xref: /llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision 5baf58b628a4488de3f1a6af7c0df180358ba5dc)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/MC/MCInstBuilder.h"
13 #include "llvm/Support/MathExtras.h"
14 using namespace llvm;
15 
16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17   if (!HasRVC)
18     return Res.size();
19 
20   int Cost = 0;
21   for (auto Instr : Res) {
22     // Assume instructions that aren't listed aren't compressible.
23     bool Compressed = false;
24     switch (Instr.getOpcode()) {
25     case RISCV::SLLI:
26     case RISCV::SRLI:
27       Compressed = true;
28       break;
29     case RISCV::ADDI:
30     case RISCV::ADDIW:
31     case RISCV::LUI:
32       Compressed = isInt<6>(Instr.getImm());
33       break;
34     }
35     // Two RVC instructions take the same space as one RVI instruction, but
36     // can take longer to execute than the single RVI instruction. Thus, we
37     // consider that two RVC instruction are slightly more costly than one
38     // RVI instruction. For longer sequences of RVC instructions the space
39     // savings can be worth it, though. The costs below try to model that.
40     if (!Compressed)
41       Cost += 100; // Baseline cost of one RVI instruction: 100%.
42     else
43       Cost += 70; // 70% cost of baseline.
44   }
45   return Cost;
46 }
47 
48 // Recursively generate a sequence for materializing an integer.
49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce the
118     // shift amount in order to use LUI which will zero the lower 12 bits.
119     if (ShiftAmount > 12 && !isInt<12>(Val)) {
120       if (isInt<32>((uint64_t)Val << 12)) {
121         // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
122         ShiftAmount -= 12;
123         Val = (uint64_t)Val << 12;
124       } else if (isUInt<32>((uint64_t)Val << 12) &&
125                  STI.hasFeature(RISCV::FeatureStdExtZba)) {
126         // Reduce the shift amount and add zeros to the LSBs so it will match
127         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
128         ShiftAmount -= 12;
129         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
130         Unsigned = true;
131       }
132     }
133 
134     // Try to use SLLI_UW for Val when it is uint32 but not int32.
135     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
136         STI.hasFeature(RISCV::FeatureStdExtZba)) {
137       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
138       // SLLI_UW.
139       Val = ((uint64_t)Val) | (0xffffffffull << 32);
140       Unsigned = true;
141     }
142   }
143 
144   generateInstSeqImpl(Val, STI, Res);
145 
146   // Skip shift if we were able to use LUI directly.
147   if (ShiftAmount) {
148     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
149     Res.emplace_back(Opc, ShiftAmount);
150   }
151 
152   if (Lo12)
153     Res.emplace_back(RISCV::ADDI, Lo12);
154 }
155 
156 static unsigned extractRotateInfo(int64_t Val) {
157   // for case: 0b111..1..xxxxxx1..1..
158   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
159   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
160   if (TrailingOnes > 0 && TrailingOnes < 64 &&
161       (LeadingOnes + TrailingOnes) > (64 - 12))
162     return 64 - TrailingOnes;
163 
164   // for case: 0bxxx1..1..1...xxx
165   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
166   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
167   if (UpperTrailingOnes < 32 &&
168       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
169     return 32 - UpperTrailingOnes;
170 
171   return 0;
172 }
173 
174 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
175                                         RISCVMatInt::InstSeq &Res) {
176   assert(Val > 0 && "Expected postive val");
177 
178   unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
179   uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
180   // Fill in the bits that will be shifted out with 1s. An example where this
181   // helps is trailing one masks with 32 or more ones. This will generate
182   // ADDI -1 and an SRLI.
183   ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
184 
185   RISCVMatInt::InstSeq TmpSeq;
186   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
187 
188   // Keep the new sequence if it is an improvement or the original is empty.
