xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision a3ea9052d6a16b13607046df6a324403fb51888d)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "ppctti"
27 
28 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
29 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
30 
31 // This is currently only used for the data prefetch pass
32 static cl::opt<unsigned>
33 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
34               cl::desc("The loop prefetch cache line size"));
35 
36 static cl::opt<bool>
37 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
38                 cl::desc("Enable using coldcc calling conv for cold "
39                          "internal functions"));
40 
41 static cl::opt<bool>
42 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
43                cl::desc("Do not add instruction count to lsr cost model"));
44 
45 // The latency of mtctr is only justified if there are more than 4
46 // comparisons that will be removed as a result.
47 static cl::opt<unsigned>
48 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
49                       cl::desc("Loops with a constant trip count smaller than "
50                                "this value will not use the count register."));
51 
52 //===----------------------------------------------------------------------===//
53 //
54 // PPC cost model.
55 //
56 //===----------------------------------------------------------------------===//
57 
58 TargetTransformInfo::PopcntSupportKind
59 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
60   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
61   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
62     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
63              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
64   return TTI::PSK_Software;
65 }
66 
67 Optional<Instruction *>
68 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
69   Intrinsic::ID IID = II.getIntrinsicID();
70   switch (IID) {
71   default:
72     break;
73   case Intrinsic::ppc_altivec_lvx:
74   case Intrinsic::ppc_altivec_lvxl:
75     // Turn PPC lvx -> load if the pointer is known aligned.
76     if (getOrEnforceKnownAlignment(
77             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
78             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
79       Value *Ptr = IC.Builder.CreateBitCast(
80           II.getArgOperand(0), PointerType::getUnqual(II.getType()));
81       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
82     }
83     break;
84   case Intrinsic::ppc_vsx_lxvw4x:
85   case Intrinsic::ppc_vsx_lxvd2x: {
86     // Turn PPC VSX loads into normal loads.
87     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
88                                           PointerType::getUnqual(II.getType()));
89     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
90   }
91   case Intrinsic::ppc_altivec_stvx:
92   case Intrinsic::ppc_altivec_stvxl:
93     // Turn stvx -> store if the pointer is known aligned.
94     if (getOrEnforceKnownAlignment(
95             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
96             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
97       Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
98       Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
99       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
100     }
101     break;
102   case Intrinsic::ppc_vsx_stxvw4x:
103   case Intrinsic::ppc_vsx_stxvd2x: {
104     // Turn PPC VSX stores into normal stores.
105     Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
106     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
107     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
108   }
109   case Intrinsic::ppc_altivec_vperm:
110     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
111     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
112     // a vectorshuffle for little endian, we must undo the transformation
113     // performed on vec_perm in altivec.h.  That is, we must complement
114     // the permutation mask with respect to 31 and reverse the order of
115     // V1 and V2.
116     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
117       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
118              "Bad type for intrinsic!");
119 
120       // Check that all of the elements are integer constants or undefs.
121       bool AllEltsOk = true;
122       for (unsigned i = 0; i != 16; ++i) {
123         Constant *Elt = Mask->getAggregateElement(i);
124         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
125           AllEltsOk = false;
126           break;
127         }
128       }
129 
130       if (AllEltsOk) {
131         // Cast the input vectors to byte vectors.
132         Value *Op0 =
133             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
134         Value *Op1 =
135             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
136         Value *Result = UndefValue::get(Op0->getType());
137 
138         // Only extract each element once.
139         Value *ExtractedElts[32];
140         memset(ExtractedElts, 0, sizeof(ExtractedElts));
141 
142         for (unsigned i = 0; i != 16; ++i) {
143           if (isa<UndefValue>(Mask->getAggregateElement(i)))
144             continue;
145           unsigned Idx =
146               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
147           Idx &= 31; // Match the hardware behavior.
148           if (DL.isLittleEndian())
149             Idx = 31 - Idx;
150 
151           if (!ExtractedElts[Idx]) {
152             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
153             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
154             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
155                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
156           }
157 
158           // Insert this value into the result vector.
159           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
160                                                   IC.Builder.getInt32(i));
161         }
162         return CastInst::Create(Instruction::BitCast, Result, II.getType());
163       }
164     }
165     break;
166   }
167   return None;
168 }
169 
170 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
171                                           TTI::TargetCostKind CostKind) {
172   if (DisablePPCConstHoist)
173     return BaseT::getIntImmCost(Imm, Ty, CostKind);
174 
175   assert(Ty->isIntegerTy());
176 
177   unsigned BitSize = Ty->getPrimitiveSizeInBits();
178   if (BitSize == 0)
179     return ~0U;
180 
181   if (Imm == 0)
182     return TTI::TCC_Free;
183 
184   if (Imm.getBitWidth() <= 64) {
185     if (isInt<16>(Imm.getSExtValue()))
186       return TTI::TCC_Basic;
187 
188     if (isInt<32>(Imm.getSExtValue())) {
189       // A constant that can be materialized using lis.
