xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision af761104babba61fb7dc07620a9e89f41f5aabf7)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Target/CostTable.h"
16 #include "llvm/Target/TargetLowering.h"
17 using namespace llvm;
18 
19 #define DEBUG_TYPE "ppctti"
20 
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23 
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28               cl::desc("The loop prefetch cache line size"));
29 
30 //===----------------------------------------------------------------------===//
31 //
32 // PPC cost model.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 TargetTransformInfo::PopcntSupportKind
37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
38   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
39   if (ST->hasPOPCNTD() && TyWidth <= 64)
40     return TTI::PSK_FastHardware;
41   return TTI::PSK_Software;
42 }
43 
44 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
45   if (DisablePPCConstHoist)
46     return BaseT::getIntImmCost(Imm, Ty);
47 
48   assert(Ty->isIntegerTy());
49 
50   unsigned BitSize = Ty->getPrimitiveSizeInBits();
51   if (BitSize == 0)
52     return ~0U;
53 
54   if (Imm == 0)
55     return TTI::TCC_Free;
56 
57   if (Imm.getBitWidth() <= 64) {
58     if (isInt<16>(Imm.getSExtValue()))
59       return TTI::TCC_Basic;
60 
61     if (isInt<32>(Imm.getSExtValue())) {
62       // A constant that can be materialized using lis.
63       if ((Imm.getZExtValue() & 0xFFFF) == 0)
64         return TTI::TCC_Basic;
65 
66       return 2 * TTI::TCC_Basic;
67     }
68   }
69 
70   return 4 * TTI::TCC_Basic;
71 }
72 
73 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
74                               Type *Ty) {
75   if (DisablePPCConstHoist)
76     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
77 
78   assert(Ty->isIntegerTy());
79 
80   unsigned BitSize = Ty->getPrimitiveSizeInBits();
81   if (BitSize == 0)
82     return ~0U;
83 
84   switch (IID) {
85   default:
86     return TTI::TCC_Free;
87   case Intrinsic::sadd_with_overflow:
88   case Intrinsic::uadd_with_overflow:
89   case Intrinsic::ssub_with_overflow:
90   case Intrinsic::usub_with_overflow:
91     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
92       return TTI::TCC_Free;
93     break;
94   case Intrinsic::experimental_stackmap:
95     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
96       return TTI::TCC_Free;
97     break;
98   case Intrinsic::experimental_patchpoint_void:
99   case Intrinsic::experimental_patchpoint_i64:
100     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
101       return TTI::TCC_Free;
102     break;
103   }
104   return PPCTTIImpl::getIntImmCost(Imm, Ty);
105 }
106 
107 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
108                               Type *Ty) {
109   if (DisablePPCConstHoist)
110     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
111 
112   assert(Ty->isIntegerTy());
113 
114   unsigned BitSize = Ty->getPrimitiveSizeInBits();
115   if (BitSize == 0)
116     return ~0U;
117 
118   unsigned ImmIdx = ~0U;
119   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
120        ZeroFree = false;
121   switch (Opcode) {
122   default:
123     return TTI::TCC_Free;
124   case Instruction::GetElementPtr:
125     // Always hoist the base address of a GetElementPtr. This prevents the
126     // creation of new constants for every base constant that gets constant
127     // folded with the offset.
128     if (Idx == 0)
129       return 2 * TTI::TCC_Basic;
130     return TTI::TCC_Free;
131   case Instruction::And:
132     RunFree = true; // (for the rotate-and-mask instructions)
133     // Fallthrough...
134   case Instruction::Add:
135   case Instruction::Or:
136   case Instruction::Xor:
137     ShiftedFree = true;
138     // Fallthrough...