189   if ((TmpSeq.size() + 1) < Res.size() ||
190       (Res.empty() && TmpSeq.size() < 8)) {
191     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
192     Res = TmpSeq;
193   }
194 
195   // Some cases can benefit from filling the lower bits with zeros instead.
196   ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
197   TmpSeq.clear();
198   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
199 
200   // Keep the new sequence if it is an improvement or the original is empty.
201   if ((TmpSeq.size() + 1) < Res.size() ||
202       (Res.empty() && TmpSeq.size() < 8)) {
203     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
204     Res = TmpSeq;
205   }
206 
207   // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
208   // the end of the sequence.
209   if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
210     // Try replacing upper bits with 1.
211     uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
212     TmpSeq.clear();
213     generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
214 
215     // Keep the new sequence if it is an improvement.
216     if ((TmpSeq.size() + 1) < Res.size() ||
217         (Res.empty() && TmpSeq.size() < 8)) {
218       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
219       Res = TmpSeq;
220     }
221   }
222 }
223 
224 namespace llvm::RISCVMatInt {
225 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
226   RISCVMatInt::InstSeq Res;
227   generateInstSeqImpl(Val, STI, Res);
228 
229   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
230   // or ADDIW. If there are trailing zeros, try generating a sign extended
231   // constant with no trailing zeros and use a final SLLI to restore them.
232   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
233     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
234     int64_t ShiftedVal = Val >> TrailingZeros;
235     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
236     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
237     // NOTE: We don't check for C extension to minimize differences in generated
238     // code.
239     bool IsShiftedCompressible =
240         isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
241     RISCVMatInt::InstSeq TmpSeq;
242     generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
243 
244     // Keep the new sequence if it is an improvement.
245     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
246       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
247       Res = TmpSeq;
248     }
249   }
250 
251   // If we have a 1 or 2 instruction sequence this is the best we can do. This
252   // will always be true for RV32 and will often be true for RV64.
253   if (Res.size() <= 2)
254     return Res;
255 
256   assert(STI.hasFeature(RISCV::Feature64Bit) &&
257          "Expected RV32 to only need 2 instructions");
258 
259   // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
260   // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
261   // of the sequence. Call generateInstSeqImpl on the new constant which may
262   // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
263   // constant with more than 12 trailing zeros for the next recursive step.
264   if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
265     int64_t Imm12 = -(0x800 - (Val & 0xfff));
266     int64_t AdjustedVal = Val - Imm12;
267     RISCVMatInt::InstSeq TmpSeq;
268     generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
269 
270     // Keep the new sequence if it is an improvement.
271     if ((TmpSeq.size() + 1) < Res.size()) {
272       TmpSeq.emplace_back(RISCV::ADDI, Imm12);
273       Res = TmpSeq;
274     }
275   }
276 
277   // If the constant is positive we might be able to generate a shifted constant
278   // with no leading zeros and use a final SRLI to restore them.
279   if (Val > 0 && Res.size() > 2) {
280     generateInstSeqLeadingZeros(Val, STI, Res);
281   }
282 
283   // If the constant is negative, trying inverting and using our trailing zero
284   // optimizations. Use an xori to invert the final value.
285   if (Val < 0 && Res.size() > 3) {
286     uint64_t InvertedVal = ~(uint64_t)Val;
287     RISCVMatInt::InstSeq TmpSeq;
288     generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
289 
290     // Keep it if we found a sequence that is smaller after inverting.
291     if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
292       TmpSeq.emplace_back(RISCV::XORI, -1);
293       Res = TmpSeq;
294     }
295   }
296 
297   // If the Low and High halves are the same, use pack. The pack instruction
298   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
299   // lower half and rs2 in the upper half.
300   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
301     int64_t LoVal = SignExtend64<32>(Val);
302     int64_t HiVal = SignExtend64<32>(Val >> 32);
303     if (LoVal == HiVal) {
304       RISCVMatInt::InstSeq TmpSeq;
305       generateInstSeqImpl(LoVal, STI, TmpSeq);
306       if ((TmpSeq.size() + 1) < Res.size()) {
307         TmpSeq.emplace_back(RISCV::PACK, 0);
308         Res = TmpSeq;
309       }
310     }
311   }
312 
313   // Perform optimization with BSETI in the Zbs extension.