190       if ((Imm.getZExtValue() & 0xFFFF) == 0)
191         return TTI::TCC_Basic;
192 
193       return 2 * TTI::TCC_Basic;
194     }
195   }
196 
197   return 4 * TTI::TCC_Basic;
198 }
199 
200 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
201                                                 const APInt &Imm, Type *Ty,
202                                                 TTI::TargetCostKind CostKind) {
203   if (DisablePPCConstHoist)
204     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
205 
206   assert(Ty->isIntegerTy());
207 
208   unsigned BitSize = Ty->getPrimitiveSizeInBits();
209   if (BitSize == 0)
210     return ~0U;
211 
212   switch (IID) {
213   default:
214     return TTI::TCC_Free;
215   case Intrinsic::sadd_with_overflow:
216   case Intrinsic::uadd_with_overflow:
217   case Intrinsic::ssub_with_overflow:
218   case Intrinsic::usub_with_overflow:
219     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
220       return TTI::TCC_Free;
221     break;
222   case Intrinsic::experimental_stackmap:
223     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224       return TTI::TCC_Free;
225     break;
226   case Intrinsic::experimental_patchpoint_void:
227   case Intrinsic::experimental_patchpoint_i64:
228     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
229       return TTI::TCC_Free;
230     break;
231   }
232   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
233 }
234 
235 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
236                                               const APInt &Imm, Type *Ty,
237                                               TTI::TargetCostKind CostKind,
238                                               Instruction *Inst) {
239   if (DisablePPCConstHoist)
240     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
241 
242   assert(Ty->isIntegerTy());
243 
244   unsigned BitSize = Ty->getPrimitiveSizeInBits();
245   if (BitSize == 0)
246     return ~0U;
247 
248   unsigned ImmIdx = ~0U;
249   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
250        ZeroFree = false;
251   switch (Opcode) {
252   default:
253     return TTI::TCC_Free;
254   case Instruction::GetElementPtr:
255     // Always hoist the base address of a GetElementPtr. This prevents the
256     // creation of new constants for every base constant that gets constant
257     // folded with the offset.
258     if (Idx == 0)
259       return 2 * TTI::TCC_Basic;
260     return TTI::TCC_Free;
261   case Instruction::And:
262     RunFree = true; // (for the rotate-and-mask instructions)
263     LLVM_FALLTHROUGH;
264   case Instruction::Add:
265   case Instruction::Or:
266   case Instruction::Xor:
267     ShiftedFree = true;
268     LLVM_FALLTHROUGH;
269   case Instruction::Sub:
270   case Instruction::Mul:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     ImmIdx = 1;
275     break;
276   case Instruction::ICmp:
277     UnsignedFree = true;
278     ImmIdx = 1;
279     // Zero comparisons can use record-form instructions.
280     LLVM_FALLTHROUGH;
281   case Instruction::Select:
282     ZeroFree = true;
283     break;
284   case Instruction::PHI:
285   case Instruction::Call:
286   case Instruction::Ret:
287   case Instruction::Load:
288   case Instruction::Store:
289     break;
290   }
291 
292   if (ZeroFree && Imm == 0)
293     return TTI::TCC_Free;
294 
295   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
296     if (isInt<16>(Imm.getSExtValue()))
297       return TTI::TCC_Free;
298 
299     if (RunFree) {
300       if (Imm.getBitWidth() <= 32 &&
301           (isShiftedMask_32(Imm.getZExtValue()) ||
302            isShiftedMask_32(~Imm.getZExtValue())))
303         return TTI::TCC_Free;
304 
305       if (ST->isPPC64() &&
306           (isShiftedMask_64(Imm.getZExtValue()) ||
307            isShiftedMask_64(~Imm.getZExtValue())))
308         return TTI::TCC_Free;
309     }
310 
311     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
312       return TTI::TCC_Free;
313 
314     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
315       return TTI::TCC_Free;
316   }
317 
318   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
319 }
320 
321 // Check if the current Type is an MMA vector type. Valid MMA types are
322 // v256i1 and v512i1 respectively.
323 static bool isMMAType(Type *Ty) {
324   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
325          (Ty->getPrimitiveSizeInBits() > 128);
326 }
327 
328 InstructionCost PPCTTIImpl::getUserCost(const User *U,
329                                         ArrayRef<const Value *> Operands,
330                                         TTI::TargetCostKind CostKind) {
331   // We already implement getCastInstrCost and getMemoryOpCost where we perform
332   // the vector adjustment there.
333   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
334     return BaseT::getUserCost(U, Operands, CostKind);
335 
336   if (U->getType()->isVectorTy()) {
337     // Instructions that need to be split should cost more.
338     std::pair<InstructionCost, MVT> LT =
339         TLI->getTypeLegalizationCost(DL, U->getType());
340     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
341   }
342 
343   return BaseT::getUserCost(U, Operands, CostKind);
344 }
345 
346 // Determining the address of a TLS variable results in a function call in
347 // certain TLS models.
348 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
349                            SmallPtrSetImpl<const Value *> &Visited) {
350   // No need to traverse again if we already checked this operand.
351   if (!Visited.insert(MemAddr).second)
352     return false;
353   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
354   if (!GV) {
355     // Recurse to check for constants that refer to TLS global variables.
356     if (const auto *CV = dyn_cast<Constant>(MemAddr))
357       for (const auto &CO : CV->operands())
358         if (memAddrUsesCTR(CO, TM, Visited))
359           return true;
360     return false;
361   }
362 
363   if (!GV->isThreadLocal())
364     return false;
365   TLSModel::Model Model = TM.getTLSModel(GV);
366   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
367 }
368 
369 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
370                              SmallPtrSetImpl<const Value *> &Visited) {
371   const PPCTargetMachine &TM = ST->getTargetMachine();
372 
373   // Loop through the inline asm constraints and look for something that
374   // clobbers ctr.
375   auto asmClobbersCTR = [](InlineAsm *IA) {
376     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
377     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
378       InlineAsm::ConstraintInfo &C = CIV[i];
379       if (C.Type != InlineAsm::isInput)
380         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
381           if (StringRef(C.Codes[j]).equals_insensitive("{ctr}"))
382             return true;
383     }
384     return false;
385   };
386 
387   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
388     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
389       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
390 
391     return false;
392   };
393 
394   auto supportedHalfPrecisionOp = [](Instruction *Inst) {
395     switch (Inst->getOpcode()) {
396     default:
397       return false;
398     case Instruction::FPTrunc:
399     case Instruction::FPExt:
400     case Instruction::Load:
401     case Instruction::Store:
402     case Instruction::FPToUI:
403     case Instruction::UIToFP:
404     case Instruction::FPToSI:
405     case Instruction::SIToFP:
406       return true;
407     }
408   };
409 
410   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
411        J != JE; ++J) {
412     // There are no direct operations on half precision so assume that
413     // anything with that type requires a call except for a few select
414     // operations with Power9.
