1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetLibraryInfo.h" 12 #include "llvm/Analysis/TargetTransformInfo.h" 13 #include "llvm/CodeGen/BasicTTIImpl.h" 14 #include "llvm/CodeGen/CostTable.h" 15 #include "llvm/CodeGen/TargetLowering.h" 16 #include "llvm/CodeGen/TargetSchedule.h" 17 #include "llvm/IR/IntrinsicsPowerPC.h" 18 #include "llvm/IR/ProfDataUtils.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/KnownBits.h" 22 #include "llvm/Transforms/InstCombine/InstCombiner.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include <optional> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "ppctti" 29 30 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 31 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 32 33 static cl::opt<bool> 34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 35 cl::desc("Enable using coldcc calling conv for cold " 36 "internal functions")); 37 38 static cl::opt<bool> 39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 40 cl::desc("Do not add instruction count to lsr cost model")); 41 42 // The latency of mtctr is only justified if there are more than 4 43 // comparisons that will be removed as a result. 44 static cl::opt<unsigned> 45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 46 cl::desc("Loops with a constant trip count smaller than " 47 "this value will not use the count register.")); 48 49 //===----------------------------------------------------------------------===// 50 // 51 // PPC cost model. 52 // 53 //===----------------------------------------------------------------------===// 54 55 TargetTransformInfo::PopcntSupportKind 56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 57 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 58 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 59 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 60 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 61 return TTI::PSK_Software; 62 } 63 64 std::optional<Instruction *> 65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 66 Intrinsic::ID IID = II.getIntrinsicID(); 67 switch (IID) { 68 default: 69 break; 70 case Intrinsic::ppc_altivec_lvx: 71 case Intrinsic::ppc_altivec_lvxl: 72 // Turn PPC lvx -> load if the pointer is known aligned. 73 if (getOrEnforceKnownAlignment( 74 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 75 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 76 Value *Ptr = IC.Builder.CreateBitCast( 77 II.getArgOperand(0), PointerType::getUnqual(II.getType())); 78 return new LoadInst(II.getType(), Ptr, "", false, Align(16)); 79 } 80 break; 81 case Intrinsic::ppc_vsx_lxvw4x: 82 case Intrinsic::ppc_vsx_lxvd2x: { 83 // Turn PPC VSX loads into normal loads. 84 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), 85 PointerType::getUnqual(II.getType())); 86 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); 87 } 88 case Intrinsic::ppc_altivec_stvx: 89 case Intrinsic::ppc_altivec_stvxl: 90 // Turn stvx -> store if the pointer is known aligned. 91 if (getOrEnforceKnownAlignment( 92 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 93 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 94 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 95 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 96 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); 97 } 98 break; 99 case Intrinsic::ppc_vsx_stxvw4x: 100 case Intrinsic::ppc_vsx_stxvd2x: { 101 // Turn PPC VSX stores into normal stores. 102 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 103 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 104 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); 105 } 106 case Intrinsic::ppc_altivec_vperm: 107 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 108 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 109 // a vectorshuffle for little endian, we must undo the transformation 110 // performed on vec_perm in altivec.h. That is, we must complement 111 // the permutation mask with respect to 31 and reverse the order of 112 // V1 and V2. 113 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { 114 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 && 115 "Bad type for intrinsic!"); 116 117 // Check that all of the elements are integer constants or undefs. 118 bool AllEltsOk = true; 119 for (unsigned i = 0; i != 16; ++i) { 120 Constant *Elt = Mask->getAggregateElement(i); 121 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 122 AllEltsOk = false; 123 break; 124 } 125 } 126 127 if (AllEltsOk) { 128 // Cast the input vectors to byte vectors. 129 Value *Op0 = 130 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); 131 Value *Op1 = 132 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); 133 Value *Result = UndefValue::get(Op0->getType()); 134 135 // Only extract each element once. 136 Value *ExtractedElts[32]; 137 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 138 139 for (unsigned i = 0; i != 16; ++i) { 140 if (isa<UndefValue>(Mask->getAggregateElement(i))) 141 continue; 142 unsigned Idx = 143 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 144 Idx &= 31; // Match the hardware behavior. 