xref: /llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp (revision 0647d1035cb208195e002b38089b82004b6f7b92)
1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/MC/MCInstBuilder.h"
13 #include "llvm/Support/MathExtras.h"
14 using namespace llvm;
15 
16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17   if (!HasRVC)
18     return Res.size();
19 
20   int Cost = 0;
21   for (auto Instr : Res) {
22     // Assume instructions that aren't listed aren't compressible.
23     bool Compressed = false;
24     switch (Instr.getOpcode()) {
25     case RISCV::SLLI:
26     case RISCV::SRLI:
27       Compressed = true;
28       break;
29     case RISCV::ADDI:
30     case RISCV::ADDIW:
31     case RISCV::LUI:
32       Compressed = isInt<6>(Instr.getImm());
33       break;
34     }
35     // Two RVC instructions take the same space as one RVI instruction, but
36     // can take longer to execute than the single RVI instruction. Thus, we
37     // consider that two RVC instruction are slightly more costly than one
38     // RVI instruction. For longer sequences of RVC instructions the space
39     // savings can be worth it, though. The costs below try to model that.
40     if (!Compressed)
41       Cost += 100; // Baseline cost of one RVI instruction: 100%.
42     else
43       Cost += 70; // 70% cost of baseline.
44   }
45   return Cost;
46 }
47 
48 // Recursively generate a sequence for materializing an integer.
49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce
118     // the shift amount in order to use LUI which will zero the lower 12 bits.
119     if (ShiftAmount > 12 && !isInt<12>(Val)) {
120       if (isInt<32>(Val << 12)) {
121         // Reduce the shift amount and add zeros to the LSBs so it will match
122         // LUI.
123         ShiftAmount -= 12;
124         Val = Val << 12;
125       } else if (isUInt<32>(Val << 12) &&
126                  STI.hasFeature(RISCV::FeatureStdExtZba)) {
127         // Reduce the shift amount and add zeros to the LSBs so it will match
128         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
129         ShiftAmount -= 12;
130         Val = SignExtend64<32>(Val << 12);
131         Unsigned = true;
132       }
133     }
134 
135     // Try to use SLLI_UW for Val when it is uint32 but not int32.
136     if (isUInt<32>(Val) && !isInt<32>(Val) &&
137         STI.hasFeature(RISCV::FeatureStdExtZba)) {
138       // Use LUI+ADDI(W) or LUI to compose, then clear the upper 32 bits with
139       // SLLI_UW.
140       Val = SignExtend64<32>(Val);
141       Unsigned = true;
142     }
143   }
144 
145   generateInstSeqImpl(Val, STI, Res);
146 
147   // Skip shift if we were able to use LUI directly.
148   if (ShiftAmount) {
149     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
150     Res.emplace_back(Opc, ShiftAmount);
151   }
152 
153   if (Lo12)
154     Res.emplace_back(RISCV::ADDI, Lo12);
155 }
156 
157 static unsigned extractRotateInfo(int64_t Val) {
158   // for case: 0b111..1..xxxxxx1..1..
159   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
160   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
161   if (TrailingOnes > 0 && TrailingOnes < 64 &&
162       (LeadingOnes + TrailingOnes) > (64 - 12))
163     return 64 - TrailingOnes;
164 
165   // for case: 0bxxx1..1..1...xxx
166   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
167   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
168   if (UpperTrailingOnes < 32 &&
169       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
170     return 32 - UpperTrailingOnes;
171 
172   return 0;
173 }
174 
175 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
176                                         RISCVMatInt::InstSeq &Res) {
177   assert(Val > 0 && "Expected postive val");
178 
179   unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
180   uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
181   // Fill in the bits that will be shifted out with 1s. An example where this
182   // helps is trailing one masks with 32 or more ones. This will generate
183   // ADDI -1 and an SRLI.
184   ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
185 
186   RISCVMatInt::InstSeq TmpSeq;
187   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
188 
189   // Keep the new sequence if it is an improvement or the original is empty.
