1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/IR/IntrinsicsPowerPC.h" 17 #include "llvm/Support/CommandLine.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 using namespace llvm; 22 23 #define DEBUG_TYPE "ppctti" 24 25 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 26 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 27 28 // This is currently only used for the data prefetch pass 29 static cl::opt<unsigned> 30 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 31 cl::desc("The loop prefetch cache line size")); 32 33 static cl::opt<bool> 34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 35 cl::desc("Enable using coldcc calling conv for cold " 36 "internal functions")); 37 38 static cl::opt<bool> 39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 40 cl::desc("Do not add instruction count to lsr cost model")); 41 42 // The latency of mtctr is only justified if there are more than 4 43 // comparisons that will be removed as a result. 44 static cl::opt<unsigned> 45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 46 cl::desc("Loops with a constant trip count smaller than " 47 "this value will not use the count register.")); 48 49 //===----------------------------------------------------------------------===// 50 // 51 // PPC cost model. 52 // 53 //===----------------------------------------------------------------------===// 54 55 TargetTransformInfo::PopcntSupportKind 56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 57 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 58 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 59 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 60 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 61 return TTI::PSK_Software; 62 } 63 64 Optional<Instruction *> 65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 66 Intrinsic::ID IID = II.getIntrinsicID(); 67 switch (IID) { 68 default: 69 break; 70 case Intrinsic::ppc_altivec_lvx: 71 case Intrinsic::ppc_altivec_lvxl: 72 // Turn PPC lvx -> load if the pointer is known aligned. 73 if (getOrEnforceKnownAlignment( 74 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 75 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 76 Value *Ptr = IC.Builder.CreateBitCast( 77 II.getArgOperand(0), PointerType::getUnqual(II.getType())); 78 return new LoadInst(II.getType(), Ptr, "", false, Align(16)); 79 } 80 break; 81 case Intrinsic::ppc_vsx_lxvw4x: 82 case Intrinsic::ppc_vsx_lxvd2x: { 83 // Turn PPC VSX loads into normal loads. 84 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), 85 PointerType::getUnqual(II.getType())); 86 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); 87 } 88 case Intrinsic::ppc_altivec_stvx: 89 case Intrinsic::ppc_altivec_stvxl: 90 // Turn stvx -> store if the pointer is known aligned. 91 if (getOrEnforceKnownAlignment( 92 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 93 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 94 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 95 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 96 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); 97 } 98 break; 99 case Intrinsic::ppc_vsx_stxvw4x: 100 case Intrinsic::ppc_vsx_stxvd2x: { 101 // Turn PPC VSX stores into normal stores. 102 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 103 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 104 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); 105 } 106 case Intrinsic::ppc_altivec_vperm: 107 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 108 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 109 // a vectorshuffle for little endian, we must undo the transformation 110 // performed on vec_perm in altivec.h. That is, we must complement 111 // the permutation mask with respect to 31 and reverse the order of 112 // V1 and V2. 113 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { 114 assert(cast<VectorType>(Mask->getType())->getNumElements() == 16 && 115 "Bad type for intrinsic!"); 116 117 // Check that all of the elements are integer constants or undefs. 118 bool AllEltsOk = true; 119 for (unsigned i = 0; i != 16; ++i) { 120 Constant *Elt = Mask->getAggregateElement(i); 121 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 122 AllEltsOk = false; 123 break; 124 } 125 } 126 127 if (AllEltsOk) { 128 // Cast the input vectors to byte vectors. 129 Value *Op0 = 130 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); 131 Value *Op1 = 132 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); 133 Value *Result = UndefValue::get(Op0->getType()); 134 135 // Only extract each element once. 136 Value *ExtractedElts[32]; 137 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 138 139 for (unsigned i = 0; i != 16; ++i) { 140 if (isa<UndefValue>(Mask->getAggregateElement(i))) 141 continue; 142 unsigned Idx = 143 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 144 Idx &= 31; // Match the hardware behavior. 