145 if (DL.isLittleEndian()) 146 Idx = 31 - Idx; 147 148 if (!ExtractedElts[Idx]) { 149 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 150 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 151 ExtractedElts[Idx] = IC.Builder.CreateExtractElement( 152 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); 153 } 154 155 // Insert this value into the result vector. 156 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], 157 IC.Builder.getInt32(i)); 158 } 159 return CastInst::Create(Instruction::BitCast, Result, II.getType()); 160 } 161 } 162 break; 163 } 164 return std::nullopt; 165 } 166 167 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 168 TTI::TargetCostKind CostKind) { 169 if (DisablePPCConstHoist) 170 return BaseT::getIntImmCost(Imm, Ty, CostKind); 171 172 assert(Ty->isIntegerTy()); 173 174 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 175 if (BitSize == 0) 176 return ~0U; 177 178 if (Imm == 0) 179 return TTI::TCC_Free; 180 181 if (Imm.getBitWidth() <= 64) { 182 if (isInt<16>(Imm.getSExtValue())) 183 return TTI::TCC_Basic; 184 185 if (isInt<32>(Imm.getSExtValue())) { 186 // A constant that can be materialized using lis. 187 if ((Imm.getZExtValue() & 0xFFFF) == 0) 188 return TTI::TCC_Basic; 189 190 return 2 * TTI::TCC_Basic; 191 } 192 } 193 194 return 4 * TTI::TCC_Basic; 195 } 196 197 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 198 const APInt &Imm, Type *Ty, 199 TTI::TargetCostKind CostKind) { 200 if (DisablePPCConstHoist) 201 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 202 203 assert(Ty->isIntegerTy()); 204 205 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 206 if (BitSize == 0) 207 return ~0U; 208 209 switch (IID) { 210 default: 211 return TTI::TCC_Free; 212 case Intrinsic::sadd_with_overflow: 213 case Intrinsic::uadd_with_overflow: 214 case Intrinsic::ssub_with_overflow: 215 case Intrinsic::usub_with_overflow: 216 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 230 } 231 232 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 233 const APInt &Imm, Type *Ty, 234 TTI::TargetCostKind CostKind, 235 Instruction *Inst) { 236 if (DisablePPCConstHoist) 237 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 238 239 assert(Ty->isIntegerTy()); 240 241 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 242 if (BitSize == 0) 243 return ~0U; 244 245 unsigned ImmIdx = ~0U; 246 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 247 ZeroFree = false; 248 switch (Opcode) { 249 default: 250 return TTI::TCC_Free; 251 case Instruction::GetElementPtr: 252 // Always hoist the base address of a GetElementPtr. This prevents the 253 // creation of new constants for every base constant that gets constant 254 // folded with the offset. 255 if (Idx == 0) 256 return 2 * TTI::TCC_Basic; 257 return TTI::TCC_Free; 258 case Instruction::And: 259 RunFree = true; // (for the rotate-and-mask instructions) 260 [[fallthrough]]; 261 case Instruction::Add: 262 case Instruction::Or: 263 case Instruction::Xor: 264 ShiftedFree = true; 265 [[fallthrough]]; 266 case Instruction::Sub: 267 case Instruction::Mul: 268 case Instruction::Shl: 269 case Instruction::LShr: 270 case Instruction::AShr: 271 ImmIdx = 1; 272 break; 273 case Instruction::ICmp: 274 UnsignedFree = true; 275 ImmIdx = 1; 276 // Zero comparisons can use record-form instructions. 277 [[fallthrough]]; 278 case Instruction::Select: 279 ZeroFree = true; 280 break; 281 case Instruction::PHI: 282 case Instruction::Call: 283 case Instruction::Ret: 284 case Instruction::Load: 285 case Instruction::Store: 286 break; 287 } 288 289 if (ZeroFree && Imm == 0) 290 return TTI::TCC_Free; 291 292 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 293 if (isInt<16>(Imm.getSExtValue())) 294 return TTI::TCC_Free; 295 296 if (RunFree) { 297 if (Imm.getBitWidth() <= 32 && 298 (isShiftedMask_32(Imm.getZExtValue()) || 299 isShiftedMask_32(~Imm.getZExtValue()))) 300 return TTI::TCC_Free; 301 302 if (ST->isPPC64() && 303 (isShiftedMask_64(Imm.getZExtValue()) || 304 isShiftedMask_64(~Imm.getZExtValue()))) 305 return TTI::TCC_Free; 306 } 307 308 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 309 return TTI::TCC_Free; 310 311 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 312 return TTI::TCC_Free; 313 } 314 315 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 316 } 317 318 // Check if the current Type is an MMA vector type. Valid MMA types are 319 // v256i1 and v512i1 respectively. 