415     if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
416       for (const auto &Op : CurrInst->operands()) {
417         if (Op->getType()->getScalarType()->isHalfTy() ||
418             CurrInst->getType()->getScalarType()->isHalfTy())
419           return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
420       }
421     }
422     if (CallInst *CI = dyn_cast<CallInst>(J)) {
423       // Inline ASM is okay, unless it clobbers the ctr register.
424       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
425         if (asmClobbersCTR(IA))
426           return true;
427         continue;
428       }
429 
430       if (Function *F = CI->getCalledFunction()) {
431         // Most intrinsics don't become function calls, but some might.
432         // sin, cos, exp and log are always calls.
433         unsigned Opcode = 0;
434         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
435           switch (F->getIntrinsicID()) {
436           default: continue;
437           // If we have a call to loop_decrement or set_loop_iterations,
438           // we're definitely using CTR.
439           case Intrinsic::set_loop_iterations:
440           case Intrinsic::loop_decrement:
441             return true;
442 
443           // Binary operations on 128-bit value will use CTR.
444           case Intrinsic::experimental_constrained_fadd:
445           case Intrinsic::experimental_constrained_fsub:
446           case Intrinsic::experimental_constrained_fmul:
447           case Intrinsic::experimental_constrained_fdiv:
448           case Intrinsic::experimental_constrained_frem:
449             if (F->getType()->getScalarType()->isFP128Ty() ||
450                 F->getType()->getScalarType()->isPPC_FP128Ty())
451               return true;
452             break;
453 
454           case Intrinsic::experimental_constrained_fptosi:
455           case Intrinsic::experimental_constrained_fptoui:
456           case Intrinsic::experimental_constrained_sitofp:
457           case Intrinsic::experimental_constrained_uitofp: {
458             Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
459             Type *DstType = CI->getType()->getScalarType();
460             if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
461                 isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
462                 isLargeIntegerTy(!TM.isPPC64(), DstType))
463               return true;
464             break;
465           }
466 
467           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
468           // because, although it does clobber the counter register, the
469           // control can't then return to inside the loop unless there is also
470           // an eh_sjlj_setjmp.
471           case Intrinsic::eh_sjlj_setjmp:
472 
473           case Intrinsic::memcpy:
474           case Intrinsic::memmove:
475           case Intrinsic::memset:
476           case Intrinsic::powi:
477           case Intrinsic::log:
478           case Intrinsic::log2:
479           case Intrinsic::log10:
480           case Intrinsic::exp:
481           case Intrinsic::exp2:
482           case Intrinsic::pow:
483           case Intrinsic::sin:
484           case Intrinsic::cos:
485           case Intrinsic::experimental_constrained_powi:
486           case Intrinsic::experimental_constrained_log:
487           case Intrinsic::experimental_constrained_log2:
488           case Intrinsic::experimental_constrained_log10:
489           case Intrinsic::experimental_constrained_exp:
490           case Intrinsic::experimental_constrained_exp2:
491           case Intrinsic::experimental_constrained_pow:
492           case Intrinsic::experimental_constrained_sin:
493           case Intrinsic::experimental_constrained_cos:
494             return true;
495           // There is no corresponding FMA instruction for PPC double double.
496           // Thus, we need to disable CTR loop generation for this type.
497           case Intrinsic::fmuladd:
498           case Intrinsic::copysign:
499             if (CI->getArgOperand(0)->getType()->getScalarType()->
500                 isPPC_FP128Ty())
501               return true;
502             else
503               continue; // ISD::FCOPYSIGN is never a library call.
504           case Intrinsic::fma:                Opcode = ISD::FMA;        break;
505           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
506           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
507           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
508           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
509           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
510           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
511           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
512           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
513           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
514           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
515           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
516           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
517           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
518           case Intrinsic::experimental_constrained_fcmp:
519             Opcode = ISD::STRICT_FSETCC;
520             break;
521           case Intrinsic::experimental_constrained_fcmps:
522             Opcode = ISD::STRICT_FSETCCS;
523             break;
524           case Intrinsic::experimental_constrained_fma:
525             Opcode = ISD::STRICT_FMA;
526             break;
527           case Intrinsic::experimental_constrained_sqrt:
528             Opcode = ISD::STRICT_FSQRT;
529             break;
530           case Intrinsic::experimental_constrained_floor:
531             Opcode = ISD::STRICT_FFLOOR;
532             break;
533           case Intrinsic::experimental_constrained_ceil:
534             Opcode = ISD::STRICT_FCEIL;
535             break;
536           case Intrinsic::experimental_constrained_trunc:
537             Opcode = ISD::STRICT_FTRUNC;
538             break;
539           case Intrinsic::experimental_constrained_rint:
540             Opcode = ISD::STRICT_FRINT;
541             break;
542           case Intrinsic::experimental_constrained_lrint:
543             Opcode = ISD::STRICT_LRINT;
544             break;
545           case Intrinsic::experimental_constrained_llrint:
546             Opcode = ISD::STRICT_LLRINT;
547             break;
548           case Intrinsic::experimental_constrained_nearbyint:
549             Opcode = ISD::STRICT_FNEARBYINT;
550             break;
551           case Intrinsic::experimental_constrained_round:
552             Opcode = ISD::STRICT_FROUND;
553             break;
554           case Intrinsic::experimental_constrained_lround:
555             Opcode = ISD::STRICT_LROUND;
556             break;
557           case Intrinsic::experimental_constrained_llround:
558             Opcode = ISD::STRICT_LLROUND;
559             break;
560           case Intrinsic::experimental_constrained_minnum:
561             Opcode = ISD::STRICT_FMINNUM;
562             break;
563           case Intrinsic::experimental_constrained_maxnum:
564             Opcode = ISD::STRICT_FMAXNUM;
565             break;
566           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
567           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
568           }
569         }
570 
571         // PowerPC does not use [US]DIVREM or other library calls for
572         // operations on regular types which are not otherwise library calls
573         // (i.e. soft float or atomics). If adapting for targets that do,
574         // additional care is required here.
