1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/Support/CommandLine.h" 16 #include "llvm/Support/Debug.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 static cl::opt<bool> 31 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 32 cl::desc("Enable using coldcc calling conv for cold " 33 "internal functions")); 34 35 //===----------------------------------------------------------------------===// 36 // 37 // PPC cost model. 38 // 39 //===----------------------------------------------------------------------===// 40 41 TargetTransformInfo::PopcntSupportKind 42 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 43 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 44 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 45 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 46 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 47 return TTI::PSK_Software; 48 } 49 50 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 51 if (DisablePPCConstHoist) 52 return BaseT::getIntImmCost(Imm, Ty); 53 54 assert(Ty->isIntegerTy()); 55 56 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 57 if (BitSize == 0) 58 return ~0U; 59 60 if (Imm == 0) 61 return TTI::TCC_Free; 62 63 if (Imm.getBitWidth() <= 64) { 64 if (isInt<16>(Imm.getSExtValue())) 65 return TTI::TCC_Basic; 66 67 if (isInt<32>(Imm.getSExtValue())) { 68 // A constant that can be materialized using lis. 69 if ((Imm.getZExtValue() & 0xFFFF) == 0) 70 return TTI::TCC_Basic; 71 72 return 2 * TTI::TCC_Basic; 73 } 74 } 75 76 return 4 * TTI::TCC_Basic; 77 } 78 79 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 80 Type *Ty) { 81 if (DisablePPCConstHoist) 82 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 83 84 assert(Ty->isIntegerTy()); 85 86 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 87 if (BitSize == 0) 88 return ~0U; 89 90 switch (IID) { 91 default: 92 return TTI::TCC_Free; 93 case Intrinsic::sadd_with_overflow: 94 case Intrinsic::uadd_with_overflow: 95 case Intrinsic::ssub_with_overflow: 96 case Intrinsic::usub_with_overflow: 97 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 98 return TTI::TCC_Free; 99 break; 100 case Intrinsic::experimental_stackmap: 101 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 102 return TTI::TCC_Free; 103 break; 104 case Intrinsic::experimental_patchpoint_void: 105 case Intrinsic::experimental_patchpoint_i64: 106 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 107 return TTI::TCC_Free; 108 break; 109 } 110 return PPCTTIImpl::getIntImmCost(Imm, Ty); 111 } 112 113 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 114 Type *Ty) { 115 if (DisablePPCConstHoist) 116 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 117 118 assert(Ty->isIntegerTy()); 119 120 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 121 if (BitSize == 0) 122 return ~0U; 123 124 unsigned ImmIdx = ~0U; 125 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 126 ZeroFree = false; 127 switch (Opcode) { 128 default: 129 return TTI::TCC_Free; 130 case Instruction::GetElementPtr: 131 // Always hoist the base address of a GetElementPtr. This prevents the 132 // creation of new constants for every base constant that gets constant 133 // folded with the offset. 134 if (Idx == 0) 135 return 2 * TTI::TCC_Basic; 136 return TTI::TCC_Free; 137 case Instruction::And: 138 RunFree = true; // (for the rotate-and-mask instructions) 139 LLVM_FALLTHROUGH; 140 case Instruction::Add: 141 case Instruction::Or: 142 case Instruction::Xor: 143 ShiftedFree = true; 144 LLVM_FALLTHROUGH; 145 case Instruction::Sub: 146 case Instruction::Mul: 147 case Instruction::Shl: 148 case Instruction::LShr: 149 case Instruction::AShr: 150 ImmIdx = 1; 151 break; 152 case Instruction::ICmp: 153 UnsignedFree = true; 154 ImmIdx = 1; 155 // Zero comparisons can use record-form instructions. 156 LLVM_FALLTHROUGH; 157 case Instruction::Select: 158 ZeroFree = true; 159 break; 160 case Instruction::PHI: 161 case Instruction::Call: 162 case Instruction::Ret: 163 case Instruction::Load: 164 case Instruction::Store: 165 break; 166 } 167 168 if (ZeroFree && Imm == 0) 169 return TTI::TCC_Free; 170 171 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 172 if (isInt<16>(Imm.getSExtValue())) 173 return TTI::TCC_Free; 174 175 if (RunFree) { 176 if (Imm.getBitWidth() <= 32 && 177 (isShiftedMask_32(Imm.getZExtValue()) || 178 isShiftedMask_32(~Imm.getZExtValue()))) 179 return TTI::TCC_Free; 180 181 if (ST->isPPC64() && 182 (isShiftedMask_64(Imm.getZExtValue()) || 183 isShiftedMask_64(~Imm.getZExtValue()))) 184 return TTI::TCC_Free; 185 } 186 187 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 188 return TTI::TCC_Free; 189 190 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 191 return TTI::TCC_Free; 192 } 193 194 return PPCTTIImpl::getIntImmCost(Imm, Ty); 195 } 196 197 unsigned PPCTTIImpl::getUserCost(const User *U, 198 ArrayRef<const Value *> Operands) { 199 if (U->getType()->isVectorTy()) { 200 // Instructions that need to be split should cost more. 201 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 202 return LT.first * BaseT::getUserCost(U, Operands); 203 } 204 205 return BaseT::getUserCost(U, Operands); 206 } 207 208 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 209 TTI::UnrollingPreferences &UP) { 210 if (ST->getDarwinDirective() == PPC::DIR_A2) { 211 // The A2 is in-order with a deep pipeline, and concatenation unrolling 212 // helps expose latency-hiding opportunities to the instruction scheduler. 