320 static bool isMMAType(Type *Ty) { 321 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) && 322 (Ty->getPrimitiveSizeInBits() > 128); 323 } 324 325 InstructionCost PPCTTIImpl::getInstructionCost(const User *U, 326 ArrayRef<const Value *> Operands, 327 TTI::TargetCostKind CostKind) { 328 // We already implement getCastInstrCost and getMemoryOpCost where we perform 329 // the vector adjustment there. 330 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 331 return BaseT::getInstructionCost(U, Operands, CostKind); 332 333 if (U->getType()->isVectorTy()) { 334 // Instructions that need to be split should cost more. 335 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType()); 336 return LT.first * BaseT::getInstructionCost(U, Operands, CostKind); 337 } 338 339 return BaseT::getInstructionCost(U, Operands, CostKind); 340 } 341 342 // Determining the address of a TLS variable results in a function call in 343 // certain TLS models. 344 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM, 345 SmallPtrSetImpl<const Value *> &Visited) { 346 // No need to traverse again if we already checked this operand. 347 if (!Visited.insert(MemAddr).second) 348 return false; 349 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 350 if (!GV) { 351 // Recurse to check for constants that refer to TLS global variables. 352 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 353 for (const auto &CO : CV->operands()) 354 if (memAddrUsesCTR(CO, TM, Visited)) 355 return true; 356 return false; 357 } 358 359 if (!GV->isThreadLocal()) 360 return false; 361 TLSModel::Model Model = TM.getTLSModel(GV); 362 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 363 } 364 365 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 366 AssumptionCache &AC, 367 TargetLibraryInfo *LibInfo, 368 HardwareLoopInfo &HWLoopInfo) { 369 const PPCTargetMachine &TM = ST->getTargetMachine(); 370 TargetSchedModel SchedModel; 371 SchedModel.init(ST); 372 373 // Do not convert small short loops to CTR loop. 374 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 375 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 376 SmallPtrSet<const Value *, 32> EphValues; 377 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 378 CodeMetrics Metrics; 379 for (BasicBlock *BB : L->blocks()) 380 Metrics.analyzeBasicBlock(BB, *this, EphValues); 381 // 6 is an approximate latency for the mtctr instruction. 382 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 383 return false; 384 } 385 386 SmallVector<BasicBlock*, 4> ExitingBlocks; 387 L->getExitingBlocks(ExitingBlocks); 388 389 // If there is an exit edge known to be frequently taken, 390 // we should not transform this loop. 391 for (auto &BB : ExitingBlocks) { 392 Instruction *TI = BB->getTerminator(); 393 if (!TI) continue; 394 395 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 396 uint64_t TrueWeight = 0, FalseWeight = 0; 397 if (!BI->isConditional() || 398 !extractBranchWeights(*BI, TrueWeight, FalseWeight)) 399 continue; 400 401 // If the exit path is more frequent than the loop path, 402 // we return here without further analysis for this loop. 403 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 404 if (( TrueIsExit && FalseWeight < TrueWeight) || 405 (!TrueIsExit && FalseWeight > TrueWeight)) 406 return false; 407 } 408 } 409 410 // If an exit block has a PHI that accesses a TLS variable as one of the 411 // incoming values from the loop, we cannot produce a CTR loop because the 412 // address for that value will be computed in the loop. 413 SmallVector<BasicBlock *, 4> ExitBlocks; 414 L->getExitBlocks(ExitBlocks); 415 SmallPtrSet<const Value *, 4> Visited; 416 for (auto &BB : ExitBlocks) { 417 for (auto &PHI : BB->phis()) { 418 for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx; 419 Idx++) { 420 const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx); 421 const Value *IncomingValue = PHI.getIncomingValue(Idx); 422 if (L->contains(IncomingBB) && 423 memAddrUsesCTR(IncomingValue, TM, Visited)) 424 return false; 425 } 426 } 427 } 428 429 LLVMContext &C = L->getHeader()->getContext(); 430 HWLoopInfo.CountType = TM.isPPC64() ? 431 Type::getInt64Ty(C) : Type::getInt32Ty(C); 432 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 433 return true; 434 } 435 436 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 437 TTI::UnrollingPreferences &UP, 438 OptimizationRemarkEmitter *ORE) { 439 if (ST->getCPUDirective() == PPC::DIR_A2) { 440 // The A2 is in-order with a deep pipeline, and concatenation unrolling 441 // helps expose latency-hiding opportunities to the instruction scheduler. 442 UP.Partial = UP.Runtime = true; 443 444 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 445 // often outweigh the cost of a division to compute the trip count. 446 UP.AllowExpensiveTripCount = true; 447 } 448 449 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 450 } 451 452 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 453 TTI::PeelingPreferences &PP) { 454 BaseT::getPeelingPreferences(L, SE, PP); 455 } 456 // This function returns true to allow using coldcc calling convention. 