145 if (DL.isLittleEndian()) 146 Idx = 31 - Idx; 147 148 if (!ExtractedElts[Idx]) { 149 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 150 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 151 ExtractedElts[Idx] = IC.Builder.CreateExtractElement( 152 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); 153 } 154 155 // Insert this value into the result vector. 156 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], 157 IC.Builder.getInt32(i)); 158 } 159 return CastInst::Create(Instruction::BitCast, Result, II.getType()); 160 } 161 } 162 break; 163 } 164 return None; 165 } 166 167 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 168 TTI::TargetCostKind CostKind) { 169 if (DisablePPCConstHoist) 170 return BaseT::getIntImmCost(Imm, Ty, CostKind); 171 172 assert(Ty->isIntegerTy()); 173 174 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 175 if (BitSize == 0) 176 return ~0U; 177 178 if (Imm == 0) 179 return TTI::TCC_Free; 180 181 if (Imm.getBitWidth() <= 64) { 182 if (isInt<16>(Imm.getSExtValue())) 183 return TTI::TCC_Basic; 184 185 if (isInt<32>(Imm.getSExtValue())) { 186 // A constant that can be materialized using lis. 187 if ((Imm.getZExtValue() & 0xFFFF) == 0) 188 return TTI::TCC_Basic; 189 190 return 2 * TTI::TCC_Basic; 191 } 192 } 193 194 return 4 * TTI::TCC_Basic; 195 } 196 197 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 198 const APInt &Imm, Type *Ty, 199 TTI::TargetCostKind CostKind) { 200 if (DisablePPCConstHoist) 201 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 202 203 assert(Ty->isIntegerTy()); 204 205 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 206 if (BitSize == 0) 207 return ~0U; 208 209 switch (IID) { 210 default: 211 return TTI::TCC_Free; 212 case Intrinsic::sadd_with_overflow: 213 case Intrinsic::uadd_with_overflow: 214 case Intrinsic::ssub_with_overflow: 215 case Intrinsic::usub_with_overflow: 216 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 230 } 231 232 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 233 const APInt &Imm, Type *Ty, 234 TTI::TargetCostKind CostKind) { 235 if (DisablePPCConstHoist) 236 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 237 238 assert(Ty->isIntegerTy()); 239 240 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 241 if (BitSize == 0) 242 return ~0U; 243 244 unsigned ImmIdx = ~0U; 245 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 246 ZeroFree = false; 247 switch (Opcode) { 248 default: 249 return TTI::TCC_Free; 250 case Instruction::GetElementPtr: 251 // Always hoist the base address of a GetElementPtr. This prevents the 252 // creation of new constants for every base constant that gets constant 253 // folded with the offset. 254 if (Idx == 0) 255 return 2 * TTI::TCC_Basic; 256 return TTI::TCC_Free; 257 case Instruction::And: 258 RunFree = true; // (for the rotate-and-mask instructions) 259 LLVM_FALLTHROUGH; 260 case Instruction::Add: 261 case Instruction::Or: 262 case Instruction::Xor: 263 ShiftedFree = true; 264 LLVM_FALLTHROUGH; 265 case Instruction::Sub: 266 case Instruction::Mul: 267 case Instruction::Shl: 268 case Instruction::LShr: 269 case Instruction::AShr: 270 ImmIdx = 1; 271 break; 272 case Instruction::ICmp: 273 UnsignedFree = true; 274 ImmIdx = 1; 275 // Zero comparisons can use record-form instructions. 276 LLVM_FALLTHROUGH; 277 case Instruction::Select: 278 ZeroFree = true; 279 break; 280 case Instruction::PHI: 281 case Instruction::Call: 282 case Instruction::Ret: 283 case Instruction::Load: 284 case Instruction::Store: 285 break; 286 } 287 288 if (ZeroFree && Imm == 0) 289 return TTI::TCC_Free; 290 291 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 292 if (isInt<16>(Imm.getSExtValue())) 293 return TTI::TCC_Free; 294 295 if (RunFree) { 296 if (Imm.getBitWidth() <= 32 && 297 (isShiftedMask_32(Imm.getZExtValue()) || 298 isShiftedMask_32(~Imm.getZExtValue()))) 299 return TTI::TCC_Free; 300 301 if (ST->isPPC64() && 302 (isShiftedMask_64(Imm.getZExtValue()) || 303 isShiftedMask_64(~Imm.getZExtValue()))) 304 return TTI::TCC_Free; 305 } 306 307 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 308 return TTI::TCC_Free; 309 310 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 311 return TTI::TCC_Free; 312 } 313 314 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 315 } 316 317 unsigned 318 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 319 TTI::TargetCostKind CostKind) { 320 // We already implement getCastInstrCost and getMemoryOpCost where we perform 321 // the vector adjustment there. 