575 
576         LibFunc Func;
577         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
578             LibInfo->getLibFunc(F->getName(), Func) &&
579             LibInfo->hasOptimizedCodeGen(Func)) {
580           // Non-read-only functions are never treated as intrinsics.
581           if (!CI->onlyReadsMemory())
582             return true;
583 
584           // Conversion happens only for FP calls.
585           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
586             return true;
587 
588           switch (Func) {
589           default: return true;
590           case LibFunc_copysign:
591           case LibFunc_copysignf:
592             continue; // ISD::FCOPYSIGN is never a library call.
593           case LibFunc_copysignl:
594             return true;
595           case LibFunc_fabs:
596           case LibFunc_fabsf:
597           case LibFunc_fabsl:
598             continue; // ISD::FABS is never a library call.
599           case LibFunc_sqrt:
600           case LibFunc_sqrtf:
601           case LibFunc_sqrtl:
602             Opcode = ISD::FSQRT; break;
603           case LibFunc_floor:
604           case LibFunc_floorf:
605           case LibFunc_floorl:
606             Opcode = ISD::FFLOOR; break;
607           case LibFunc_nearbyint:
608           case LibFunc_nearbyintf:
609           case LibFunc_nearbyintl:
610             Opcode = ISD::FNEARBYINT; break;
611           case LibFunc_ceil:
612           case LibFunc_ceilf:
613           case LibFunc_ceill:
614             Opcode = ISD::FCEIL; break;
615           case LibFunc_rint:
616           case LibFunc_rintf:
617           case LibFunc_rintl:
618             Opcode = ISD::FRINT; break;
619           case LibFunc_round:
620           case LibFunc_roundf:
621           case LibFunc_roundl:
622             Opcode = ISD::FROUND; break;
623           case LibFunc_trunc:
624           case LibFunc_truncf:
625           case LibFunc_truncl:
626             Opcode = ISD::FTRUNC; break;
627           case LibFunc_fmin:
628           case LibFunc_fminf:
629           case LibFunc_fminl:
630             Opcode = ISD::FMINNUM; break;
631           case LibFunc_fmax:
632           case LibFunc_fmaxf:
633           case LibFunc_fmaxl:
634             Opcode = ISD::FMAXNUM; break;
635           }
636         }
637 
638         if (Opcode) {
639           EVT EVTy =
640               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
641 
642           if (EVTy == MVT::Other)
643             return true;
644 
645           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
646             continue;
647           else if (EVTy.isVector() &&
648                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
649             continue;
650 
651           return true;
652         }
653       }
654 
655       return true;
656     } else if (isa<BinaryOperator>(J) &&
657                (J->getType()->getScalarType()->isFP128Ty() ||
658                 J->getType()->getScalarType()->isPPC_FP128Ty())) {
659       // Most operations on f128 or ppc_f128 values become calls.
660       return true;
661     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
662                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
663       CastInst *CI = cast<CastInst>(J);
664       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
665           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
666           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
667           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
668         return true;
669     } else if (isLargeIntegerTy(!TM.isPPC64(),
670                                 J->getType()->getScalarType()) &&
671                (J->getOpcode() == Instruction::UDiv ||
672                 J->getOpcode() == Instruction::SDiv ||
673                 J->getOpcode() == Instruction::URem ||
674                 J->getOpcode() == Instruction::SRem)) {
675       return true;
676     } else if (!TM.isPPC64() &&
677                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
678                (J->getOpcode() == Instruction::Shl ||
679                 J->getOpcode() == Instruction::AShr ||
680                 J->getOpcode() == Instruction::LShr)) {
681       // Only on PPC32, for 128-bit integers (specifically not 64-bit
682       // integers), these might be runtime calls.
683       return true;
684     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
685       // On PowerPC, indirect jumps use the counter register.
686       return true;
687     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
688       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
689         return true;
690     }
691 
692     // FREM is always a call.
693     if (J->getOpcode() == Instruction::FRem)
694       return true;
695 
696     if (ST->useSoftFloat()) {
697       switch(J->getOpcode()) {
698       case Instruction::FAdd:
699       case Instruction::FSub:
700       case Instruction::FMul:
701       case Instruction::FDiv:
702       case Instruction::FPTrunc:
703       case Instruction::FPExt:
704       case Instruction::FPToUI:
705       case Instruction::FPToSI:
706       case Instruction::UIToFP:
707       case Instruction::SIToFP:
708       case Instruction::FCmp:
709         return true;
710       }
711     }
712 
713     for (Value *Operand : J->operands())
714       if (memAddrUsesCTR(Operand, TM, Visited))
715         return true;
716   }
717 
718   return false;
719 }
720 
721 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
722                                           AssumptionCache &AC,
723                                           TargetLibraryInfo *LibInfo,
724                                           HardwareLoopInfo &HWLoopInfo) {
725   const PPCTargetMachine &TM = ST->getTargetMachine();
726   TargetSchedModel SchedModel;
727   SchedModel.init(ST);
728 
729   // Do not convert small short loops to CTR loop.
730   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
731   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
732     SmallPtrSet<const Value *, 32> EphValues;
733     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
734     CodeMetrics Metrics;
735     for (BasicBlock *BB : L->blocks())
736       Metrics.analyzeBasicBlock(BB, *this, EphValues);
737     // 6 is an approximate latency for the mtctr instruction.
738     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
739       return false;
740   }
741 
742   // We don't want to spill/restore the counter register, and so we don't
743   // want to use the counter register if the loop contains calls.
744   SmallPtrSet<const Value *, 4> Visited;
745   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
746        I != IE; ++I)
747     if (mightUseCTR(*I, LibInfo, Visited))
748       return false;
749 
750   SmallVector<BasicBlock*, 4> ExitingBlocks;
751   L->getExitingBlocks(ExitingBlocks);
752 
753   // If there is an exit edge known to be frequently taken,
754   // we should not transform this loop.