457 // Returning true results in coldcc being used for functions which are cold at 458 // all call sites when the callers of the functions are not calling any other 459 // non coldcc functions. 460 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 461 return EnablePPCColdCC; 462 } 463 464 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 465 // On the A2, always unroll aggressively. 466 if (ST->getCPUDirective() == PPC::DIR_A2) 467 return true; 468 469 return LoopHasReductions; 470 } 471 472 PPCTTIImpl::TTI::MemCmpExpansionOptions 473 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 474 TTI::MemCmpExpansionOptions Options; 475 Options.LoadSizes = {8, 4, 2, 1}; 476 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 477 return Options; 478 } 479 480 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 481 return true; 482 } 483 484 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 485 assert(ClassID == GPRRC || ClassID == FPRRC || 486 ClassID == VRRC || ClassID == VSXRC); 487 if (ST->hasVSX()) { 488 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 489 return ClassID == VSXRC ? 64 : 32; 490 } 491 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 492 return 32; 493 } 494 495 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 496 if (Vector) 497 return ST->hasVSX() ? VSXRC : VRRC; 498 else if (Ty && (Ty->getScalarType()->isFloatTy() || 499 Ty->getScalarType()->isDoubleTy())) 500 return ST->hasVSX() ? VSXRC : FPRRC; 501 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 502 Ty->getScalarType()->isPPC_FP128Ty())) 503 return VRRC; 504 else if (Ty && Ty->getScalarType()->isHalfTy()) 505 return VSXRC; 506 else 507 return GPRRC; 508 } 509 510 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 511 512 switch (ClassID) { 513 default: 514 llvm_unreachable("unknown register class"); 515 return "PPC::unknown register class"; 516 case GPRRC: return "PPC::GPRRC"; 517 case FPRRC: return "PPC::FPRRC"; 518 case VRRC: return "PPC::VRRC"; 519 case VSXRC: return "PPC::VSXRC"; 520 } 521 } 522 523 TypeSize 524 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 525 switch (K) { 526 case TargetTransformInfo::RGK_Scalar: 527 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32); 528 case TargetTransformInfo::RGK_FixedWidthVector: 529 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0); 530 case TargetTransformInfo::RGK_ScalableVector: 531 return TypeSize::getScalable(0); 532 } 533 534 llvm_unreachable("Unsupported register kind"); 535 } 536 537 unsigned PPCTTIImpl::getCacheLineSize() const { 538 // Starting with P7 we have a cache line size of 128. 539 unsigned Directive = ST->getCPUDirective(); 540 // Assume that Future CPU has the same cache line size as the others. 541 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 542 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 543 Directive == PPC::DIR_PWR_FUTURE) 544 return 128; 545 546 // On other processors return a default of 64 bytes. 547 return 64; 548 } 549 550 unsigned PPCTTIImpl::getPrefetchDistance() const { 551 return 300; 552 } 553 554 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 555 unsigned Directive = ST->getCPUDirective(); 556 // The 440 has no SIMD support, but floating-point instructions 557 // have a 5-cycle latency, so unroll by 5x for latency hiding. 558 if (Directive == PPC::DIR_440) 559 return 5; 560 561 // The A2 has no SIMD support, but floating-point instructions 562 // have a 6-cycle latency, so unroll by 6x for latency hiding. 563 if (Directive == PPC::DIR_A2) 564 return 6; 565 566 // FIXME: For lack of any better information, do no harm... 567 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 568 return 1; 569 570 // For P7 and P8, floating-point instructions have a 6-cycle latency and 571 // there are two execution units, so unroll by 12x for latency hiding. 572 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 573 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 574 // Assume that future is the same as the others. 575 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 576 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 577 Directive == PPC::DIR_PWR_FUTURE) 578 return 12; 579 580 // For most things, modern systems have two execution units (and 581 // out-of-order execution). 