322 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 323 return BaseT::getUserCost(U, Operands, CostKind); 324 325 if (U->getType()->isVectorTy()) { 326 // Instructions that need to be split should cost more. 327 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 328 return LT.first * BaseT::getUserCost(U, Operands, CostKind); 329 } 330 331 return BaseT::getUserCost(U, Operands, CostKind); 332 } 333 334 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo, 335 SmallPtrSetImpl<const Value *> &Visited) { 336 const PPCTargetMachine &TM = ST->getTargetMachine(); 337 338 // Loop through the inline asm constraints and look for something that 339 // clobbers ctr. 340 auto asmClobbersCTR = [](InlineAsm *IA) { 341 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 342 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 343 InlineAsm::ConstraintInfo &C = CIV[i]; 344 if (C.Type != InlineAsm::isInput) 345 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 346 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 347 return true; 348 } 349 return false; 350 }; 351 352 // Determining the address of a TLS variable results in a function call in 353 // certain TLS models. 354 std::function<bool(const Value *)> memAddrUsesCTR = 355 [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool { 356 // No need to traverse again if we already checked this operand. 357 if (!Visited.insert(MemAddr).second) 358 return false; 359 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 360 if (!GV) { 361 // Recurse to check for constants that refer to TLS global variables. 362 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 363 for (const auto &CO : CV->operands()) 364 if (memAddrUsesCTR(CO)) 365 return true; 366 367 return false; 368 } 369 370 if (!GV->isThreadLocal()) 371 return false; 372 TLSModel::Model Model = TM.getTLSModel(GV); 373 return Model == TLSModel::GeneralDynamic || 374 Model == TLSModel::LocalDynamic; 375 }; 376 377 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) { 378 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 379 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 380 381 return false; 382 }; 383 384 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 385 J != JE; ++J) { 386 if (CallInst *CI = dyn_cast<CallInst>(J)) { 387 // Inline ASM is okay, unless it clobbers the ctr register. 388 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) { 389 if (asmClobbersCTR(IA)) 390 return true; 391 continue; 392 } 393 394 if (Function *F = CI->getCalledFunction()) { 395 // Most intrinsics don't become function calls, but some might. 396 // sin, cos, exp and log are always calls. 397 unsigned Opcode = 0; 398 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 399 switch (F->getIntrinsicID()) { 400 default: continue; 401 // If we have a call to loop_decrement or set_loop_iterations, 402 // we're definitely using CTR. 403 case Intrinsic::set_loop_iterations: 404 case Intrinsic::loop_decrement: 405 return true; 406 407 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 408 // because, although it does clobber the counter register, the 409 // control can't then return to inside the loop unless there is also 410 // an eh_sjlj_setjmp. 411 case Intrinsic::eh_sjlj_setjmp: 412 413 case Intrinsic::memcpy: 414 case Intrinsic::memmove: 415 case Intrinsic::memset: 416 case Intrinsic::powi: 417 case Intrinsic::log: 418 case Intrinsic::log2: 419 case Intrinsic::log10: 420 case Intrinsic::exp: 421 case Intrinsic::exp2: 422 case Intrinsic::pow: 423 case Intrinsic::sin: 424 case Intrinsic::cos: 425 return true; 426 case Intrinsic::copysign: 427 if (CI->getArgOperand(0)->getType()->getScalarType()-> 428 isPPC_FP128Ty()) 429 return true; 430 else 431 continue; // ISD::FCOPYSIGN is never a library call. 432 case Intrinsic::fma: Opcode = ISD::FMA; break; 433 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 434 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 435 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 436 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 437 case Intrinsic::rint: Opcode = ISD::FRINT; break; 438 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 439 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 440 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 441 case Intrinsic::round: Opcode = ISD::FROUND; break; 442 case Intrinsic::lround: Opcode = ISD::LROUND; break; 443 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 444 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 445 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 446 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; 447 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; 448 } 449 } 450 451 // PowerPC does not use [US]DIVREM or other library calls for 452 // operations on regular types which are not otherwise library calls 453 // (i.e. soft float or atomics). If adapting for targets that do, 454 // additional care is required here. 455 456 LibFunc Func; 457 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 458 LibInfo->getLibFunc(F->getName(), Func) && 459 LibInfo->hasOptimizedCodeGen(Func)) { 460 // Non-read-only functions are never treated as intrinsics. 