1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/Support/CommandLine.h" 14 #include "llvm/Support/Debug.h" 15 #include "llvm/Target/CostTable.h" 16 #include "llvm/Target/TargetLowering.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 //===----------------------------------------------------------------------===// 31 // 32 // PPC cost model. 33 // 34 //===----------------------------------------------------------------------===// 35 36 TargetTransformInfo::PopcntSupportKind 37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 38 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 39 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 40 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 41 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 42 return TTI::PSK_Software; 43 } 44 45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 46 if (DisablePPCConstHoist) 47 return BaseT::getIntImmCost(Imm, Ty); 48 49 assert(Ty->isIntegerTy()); 50 51 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 52 if (BitSize == 0) 53 return ~0U; 54 55 if (Imm == 0) 56 return TTI::TCC_Free; 57 58 if (Imm.getBitWidth() <= 64) { 59 if (isInt<16>(Imm.getSExtValue())) 60 return TTI::TCC_Basic; 61 62 if (isInt<32>(Imm.getSExtValue())) { 63 // A constant that can be materialized using lis. 64 if ((Imm.getZExtValue() & 0xFFFF) == 0) 65 return TTI::TCC_Basic; 66 67 return 2 * TTI::TCC_Basic; 68 } 69 } 70 71 return 4 * TTI::TCC_Basic; 72 } 73 74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 75 Type *Ty) { 76 if (DisablePPCConstHoist) 77 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 78 79 assert(Ty->isIntegerTy()); 80 81 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 82 if (BitSize == 0) 83 return ~0U; 84 85 switch (IID) { 86 default: 87 return TTI::TCC_Free; 88 case Intrinsic::sadd_with_overflow: 89 case Intrinsic::uadd_with_overflow: 90 case Intrinsic::ssub_with_overflow: 91 case Intrinsic::usub_with_overflow: 92 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 93 return TTI::TCC_Free; 94 break; 95 case Intrinsic::experimental_stackmap: 96 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 97 return TTI::TCC_Free; 98 break; 99 case Intrinsic::experimental_patchpoint_void: 100 case Intrinsic::experimental_patchpoint_i64: 101 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 102 return TTI::TCC_Free; 103 break; 104 } 105 return PPCTTIImpl::getIntImmCost(Imm, Ty); 106 } 107 108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 109 Type *Ty) { 110 if (DisablePPCConstHoist) 111 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 112 113 assert(Ty->isIntegerTy()); 114 115 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 116 if (BitSize == 0) 117 return ~0U; 118 119 unsigned ImmIdx = ~0U; 120 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 121 ZeroFree = false; 122 switch (Opcode) { 123 default: 124 return TTI::TCC_Free; 125 case Instruction::GetElementPtr: 126 // Always hoist the base address of a GetElementPtr. This prevents the 127 // creation of new constants for every base constant that gets constant 128 // folded with the offset. 129 if (Idx == 0) 130 return 2 * TTI::TCC_Basic; 131 return TTI::TCC_Free; 132 case Instruction::And: 133 RunFree = true; // (for the rotate-and-mask instructions) 134 LLVM_FALLTHROUGH; 135 case Instruction::Add: 136 case Instruction::Or: 137 case Instruction::Xor: 138 ShiftedFree = true; 139 LLVM_FALLTHROUGH; 140 case Instruction::Sub: 141 case Instruction::Mul: 142 case Instruction::Shl: 143 case Instruction::LShr: 144 case Instruction::AShr: 145 ImmIdx = 1; 146 break; 147 case Instruction::ICmp: 148 UnsignedFree = true; 149 ImmIdx = 1; 150 // Zero comparisons can use record-form instructions. 151 LLVM_FALLTHROUGH; 152 case Instruction::Select: 153 ZeroFree = true; 154 break; 155 case Instruction::PHI: 156 case Instruction::Call: 157 case Instruction::Ret: 158 case Instruction::Load: 159 case Instruction::Store: 160 break; 161 } 162 163 if (ZeroFree && Imm == 0) 164 return TTI::TCC_Free; 165 166 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 167 if (isInt<16>(Imm.getSExtValue())) 168 return TTI::TCC_Free; 169 170 if (RunFree) { 171 if (Imm.getBitWidth() <= 32 && 172 (isShiftedMask_32(Imm.getZExtValue()) || 173 isShiftedMask_32(~Imm.getZExtValue()))) 174 return TTI::TCC_Free; 175 176 if (ST->isPPC64() && 177 (isShiftedMask_64(Imm.getZExtValue()) || 178 isShiftedMask_64(~Imm.getZExtValue()))) 179 return TTI::TCC_Free; 180 } 181 182 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 183 return TTI::TCC_Free; 184 185 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 186 return TTI::TCC_Free; 187 } 188 189 return PPCTTIImpl::getIntImmCost(Imm, Ty); 190 } 191 192 void PPCTTIImpl::getUnrollingPreferences(Loop *L, 193 TTI::UnrollingPreferences &UP) { 194 if (ST->getDarwinDirective() == PPC::DIR_A2) { 195 // The A2 is in-order with a deep pipeline, and concatenation unrolling 196 // helps expose latency-hiding opportunities to the instruction scheduler. 