582 return 2; 583 } 584 585 // Returns a cost adjustment factor to adjust the cost of vector instructions 586 // on targets which there is overlap between the vector and scalar units, 587 // thereby reducing the overall throughput of vector code wrt. scalar code. 588 // An invalid instruction cost is returned if the type is an MMA vector type. 589 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode, 590 Type *Ty1, Type *Ty2) { 591 // If the vector type is of an MMA type (v256i1, v512i1), an invalid 592 // instruction cost is returned. This is to signify to other cost computing 593 // functions to return the maximum instruction cost in order to prevent any 594 // opportunities for the optimizer to produce MMA types within the IR. 595 if (isMMAType(Ty1)) 596 return InstructionCost::getInvalid(); 597 598 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 599 return InstructionCost(1); 600 601 std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1); 602 // If type legalization involves splitting the vector, we don't want to 603 // double the cost at every step - only the last step. 604 if (LT1.first != 1 || !LT1.second.isVector()) 605 return InstructionCost(1); 606 607 int ISD = TLI->InstructionOpcodeToISD(Opcode); 608 if (TLI->isOperationExpand(ISD, LT1.second)) 609 return InstructionCost(1); 610 611 if (Ty2) { 612 std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2); 613 if (LT2.first != 1 || !LT2.second.isVector()) 614 return InstructionCost(1); 615 } 616 617 return InstructionCost(2); 618 } 619 620 InstructionCost PPCTTIImpl::getArithmeticInstrCost( 621 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 622 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 623 ArrayRef<const Value *> Args, 624 const Instruction *CxtI) { 625 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 626 627 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr); 628 if (!CostFactor.isValid()) 629 return InstructionCost::getMax(); 630 631 // TODO: Handle more cost kinds. 632 if (CostKind != TTI::TCK_RecipThroughput) 633 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 634 Op2Info, Args, CxtI); 635 636 // Fallback to the default implementation. 637 InstructionCost Cost = BaseT::getArithmeticInstrCost( 638 Opcode, Ty, CostKind, Op1Info, Op2Info); 639 return Cost * CostFactor; 640 } 641 642 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, 643 ArrayRef<int> Mask, 644 TTI::TargetCostKind CostKind, 645 int Index, Type *SubTp, 646 ArrayRef<const Value *> Args) { 647 648 InstructionCost CostFactor = 649 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr); 650 if (!CostFactor.isValid()) 651 return InstructionCost::getMax(); 652 653 // Legalize the type. 654 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 655 656 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 657 // (at least in the sense that there need only be one non-loop-invariant 658 // instruction). We need one such shuffle instruction for each actual 659 // register (this is not true for arbitrary shuffles, but is true for the 660 // structured types of shuffles covered by TTI::ShuffleKind). 661 return LT.first * CostFactor; 662 } 663 664 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode, 665 TTI::TargetCostKind CostKind, 666 const Instruction *I) { 667 if (CostKind != TTI::TCK_RecipThroughput) 668 return Opcode == Instruction::PHI ? 0 : 1; 669 // Branches are assumed to be predicted. 670 return 0; 671 } 672 673 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 674 Type *Src, 675 TTI::CastContextHint CCH, 676 TTI::TargetCostKind CostKind, 677 const Instruction *I) { 678 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 679 680 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src); 681 if (!CostFactor.isValid()) 682 return InstructionCost::getMax(); 683 684 InstructionCost Cost = 685 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 686 Cost *= CostFactor; 687 // TODO: Allow non-throughput costs that aren't binary. 688 if (CostKind != TTI::TCK_RecipThroughput) 689 return Cost == 0 ? 0 : 1; 690 return Cost; 691 } 692 693 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 694 Type *CondTy, 695 CmpInst::Predicate VecPred, 696 TTI::TargetCostKind CostKind, 697 const Instruction *I) { 698 InstructionCost CostFactor = 699 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr); 700 if (!CostFactor.isValid()) 701 return InstructionCost::getMax(); 702 703 InstructionCost Cost = 704 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 705 // TODO: Handle other cost kinds. 706 if (CostKind != TTI::TCK_RecipThroughput) 707 return Cost; 708 return Cost * CostFactor; 709 } 710 711 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 712 unsigned Index) { 713 assert(Val->isVectorTy() && "This must be a vector type"); 714 715 int ISD = TLI->InstructionOpcodeToISD(Opcode); 716 assert(ISD && "Invalid opcode"); 717 718 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr); 719 if (!CostFactor.isValid()) 720 return InstructionCost::getMax(); 721 722 InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); 723 Cost *= CostFactor; 724 725 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 726 // Double-precision scalars are already located in index #0 (or #1 if LE). 727 if (ISD == ISD::EXTRACT_VECTOR_ELT && 728 Index == (ST->isLittleEndian() ? 