xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision fa7057a415d5de8bec0063b2e9c96836c08468ab)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Target/CostTable.h"
16 #include "llvm/Target/TargetLowering.h"
17 using namespace llvm;
18 
19 #define DEBUG_TYPE "ppctti"
20 
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23 
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28               cl::desc("The loop prefetch cache line size"));
29 
30 // This seems like a reasonable default for the BG/Q (this pass is enabled, by
31 // default, only on the BG/Q).
32 static cl::opt<unsigned>
33 PrefDist("ppc-loop-prefetch-distance", cl::Hidden, cl::init(300),
34          cl::desc("The loop prefetch distance"));
35 
36 //===----------------------------------------------------------------------===//
37 //
38 // PPC cost model.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 TargetTransformInfo::PopcntSupportKind
43 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
44   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
45   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
46     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
47              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
48   return TTI::PSK_Software;
49 }
50 
51 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
52   if (DisablePPCConstHoist)
53     return BaseT::getIntImmCost(Imm, Ty);
54 
55   assert(Ty->isIntegerTy());
56 
57   unsigned BitSize = Ty->getPrimitiveSizeInBits();
58   if (BitSize == 0)
59     return ~0U;
60 
61   if (Imm == 0)
62     return TTI::TCC_Free;
63 
64   if (Imm.getBitWidth() <= 64) {
65     if (isInt<16>(Imm.getSExtValue()))
66       return TTI::TCC_Basic;
67 
68     if (isInt<32>(Imm.getSExtValue())) {
69       // A constant that can be materialized using lis.
70       if ((Imm.getZExtValue() & 0xFFFF) == 0)
71         return TTI::TCC_Basic;
72 
73       return 2 * TTI::TCC_Basic;
74     }
75   }
76 
77   return 4 * TTI::TCC_Basic;
78 }
79 
80 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
81                               Type *Ty) {
82   if (DisablePPCConstHoist)
83     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
84 
85   assert(Ty->isIntegerTy());
86 
87   unsigned BitSize = Ty->getPrimitiveSizeInBits();
88   if (BitSize == 0)
89     return ~0U;
90 
91   switch (IID) {
92   default:
93     return TTI::TCC_Free;
94   case Intrinsic::sadd_with_overflow:
95   case Intrinsic::uadd_with_overflow:
96   case Intrinsic::ssub_with_overflow:
97   case Intrinsic::usub_with_overflow:
98     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
99       return TTI::TCC_Free;
100     break;
101   case Intrinsic::experimental_stackmap:
102     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
103       return TTI::TCC_Free;
104     break;
105   case Intrinsic::experimental_patchpoint_void:
106   case Intrinsic::experimental_patchpoint_i64:
107     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
108       return TTI::TCC_Free;
109     break;
110   }
111   return PPCTTIImpl::getIntImmCost(Imm, Ty);
112 }
113 
114 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
115                               Type *Ty) {
116   if (DisablePPCConstHoist)
117     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
118 
119   assert(Ty->isIntegerTy());
120 
121   unsigned BitSize = Ty->getPrimitiveSizeInBits();
122   if (BitSize == 0)
123     return ~0U;
124 
125   unsigned ImmIdx = ~0U;
126   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
127        ZeroFree = false;
128   switch (Opcode) {
129   default:
130     return TTI::TCC_Free;
131   case Instruction::GetElementPtr:
132     // Always hoist the base address of a GetElementPtr. This prevents the
133     // creation of new constants for every base constant that gets constant
134     // folded with the offset.
135     if (Idx == 0)
136       return 2 * TTI::TCC_Basic;
137     return TTI::TCC_Free;
138   case Instruction::And:
139     RunFree = true; // (for the rotate-and-mask instructions)
140     // Fallthrough...
141   case Instruction::Add:
142   case Instruction::Or:
143   case Instruction::Xor:
144     ShiftedFree = true;
145     // Fallthrough...
