000ll;
259     }
260     if (isInt<32>(NewVal)) {
261       RISCVMatInt::InstSeq TmpSeq;
262       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
263       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31));
264       if (TmpSeq.size() < Res.size())
265         Res = TmpSeq;
266     }
267 
268     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
269     // negative int32, or use BSETI for upper 32 bits if the original lower
270     // 32 bits are positive int32.
271     int32_t Lo = Val;
272     uint32_t Hi = Val >> 32;
273     Opc = 0;
274     RISCVMatInt::InstSeq TmpSeq;
275     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
276     // Check if it is profitable to use BCLRI/BSETI.
277     if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) {
278       Opc = RISCV::BSETI;
279     } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) {
280       Opc = RISCV::BCLRI;
281       Hi = ~Hi;
282     }
283     // Search for each bit and build corresponding BCLRI/BSETI.
284     if (Opc > 0) {
285       while (Hi != 0) {
286         unsigned Bit = countTrailingZeros(Hi);
287         TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32));
288         Hi &= ~(1 << Bit);
289       }
290       if (TmpSeq.size() < Res.size())
291         Res = TmpSeq;
292     }
293   }
294 
295   // Perform optimization with SH*ADD in the Zba extension.
296   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
297     assert(ActiveFeatures[RISCV::Feature64Bit] &&
298            "Expected RV32 to only need 2 instructions");
299     int64_t Div = 0;
300     unsigned Opc = 0;
301     RISCVMatInt::InstSeq TmpSeq;
302     // Select the opcode and divisor.
303     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
304       Div = 3;
305       Opc = RISCV::SH1ADD;
306     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
307       Div = 5;
308       Opc = RISCV::SH2ADD;
309     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
310       Div = 9;
311       Opc = RISCV::SH3ADD;
312     }
313     // Build the new instruction sequence.
314     if (Div > 0) {
315       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
316       TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
317       if (TmpSeq.size() < Res.size())
318         Res = TmpSeq;
319     } else {
320       // Try to use LUI+SH*ADD+ADDI.
321       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
322       int64_t Lo12 = SignExtend64<12>(Val);
323       Div = 0;
324       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
325         Div = 3;
326         Opc = RISCV::SH1ADD;
327       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
328         Div = 5;
329         Opc = RISCV::SH2ADD;
330       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
331         Div = 9;
332         Opc = RISCV::SH3ADD;
333       }
334       // Build the new instruction sequence.
335       if (Div > 0) {
336         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
337         // already been processed to LUI+SH*ADD by previous optimization.
338         assert(Lo12 != 0 &&
339                "unexpected instruction sequence for immediate materialisation");
340         assert(TmpSeq.empty() && "Expected empty TmpSeq");
341         generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
342         TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
343         TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
344         if (TmpSeq.size() < Res.size())
345           Res = TmpSeq;
346       }
347     }
348   }
349 
350   // Perform optimization with rori in the Zbb extension.
351   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) {
352     if (unsigned Rotate = extractRotateInfo(Val)) {
353       RISCVMatInt::InstSeq TmpSeq;
354       uint64_t NegImm12 =
355           ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate);
356       assert(isInt<12>(NegImm12));
357       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, NegImm12));
358       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::RORI, Rotate));
359       Res = TmpSeq;
360     }
361   }
362   return Res;
363 }
364 
365 int getIntMatCost(const APInt &Val, unsigned Size,
366                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
367   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
368   bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
369   int PlatRegSize = IsRV64 ? 64 : 32;
370 
371   // Split the constant into platform register sized chunks, and calculate cost
372   // of each chunk.
373   int Cost = 0;
374   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
375     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
376     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
377     Cost += getInstSeqCost(MatSeq, HasRVC);
378   }
379   return std::max(1, Cost);
380 }
381 } // namespace RISCVMatInt
382 } // namespace llvm
383