1 : 0)) 729 return 0; 730 731 return Cost; 732 733 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 734 if (ST->hasP9Altivec()) { 735 if (ISD == ISD::INSERT_VECTOR_ELT) 736 // A move-to VSR and a permute/insert. Assume vector operation cost 737 // for both (cost will be 2x on P9). 738 return 2 * CostFactor; 739 740 // It's an extract. Maybe we can do a cheap move-from VSR. 741 unsigned EltSize = Val->getScalarSizeInBits(); 742 if (EltSize == 64) { 743 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 744 if (Index == MfvsrdIndex) 745 return 1; 746 } else if (EltSize == 32) { 747 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 748 if (Index == MfvsrwzIndex) 749 return 1; 750 } 751 752 // We need a vector extract (or mfvsrld). Assume vector operation cost. 753 // The cost of the load constant for a vector extract is disregarded 754 // (invariant, easily schedulable). 755 return CostFactor; 756 757 } else if (ST->hasDirectMove()) 758 // Assume permute has standard cost. 759 // Assume move-to/move-from VSR have 2x standard cost. 760 return 3; 761 } 762 763 // Estimated cost of a load-hit-store delay. This was obtained 764 // experimentally as a minimum needed to prevent unprofitable 765 // vectorization for the paq8p benchmark. It may need to be 766 // raised further if other unprofitable cases remain. 767 unsigned LHSPenalty = 2; 768 if (ISD == ISD::INSERT_VECTOR_ELT) 769 LHSPenalty += 7; 770 771 // Vector element insert/extract with Altivec is very expensive, 772 // because they require store and reload with the attendant 773 // processor stall for load-hit-store. Until VSX is available, 774 // these need to be estimated as very costly. 775 if (ISD == ISD::EXTRACT_VECTOR_ELT || 776 ISD == ISD::INSERT_VECTOR_ELT) 777 return LHSPenalty + Cost; 778 779 return Cost; 780 } 781 782 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 783 MaybeAlign Alignment, 784 unsigned AddressSpace, 785 TTI::TargetCostKind CostKind, 786 TTI::OperandValueInfo OpInfo, 787 const Instruction *I) { 788 789 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr); 790 if (!CostFactor.isValid()) 791 return InstructionCost::getMax(); 792 793 if (TLI->getValueType(DL, Src, true) == MVT::Other) 794 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 795 CostKind); 796 // Legalize the type. 797 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 798 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 799 "Invalid Opcode"); 800 801 InstructionCost Cost = 802 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 803 // TODO: Handle other cost kinds. 804 if (CostKind != TTI::TCK_RecipThroughput) 805 return Cost; 806 807 Cost *= CostFactor; 808 809 bool IsAltivecType = ST->hasAltivec() && 810 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 811 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 812 bool IsVSXType = ST->hasVSX() && 813 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 814 815 // VSX has 32b/64b load instructions. Legalization can handle loading of 816 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 817 // PPCTargetLowering can't compute the cost appropriately. So here we 818 // explicitly check this case. 819 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 820 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 821 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 822 return 1; 823 824 // Aligned loads and stores are easy. 825 unsigned SrcBytes = LT.second.getStoreSize(); 826 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 827 return Cost; 828 829 // If we can use the permutation-based load sequence, then this is also 830 // relatively cheap (not counting loop-invariant instructions): one load plus 831 // one permute (the last load in a series has extra cost, but we're 832 // neglecting that here). Note that on the P7, we could do unaligned loads 833 // for Altivec types using the VSX instructions, but that's more expensive 834 // than using the permutation-based load sequence. On the P8, that's no 835 // longer true. 836 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && 837 *Alignment >= LT.second.getScalarType().getStoreSize()) 838 return Cost + LT.first; // Add the cost of the permutations. 839 840 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 841 // P7, unaligned vector loads are more expensive than the permutation-based 842 // load sequence, so that might be used instead, but regardless, the net cost 843 // is about the same (not counting loop-invariant instructions). 844 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 845 return Cost; 846 847 // Newer PPC supports unaligned memory access. 848 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 849 return Cost; 850 851 // PPC in general does not support unaligned loads and stores. They'll need 852 // to be decomposed based on the alignment factor. 