213 UP.Partial = UP.Runtime = true; 214 215 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 216 // often outweigh the cost of a division to compute the trip count. 217 UP.AllowExpensiveTripCount = true; 218 } 219 220 BaseT::getUnrollingPreferences(L, SE, UP); 221 } 222 223 // This function returns true to allow using coldcc calling convention. 224 // Returning true results in coldcc being used for functions which are cold at 225 // all call sites when the callers of the functions are not calling any other 226 // non coldcc functions. 227 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 228 return EnablePPCColdCC; 229 } 230 231 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 232 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 233 // on combining the loads generated for consecutive accesses, and failure to 234 // do so is particularly expensive. This makes it much more likely (compared 235 // to only using concatenation unrolling). 236 if (ST->getDarwinDirective() == PPC::DIR_A2) 237 return true; 238 239 return LoopHasReductions; 240 } 241 242 const PPCTTIImpl::TTI::MemCmpExpansionOptions * 243 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const { 244 static const auto Options = []() { 245 TTI::MemCmpExpansionOptions Options; 246 Options.LoadSizes.push_back(8); 247 Options.LoadSizes.push_back(4); 248 Options.LoadSizes.push_back(2); 249 Options.LoadSizes.push_back(1); 250 return Options; 251 }(); 252 return &Options; 253 } 254 255 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 256 return true; 257 } 258 259 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 260 TargetTransformInfo::LSRCost &C2) { 261 // This is mainly the default cost calculation. The only difference 262 // is that now the number of instructions is the most important 263 // metric. 264 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 265 C1.NumIVMuls, C1.NumBaseAdds, 266 C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 267 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 268 C2.NumIVMuls, C2.NumBaseAdds, 269 C2.ScaleCost, C2.ImmCost, C2.SetupCost); 270 } 271 272 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 273 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 274 return 0; 275 return ST->hasVSX() ? 64 : 32; 276 } 277 278 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 279 if (Vector) { 280 if (ST->hasQPX()) return 256; 281 if (ST->hasAltivec()) return 128; 282 return 0; 283 } 284 285 if (ST->isPPC64()) 286 return 64; 287 return 32; 288 289 } 290 291 unsigned PPCTTIImpl::getCacheLineSize() { 292 // Check first if the user specified a custom line size. 293 if (CacheLineSize.getNumOccurrences() > 0) 294 return CacheLineSize; 295 296 // On P7, P8 or P9 we have a cache line size of 128. 297 unsigned Directive = ST->getDarwinDirective(); 298 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 299 Directive == PPC::DIR_PWR9) 300 return 128; 301 302 // On other processors return a default of 64 bytes. 303 return 64; 304 } 305 306 unsigned PPCTTIImpl::getPrefetchDistance() { 307 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 308 // default, only on the BG/Q). 309 return 300; 310 } 311 312 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 313 unsigned Directive = ST->getDarwinDirective(); 314 // The 440 has no SIMD support, but floating-point instructions 315 // have a 5-cycle latency, so unroll by 5x for latency hiding. 316 if (Directive == PPC::DIR_440) 317 return 5; 318 319 // The A2 has no SIMD support, but floating-point instructions 320 // have a 6-cycle latency, so unroll by 6x for latency hiding. 321 if (Directive == PPC::DIR_A2) 322 return 6; 323 324 // FIXME: For lack of any better information, do no harm... 325 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 326 return 1; 327 328 // For P7 and P8, floating-point instructions have a 6-cycle latency and 329 // there are two execution units, so unroll by 12x for latency hiding. 330 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 331 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 332 Directive == PPC::DIR_PWR9) 333 return 12; 334 335 // For most things, modern systems have two execution units (and 336 // out-of-order execution). 337 return 2; 338 } 339 340 int PPCTTIImpl::getArithmeticInstrCost( 341 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 342 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 343 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 344 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 345 346 // Fallback to the default implementation. 347 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 348 Opd1PropInfo, Opd2PropInfo); 349 } 350 351 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 352 Type *SubTp) { 353 // Legalize the type. 354 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 355 356 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 357 // (at least in the sense that there need only be one non-loop-invariant 358 // instruction). We need one such shuffle instruction for each actual 359 // register (this is not true for arbitrary shuffles, but is true for the 360 // structured types of shuffles covered by TTI::ShuffleKind). 