314   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
315     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
316     // Xor that with original value to get which bits should be set by BSETI.
317     uint64_t Lo = Val & 0x7fffffff;
318     uint64_t Hi = Val ^ Lo;
319     assert(Hi != 0);
320     RISCVMatInt::InstSeq TmpSeq;
321 
322     if (Lo != 0)
323       generateInstSeqImpl(Lo, STI, TmpSeq);
324 
325     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
326       do {
327         TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
328         Hi &= (Hi - 1); // Clear lowest set bit.
329       } while (Hi != 0);
330       Res = TmpSeq;
331     }
332   }
333 
334   // Perform optimization with BCLRI in the Zbs extension.
335   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
336     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
337     // Xor that with original value to get which bits should be cleared by
338     // BCLRI.
339     uint64_t Lo = Val | 0xffffffff80000000;
340     uint64_t Hi = Val ^ Lo;
341     assert(Hi != 0);
342 
343     RISCVMatInt::InstSeq TmpSeq;
344     generateInstSeqImpl(Lo, STI, TmpSeq);
345 
346     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
347       do {
348         TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
349         Hi &= (Hi - 1); // Clear lowest set bit.
350       } while (Hi != 0);
351       Res = TmpSeq;
352     }
353   }
354 
355   // Perform optimization with SH*ADD in the Zba extension.
356   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
357     int64_t Div = 0;
358     unsigned Opc = 0;
359     RISCVMatInt::InstSeq TmpSeq;
360     // Select the opcode and divisor.
361     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
362       Div = 3;
363       Opc = RISCV::SH1ADD;
364     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
365       Div = 5;
366       Opc = RISCV::SH2ADD;
367     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
368       Div = 9;
369       Opc = RISCV::SH3ADD;
370     }
371     // Build the new instruction sequence.
372     if (Div > 0) {
373       generateInstSeqImpl(Val / Div, STI, TmpSeq);
374       if ((TmpSeq.size() + 1) < Res.size()) {
375         TmpSeq.emplace_back(Opc, 0);
376         Res = TmpSeq;
377       }
378     } else {
379       // Try to use LUI+SH*ADD+ADDI.
380       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
381       int64_t Lo12 = SignExtend64<12>(Val);
382       Div = 0;
383       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
384         Div = 3;
385         Opc = RISCV::SH1ADD;
386       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
387         Div = 5;
388         Opc = RISCV::SH2ADD;
389       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
390         Div = 9;
391         Opc = RISCV::SH3ADD;
392       }
393       // Build the new instruction sequence.
394       if (Div > 0) {
395         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
396         // already been processed to LUI+SH*ADD by previous optimization.
397         assert(Lo12 != 0 &&
398                "unexpected instruction sequence for immediate materialisation");
399         assert(TmpSeq.empty() && "Expected empty TmpSeq");
400         generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
401         if ((TmpSeq.size() + 2) < Res.size()) {
402           TmpSeq.emplace_back(Opc, 0);
403           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
404           Res = TmpSeq;
405         }
406       }
407     }
408   }
409 
410   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
411   // extension.