853 854 // Add the cost of each scalar load or store. 855 assert(Alignment); 856 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 857 858 // For a vector type, there is also scalarization overhead (only for 859 // stores, loads are expanded using the vector-load + permutation sequence, 860 // which is much less expensive). 861 if (Src->isVectorTy() && Opcode == Instruction::Store) 862 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 863 ++i) 864 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 865 866 return Cost; 867 } 868 869 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost( 870 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 871 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 872 bool UseMaskForCond, bool UseMaskForGaps) { 873 InstructionCost CostFactor = 874 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr); 875 if (!CostFactor.isValid()) 876 return InstructionCost::getMax(); 877 878 if (UseMaskForCond || UseMaskForGaps) 879 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 880 Alignment, AddressSpace, CostKind, 881 UseMaskForCond, UseMaskForGaps); 882 883 assert(isa<VectorType>(VecTy) && 884 "Expect a vector type for interleaved memory op"); 885 886 // Legalize the type. 887 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy); 888 889 // Firstly, the cost of load/store operation. 890 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), 891 AddressSpace, CostKind); 892 893 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 894 // (at least in the sense that there need only be one non-loop-invariant 895 // instruction). For each result vector, we need one shuffle per incoming 896 // vector (except that the first shuffle can take two incoming vectors 897 // because it does not need to take itself). 898 Cost += Factor*(LT.first-1); 899 900 return Cost; 901 } 902 903 InstructionCost 904 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 905 TTI::TargetCostKind CostKind) { 906 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 907 } 908 909 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller, 910 const Function *Callee, 911 const ArrayRef<Type *> &Types) const { 912 913 // We need to ensure that argument promotion does not 914 // attempt to promote pointers to MMA types (__vector_pair 915 // and __vector_quad) since these types explicitly cannot be 916 // passed as arguments. Both of these types are larger than 917 // the 128-bit Altivec vectors and have a scalar size of 1 bit. 918 if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) 919 return false; 920 921 return llvm::none_of(Types, [](Type *Ty) { 922 if (Ty->isSized()) 923 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128; 924 return false; 925 }); 926 } 927 928 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 929 LoopInfo *LI, DominatorTree *DT, 930 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 931 // Process nested loops first. 932 for (Loop *I : *L) 933 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo)) 934 return false; // Stop search. 935 936 HardwareLoopInfo HWLoopInfo(L); 937 938 if (!HWLoopInfo.canAnalyze(*LI)) 939 return false; 940 941 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 942 return false; 943 944 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 945 return false; 946 947 *BI = HWLoopInfo.ExitBranch; 948 return true; 949 } 950 951 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 952 const TargetTransformInfo::LSRCost &C2) { 953 // PowerPC default behaviour here is "instruction number 1st priority". 954 // If LsrNoInsnsCost is set, call default implementation. 955 if (!LsrNoInsnsCost) 956 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 957 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 958 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 959 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 960 else 961 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 962 } 963 964 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() { 965 return false; 966 } 967 968 bool PPCTTIImpl::shouldBuildRelLookupTables() const { 969 const PPCTargetMachine &TM = ST->getTargetMachine(); 970 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now. 971 if (!TM.isELFv2ABI()) 972 return false; 973 return BaseT::shouldBuildRelLookupTables(); 974 } 975 976 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 977 MemIntrinsicInfo &Info) { 978 switch (Inst->getIntrinsicID()) { 979 case Intrinsic::ppc_altivec_lvx: 980 case Intrinsic::ppc_altivec_lvxl: 981 case Intrinsic::ppc_altivec_lvebx: 982 case Intrinsic::ppc_altivec_lvehx: 983 case Intrinsic::ppc_altivec_lvewx: 984 case Intrinsic::ppc_vsx_lxvd2x: 985 case Intrinsic::ppc_vsx_lxvw4x: 986 case Intrinsic::ppc_vsx_lxvd2x_be: 987 case Intrinsic::ppc_vsx_lxvw4x_be: 988 case Intrinsic::ppc_vsx_lxvl: 989 case