461 if (!CI->onlyReadsMemory()) 462 return true; 463 464 // Conversion happens only for FP calls. 465 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 466 return true; 467 468 switch (Func) { 469 default: return true; 470 case LibFunc_copysign: 471 case LibFunc_copysignf: 472 continue; // ISD::FCOPYSIGN is never a library call. 473 case LibFunc_copysignl: 474 return true; 475 case LibFunc_fabs: 476 case LibFunc_fabsf: 477 case LibFunc_fabsl: 478 continue; // ISD::FABS is never a library call. 479 case LibFunc_sqrt: 480 case LibFunc_sqrtf: 481 case LibFunc_sqrtl: 482 Opcode = ISD::FSQRT; break; 483 case LibFunc_floor: 484 case LibFunc_floorf: 485 case LibFunc_floorl: 486 Opcode = ISD::FFLOOR; break; 487 case LibFunc_nearbyint: 488 case LibFunc_nearbyintf: 489 case LibFunc_nearbyintl: 490 Opcode = ISD::FNEARBYINT; break; 491 case LibFunc_ceil: 492 case LibFunc_ceilf: 493 case LibFunc_ceill: 494 Opcode = ISD::FCEIL; break; 495 case LibFunc_rint: 496 case LibFunc_rintf: 497 case LibFunc_rintl: 498 Opcode = ISD::FRINT; break; 499 case LibFunc_round: 500 case LibFunc_roundf: 501 case LibFunc_roundl: 502 Opcode = ISD::FROUND; break; 503 case LibFunc_trunc: 504 case LibFunc_truncf: 505 case LibFunc_truncl: 506 Opcode = ISD::FTRUNC; break; 507 case LibFunc_fmin: 508 case LibFunc_fminf: 509 case LibFunc_fminl: 510 Opcode = ISD::FMINNUM; break; 511 case LibFunc_fmax: 512 case LibFunc_fmaxf: 513 case LibFunc_fmaxl: 514 Opcode = ISD::FMAXNUM; break; 515 } 516 } 517 518 if (Opcode) { 519 EVT EVTy = 520 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true); 521 522 if (EVTy == MVT::Other) 523 return true; 524 525 if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) 526 continue; 527 else if (EVTy.isVector() && 528 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) 529 continue; 530 531 return true; 532 } 533 } 534 535 return true; 536 } else if (isa<BinaryOperator>(J) && 537 (J->getType()->getScalarType()->isFP128Ty() || 538 J->getType()->getScalarType()->isPPC_FP128Ty())) { 539 // Most operations on f128 or ppc_f128 values become calls. 540 return true; 541 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 542 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 543 CastInst *CI = cast<CastInst>(J); 544 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 545 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 546 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) || 547 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType())) 548 return true; 549 } else if (isLargeIntegerTy(!TM.isPPC64(), 550 J->getType()->getScalarType()) && 551 (J->getOpcode() == Instruction::UDiv || 552 J->getOpcode() == Instruction::SDiv || 553 J->getOpcode() == Instruction::URem || 554 J->getOpcode() == Instruction::SRem)) { 555 return true; 556 } else if (!TM.isPPC64() && 557 isLargeIntegerTy(false, J->getType()->getScalarType()) && 558 (J->getOpcode() == Instruction::Shl || 559 J->getOpcode() == Instruction::AShr || 560 J->getOpcode() == Instruction::LShr)) { 561 // Only on PPC32, for 128-bit integers (specifically not 64-bit 562 // integers), these might be runtime calls. 563 return true; 564 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 565 // On PowerPC, indirect jumps use the counter register. 566 return true; 567 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 568 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 569 return true; 570 } 571 572 // FREM is always a call. 573 if (J->getOpcode() == Instruction::FRem) 574 return true; 575 576 if (ST->useSoftFloat()) { 577 switch(J->getOpcode()) { 578 case Instruction::FAdd: 579 case Instruction::FSub: 580 case Instruction::FMul: 581 case Instruction::FDiv: 582 case Instruction::FPTrunc: 583 case Instruction::FPExt: 584 case Instruction::FPToUI: 585 case Instruction::FPToSI: 586 case Instruction::UIToFP: 587 case Instruction::SIToFP: 588 case Instruction::FCmp: 589 return true; 590 } 591 } 592 593 for (Value *Operand : J->operands()) 594 if (memAddrUsesCTR(Operand)) 595 return true; 596 } 597 598 return false; 599 } 600 601 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 602 AssumptionCache &AC, 603 TargetLibraryInfo *LibInfo, 604 HardwareLoopInfo &HWLoopInfo) { 605 const PPCTargetMachine &TM = ST->getTargetMachine(); 606 TargetSchedModel SchedModel; 607 SchedModel.init(ST); 608 609 // Do not convert small short loops to CTR loop. 610 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 611 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 612 SmallPtrSet<const Value *, 32> EphValues; 613 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 614 CodeMetrics Metrics; 615 for (BasicBlock *BB : L->blocks()) 616 Metrics.analyzeBasicBlock(BB, *this, EphValues); 617 // 6 is an approximate latency for the mtctr instruction. 