197 UP.Partial = UP.Runtime = true; 198 199 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 200 // often outweigh the cost of a division to compute the trip count. 201 UP.AllowExpensiveTripCount = true; 202 } 203 204 BaseT::getUnrollingPreferences(L, UP); 205 } 206 207 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 208 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 209 // on combining the loads generated for consecutive accesses, and failure to 210 // do so is particularly expensive. This makes it much more likely (compared 211 // to only using concatenation unrolling). 212 if (ST->getDarwinDirective() == PPC::DIR_A2) 213 return true; 214 215 return LoopHasReductions; 216 } 217 218 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 219 return true; 220 } 221 222 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 223 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 224 return 0; 225 return ST->hasVSX() ? 64 : 32; 226 } 227 228 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { 229 if (Vector) { 230 if (ST->hasQPX()) return 256; 231 if (ST->hasAltivec()) return 128; 232 return 0; 233 } 234 235 if (ST->isPPC64()) 236 return 64; 237 return 32; 238 239 } 240 241 unsigned PPCTTIImpl::getCacheLineSize() { 242 // This is currently only used for the data prefetch pass which is only 243 // enabled for BG/Q by default. 244 return CacheLineSize; 245 } 246 247 unsigned PPCTTIImpl::getPrefetchDistance() { 248 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 249 // default, only on the BG/Q). 250 return 300; 251 } 252 253 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 254 unsigned Directive = ST->getDarwinDirective(); 255 // The 440 has no SIMD support, but floating-point instructions 256 // have a 5-cycle latency, so unroll by 5x for latency hiding. 257 if (Directive == PPC::DIR_440) 258 return 5; 259 260 // The A2 has no SIMD support, but floating-point instructions 261 // have a 6-cycle latency, so unroll by 6x for latency hiding. 262 if (Directive == PPC::DIR_A2) 263 return 6; 264 265 // FIXME: For lack of any better information, do no harm... 266 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 267 return 1; 268 269 // For P7 and P8, floating-point instructions have a 6-cycle latency and 270 // there are two execution units, so unroll by 12x for latency hiding. 271 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 272 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 273 Directive == PPC::DIR_PWR9) 274 return 12; 275 276 // For most things, modern systems have two execution units (and 277 // out-of-order execution). 278 return 2; 279 } 280 281 int PPCTTIImpl::getArithmeticInstrCost( 282 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 283 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 284 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 285 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 286 287 // Fallback to the default implementation. 288 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 289 Opd1PropInfo, Opd2PropInfo); 290 } 291 292 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 293 Type *SubTp) { 294 // Legalize the type. 295 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 296 297 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 298 // (at least in the sense that there need only be one non-loop-invariant 299 // instruction). We need one such shuffle instruction for each actual 300 // register (this is not true for arbitrary shuffles, but is true for the 301 // structured types of shuffles covered by TTI::ShuffleKind). 302 return LT.first; 303 } 304 305 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 306 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 307 308 return BaseT::getCastInstrCost(Opcode, Dst, Src); 309 } 310 311 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { 312 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 313 } 314 315 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 316 assert(Val->isVectorTy() && "This must be a vector type"); 317 318 int ISD = TLI->InstructionOpcodeToISD(Opcode); 319 assert(ISD && "Invalid opcode"); 320 321 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 322 // Double-precision scalars are already located in index #0. 323 if (Index == 0) 324 return 0; 325 326 return BaseT::getVectorInstrCost(Opcode, Val, Index); 327 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 328 // Floating point scalars are already located in index #0. 