146   case Instruction::Sub:
147   case Instruction::Mul:
148   case Instruction::Shl:
149   case Instruction::LShr:
150   case Instruction::AShr:
151     ImmIdx = 1;
152     break;
153   case Instruction::ICmp:
154     UnsignedFree = true;
155     ImmIdx = 1;
156     // Fallthrough... (zero comparisons can use record-form instructions)
157   case Instruction::Select:
158     ZeroFree = true;
159     break;
160   case Instruction::PHI:
161   case Instruction::Call:
162   case Instruction::Ret:
163   case Instruction::Load:
164   case Instruction::Store:
165     break;
166   }
167 
168   if (ZeroFree && Imm == 0)
169     return TTI::TCC_Free;
170 
171   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
172     if (isInt<16>(Imm.getSExtValue()))
173       return TTI::TCC_Free;
174 
175     if (RunFree) {
176       if (Imm.getBitWidth() <= 32 &&
177           (isShiftedMask_32(Imm.getZExtValue()) ||
178            isShiftedMask_32(~Imm.getZExtValue())))
179         return TTI::TCC_Free;
180 
181       if (ST->isPPC64() &&
182           (isShiftedMask_64(Imm.getZExtValue()) ||
183            isShiftedMask_64(~Imm.getZExtValue())))
184         return TTI::TCC_Free;
185     }
186 
187     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
188       return TTI::TCC_Free;
189 
190     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
191       return TTI::TCC_Free;
192   }
193 
194   return PPCTTIImpl::getIntImmCost(Imm, Ty);
195 }
196 
197 void PPCTTIImpl::getUnrollingPreferences(Loop *L,
198                                          TTI::UnrollingPreferences &UP) {
199   if (ST->getDarwinDirective() == PPC::DIR_A2) {
200     // The A2 is in-order with a deep pipeline, and concatenation unrolling
201     // helps expose latency-hiding opportunities to the instruction scheduler.
202     UP.Partial = UP.Runtime = true;
203 
204     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
205     // often outweigh the cost of a division to compute the trip count.
206     UP.AllowExpensiveTripCount = true;
207   }
208 
209   BaseT::getUnrollingPreferences(L, UP);
210 }
211 
212 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
213   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
214   // on combining the loads generated for consecutive accesses, and failure to
215   // do so is particularly expensive. This makes it much more likely (compared
216   // to only using concatenation unrolling).
217   if (ST->getDarwinDirective() == PPC::DIR_A2)
218     return true;
219 
220   return LoopHasReductions;
221 }
222 
223 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
224   return true;
225 }
226 
227 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
228   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
229     return 0;
230   return ST->hasVSX() ? 64 : 32;
231 }
232 
233 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
234   if (Vector) {
235     if (ST->hasQPX()) return 256;
236     if (ST->hasAltivec()) return 128;
237     return 0;
238   }
239 
240   if (ST->isPPC64())
241     return 64;
242   return 32;
243 
244 }
245 
246 unsigned PPCTTIImpl::getCacheLineSize() {
247   // This is currently only used for the data prefetch pass which is only
248   // enabled for BG/Q by default.
249   return CacheLineSize;
250 }
251 
252 unsigned PPCTTIImpl::getPrefetchDistance() { return PrefDist; }
253 
254 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
255   unsigned Directive = ST->getDarwinDirective();
256   // The 440 has no SIMD support, but floating-point instructions
257   // have a 5-cycle latency, so unroll by 5x for latency hiding.
258   if (Directive == PPC::DIR_440)
259     return 5;
260 
261   // The A2 has no SIMD support, but floating-point instructions
262   // have a 6-cycle latency, so unroll by 6x for latency hiding.
263   if (Directive == PPC::DIR_A2)
264     return 6;
265 
266   // FIXME: For lack of any better information, do no harm...
267   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
268     return 1;
269 
270   // For P7 and P8, floating-point instructions have a 6-cycle latency and
271   // there are two execution units, so unroll by 12x for latency hiding.
272   if (Directive == PPC::DIR_PWR7 ||
273       Directive == PPC::DIR_PWR8)
274     return 12;
275 
276   // For most things, modern systems have two execution units (and
277   // out-of-order execution).
278   return 2;
279 }
280 
281 int PPCTTIImpl::getArithmeticInstrCost(
282     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
283     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
284     TTI::OperandValueProperties Opd2PropInfo) {
285   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
286 
287   // Fallback to the default implementation.
288   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
289                                        Opd1PropInfo, Opd2PropInfo);
290 }
291 
292 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
293                                Type *SubTp) {
294   // Legalize the type.
295   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
296 
297   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
298   // (at least in the sense that there need only be one non-loop-invariant
299   // instruction). We need one such shuffle instruction for each actual
300   // register (this is not true for arbitrary shuffles, but is true for the
301   // structured types of shuffles covered by TTI::ShuffleKind).