618 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 619 return false; 620 } 621 622 // We don't want to spill/restore the counter register, and so we don't 623 // want to use the counter register if the loop contains calls. 624 SmallPtrSet<const Value *, 4> Visited; 625 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 626 I != IE; ++I) 627 if (mightUseCTR(*I, LibInfo, Visited)) 628 return false; 629 630 SmallVector<BasicBlock*, 4> ExitingBlocks; 631 L->getExitingBlocks(ExitingBlocks); 632 633 // If there is an exit edge known to be frequently taken, 634 // we should not transform this loop. 635 for (auto &BB : ExitingBlocks) { 636 Instruction *TI = BB->getTerminator(); 637 if (!TI) continue; 638 639 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 640 uint64_t TrueWeight = 0, FalseWeight = 0; 641 if (!BI->isConditional() || 642 !BI->extractProfMetadata(TrueWeight, FalseWeight)) 643 continue; 644 645 // If the exit path is more frequent than the loop path, 646 // we return here without further analysis for this loop. 647 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 648 if (( TrueIsExit && FalseWeight < TrueWeight) || 649 (!TrueIsExit && FalseWeight > TrueWeight)) 650 return false; 651 } 652 } 653 654 LLVMContext &C = L->getHeader()->getContext(); 655 HWLoopInfo.CountType = TM.isPPC64() ? 656 Type::getInt64Ty(C) : Type::getInt32Ty(C); 657 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 658 return true; 659 } 660 661 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 662 TTI::UnrollingPreferences &UP) { 663 if (ST->getCPUDirective() == PPC::DIR_A2) { 664 // The A2 is in-order with a deep pipeline, and concatenation unrolling 665 // helps expose latency-hiding opportunities to the instruction scheduler. 666 UP.Partial = UP.Runtime = true; 667 668 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 669 // often outweigh the cost of a division to compute the trip count. 670 UP.AllowExpensiveTripCount = true; 671 } 672 673 BaseT::getUnrollingPreferences(L, SE, UP); 674 } 675 676 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 677 TTI::PeelingPreferences &PP) { 678 BaseT::getPeelingPreferences(L, SE, PP); 679 } 680 // This function returns true to allow using coldcc calling convention. 681 // Returning true results in coldcc being used for functions which are cold at 682 // all call sites when the callers of the functions are not calling any other 683 // non coldcc functions. 684 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 685 return EnablePPCColdCC; 686 } 687 688 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 689 // On the A2, always unroll aggressively. 690 if (ST->getCPUDirective() == PPC::DIR_A2) 691 return true; 692 693 return LoopHasReductions; 694 } 695 696 PPCTTIImpl::TTI::MemCmpExpansionOptions 697 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 698 TTI::MemCmpExpansionOptions Options; 699 Options.LoadSizes = {8, 4, 2, 1}; 700 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 701 return Options; 702 } 703 704 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 705 return true; 706 } 707 708 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 709 assert(ClassID == GPRRC || ClassID == FPRRC || 710 ClassID == VRRC || ClassID == VSXRC); 711 if (ST->hasVSX()) { 712 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 713 return ClassID == VSXRC ? 64 : 32; 714 } 715 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 716 return 32; 717 } 718 719 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 720 if (Vector) 721 return ST->hasVSX() ? VSXRC : VRRC; 722 else if (Ty && (Ty->getScalarType()->isFloatTy() || 723 Ty->getScalarType()->isDoubleTy())) 724 return ST->hasVSX() ? VSXRC : FPRRC; 725 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 726 Ty->getScalarType()->isPPC_FP128Ty())) 727 return VRRC; 728 else if (Ty && Ty->getScalarType()->isHalfTy()) 729 return VSXRC; 730 else 731 return GPRRC; 732 } 733 734 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 735 736 switch (ClassID) { 737 default: 738 llvm_unreachable("unknown register class"); 739 return "PPC::unknown register class"; 740 case GPRRC: return "PPC::GPRRC"; 741 case FPRRC: return "PPC::FPRRC"; 742 case VRRC: return "PPC::VRRC"; 743 case VSXRC: return "PPC::VSXRC"; 744 } 745 } 746 747 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 748 if (Vector) { 749 if (ST->hasAltivec()) return 128; 750 return 0; 751 } 752 753 if (ST->isPPC64()) 754 return 64; 755 return 32; 756 757 } 758 759 unsigned PPCTTIImpl::getCacheLineSize() const { 760 // Check first if the user specified a custom line size. 761 if (CacheLineSize.getNumOccurrences() > 0) 762 return CacheLineSize; 763 764 // Starting with P7 we have a cache line size of 128. 