412   if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
413                          STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
414     if (unsigned Rotate = extractRotateInfo(Val)) {
415       RISCVMatInt::InstSeq TmpSeq;
416       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
417       assert(isInt<12>(NegImm12));
418       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
419       TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
420                               ? RISCV::RORI
421                               : RISCV::TH_SRRI,
422                           Rotate);
423       Res = TmpSeq;
424     }
425   }
426   return Res;
427 }
428 
429 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
430                        MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
431   RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
432 
433   MCRegister SrcReg = RISCV::X0;
434   for (RISCVMatInt::Inst &Inst : Seq) {
435     switch (Inst.getOpndKind()) {
436     case RISCVMatInt::Imm:
437       Insts.push_back(MCInstBuilder(Inst.getOpcode())
438                           .addReg(DestReg)
439                           .addImm(Inst.getImm()));
440       break;
441     case RISCVMatInt::RegX0:
442       Insts.push_back(MCInstBuilder(Inst.getOpcode())
443                           .addReg(DestReg)
444                           .addReg(SrcReg)
445                           .addReg(RISCV::X0));
446       break;
447     case RISCVMatInt::RegReg:
448       Insts.push_back(MCInstBuilder(Inst.getOpcode())
449                           .addReg(DestReg)
450                           .addReg(SrcReg)
451                           .addReg(SrcReg));
452       break;
453     case RISCVMatInt::RegImm:
454       Insts.push_back(MCInstBuilder(Inst.getOpcode())
455                           .addReg(DestReg)
456                           .addReg(SrcReg)
457                           .addImm(Inst.getImm()));
458       break;
459     }
460 
461     // Only the first instruction has X0 as its source.
462     SrcReg = DestReg;
463   }
464 }
465 
466 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
467                               unsigned &ShiftAmt, unsigned &AddOpc) {
468   int64_t LoVal = SignExtend64<32>(Val);
469   if (LoVal == 0)
470     return RISCVMatInt::InstSeq();
471 
472   // Subtract the LoVal to emulate the effect of the final ADD.
473   uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
474   assert(Tmp != 0);
475 
476   // Use trailing zero counts to figure how far we need to shift LoVal to line
477   // up with the remaining constant.
478   // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
479   // final constant come from LoVal.
480   unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
481   unsigned TzHi = llvm::countr_zero(Tmp);
482   assert(TzLo < 32 && TzHi >= 32);
483   ShiftAmt = TzHi - TzLo;
484   AddOpc = RISCV::ADD;
485 
486   if (Tmp == ((uint64_t)LoVal << ShiftAmt))
487     return RISCVMatInt::generateInstSeq(LoVal, STI);
488 
489   // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
490   if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
491     ShiftAmt = 32;
492     AddOpc = RISCV::ADD_UW;
493     return RISCVMatInt::generateInstSeq(LoVal, STI);
494   }
495 
496   return RISCVMatInt::InstSeq();
497 }
498 
499 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
500                   bool CompressionCost) {
501   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
502   bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
503                                     STI.hasFeature(RISCV::FeatureStdExtZca));
504   int PlatRegSize = IsRV64 ? 64 : 32;
505 
506   // Split the constant into platform register sized chunks, and calculate cost
507   // of each chunk.
508   int Cost = 0;
509   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
510     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
511     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
512     Cost += getInstSeqCost(MatSeq, HasRVC);
513   }
514   return std::max(1, Cost);
515 }
516 
517 OpndKind Inst::getOpndKind() const {
518   switch (Opc) {
519   default:
520     llvm_unreachable("Unexpected opcode!");
521   case RISCV::LUI:
522     return RISCVMatInt::Imm;
523   case RISCV::ADD_UW:
524     return RISCVMatInt::RegX0;
525   case RISCV::SH1ADD:
526   case RISCV::SH2ADD:
527   case RISCV::SH3ADD:
528   case RISCV::PACK:
529     return RISCVMatInt::RegReg;
530   case RISCV::ADDI:
531   case RISCV::ADDIW:
532   case RISCV::XORI:
533   case RISCV::SLLI:
534   case RISCV::SRLI:
535   case RISCV::SLLI_UW:
536   case RISCV::RORI:
537   case RISCV::BSETI:
538   case RISCV::BCLRI:
539   case RISCV::TH_SRRI:
540     return RISCVMatInt::RegImm;
541   }
542 }
543 
544 } // namespace llvm::RISCVMatInt
545