361 return LT.first; 362 } 363 364 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 365 const Instruction *I) { 366 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 367 368 return BaseT::getCastInstrCost(Opcode, Dst, Src); 369 } 370 371 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 372 const Instruction *I) { 373 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 374 } 375 376 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 377 assert(Val->isVectorTy() && "This must be a vector type"); 378 379 int ISD = TLI->InstructionOpcodeToISD(Opcode); 380 assert(ISD && "Invalid opcode"); 381 382 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 383 // Double-precision scalars are already located in index #0. 384 if (Index == 0) 385 return 0; 386 387 return BaseT::getVectorInstrCost(Opcode, Val, Index); 388 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 389 // Floating point scalars are already located in index #0. 390 if (Index == 0) 391 return 0; 392 393 return BaseT::getVectorInstrCost(Opcode, Val, Index); 394 } 395 396 // Estimated cost of a load-hit-store delay. This was obtained 397 // experimentally as a minimum needed to prevent unprofitable 398 // vectorization for the paq8p benchmark. It may need to be 399 // raised further if other unprofitable cases remain. 400 unsigned LHSPenalty = 2; 401 if (ISD == ISD::INSERT_VECTOR_ELT) 402 LHSPenalty += 7; 403 404 // Vector element insert/extract with Altivec is very expensive, 405 // because they require store and reload with the attendant 406 // processor stall for load-hit-store. Until VSX is available, 407 // these need to be estimated as very costly. 408 if (ISD == ISD::EXTRACT_VECTOR_ELT || 409 ISD == ISD::INSERT_VECTOR_ELT) 410 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 411 412 return BaseT::getVectorInstrCost(Opcode, Val, Index); 413 } 414 415 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 416 unsigned AddressSpace, const Instruction *I) { 417 // Legalize the type. 418 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 419 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 420 "Invalid Opcode"); 421 422 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 423 424 bool IsAltivecType = ST->hasAltivec() && 425 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 426 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 427 bool IsVSXType = ST->hasVSX() && 428 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 429 bool IsQPXType = ST->hasQPX() && 430 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 431 432 // VSX has 32b/64b load instructions. Legalization can handle loading of 433 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 434 // PPCTargetLowering can't compute the cost appropriately. So here we 435 // explicitly check this case. 436 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 437 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 438 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 439 return 1; 440 441 // Aligned loads and stores are easy. 442 unsigned SrcBytes = LT.second.getStoreSize(); 443 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 444 return Cost; 445 446 // If we can use the permutation-based load sequence, then this is also 447 // relatively cheap (not counting loop-invariant instructions): one load plus 448 // one permute (the last load in a series has extra cost, but we're 449 // neglecting that here). Note that on the P7, we could do unaligned loads 450 // for Altivec types using the VSX instructions, but that's more expensive 451 // than using the permutation-based load sequence. On the P8, that's no 452 // longer true. 453 if (Opcode == Instruction::Load && 454 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 455 Alignment >= LT.second.getScalarType().getStoreSize()) 456 return Cost + LT.first; // Add the cost of the permutations. 457 458 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 459 // P7, unaligned vector loads are more expensive than the permutation-based 460 // load sequence, so that might be used instead, but regardless, the net cost 461 // is about the same (not counting loop-invariant instructions). 462 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 463 return Cost; 464 465 // Newer PPC supports unaligned memory access. 466 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 467 return Cost; 468 469 // PPC in general does not support unaligned loads and stores. They'll need 470 // to be decomposed based on the alignment factor. 471 472 // Add the cost of each scalar load or store. 473 Cost += LT.first*(SrcBytes/Alignment-1); 474 475 // For a vector type, there is also scalarization overhead (only for 476 // stores, loads are expanded using the vector-load + permutation sequence, 477 // which is much less expensive). 478 if (Src->isVectorTy() && Opcode == Instruction::Store) 479 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 480 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 481 482 return Cost; 483 } 484 485 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 486 unsigned Factor, 487 ArrayRef<unsigned> Indices, 488 unsigned Alignment, 489 unsigned AddressSpace) { 490 assert(isa<VectorType>(VecTy) && 491 "Expect a vector type for interleaved memory op"); 492 493 // Legalize the type. 494 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 495 496 // Firstly, the cost of load/store operation. 497 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 498 499 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 500 // (at least in the sense that there need only be one non-loop-invariant 501 // instruction). For each result vector, we need one shuffle per incoming 502 // vector (except that the first shuffle can take two incoming vectors 503 // because it does not need to take itself). 504 Cost += Factor*(LT.first-1); 505 506 return Cost; 507 } 508 509