765 unsigned Directive = ST->getCPUDirective(); 766 // Assume that Future CPU has the same cache line size as the others. 767 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 768 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 769 Directive == PPC::DIR_PWR_FUTURE) 770 return 128; 771 772 // On other processors return a default of 64 bytes. 773 return 64; 774 } 775 776 unsigned PPCTTIImpl::getPrefetchDistance() const { 777 return 300; 778 } 779 780 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 781 unsigned Directive = ST->getCPUDirective(); 782 // The 440 has no SIMD support, but floating-point instructions 783 // have a 5-cycle latency, so unroll by 5x for latency hiding. 784 if (Directive == PPC::DIR_440) 785 return 5; 786 787 // The A2 has no SIMD support, but floating-point instructions 788 // have a 6-cycle latency, so unroll by 6x for latency hiding. 789 if (Directive == PPC::DIR_A2) 790 return 6; 791 792 // FIXME: For lack of any better information, do no harm... 793 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 794 return 1; 795 796 // For P7 and P8, floating-point instructions have a 6-cycle latency and 797 // there are two execution units, so unroll by 12x for latency hiding. 798 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 799 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 800 // Assume that future is the same as the others. 801 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 802 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 803 Directive == PPC::DIR_PWR_FUTURE) 804 return 12; 805 806 // For most things, modern systems have two execution units (and 807 // out-of-order execution). 808 return 2; 809 } 810 811 // Adjust the cost of vector instructions on targets which there is overlap 812 // between the vector and scalar units, thereby reducing the overall throughput 813 // of vector code wrt. scalar code. 814 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1, 815 Type *Ty2) { 816 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 817 return Cost; 818 819 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1); 820 // If type legalization involves splitting the vector, we don't want to 821 // double the cost at every step - only the last step. 822 if (LT1.first != 1 || !LT1.second.isVector()) 823 return Cost; 824 825 int ISD = TLI->InstructionOpcodeToISD(Opcode); 826 if (TLI->isOperationExpand(ISD, LT1.second)) 827 return Cost; 828 829 if (Ty2) { 830 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2); 831 if (LT2.first != 1 || !LT2.second.isVector()) 832 return Cost; 833 } 834 835 return Cost * 2; 836 } 837 838 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 839 TTI::TargetCostKind CostKind, 840 TTI::OperandValueKind Op1Info, 841 TTI::OperandValueKind Op2Info, 842 TTI::OperandValueProperties Opd1PropInfo, 843 TTI::OperandValueProperties Opd2PropInfo, 844 ArrayRef<const Value *> Args, 845 const Instruction *CxtI) { 846 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 847 // TODO: Handle more cost kinds. 848 if (CostKind != TTI::TCK_RecipThroughput) 849 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 850 Op2Info, Opd1PropInfo, 851 Opd2PropInfo, Args, CxtI); 852 853 // Fallback to the default implementation. 854 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 855 Op2Info, 856 Opd1PropInfo, Opd2PropInfo); 857 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr); 858 } 859 860 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 861 Type *SubTp) { 862 // Legalize the type. 863 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 864 865 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 866 // (at least in the sense that there need only be one non-loop-invariant 867 // instruction). We need one such shuffle instruction for each actual 868 // register (this is not true for arbitrary shuffles, but is true for the 869 // structured types of shuffles covered by TTI::ShuffleKind). 870 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp, 871 nullptr); 872 } 873 874 int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) { 875 if (CostKind != TTI::TCK_RecipThroughput) 876 return Opcode == Instruction::PHI ? 