1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/Support/CommandLine.h" 14 #include "llvm/Support/Debug.h" 15 #include "llvm/Target/CostTable.h" 16 #include "llvm/Target/TargetLowering.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 31 // default, only on the BG/Q). 32 static cl::opt<unsigned> 33 PrefDist("ppc-loop-prefetch-distance", cl::Hidden, cl::init(300), 34 cl::desc("The loop prefetch distance")); 35 36 //===----------------------------------------------------------------------===// 37 // 38 // PPC cost model. 39 // 40 //===----------------------------------------------------------------------===// 41 42 TargetTransformInfo::PopcntSupportKind 43 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 44 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 45 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 46 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 47 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 48 return TTI::PSK_Software; 49 } 50 51 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 52 if (DisablePPCConstHoist) 53 return BaseT::getIntImmCost(Imm, Ty); 54 55 assert(Ty->isIntegerTy()); 56 57 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 58 if (BitSize == 0) 59 return ~0U; 60 61 if (Imm == 0) 62 return TTI::TCC_Free; 63 64 if (Imm.getBitWidth() <= 64) { 65 if (isInt<16>(Imm.getSExtValue())) 66 return TTI::TCC_Basic; 67 68 if (isInt<32>(Imm.getSExtValue())) { 69 // A constant that can be materialized using lis. 70 if ((Imm.getZExtValue() & 0xFFFF) == 0) 71 return TTI::TCC_Basic; 72 73 return 2 * TTI::TCC_Basic; 74 } 75 } 76 77 return 4 * TTI::TCC_Basic; 78 } 79 80 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 81 Type *Ty) { 82 if (DisablePPCConstHoist) 83 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 84 85 assert(Ty->isIntegerTy()); 86 87 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 88 if (BitSize == 0) 89 return ~0U; 90 91 switch (IID) { 92 default: 93 return TTI::TCC_Free; 94 case Intrinsic::sadd_with_overflow: 95 case Intrinsic::uadd_with_overflow: 96 case Intrinsic::ssub_with_overflow: 97 case Intrinsic::usub_with_overflow: 98 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 99 return TTI::TCC_Free; 100 break; 101 case Intrinsic::experimental_stackmap: 102 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 103 return TTI::TCC_Free; 104 break; 105 case Intrinsic::experimental_patchpoint_void: 106 case Intrinsic::experimental_patchpoint_i64: 107 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 108 return TTI::TCC_Free; 109 break; 110 } 111 return PPCTTIImpl::getIntImmCost(Imm, Ty); 112 } 113 114 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 115 Type *Ty) { 116 if (DisablePPCConstHoist) 117 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 118 119 assert(Ty->isIntegerTy()); 120 121 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 122 if (BitSize == 0) 123 return ~0U; 124 125 unsigned ImmIdx = ~0U; 126 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 127 ZeroFree = false; 128 switch (Opcode) { 129 default: 130 return TTI::TCC_Free; 131 case Instruction::GetElementPtr: 132 // Always hoist the base address of a GetElementPtr. This prevents the 133 // creation of new constants for every base constant that gets constant 134 // folded with the offset. 135 if (Idx == 0) 136 return 2 * TTI::TCC_Basic; 137 return TTI::TCC_Free; 138 case Instruction::And: 139 RunFree = true; // (for the rotate-and-mask instructions) 140 // Fallthrough... 141 case Instruction::Add: 142 case Instruction::Or: 143 case Instruction::Xor: 144 ShiftedFree = true; 145 // Fallthrough... 146 case Instruction::Sub: 147 case Instruction::Mul: 148 case Instruction::Shl: 149 case Instruction::LShr: 150 case Instruction::AShr: 151 ImmIdx = 1; 152 break; 153 case Instruction::ICmp: 154 UnsignedFree = true; 155 ImmIdx = 1; 156 // Fallthrough... (zero comparisons can use record-form instructions) 157 case Instruction::Select: 158 ZeroFree = true; 159 break; 160 case Instruction::PHI: 161 case Instruction::Call: 162 case Instruction::Ret: 163 case Instruction::Load: 164 case Instruction::Store: 165 break; 166 } 167 168 if (ZeroFree && Imm == 0) 169 return TTI::TCC_Free; 170 171 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 172 if (isInt<16>(Imm.getSExtValue())) 173 return TTI::TCC_Free; 174 175 if (RunFree) { 176 if (Imm.getBitWidth() <= 32 && 177 (isShiftedMask_32(Imm.getZExtValue()) || 178 isShiftedMask_32(~Imm.getZExtValue()))) 179 return TTI::TCC_Free; 180 181 if (ST->isPPC64() && 182 (isShiftedMask_64(Imm.getZExtValue()) || 183 isShiftedMask_64(~Imm.getZExtValue()))) 184 return TTI::TCC_Free; 185 } 186 187 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 188 return TTI::TCC_Free; 189 190 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 191 return TTI::TCC_Free; 192 } 193 194 return PPCTTIImpl::getIntImmCost(Imm, Ty); 195 } 196 197 void PPCTTIImpl::getUnrollingPreferences(Loop *L, 198 TTI::UnrollingPreferences &UP) { 199 if (ST->getDarwinDirective() == PPC::DIR_A2) { 200 // The A2 is in-order with a deep pipeline, and concatenation unrolling 201 // helps expose latency-hiding opportunities to the instruction scheduler. 