755   for (auto &BB : ExitingBlocks) {
756     Instruction *TI = BB->getTerminator();
757     if (!TI) continue;
758 
759     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
760       uint64_t TrueWeight = 0, FalseWeight = 0;
761       if (!BI->isConditional() ||
762           !BI->extractProfMetadata(TrueWeight, FalseWeight))
763         continue;
764 
765       // If the exit path is more frequent than the loop path,
766       // we return here without further analysis for this loop.
767       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
768       if (( TrueIsExit && FalseWeight < TrueWeight) ||
769           (!TrueIsExit && FalseWeight > TrueWeight))
770         return false;
771     }
772   }
773 
774   // If an exit block has a PHI that accesses a TLS variable as one of the
775   // incoming values from the loop, we cannot produce a CTR loop because the
776   // address for that value will be computed in the loop.
777   SmallVector<BasicBlock *, 4> ExitBlocks;
778   L->getExitBlocks(ExitBlocks);
779   for (auto &BB : ExitBlocks) {
780     for (auto &PHI : BB->phis()) {
781       for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
782            Idx++) {
783         const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
784         const Value *IncomingValue = PHI.getIncomingValue(Idx);
785         if (L->contains(IncomingBB) &&
786             memAddrUsesCTR(IncomingValue, TM, Visited))
787           return false;
788       }
789     }
790   }
791 
792   LLVMContext &C = L->getHeader()->getContext();
793   HWLoopInfo.CountType = TM.isPPC64() ?
794     Type::getInt64Ty(C) : Type::getInt32Ty(C);
795   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
796   return true;
797 }
798 
799 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
800                                          TTI::UnrollingPreferences &UP,
801                                          OptimizationRemarkEmitter *ORE) {
802   if (ST->getCPUDirective() == PPC::DIR_A2) {
803     // The A2 is in-order with a deep pipeline, and concatenation unrolling
804     // helps expose latency-hiding opportunities to the instruction scheduler.
805     UP.Partial = UP.Runtime = true;
806 
807     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
808     // often outweigh the cost of a division to compute the trip count.
809     UP.AllowExpensiveTripCount = true;
810   }
811 
812   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
813 }
814 
815 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
816                                        TTI::PeelingPreferences &PP) {
817   BaseT::getPeelingPreferences(L, SE, PP);
818 }
819 // This function returns true to allow using coldcc calling convention.
820 // Returning true results in coldcc being used for functions which are cold at
821 // all call sites when the callers of the functions are not calling any other
822 // non coldcc functions.
823 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
824   return EnablePPCColdCC;
825 }
826 
827 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
828   // On the A2, always unroll aggressively.
829   if (ST->getCPUDirective() == PPC::DIR_A2)
830     return true;
831 
832   return LoopHasReductions;
833 }
834 
835 PPCTTIImpl::TTI::MemCmpExpansionOptions
836 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
837   TTI::MemCmpExpansionOptions Options;
838   Options.LoadSizes = {8, 4, 2, 1};
839   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
840   return Options;
841 }
842 
843 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
844   return true;
845 }
846 
847 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
848   assert(ClassID == GPRRC || ClassID == FPRRC ||
849          ClassID == VRRC || ClassID == VSXRC);
850   if (ST->hasVSX()) {
851     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
852     return ClassID == VSXRC ? 64 : 32;
853   }
854   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
855   return 32;
856 }
857 
858 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
859   if (Vector)
860     return ST->hasVSX() ? VSXRC : VRRC;
861   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
862                   Ty->getScalarType()->isDoubleTy()))
863     return ST->hasVSX() ? VSXRC : FPRRC;
864   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
865                   Ty->getScalarType()->isPPC_FP128Ty()))
866     return VRRC;
867   else if (Ty && Ty->getScalarType()->isHalfTy())
868     return VSXRC;
869   else
870     return GPRRC;
871 }
872 
873 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
874 
875   switch (ClassID) {
876     default:
877       llvm_unreachable("unknown register class");
878       return "PPC::unknown register class";
879     case GPRRC:       return "PPC::GPRRC";
880     case FPRRC:       return "PPC::FPRRC";
881     case VRRC:        return "PPC::VRRC";
882     case VSXRC:       return "PPC::VSXRC";
883   }
884 }
885 
886 TypeSize
887 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
888   switch (K) {
889   case TargetTransformInfo::RGK_Scalar:
890     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
891   case TargetTransformInfo::RGK_FixedWidthVector:
892     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
893   case TargetTransformInfo::RGK_ScalableVector:
894     return TypeSize::getScalable(0);
895   }
896 
897   llvm_unreachable("Unsupported register kind");
898 }
899 
900 unsigned PPCTTIImpl::getCacheLineSize() const {
901   // Check first if the user specified a custom line size.
902   if (CacheLineSize.getNumOccurrences() > 0)
903     return CacheLineSize;
904 
905   // Starting with P7 we have a cache line size of 128.
906   unsigned Directive = ST->getCPUDirective();
907   // Assume that Future CPU has the same cache line size as the others.
908   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
909       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
910       Directive == PPC::DIR_PWR_FUTURE)
911     return 128;
912 
913   // On other processors return a default of 64 bytes.
914   return 64;
915 }
916 
917 unsigned PPCTTIImpl::getPrefetchDistance() const {
918   return 300;
919 }
920 
921 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
922   unsigned Directive = ST->getCPUDirective();
923   // The 440 has no SIMD support, but floating-point instructions
924   // have a 5-cycle latency, so unroll by 5x for latency hiding.
925   if (Directive == PPC::DIR_440)
926     return 5;
927 
928   // The A2 has no SIMD support, but floating-point instructions
929   // have a 6-cycle latency, so unroll by 6x for latency hiding.