302   return LT.first;
303 }
304 
305 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
306   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
307 
308   return BaseT::getCastInstrCost(Opcode, Dst, Src);
309 }
310 
311 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
312   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
313 }
314 
315 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
316   assert(Val->isVectorTy() && "This must be a vector type");
317 
318   int ISD = TLI->InstructionOpcodeToISD(Opcode);
319   assert(ISD && "Invalid opcode");
320 
321   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
322     // Double-precision scalars are already located in index #0.
323     if (Index == 0)
324       return 0;
325 
326     return BaseT::getVectorInstrCost(Opcode, Val, Index);
327   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
328     // Floating point scalars are already located in index #0.
329     if (Index == 0)
330       return 0;
331 
332     return BaseT::getVectorInstrCost(Opcode, Val, Index);
333   }
334 
335   // Estimated cost of a load-hit-store delay.  This was obtained
336   // experimentally as a minimum needed to prevent unprofitable
337   // vectorization for the paq8p benchmark.  It may need to be
338   // raised further if other unprofitable cases remain.
339   unsigned LHSPenalty = 2;
340   if (ISD == ISD::INSERT_VECTOR_ELT)
341     LHSPenalty += 7;
342 
343   // Vector element insert/extract with Altivec is very expensive,
344   // because they require store and reload with the attendant
345   // processor stall for load-hit-store.  Until VSX is available,
346   // these need to be estimated as very costly.
347   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
348       ISD == ISD::INSERT_VECTOR_ELT)
349     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
350 
351   return BaseT::getVectorInstrCost(Opcode, Val, Index);
352 }
353 
354 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
355                                 unsigned AddressSpace) {
356   // Legalize the type.
357   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
358   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
359          "Invalid Opcode");
360 
361   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
362 
363   // Aligned loads and stores are easy.
364   unsigned SrcBytes = LT.second.getStoreSize();
365   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
366     return Cost;
367 
368   bool IsAltivecType = ST->hasAltivec() &&
369                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
370                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
371   bool IsVSXType = ST->hasVSX() &&
372                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
373   bool IsQPXType = ST->hasQPX() &&
374                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
375 
376   // If we can use the permutation-based load sequence, then this is also
377   // relatively cheap (not counting loop-invariant instructions): one load plus
378   // one permute (the last load in a series has extra cost, but we're
379   // neglecting that here). Note that on the P7, we could do unaligned loads
380   // for Altivec types using the VSX instructions, but that's more expensive
381   // than using the permutation-based load sequence. On the P8, that's no
382   // longer true.
383   if (Opcode == Instruction::Load &&
384       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
385       Alignment >= LT.second.getScalarType().getStoreSize())
386     return Cost + LT.first; // Add the cost of the permutations.
387 
388   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
389   // P7, unaligned vector loads are more expensive than the permutation-based
390   // load sequence, so that might be used instead, but regardless, the net cost
391   // is about the same (not counting loop-invariant instructions).
392   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
393     return Cost;
394 
395   // PPC in general does not support unaligned loads and stores. They'll need
396   // to be decomposed based on the alignment factor.
397 
398   // Add the cost of each scalar load or store.
399   Cost += LT.first*(SrcBytes/Alignment-1);
400 
401   // For a vector type, there is also scalarization overhead (only for
402   // stores, loads are expanded using the vector-load + permutation sequence,
403   // which is much less expensive).
404   if (Src->isVectorTy() && Opcode == Instruction::Store)
405     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
406       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
407 
408   return Cost;
409 }
410 
411 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
412                                            unsigned Factor,
413                                            ArrayRef<unsigned> Indices,
414                                            unsigned Alignment,
415                                            unsigned AddressSpace) {
416   assert(isa<VectorType>(VecTy) &&
417          "Expect a vector type for interleaved memory op");
418 
419   // Legalize the type.
420   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
421 
422   // Firstly, the cost of load/store operation.
423   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
424 
425   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
426   // (at least in the sense that there need only be one non-loop-invariant
427   // instruction). For each result vector, we need one shuffle per incoming
428   // vector (except that the first shuffle can take two incoming vectors
429   // because it does not need to take itself).
430   Cost += Factor*(LT.first-1);
431 
432   return Cost;
433 }
434 
435