190   if ((TmpSeq.size() + 1) < Res.size() ||
191       (Res.empty() && TmpSeq.size() < 8)) {
192     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
193     Res = TmpSeq;
194   }
195 
196   // Some cases can benefit from filling the lower bits with zeros instead.
197   ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
198   TmpSeq.clear();
199   generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
200 
201   // Keep the new sequence if it is an improvement or the original is empty.
202   if ((TmpSeq.size() + 1) < Res.size() ||
203       (Res.empty() && TmpSeq.size() < 8)) {
204     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
205     Res = TmpSeq;
206   }
207 
208   // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
209   // the end of the sequence.
210   if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
211     // Try replacing upper bits with 1.
212     uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
213     TmpSeq.clear();
214     generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
215 
216     // Keep the new sequence if it is an improvement.
217     if ((TmpSeq.size() + 1) < Res.size() ||
218         (Res.empty() && TmpSeq.size() < 8)) {
219       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
220       Res = TmpSeq;
221     }
222   }
223 }
224 
225 namespace llvm::RISCVMatInt {
226 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
227   RISCVMatInt::InstSeq Res;
228   generateInstSeqImpl(Val, STI, Res);
229 
230   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
231   // or ADDIW. If there are trailing zeros, try generating a sign extended
232   // constant with no trailing zeros and use a final SLLI to restore them.
233   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
234     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
235     int64_t ShiftedVal = Val >> TrailingZeros;
236     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
237     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
238     // NOTE: We don't check for C extension to minimize differences in generated
239     // code.
240     bool IsShiftedCompressible =
241         isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
242     RISCVMatInt::InstSeq TmpSeq;
243     generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
244 
245     // Keep the new sequence if it is an improvement.
246     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
247       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
248       Res = TmpSeq;
249     }
250   }
251 
252   // If we have a 1 or 2 instruction sequence this is the best we can do. This
253   // will always be true for RV32 and will often be true for RV64.
254   if (Res.size() <= 2)
255     return Res;
256 
257   assert(STI.hasFeature(RISCV::Feature64Bit) &&
258          "Expected RV32 to only need 2 instructions");
259 
260   // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
261   // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
262   // of the sequence. Call generateInstSeqImpl on the new constant which may
263   // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
264   // constant with more than 12 trailing zeros for the next recursive step.
265   if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
266     int64_t Imm12 = -(0x800 - (Val & 0xfff));
267     int64_t AdjustedVal = Val - Imm12;
268     RISCVMatInt::InstSeq TmpSeq;
269     generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
270 
271     // Keep the new sequence if it is an improvement.
272     if ((TmpSeq.size() + 1) < Res.size()) {
273       TmpSeq.emplace_back(RISCV::ADDI, Imm12);
274       Res = TmpSeq;
275     }
276   }
277 
278   // If the constant is positive we might be able to generate a shifted constant
279   // with no leading zeros and use a final SRLI to restore them.
280   if (Val > 0 && Res.size() > 2) {
281     generateInstSeqLeadingZeros(Val, STI, Res);
282   }
283 
284   // If the constant is negative, trying inverting and using our trailing zero
285   // optimizations. Use an xori to invert the final value.
286   if (Val < 0 && Res.size() > 3) {
287     uint64_t InvertedVal = ~(uint64_t)Val;
288     RISCVMatInt::InstSeq TmpSeq;
289     generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
290 
291     // Keep it if we found a sequence that is smaller after inverting.
292     if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
293       TmpSeq.emplace_back(RISCV::XORI, -1);
294       Res = TmpSeq;
295     }
296   }
297 
298   // If the Low and High halves are the same, use pack. The pack instruction
299   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
300   // lower half and rs2 in the upper half.