202 UP.Partial = UP.Runtime = true; 203 204 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 205 // often outweigh the cost of a division to compute the trip count. 206 UP.AllowExpensiveTripCount = true; 207 } 208 209 BaseT::getUnrollingPreferences(L, UP); 210 } 211 212 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 213 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 214 // on combining the loads generated for consecutive accesses, and failure to 215 // do so is particularly expensive. This makes it much more likely (compared 216 // to only using concatenation unrolling). 217 if (ST->getDarwinDirective() == PPC::DIR_A2) 218 return true; 219 220 return LoopHasReductions; 221 } 222 223 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 224 return true; 225 } 226 227 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 228 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 229 return 0; 230 return ST->hasVSX() ? 64 : 32; 231 } 232 233 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { 234 if (Vector) { 235 if (ST->hasQPX()) return 256; 236 if (ST->hasAltivec()) return 128; 237 return 0; 238 } 239 240 if (ST->isPPC64()) 241 return 64; 242 return 32; 243 244 } 245 246 unsigned PPCTTIImpl::getCacheLineSize() { 247 // This is currently only used for the data prefetch pass which is only 248 // enabled for BG/Q by default. 249 return CacheLineSize; 250 } 251 252 unsigned PPCTTIImpl::getPrefetchDistance() { return PrefDist; } 253 254 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 255 unsigned Directive = ST->getDarwinDirective(); 256 // The 440 has no SIMD support, but floating-point instructions 257 // have a 5-cycle latency, so unroll by 5x for latency hiding. 258 if (Directive == PPC::DIR_440) 259 return 5; 260 261 // The A2 has no SIMD support, but floating-point instructions 262 // have a 6-cycle latency, so unroll by 6x for latency hiding. 263 if (Directive == PPC::DIR_A2) 264 return 6; 265 266 // FIXME: For lack of any better information, do no harm... 267 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 268 return 1; 269 270 // For P7 and P8, floating-point instructions have a 6-cycle latency and 271 // there are two execution units, so unroll by 12x for latency hiding. 272 if (Directive == PPC::DIR_PWR7 || 273 Directive == PPC::DIR_PWR8) 274 return 12; 275 276 // For most things, modern systems have two execution units (and 277 // out-of-order execution). 278 return 2; 279 } 280 281 int PPCTTIImpl::getArithmeticInstrCost( 282 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 283 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 284 TTI::OperandValueProperties Opd2PropInfo) { 285 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 286 287 // Fallback to the default implementation. 288 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 289 Opd1PropInfo, Opd2PropInfo); 290 } 291 292 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 293 Type *SubTp) { 294 // Legalize the type. 295 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 296 297 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 298 // (at least in the sense that there need only be one non-loop-invariant 299 // instruction). We need one such shuffle instruction for each actual 300 // register (this is not true for arbitrary shuffles, but is true for the 301 // structured types of shuffles covered by TTI::ShuffleKind). 302 return LT.first; 303 } 304 305 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 306 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 307 308 return BaseT::getCastInstrCost(Opcode, Dst, Src); 309 } 310 311 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { 312 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 313 } 314 315 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 316 assert(Val->isVectorTy() && "This must be a vector type"); 317 318 int ISD = TLI->InstructionOpcodeToISD(Opcode); 319 assert(ISD && "Invalid opcode"); 320 321 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 322 // Double-precision scalars are already located in index #0. 