930   if (Directive == PPC::DIR_A2)
931     return 6;
932 
933   // FIXME: For lack of any better information, do no harm...
934   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
935     return 1;
936 
937   // For P7 and P8, floating-point instructions have a 6-cycle latency and
938   // there are two execution units, so unroll by 12x for latency hiding.
939   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
940   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
941   // Assume that future is the same as the others.
942   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
943       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
944       Directive == PPC::DIR_PWR_FUTURE)
945     return 12;
946 
947   // For most things, modern systems have two execution units (and
948   // out-of-order execution).
949   return 2;
950 }
951 
952 // Returns a cost adjustment factor to adjust the cost of vector instructions
953 // on targets which there is overlap between the vector and scalar units,
954 // thereby reducing the overall throughput of vector code wrt. scalar code.
955 // An invalid instruction cost is returned if the type is an MMA vector type.
956 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
957                                                        Type *Ty1, Type *Ty2) {
958   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
959   // instruction cost is returned. This is to signify to other cost computing
960   // functions to return the maximum instruction cost in order to prevent any
961   // opportunities for the optimizer to produce MMA types within the IR.
962   if (isMMAType(Ty1))
963     return InstructionCost::getInvalid();
964 
965   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
966     return InstructionCost(1);
967 
968   std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
969   // If type legalization involves splitting the vector, we don't want to
970   // double the cost at every step - only the last step.
971   if (LT1.first != 1 || !LT1.second.isVector())
972     return InstructionCost(1);
973 
974   int ISD = TLI->InstructionOpcodeToISD(Opcode);
975   if (TLI->isOperationExpand(ISD, LT1.second))
976     return InstructionCost(1);
977 
978   if (Ty2) {
979     std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
980     if (LT2.first != 1 || !LT2.second.isVector())
981       return InstructionCost(1);
982   }
983 
984   return InstructionCost(2);
985 }
986 
987 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
988     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
989     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
990     TTI::OperandValueProperties Opd1PropInfo,
991     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
992     const Instruction *CxtI) {
993   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
994 
995   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
996   if (!CostFactor.isValid())
997     return InstructionCost::getMax();
998 
999   // TODO: Handle more cost kinds.
1000   if (CostKind != TTI::TCK_RecipThroughput)
1001     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
1002                                          Op2Info, Opd1PropInfo,
1003                                          Opd2PropInfo, Args, CxtI);
1004 
1005   // Fallback to the default implementation.
1006   InstructionCost Cost = BaseT::getArithmeticInstrCost(
1007       Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1008   return Cost * CostFactor;
1009 }
1010 
1011 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
1012                                            ArrayRef<int> Mask, int Index,
1013                                            Type *SubTp) {
1014 
1015   InstructionCost CostFactor =
1016       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
1017   if (!CostFactor.isValid())
1018     return InstructionCost::getMax();
1019 
1020   // Legalize the type.
1021   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1022 
1023   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1024   // (at least in the sense that there need only be one non-loop-invariant
1025   // instruction). We need one such shuffle instruction for each actual
1026   // register (this is not true for arbitrary shuffles, but is true for the
1027   // structured types of shuffles covered by TTI::ShuffleKind).
1028   return LT.first * CostFactor;
1029 }
1030 
1031 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
1032                                            TTI::TargetCostKind CostKind,
1033                                            const Instruction *I) {
1034   if (CostKind != TTI::TCK_RecipThroughput)
1035     return Opcode == Instruction::PHI ? 0 : 1;
1036   // Branches are assumed to be predicted.
1037   return 0;
1038 }
1039 
1040 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1041                                              Type *Src,
1042                                              TTI::CastContextHint CCH,
1043                                              TTI::TargetCostKind CostKind,
1044                                              const Instruction *I) {
1045   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
1046 
1047   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
1048   if (!CostFactor.isValid())
1049     return InstructionCost::getMax();
1050 
1051   InstructionCost Cost =
1052       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1053   Cost *= CostFactor;
1054   // TODO: Allow non-throughput costs that aren't binary.
1055   if (CostKind != TTI::TCK_RecipThroughput)
1056     return Cost == 0 ? 0 : 1;
1057   return Cost;
1058 }
1059 
1060 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1061                                                Type *CondTy,
1062                                                CmpInst::Predicate VecPred,
1063                                                TTI::TargetCostKind CostKind,
1064                                                const Instruction *I) {
1065   InstructionCost CostFactor =
1066       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
1067   if (!CostFactor.isValid())
1068     return InstructionCost::getMax();
1069 
1070   InstructionCost Cost =
1071       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1072   // TODO: Handle other cost kinds.
1073   if (CostKind != TTI::TCK_RecipThroughput)
1074     return Cost;
1075   return Cost * CostFactor;
1076 }
1077 
1078 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1079                                                unsigned Index) {
1080   assert(Val->isVectorTy() && "This must be a vector type");
1081 
1082   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1083   assert(ISD && "Invalid opcode");
1084 
1085   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
1086   if (!CostFactor.isValid())
1087     return InstructionCost::getMax();
1088 
1089   InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
1090   Cost *= CostFactor;
1091 
1092   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
1093     // Double-precision scalars are already located in index #0 (or #1 if LE).
1094     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
1095         Index == (ST->isLittleEndian() ? 1 : 0))
1096       return 0;
1097 
1098     return Cost;
1099 
1100   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
1101     if (ST->hasP9Altivec()) {
1102       if (ISD == ISD::INSERT_VECTOR_ELT)
1103         // A move-to VSR and a permute/insert.  Assume vector operation cost
1104         // for both (cost will be 2x on P9).
1105         return 2 * CostFactor;
1106 
1107       // It's an extract.  Maybe we can do a cheap move-from VSR.
1108       unsigned EltSize = Val->getScalarSizeInBits();
1109       if (EltSize == 64) {
1110         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
1111         if (Index == MfvsrdIndex)
1112           return 1;
1113       } else if (EltSize == 32) {
1114         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
1115         if (Index == MfvsrwzIndex)
1116           return 1;
1117       }
1118 
1119       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
1120       // The cost of the load constant for a vector extract is disregarded
1121       // (invariant, easily schedulable).