301   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
302     int64_t LoVal = SignExtend64<32>(Val);
303     int64_t HiVal = SignExtend64<32>(Val >> 32);
304     if (LoVal == HiVal) {
305       RISCVMatInt::InstSeq TmpSeq;
306       generateInstSeqImpl(LoVal, STI, TmpSeq);
307       if ((TmpSeq.size() + 1) < Res.size()) {
308         TmpSeq.emplace_back(RISCV::PACK, 0);
309         Res = TmpSeq;
310       }
311     }
312   }
313 
314   // Perform optimization with BSETI in the Zbs extension.
315   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
316     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
317     // Xor that with original value to get which bits should be set by BSETI.
318     uint64_t Lo = Val & 0x7fffffff;
319     uint64_t Hi = Val ^ Lo;
320     assert(Hi != 0);
321     RISCVMatInt::InstSeq TmpSeq;
322 
323     if (Lo != 0)
324       generateInstSeqImpl(Lo, STI, TmpSeq);
325 
326     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
327       do {
328         TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
329         Hi &= (Hi - 1); // Clear lowest set bit.
330       } while (Hi != 0);
331       Res = TmpSeq;
332     }
333   }
334 
335   // Perform optimization with BCLRI in the Zbs extension.
336   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
337     // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
338     // Xor that with original value to get which bits should be cleared by
339     // BCLRI.
340     uint64_t Lo = Val | 0xffffffff80000000;
341     uint64_t Hi = Val ^ Lo;
342     assert(Hi != 0);
343 
344     RISCVMatInt::InstSeq TmpSeq;
345     generateInstSeqImpl(Lo, STI, TmpSeq);
346 
347     if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
348       do {
349         TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
350         Hi &= (Hi - 1); // Clear lowest set bit.
351       } while (Hi != 0);
352       Res = TmpSeq;
353     }
354   }
355 
356   // Perform optimization with SH*ADD in the Zba extension.
357   if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
358     int64_t Div = 0;
359     unsigned Opc = 0;
360     RISCVMatInt::InstSeq TmpSeq;
361     // Select the opcode and divisor.
362     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
363       Div = 3;
364       Opc = RISCV::SH1ADD;
365     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
366       Div = 5;
367       Opc = RISCV::SH2ADD;
368     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
369       Div = 9;
370       Opc = RISCV::SH3ADD;
371     }
372     // Build the new instruction sequence.
373     if (Div > 0) {
374       generateInstSeqImpl(Val / Div, STI, TmpSeq);
375       if ((TmpSeq.size() + 1) < Res.size()) {
376         TmpSeq.emplace_back(Opc, 0);
377         Res = TmpSeq;
378       }
379     } else {
380       // Try to use LUI+SH*ADD+ADDI.
381       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
382       int64_t Lo12 = SignExtend64<12>(Val);
383       Div = 0;
384       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
385         Div = 3;
386         Opc = RISCV::SH1ADD;
387       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
388         Div = 5;
389         Opc = RISCV::SH2ADD;
390       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
391         Div = 9;
392         Opc = RISCV::SH3ADD;
393       }
394       // Build the new instruction sequence.
395       if (Div > 0) {
396         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
397         // already been processed to LUI+SH*ADD by previous optimization.
398         assert(Lo12 != 0 &&
399                "unexpected instruction sequence for immediate materialisation");
400         assert(TmpSeq.empty() && "Expected empty TmpSeq");
401         generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
402         if ((TmpSeq.size() + 2) < Res.size()) {
403           TmpSeq.emplace_back(Opc, 0);
404           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
405           Res = TmpSeq;
406         }
407       }
408     }
409   }
410 
411   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
412   // extension.