323 if (Index == 0) 324 return 0; 325 326 return BaseT::getVectorInstrCost(Opcode, Val, Index); 327 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 328 // Floating point scalars are already located in index #0. 329 if (Index == 0) 330 return 0; 331 332 return BaseT::getVectorInstrCost(Opcode, Val, Index); 333 } 334 335 // Estimated cost of a load-hit-store delay. This was obtained 336 // experimentally as a minimum needed to prevent unprofitable 337 // vectorization for the paq8p benchmark. It may need to be 338 // raised further if other unprofitable cases remain. 339 unsigned LHSPenalty = 2; 340 if (ISD == ISD::INSERT_VECTOR_ELT) 341 LHSPenalty += 7; 342 343 // Vector element insert/extract with Altivec is very expensive, 344 // because they require store and reload with the attendant 345 // processor stall for load-hit-store. Until VSX is available, 346 // these need to be estimated as very costly. 347 if (ISD == ISD::EXTRACT_VECTOR_ELT || 348 ISD == ISD::INSERT_VECTOR_ELT) 349 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 350 351 return BaseT::getVectorInstrCost(Opcode, Val, Index); 352 } 353 354 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 355 unsigned AddressSpace) { 356 // Legalize the type. 357 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 358 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 359 "Invalid Opcode"); 360 361 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 362 363 // Aligned loads and stores are easy. 364 unsigned SrcBytes = LT.second.getStoreSize(); 365 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 366 return Cost; 367 368 bool IsAltivecType = ST->hasAltivec() && 369 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 370 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 371 bool IsVSXType = ST->hasVSX() && 372 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 373 bool IsQPXType = ST->hasQPX() && 374 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 375 376 // If we can use the permutation-based load sequence, then this is also 377 // relatively cheap (not counting loop-invariant instructions): one load plus 378 // one permute (the last load in a series has extra cost, but we're 379 // neglecting that here). Note that on the P7, we could do unaligned loads 380 // for Altivec types using the VSX instructions, but that's more expensive 381 // than using the permutation-based load sequence. On the P8, that's no 382 // longer true. 383 if (Opcode == Instruction::Load && 384 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 385 Alignment >= LT.second.getScalarType().getStoreSize()) 386 return Cost + LT.first; // Add the cost of the permutations. 387 388 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 389 // P7, unaligned vector loads are more expensive than the permutation-based 390 // load sequence, so that might be used instead, but regardless, the net cost 391 // is about the same (not counting loop-invariant instructions). 392 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 393 return Cost; 394 395 // PPC in general does not support unaligned loads and stores. They'll need 396 // to be decomposed based on the alignment factor. 397 398 // Add the cost of each scalar load or store. 399 Cost += LT.first*(SrcBytes/Alignment-1); 400 401 // For a vector type, there is also scalarization overhead (only for 402 // stores, loads are expanded using the vector-load + permutation sequence, 403 // which is much less expensive). 404 if (Src->isVectorTy() && Opcode == Instruction::Store) 405 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 406 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 407 408 return Cost; 409 } 410 411 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 412 unsigned Factor, 413 ArrayRef<unsigned> Indices, 414 unsigned Alignment, 415 unsigned AddressSpace) { 416 assert(isa<VectorType>(VecTy) && 417 "Expect a vector type for interleaved memory op"); 418 419 // Legalize the type. 420 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 421 422 // Firstly, the cost of load/store operation. 423 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 424 425 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 426 // (at least in the sense that there need only be one non-loop-invariant 427 // instruction). For each result vector, we need one shuffle per incoming 428 // vector (except that the first shuffle can take two incoming vectors 429 // because it does not need to take itself). 430 Cost += Factor*(LT.first-1); 431 432 return Cost; 433 } 434 435