1122       return CostFactor;
1123 
1124     } else if (ST->hasDirectMove())
1125       // Assume permute has standard cost.
1126       // Assume move-to/move-from VSR have 2x standard cost.
1127       return 3;
1128   }
1129 
1130   // Estimated cost of a load-hit-store delay.  This was obtained
1131   // experimentally as a minimum needed to prevent unprofitable
1132   // vectorization for the paq8p benchmark.  It may need to be
1133   // raised further if other unprofitable cases remain.
1134   unsigned LHSPenalty = 2;
1135   if (ISD == ISD::INSERT_VECTOR_ELT)
1136     LHSPenalty += 7;
1137 
1138   // Vector element insert/extract with Altivec is very expensive,
1139   // because they require store and reload with the attendant
1140   // processor stall for load-hit-store.  Until VSX is available,
1141   // these need to be estimated as very costly.
1142   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
1143       ISD == ISD::INSERT_VECTOR_ELT)
1144     return LHSPenalty + Cost;
1145 
1146   return Cost;
1147 }
1148 
1149 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1150                                             MaybeAlign Alignment,
1151                                             unsigned AddressSpace,
1152                                             TTI::TargetCostKind CostKind,
1153                                             const Instruction *I) {
1154 
1155   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1156   if (!CostFactor.isValid())
1157     return InstructionCost::getMax();
1158 
1159   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
1160     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1161                                   CostKind);
1162   // Legalize the type.
1163   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1164   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1165          "Invalid Opcode");
1166 
1167   InstructionCost Cost =
1168       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1169   // TODO: Handle other cost kinds.
1170   if (CostKind != TTI::TCK_RecipThroughput)
1171     return Cost;
1172 
1173   Cost *= CostFactor;
1174 
1175   bool IsAltivecType = ST->hasAltivec() &&
1176                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
1177                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
1178   bool IsVSXType = ST->hasVSX() &&
1179                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
1180 
1181   // VSX has 32b/64b load instructions. Legalization can handle loading of
1182   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
1183   // PPCTargetLowering can't compute the cost appropriately. So here we
1184   // explicitly check this case.
1185   unsigned MemBytes = Src->getPrimitiveSizeInBits();
1186   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
1187       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
1188     return 1;
1189 
1190   // Aligned loads and stores are easy.
1191   unsigned SrcBytes = LT.second.getStoreSize();
1192   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
1193     return Cost;
1194 
1195   // If we can use the permutation-based load sequence, then this is also
1196   // relatively cheap (not counting loop-invariant instructions): one load plus
1197   // one permute (the last load in a series has extra cost, but we're
1198   // neglecting that here). Note that on the P7, we could do unaligned loads
1199   // for Altivec types using the VSX instructions, but that's more expensive
1200   // than using the permutation-based load sequence. On the P8, that's no
1201   // longer true.
1202   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
1203       *Alignment >= LT.second.getScalarType().getStoreSize())
1204     return Cost + LT.first; // Add the cost of the permutations.
1205 
1206   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
1207   // P7, unaligned vector loads are more expensive than the permutation-based
1208   // load sequence, so that might be used instead, but regardless, the net cost
1209   // is about the same (not counting loop-invariant instructions).
1210   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
1211     return Cost;
1212 
1213   // Newer PPC supports unaligned memory access.
1214   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
1215     return Cost;
1216 
1217   // PPC in general does not support unaligned loads and stores. They'll need
1218   // to be decomposed based on the alignment factor.
1219 
1220   // Add the cost of each scalar load or store.
1221   assert(Alignment);
1222   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
1223 
1224   // For a vector type, there is also scalarization overhead (only for
1225   // stores, loads are expanded using the vector-load + permutation sequence,
1226   // which is much less expensive).
1227   if (Src->isVectorTy() && Opcode == Instruction::Store)
1228     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
1229          ++i)
1230       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
1231 
1232   return Cost;
1233 }
1234 
1235 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
1236     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1237     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1238     bool UseMaskForCond, bool UseMaskForGaps) {
1239   InstructionCost CostFactor =
1240       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
1241   if (!CostFactor.isValid())
1242     return InstructionCost::getMax();
1243 
1244   if (UseMaskForCond || UseMaskForGaps)
1245     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1246                                              Alignment, AddressSpace, CostKind,
1247                                              UseMaskForCond, UseMaskForGaps);
1248 
1249   assert(isa<VectorType>(VecTy) &&
1250          "Expect a vector type for interleaved memory op");
1251 
1252   // Legalize the type.
1253   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
1254 
1255   // Firstly, the cost of load/store operation.
1256   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
1257                                          AddressSpace, CostKind);
1258 
1259   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1260   // (at least in the sense that there need only be one non-loop-invariant
1261   // instruction). For each result vector, we need one shuffle per incoming
1262   // vector (except that the first shuffle can take two incoming vectors
1263   // because it does not need to take itself).
1264   Cost += Factor*(LT.first-1);
1265 
1266   return Cost;
1267 }
1268 
1269 InstructionCost
1270 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1271                                   TTI::TargetCostKind CostKind) {
1272   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1273 }
1274 
1275 bool PPCTTIImpl::areFunctionArgsABICompatible(
1276     const Function *Caller, const Function *Callee,
1277     SmallPtrSetImpl<Argument *> &Args) const {
1278 
1279   // We need to ensure that argument promotion does not
1280   // attempt to promote pointers to MMA types (__vector_pair
1281   // and __vector_quad) since these types explicitly cannot be
1282   // passed as arguments. Both of these types are larger than
1283   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
1284   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
1285     return false;
1286 
1287   return llvm::none_of(Args, [](Argument *A) {
1288     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
1289     if (EltTy->isSized())
1290       return (EltTy->isIntOrIntVectorTy(1) &&
1291               EltTy->getPrimitiveSizeInBits() > 128);
1292     return false;
1293   });
1294 }
1295 
1296 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1297                             LoopInfo *LI, DominatorTree *DT,
1298                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
1299   // Process nested loops first.