Intrinsic::ppc_vsx_lxvll: 990 case Intrinsic::ppc_vsx_lxvp: { 991 Info.PtrVal = Inst->getArgOperand(0); 992 Info.ReadMem = true; 993 Info.WriteMem = false; 994 return true; 995 } 996 case Intrinsic::ppc_altivec_stvx: 997 case Intrinsic::ppc_altivec_stvxl: 998 case Intrinsic::ppc_altivec_stvebx: 999 case Intrinsic::ppc_altivec_stvehx: 1000 case Intrinsic::ppc_altivec_stvewx: 1001 case Intrinsic::ppc_vsx_stxvd2x: 1002 case Intrinsic::ppc_vsx_stxvw4x: 1003 case Intrinsic::ppc_vsx_stxvd2x_be: 1004 case Intrinsic::ppc_vsx_stxvw4x_be: 1005 case Intrinsic::ppc_vsx_stxvl: 1006 case Intrinsic::ppc_vsx_stxvll: 1007 case Intrinsic::ppc_vsx_stxvp: { 1008 Info.PtrVal = Inst->getArgOperand(1); 1009 Info.ReadMem = false; 1010 Info.WriteMem = true; 1011 return true; 1012 } 1013 case Intrinsic::ppc_stbcx: 1014 case Intrinsic::ppc_sthcx: 1015 case Intrinsic::ppc_stdcx: 1016 case Intrinsic::ppc_stwcx: { 1017 Info.PtrVal = Inst->getArgOperand(0); 1018 Info.ReadMem = false; 1019 Info.WriteMem = true; 1020 return true; 1021 } 1022 default: 1023 break; 1024 } 1025 1026 return false; 1027 } 1028 1029 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType, 1030 Align Alignment) const { 1031 // Only load and stores instructions can have variable vector length on Power. 1032 if (Opcode != Instruction::Load && Opcode != Instruction::Store) 1033 return false; 1034 // Loads/stores with length instructions use bits 0-7 of the GPR operand and 1035 // therefore cannot be used in 32-bit mode. 1036 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64()) 1037 return false; 1038 if (isa<FixedVectorType>(DataType)) { 1039 unsigned VecWidth = DataType->getPrimitiveSizeInBits(); 1040 return VecWidth == 128; 1041 } 1042 Type *ScalarTy = DataType->getScalarType(); 1043 1044 if (ScalarTy->isPointerTy()) 1045 return true; 1046 1047 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 1048 return true; 1049 1050 if (!ScalarTy->isIntegerTy()) 1051 return false; 1052 1053 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 1054 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64; 1055 } 1056 1057 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src, 1058 Align Alignment, 1059 unsigned AddressSpace, 1060 TTI::TargetCostKind CostKind, 1061 const Instruction *I) { 1062 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment, 1063 AddressSpace, CostKind, I); 1064 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1065 return Cost; 1066 // TODO: Handle other cost kinds. 1067 if (CostKind != TTI::TCK_RecipThroughput) 1068 return Cost; 1069 1070 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 1071 "Invalid Opcode"); 1072 1073 auto *SrcVTy = dyn_cast<FixedVectorType>(Src); 1074 assert(SrcVTy && "Expected a vector type for VP memory operations"); 1075 1076 if (hasActiveVectorLength(Opcode, Src, Alignment)) { 1077 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy); 1078 1079 InstructionCost CostFactor = 1080 vectorCostAdjustmentFactor(Opcode, Src, nullptr); 1081 if (!CostFactor.isValid()) 1082 return InstructionCost::getMax(); 1083 1084 InstructionCost Cost = LT.first * CostFactor; 1085 assert(Cost.isValid() && "Expected valid cost"); 1086 1087 // On P9 but not on P10, if the op is misaligned then it will cause a 1088 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked 1089 // ones. 1090 const Align DesiredAlignment(16); 1091 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9) 1092 return Cost; 1093 1094 // Since alignment may be under estimated, we try to compute the probability 1095 // that the actual address is aligned to the desired boundary. For example 1096 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the 1097 // time, while a 4-byte aligned load has a 25% chance of being 16-byte 1098 // aligned. 1099 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value(); 1100 float MisalignmentProb = 1.0 - AlignmentProb; 1101 return (MisalignmentProb * P9PipelineFlushEstimate) + 1102 (AlignmentProb * *Cost.getValue()); 1103 } 1104 1105 // Usually we should not get to this point, but the following is an attempt to 1106 // model the cost of legalization. Currently we can only lower intrinsics with 1107 // evl but no mask, on Power 9/10. Otherwise, we must scalarize. 1108 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 1109 } 1110 1111 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const { 1112 // Subtargets using PC-Relative addressing supported. 1113 if (ST->isUsingPCRelativeCalls()) 1114 return true; 1115 1116 const Function *Callee = CB->getCalledFunction(); 1117 // Indirect calls and variadic argument functions not supported. 1118 if (!Callee || Callee->isVarArg()) 1119 return false; 1120 1121 const Function *Caller = CB->getCaller(); 1122 // Support if we can share TOC base. 1123 return ST->getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), 1124 Callee); 1125 } 1126