413   if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
414                          STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
415     if (unsigned Rotate = extractRotateInfo(Val)) {
416       RISCVMatInt::InstSeq TmpSeq;
417       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
418       assert(isInt<12>(NegImm12));
419       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
420       TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
421                               ? RISCV::RORI
422                               : RISCV::TH_SRRI,
423                           Rotate);
424       Res = TmpSeq;
425     }
426   }
427   return Res;
428 }
429 
430 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
431                        MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
432   RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
433 
434   MCRegister SrcReg = RISCV::X0;
435   for (RISCVMatInt::Inst &Inst : Seq) {
436     switch (Inst.getOpndKind()) {
437     case RISCVMatInt::Imm:
438       Insts.push_back(MCInstBuilder(Inst.getOpcode())
439                           .addReg(DestReg)
440                           .addImm(Inst.getImm()));
441       break;
442     case RISCVMatInt::RegX0:
443       Insts.push_back(MCInstBuilder(Inst.getOpcode())
444                           .addReg(DestReg)
445                           .addReg(SrcReg)
446                           .addReg(RISCV::X0));
447       break;
448     case RISCVMatInt::RegReg:
449       Insts.push_back(MCInstBuilder(Inst.getOpcode())
450                           .addReg(DestReg)
451                           .addReg(SrcReg)
452                           .addReg(SrcReg));
453       break;
454     case RISCVMatInt::RegImm:
455       Insts.push_back(MCInstBuilder(Inst.getOpcode())
456                           .addReg(DestReg)
457                           .addReg(SrcReg)
458                           .addImm(Inst.getImm()));
459       break;
460     }
461 
462     // Only the first instruction has X0 as its source.
463     SrcReg = DestReg;
464   }
465 }
466 
467 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
468                               unsigned &ShiftAmt, unsigned &AddOpc) {
469   int64_t LoVal = SignExtend64<32>(Val);
470   if (LoVal == 0)
471     return RISCVMatInt::InstSeq();
472 
473   // Subtract the LoVal to emulate the effect of the final ADD.
474   uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
475   assert(Tmp != 0);
476 
477   // Use trailing zero counts to figure how far we need to shift LoVal to line
478   // up with the remaining constant.
479   // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
480   // final constant come from LoVal.
481   unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
482   unsigned TzHi = llvm::countr_zero(Tmp);
483   assert(TzLo < 32 && TzHi >= 32);
484   ShiftAmt = TzHi - TzLo;
485   AddOpc = RISCV::ADD;
486 
487   if (Tmp == ((uint64_t)LoVal << ShiftAmt))
488     return RISCVMatInt::generateInstSeq(LoVal, STI);
489 
490   // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
491   if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
492     ShiftAmt = 32;
493     AddOpc = RISCV::ADD_UW;
494     return RISCVMatInt::generateInstSeq(LoVal, STI);
495   }
496 
497   return RISCVMatInt::InstSeq();
498 }
499 
500 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
501                   bool CompressionCost) {
502   bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
503   bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
504                                     STI.hasFeature(RISCV::FeatureStdExtZca));
505   int PlatRegSize = IsRV64 ? 64 : 32;
506 
507   // Split the constant into platform register sized chunks, and calculate cost
508   // of each chunk.
509   int Cost = 0;
510   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
511     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
512     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
513     Cost += getInstSeqCost(MatSeq, HasRVC);
514   }
515   return std::max(1, Cost);
516 }
517 
518 OpndKind Inst::getOpndKind() const {
519   switch (Opc) {
520   default:
521     llvm_unreachable("Unexpected opcode!");
522   case RISCV::LUI:
523     return RISCVMatInt::Imm;
524   case RISCV::ADD_UW:
525     return RISCVMatInt::RegX0;
526   case RISCV::SH1ADD:
527   case RISCV::SH2ADD:
528   case RISCV::SH3ADD:
529   case RISCV::PACK:
530     return RISCVMatInt::RegReg;
531   case RISCV::ADDI:
532   case RISCV::ADDIW:
533   case RISCV::XORI:
534   case RISCV::SLLI:
535   case RISCV::SRLI:
536   case RISCV::SLLI_UW:
537   case RISCV::RORI:
538   case RISCV::BSETI:
539   case RISCV::BCLRI:
540   case RISCV::TH_SRRI:
541     return RISCVMatInt::RegImm;
542   }
543 }
544 
545 } // namespace llvm::RISCVMatInt
546