0 : 1; 877 // Branches are assumed to be predicted. 878 return CostKind == TTI::TCK_RecipThroughput ? 0 : 1; 879 } 880 881 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 882 TTI::TargetCostKind CostKind, 883 const Instruction *I) { 884 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 885 886 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 887 Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src); 888 // TODO: Allow non-throughput costs that aren't binary. 889 if (CostKind != TTI::TCK_RecipThroughput) 890 return Cost == 0 ? 0 : 1; 891 return Cost; 892 } 893 894 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 895 TTI::TargetCostKind CostKind, 896 const Instruction *I) { 897 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 898 // TODO: Handle other cost kinds. 899 if (CostKind != TTI::TCK_RecipThroughput) 900 return Cost; 901 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr); 902 } 903 904 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 905 assert(Val->isVectorTy() && "This must be a vector type"); 906 907 int ISD = TLI->InstructionOpcodeToISD(Opcode); 908 assert(ISD && "Invalid opcode"); 909 910 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); 911 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr); 912 913 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 914 // Double-precision scalars are already located in index #0 (or #1 if LE). 915 if (ISD == ISD::EXTRACT_VECTOR_ELT && 916 Index == (ST->isLittleEndian() ? 1 : 0)) 917 return 0; 918 919 return Cost; 920 921 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 922 if (ST->hasP9Altivec()) { 923 if (ISD == ISD::INSERT_VECTOR_ELT) 924 // A move-to VSR and a permute/insert. Assume vector operation cost 925 // for both (cost will be 2x on P9). 926 return vectorCostAdjustment(2, Opcode, Val, nullptr); 927 928 // It's an extract. Maybe we can do a cheap move-from VSR. 929 unsigned EltSize = Val->getScalarSizeInBits(); 930 if (EltSize == 64) { 931 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 932 if (Index == MfvsrdIndex) 933 return 1; 934 } else if (EltSize == 32) { 935 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 936 if (Index == MfvsrwzIndex) 937 return 1; 938 } 939 940 // We need a vector extract (or mfvsrld). Assume vector operation cost. 941 // The cost of the load constant for a vector extract is disregarded 942 // (invariant, easily schedulable). 943 return vectorCostAdjustment(1, Opcode, Val, nullptr); 944 945 } else if (ST->hasDirectMove()) 946 // Assume permute has standard cost. 947 // Assume move-to/move-from VSR have 2x standard cost. 948 return 3; 949 } 950 951 // Estimated cost of a load-hit-store delay. This was obtained 952 // experimentally as a minimum needed to prevent unprofitable 953 // vectorization for the paq8p benchmark. It may need to be 954 // raised further if other unprofitable cases remain. 955 unsigned LHSPenalty = 2; 956 if (ISD == ISD::INSERT_VECTOR_ELT) 957 LHSPenalty += 7; 958 959 // Vector element insert/extract with Altivec is very expensive, 960 // because they require store and reload with the attendant 961 // processor stall for load-hit-store. Until VSX is available, 962 // these need to be estimated as very costly. 963 if (ISD == ISD::EXTRACT_VECTOR_ELT || 964 ISD == ISD::INSERT_VECTOR_ELT) 965 return LHSPenalty + Cost; 966 967 return Cost; 968 } 969 970 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 971 MaybeAlign Alignment, unsigned AddressSpace, 972 TTI::TargetCostKind CostKind, 973 const Instruction *I) { 974 if (TLI->getValueType(DL, Src, true) == MVT::Other) 975 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 976 CostKind); 977 // Legalize the type. 978 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 979 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 980 "Invalid Opcode"); 981 982 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 983 CostKind); 984 // TODO: Handle other cost kinds. 985 if (CostKind != TTI::TCK_RecipThroughput) 986 return Cost; 987 988 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr); 989 990 bool IsAltivecType = ST->hasAltivec() && 991 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 992 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 993 bool IsVSXType = ST->hasVSX() && 994 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 995 996 // VSX has 32b/64b load instructions. Legalization can handle loading of 997 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 998 // PPCTargetLowering can't compute the cost appropriately. So here we 999 // explicitly check this case. 1000 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 1001 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 1002 