1300   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
1301     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
1302       return false; // Stop search.
1303 
1304   HardwareLoopInfo HWLoopInfo(L);
1305 
1306   if (!HWLoopInfo.canAnalyze(*LI))
1307     return false;
1308 
1309   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
1310     return false;
1311 
1312   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
1313     return false;
1314 
1315   *BI = HWLoopInfo.ExitBranch;
1316   return true;
1317 }
1318 
1319 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1320                                TargetTransformInfo::LSRCost &C2) {
1321   // PowerPC default behaviour here is "instruction number 1st priority".
1322   // If LsrNoInsnsCost is set, call default implementation.
1323   if (!LsrNoInsnsCost)
1324     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1325                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1326            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1327                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1328   else
1329     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1330 }
1331 
1332 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
1333   return false;
1334 }
1335 
1336 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
1337   const PPCTargetMachine &TM = ST->getTargetMachine();
1338   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
1339   if (!TM.isELFv2ABI())
1340     return false;
1341   return BaseT::shouldBuildRelLookupTables();
1342 }
1343 
1344 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1345                                     MemIntrinsicInfo &Info) {
1346   switch (Inst->getIntrinsicID()) {
1347   case Intrinsic::ppc_altivec_lvx:
1348   case Intrinsic::ppc_altivec_lvxl:
1349   case Intrinsic::ppc_altivec_lvebx:
1350   case Intrinsic::ppc_altivec_lvehx:
1351   case Intrinsic::ppc_altivec_lvewx:
1352   case Intrinsic::ppc_vsx_lxvd2x:
1353   case Intrinsic::ppc_vsx_lxvw4x:
1354   case Intrinsic::ppc_vsx_lxvd2x_be:
1355   case Intrinsic::ppc_vsx_lxvw4x_be:
1356   case Intrinsic::ppc_vsx_lxvl:
1357   case Intrinsic::ppc_vsx_lxvll:
1358   case Intrinsic::ppc_vsx_lxvp: {
1359     Info.PtrVal = Inst->getArgOperand(0);
1360     Info.ReadMem = true;
1361     Info.WriteMem = false;
1362     return true;
1363   }
1364   case Intrinsic::ppc_altivec_stvx:
1365   case Intrinsic::ppc_altivec_stvxl:
1366   case Intrinsic::ppc_altivec_stvebx:
1367   case Intrinsic::ppc_altivec_stvehx:
1368   case Intrinsic::ppc_altivec_stvewx:
1369   case Intrinsic::ppc_vsx_stxvd2x:
1370   case Intrinsic::ppc_vsx_stxvw4x:
1371   case Intrinsic::ppc_vsx_stxvd2x_be:
1372   case Intrinsic::ppc_vsx_stxvw4x_be:
1373   case Intrinsic::ppc_vsx_stxvl:
1374   case Intrinsic::ppc_vsx_stxvll:
1375   case Intrinsic::ppc_vsx_stxvp: {
1376     Info.PtrVal = Inst->getArgOperand(1);
1377     Info.ReadMem = false;
1378     Info.WriteMem = true;
1379     return true;
1380   }
1381   default:
1382     break;
1383   }
1384 
1385   return false;
1386 }
1387 
1388 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1389                                        Align Alignment) const {
1390   // Only load and stores instructions can have variable vector length on Power.
1391   if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1392     return false;
1393   // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1394   // therefore cannot be used in 32-bit mode.
1395   if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1396     return false;
1397   if (isa<FixedVectorType>(DataType)) {
1398     unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1399     return VecWidth == 128;
1400   }
1401   Type *ScalarTy = DataType->getScalarType();
1402 
1403   if (ScalarTy->isPointerTy())
1404     return true;
1405 
1406   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1407     return true;
1408 
1409   if (!ScalarTy->isIntegerTy())
1410     return false;
1411 
1412   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1413   return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1414 }
1415 
1416 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1417                                               Align Alignment,
1418                                               unsigned AddressSpace,
1419                                               TTI::TargetCostKind CostKind,
1420                                               const Instruction *I) {
1421   InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1422                                                   AddressSpace, CostKind, I);
1423   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1424     return Cost;
1425   // TODO: Handle other cost kinds.
1426   if (CostKind != TTI::TCK_RecipThroughput)
1427     return Cost;
1428 
1429   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1430          "Invalid Opcode");
1431 
1432   auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1433   assert(SrcVTy && "Expected a vector type for VP memory operations");
1434 
1435   if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1436     std::pair<InstructionCost, MVT> LT =
1437         TLI->getTypeLegalizationCost(DL, SrcVTy);
1438 
1439     InstructionCost CostFactor =
1440         vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1441     if (!CostFactor.isValid())
1442       return InstructionCost::getMax();
1443 
1444     InstructionCost Cost = LT.first * CostFactor;
1445     assert(Cost.isValid() && "Expected valid cost");
1446 
1447     // On P9 but not on P10, if the op is misaligned then it will cause a
1448     // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1449     // ones.
1450     const Align DesiredAlignment(16);
1451     if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1452       return Cost;
1453 
1454     // Since alignment may be under estimated, we try to compute the probability
1455     // that the actual address is aligned to the desired boundary. For example
1456     // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1457     // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1458     // aligned.
1459     float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1460     float MisalignmentProb = 1.0 - AlignmentProb;
1461     return (MisalignmentProb * P9PipelineFlushEstimate) +
1462            (AlignmentProb * *Cost.getValue());
1463   }
1464 
1465   // Usually we should not get to this point, but the following is an attempt to
1466   // model the cost of legalization. Currently we can only lower intrinsics with
1467   // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1468   return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1469 }
1470