139   case Instruction::Sub:
140   case Instruction::Mul:
141   case Instruction::Shl:
142   case Instruction::LShr:
143   case Instruction::AShr:
144     ImmIdx = 1;
145     break;
146   case Instruction::ICmp:
147     UnsignedFree = true;
148     ImmIdx = 1;
149     // Fallthrough... (zero comparisons can use record-form instructions)
150   case Instruction::Select:
151     ZeroFree = true;
152     break;
153   case Instruction::PHI:
154   case Instruction::Call:
155   case Instruction::Ret:
156   case Instruction::Load:
157   case Instruction::Store:
158     break;
159   }
160 
161   if (ZeroFree && Imm == 0)
162     return TTI::TCC_Free;
163 
164   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
165     if (isInt<16>(Imm.getSExtValue()))
166       return TTI::TCC_Free;
167 
168     if (RunFree) {
169       if (Imm.getBitWidth() <= 32 &&
170           (isShiftedMask_32(Imm.getZExtValue()) ||
171            isShiftedMask_32(~Imm.getZExtValue())))
172         return TTI::TCC_Free;
173 
174       if (ST->isPPC64() &&
175           (isShiftedMask_64(Imm.getZExtValue()) ||
176            isShiftedMask_64(~Imm.getZExtValue())))
177         return TTI::TCC_Free;
178     }
179 
180     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
181       return TTI::TCC_Free;
182 
183     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
184       return TTI::TCC_Free;
185   }
186 
187   return PPCTTIImpl::getIntImmCost(Imm, Ty);
188 }
189 
190 void PPCTTIImpl::getUnrollingPreferences(Loop *L,
191                                          TTI::UnrollingPreferences &UP) {
192   if (ST->getDarwinDirective() == PPC::DIR_A2) {
193     // The A2 is in-order with a deep pipeline, and concatenation unrolling
194     // helps expose latency-hiding opportunities to the instruction scheduler.
195     UP.Partial = UP.Runtime = true;
196 
197     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
198     // often outweigh the cost of a division to compute the trip count.
199     UP.AllowExpensiveTripCount = true;
200   }
201 
202   BaseT::getUnrollingPreferences(L, UP);
203 }
204 
205 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
206   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
207   // on combining the loads generated for consecutive accesses, and failure to
208   // do so is particularly expensive. This makes it much more likely (compared
209   // to only using concatenation unrolling).
210   if (ST->getDarwinDirective() == PPC::DIR_A2)
211     return true;
212 
213   return LoopHasReductions;
214 }
215 
216 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
217   return true;
218 }
219 
220 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
221   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
222     return 0;
223   return ST->hasVSX() ? 64 : 32;
224 }
225 
226 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
227   if (Vector) {
228     if (ST->hasQPX()) return 256;
229     if (ST->hasAltivec()) return 128;
230     return 0;
231   }
232 
233   if (ST->isPPC64())
234     return 64;
235   return 32;
236 
237 }
238 
239 unsigned PPCTTIImpl::getCacheLineSize() {
240   // This is currently only used for the data prefetch pass which is only
241   // enabled for BG/Q by default.
242   return CacheLineSize;
243 }
244 
245 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
246   unsigned Directive = ST->getDarwinDirective();
247   // The 440 has no SIMD support, but floating-point instructions
248   // have a 5-cycle latency, so unroll by 5x for latency hiding.
249   if (Directive == PPC::DIR_440)
250     return 5;
251 
252   // The A2 has no SIMD support, but floating-point instructions
253   // have a 6-cycle latency, so unroll by 6x for latency hiding.
254   if (Directive == PPC::DIR_A2)
255     return 6;
256 
257   // FIXME: For lack of any better information, do no harm...
258   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
259     return 1;
260 
261   // For P7 and P8, floating-point instructions have a 6-cycle latency and
262   // there are two execution units, so unroll by 12x for latency hiding.
263   if (Directive == PPC::DIR_PWR7 ||
264       Directive == PPC::DIR_PWR8)
265     return 12;
266 
267   // For most things, modern systems have two execution units (and
268   // out-of-order execution).
269   return 2;
270 }
271 
272 int PPCTTIImpl::getArithmeticInstrCost(
273     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
274     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
275     TTI::OperandValueProperties Opd2PropInfo) {
276   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
277 
278   // Fallback to the default implementation.
279   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
280                                        Opd1PropInfo, Opd2PropInfo);
281 }
282 
283 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
284                                Type *SubTp) {
285   // Legalize the type.
286   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
287 
288   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
289   // (at least in the sense that there need only be one non-loop-invariant
290   // instruction). We need one such shuffle instruction for each actual
291   // register (this is not true for arbitrary shuffles, but is true for the
292   // structured types of shuffles covered by TTI::ShuffleKind).