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 1003 return 1; 1004 1005 // Aligned loads and stores are easy. 1006 unsigned SrcBytes = LT.second.getStoreSize(); 1007 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 1008 return Cost; 1009 1010 // If we can use the permutation-based load sequence, then this is also 1011 // relatively cheap (not counting loop-invariant instructions): one load plus 1012 // one permute (the last load in a series has extra cost, but we're 1013 // neglecting that here). Note that on the P7, we could do unaligned loads 1014 // for Altivec types using the VSX instructions, but that's more expensive 1015 // than using the permutation-based load sequence. On the P8, that's no 1016 // longer true. 1017 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && 1018 *Alignment >= LT.second.getScalarType().getStoreSize()) 1019 return Cost + LT.first; // Add the cost of the permutations. 1020 1021 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 1022 // P7, unaligned vector loads are more expensive than the permutation-based 1023 // load sequence, so that might be used instead, but regardless, the net cost 1024 // is about the same (not counting loop-invariant instructions). 1025 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 1026 return Cost; 1027 1028 // Newer PPC supports unaligned memory access. 1029 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 1030 return Cost; 1031 1032 // PPC in general does not support unaligned loads and stores. They'll need 1033 // to be decomposed based on the alignment factor. 1034 1035 // Add the cost of each scalar load or store. 1036 assert(Alignment); 1037 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 1038 1039 // For a vector type, there is also scalarization overhead (only for 1040 // stores, loads are expanded using the vector-load + permutation sequence, 1041 // which is much less expensive). 1042 if (Src->isVectorTy() && Opcode == Instruction::Store) 1043 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 1044 ++i) 1045 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 1046 1047 return Cost; 1048 } 1049 1050 int PPCTTIImpl::getInterleavedMemoryOpCost( 1051 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1052 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1053 bool UseMaskForCond, bool UseMaskForGaps) { 1054 if (UseMaskForCond || UseMaskForGaps) 1055 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1056 Alignment, AddressSpace, CostKind, 1057 UseMaskForCond, UseMaskForGaps); 1058 1059 assert(isa<VectorType>(VecTy) && 1060 "Expect a vector type for interleaved memory op"); 1061 1062 // Legalize the type. 1063 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 1064 1065 // Firstly, the cost of load/store operation. 1066 int Cost = 1067 getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, 1068 CostKind); 1069 1070 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 1071 // (at least in the sense that there need only be one non-loop-invariant 1072 // instruction). For each result vector, we need one shuffle per incoming 1073 // vector (except that the first shuffle can take two incoming vectors 1074 // because it does not need to take itself). 1075 Cost += Factor*(LT.first-1); 1076 1077 return Cost; 1078 } 1079 1080 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1081 TTI::TargetCostKind CostKind) { 1082 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1083 } 1084 1085 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 1086 LoopInfo *LI, DominatorTree *DT, 1087 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 1088 // Process nested loops first. 1089 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 1090 if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo)) 1091 return false; // Stop search. 1092 1093 HardwareLoopInfo HWLoopInfo(L); 1094 1095 if (!HWLoopInfo.canAnalyze(*LI)) 1096 return false; 1097 1098 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 1099 return false; 1100 1101 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 1102 return false; 1103 1104 *BI = HWLoopInfo.ExitBranch; 1105 return true; 1106 } 1107 1108 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 1109 TargetTransformInfo::LSRCost &C2) { 1110 // PowerPC default behaviour here is "instruction number 1st priority". 1111 // If LsrNoInsnsCost is set, call default implementation. 1112 if (!LsrNoInsnsCost) 1113 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 1114 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 1115 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 1116 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 1117 else 1118 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 1119 } 1120