329 if (Index == 0) 330 return 0; 331 332 return BaseT::getVectorInstrCost(Opcode, Val, Index); 333 } 334 335 // Estimated cost of a load-hit-store delay. This was obtained 336 // experimentally as a minimum needed to prevent unprofitable 337 // vectorization for the paq8p benchmark. It may need to be 338 // raised further if other unprofitable cases remain. 339 unsigned LHSPenalty = 2; 340 if (ISD == ISD::INSERT_VECTOR_ELT) 341 LHSPenalty += 7; 342 343 // Vector element insert/extract with Altivec is very expensive, 344 // because they require store and reload with the attendant 345 // processor stall for load-hit-store. Until VSX is available, 346 // these need to be estimated as very costly. 347 if (ISD == ISD::EXTRACT_VECTOR_ELT || 348 ISD == ISD::INSERT_VECTOR_ELT) 349 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 350 351 return BaseT::getVectorInstrCost(Opcode, Val, Index); 352 } 353 354 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 355 unsigned AddressSpace) { 356 // Legalize the type. 357 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 358 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 359 "Invalid Opcode"); 360 361 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 362 363 bool IsAltivecType = ST->hasAltivec() && 364 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 365 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 366 bool IsVSXType = ST->hasVSX() && 367 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 368 bool IsQPXType = ST->hasQPX() && 369 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 370 371 // VSX has 32b/64b load instructions. Legalization can handle loading of 372 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 373 // PPCTargetLowering can't compute the cost appropriately. So here we 374 // explicitly check this case. 375 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 376 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 377 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 378 return 1; 379 380 // Aligned loads and stores are easy. 381 unsigned SrcBytes = LT.second.getStoreSize(); 382 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 383 return Cost; 384 385 // If we can use the permutation-based load sequence, then this is also 386 // relatively cheap (not counting loop-invariant instructions): one load plus 387 // one permute (the last load in a series has extra cost, but we're 388 // neglecting that here). Note that on the P7, we could do unaligned loads 389 // for Altivec types using the VSX instructions, but that's more expensive 390 // than using the permutation-based load sequence. On the P8, that's no 391 // longer true. 392 if (Opcode == Instruction::Load && 393 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 394 Alignment >= LT.second.getScalarType().getStoreSize()) 395 return Cost + LT.first; // Add the cost of the permutations. 396 397 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 398 // P7, unaligned vector loads are more expensive than the permutation-based 399 // load sequence, so that might be used instead, but regardless, the net cost 400 // is about the same (not counting loop-invariant instructions). 401 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 402 return Cost; 403 404 // Newer PPC supports unaligned memory access. 405 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 406 return Cost; 407 408 // PPC in general does not support unaligned loads and stores. They'll need 409 // to be decomposed based on the alignment factor. 410 411 // Add the cost of each scalar load or store. 412 Cost += LT.first*(SrcBytes/Alignment-1); 413 414 // For a vector type, there is also scalarization overhead (only for 415 // stores, loads are expanded using the vector-load + permutation sequence, 416 // which is much less expensive). 417 if (Src->isVectorTy() && Opcode == Instruction::Store) 418 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 419 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 420 421 return Cost; 422 } 423 424 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 425 unsigned Factor, 426 ArrayRef<unsigned> Indices, 427 unsigned Alignment, 428 unsigned AddressSpace) { 429 assert(isa<VectorType>(VecTy) && 430 "Expect a vector type for interleaved memory op"); 431 432 // Legalize the type. 433 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 434 435 // Firstly, the cost of load/store operation. 436 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 437 438 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 439 // (at least in the sense that there need only be one non-loop-invariant 440 // instruction). For each result vector, we need one shuffle per incoming 441 // vector (except that the first shuffle can take two incoming vectors 442 // because it does not need to take itself). 443 Cost += Factor*(LT.first-1); 444 445 return Cost; 446 } 447 448