293   return LT.first;
294 }
295 
296 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
297   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
298 
299   return BaseT::getCastInstrCost(Opcode, Dst, Src);
300 }
301 
302 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
303   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
304 }
305 
306 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
307   assert(Val->isVectorTy() && "This must be a vector type");
308 
309   int ISD = TLI->InstructionOpcodeToISD(Opcode);
310   assert(ISD && "Invalid opcode");
311 
312   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
313     // Double-precision scalars are already located in index #0.
314     if (Index == 0)
315       return 0;
316 
317     return BaseT::getVectorInstrCost(Opcode, Val, Index);
318   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
319     // Floating point scalars are already located in index #0.
320     if (Index == 0)
321       return 0;
322 
323     return BaseT::getVectorInstrCost(Opcode, Val, Index);
324   }
325 
326   // Estimated cost of a load-hit-store delay.  This was obtained
327   // experimentally as a minimum needed to prevent unprofitable
328   // vectorization for the paq8p benchmark.  It may need to be
329   // raised further if other unprofitable cases remain.
330   unsigned LHSPenalty = 2;
331   if (ISD == ISD::INSERT_VECTOR_ELT)
332     LHSPenalty += 7;
333 
334   // Vector element insert/extract with Altivec is very expensive,
335   // because they require store and reload with the attendant
336   // processor stall for load-hit-store.  Until VSX is available,
337   // these need to be estimated as very costly.
338   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
339       ISD == ISD::INSERT_VECTOR_ELT)
340     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
341 
342   return BaseT::getVectorInstrCost(Opcode, Val, Index);
343 }
344 
345 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
346                                 unsigned AddressSpace) {
347   // Legalize the type.
348   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
349   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
350          "Invalid Opcode");
351 
352   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
353 
354   // Aligned loads and stores are easy.
355   unsigned SrcBytes = LT.second.getStoreSize();
356   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
357     return Cost;
358 
359   bool IsAltivecType = ST->hasAltivec() &&
360                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
361                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
362   bool IsVSXType = ST->hasVSX() &&
363                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
364   bool IsQPXType = ST->hasQPX() &&
365                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
366 
367   // If we can use the permutation-based load sequence, then this is also
368   // relatively cheap (not counting loop-invariant instructions): one load plus
369   // one permute (the last load in a series has extra cost, but we're
370   // neglecting that here). Note that on the P7, we should do unaligned loads
371   // for Altivec types using the VSX instructions, but that's more expensive
372   // than using the permutation-based load sequence. On the P8, that's no
373   // longer true.
374   if (Opcode == Instruction::Load &&
375       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
376       Alignment >= LT.second.getScalarType().getStoreSize())
377     return Cost + LT.first; // Add the cost of the permutations.
378 
379   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
380   // P7, unaligned vector loads are more expensive than the permutation-based
381   // load sequence, so that might be used instead, but regardless, the net cost
382   // is about the same (not counting loop-invariant instructions).
383   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
384     return Cost;
385 
386   // PPC in general does not support unaligned loads and stores. They'll need
387   // to be decomposed based on the alignment factor.
388 
389   // Add the cost of each scalar load or store.
390   Cost += LT.first*(SrcBytes/Alignment-1);
391 
392   // For a vector type, there is also scalarization overhead (only for
393   // stores, loads are expanded using the vector-load + permutation sequence,
394   // which is much less expensive).
395   if (Src->isVectorTy() && Opcode == Instruction::Store)
396     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
397       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
398 
399   return Cost;
400 }
401 
402 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
403                                            unsigned Factor,
404                                            ArrayRef<unsigned> Indices,
405                                            unsigned Alignment,
406                                            unsigned AddressSpace) {
407   assert(isa<VectorType>(VecTy) &&
408          "Expect a vector type for interleaved memory op");
409 
410   // Legalize the type.
411   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
412 
413   // Firstly, the cost of load/store operation.
414   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
415 
416   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
417   // (at least in the sense that there need only be one non-loop-invariant
418   // instruction). For each result vector, we need one shuffle per incoming
419   // vector (except that the first shuffle can take two incoming vectors
420   // because it does not need to take itself).
421   Cost += Factor*(LT.first-1);
422 
423   return Cost;
424 }
425 
426