1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/Debug.h" 18 using namespace llvm; 19 20 #define DEBUG_TYPE "ppctti" 21 22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 24 25 // This is currently only used for the data prefetch pass which is only enabled 26 // for BG/Q by default. 27 static cl::opt<unsigned> 28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 29 cl::desc("The loop prefetch cache line size")); 30 31 static cl::opt<bool> 32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 33 cl::desc("Enable using coldcc calling conv for cold " 34 "internal functions")); 35 36 static cl::opt<bool> 37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 38 cl::desc("Do not add instruction count to lsr cost model")); 39 40 // The latency of mtctr is only justified if there are more than 4 41 // comparisons that will be removed as a result. 42 static cl::opt<unsigned> 43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 44 cl::desc("Loops with a constant trip count smaller than " 45 "this value will not use the count register.")); 46 47 //===----------------------------------------------------------------------===// 48 // 49 // PPC cost model. 50 // 51 //===----------------------------------------------------------------------===// 52 53 TargetTransformInfo::PopcntSupportKind 54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 55 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 56 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 57 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 58 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 59 return TTI::PSK_Software; 60 } 61 62 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 63 if (DisablePPCConstHoist) 64 return BaseT::getIntImmCost(Imm, Ty); 65 66 assert(Ty->isIntegerTy()); 67 68 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 69 if (BitSize == 0) 70 return ~0U; 71 72 if (Imm == 0) 73 return TTI::TCC_Free; 74 75 if (Imm.getBitWidth() <= 64) { 76 if (isInt<16>(Imm.getSExtValue())) 77 return TTI::TCC_Basic; 78 79 if (isInt<32>(Imm.getSExtValue())) { 80 // A constant that can be materialized using lis. 81 if ((Imm.getZExtValue() & 0xFFFF) == 0) 82 return TTI::TCC_Basic; 83 84 return 2 * TTI::TCC_Basic; 85 } 86 } 87 88 return 4 * TTI::TCC_Basic; 89 } 90 91 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 92 const APInt &Imm, Type *Ty) { 93 if (DisablePPCConstHoist) 94 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty); 95 96 assert(Ty->isIntegerTy()); 97 98 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 99 if (BitSize == 0) 100 return ~0U; 101 102 switch (IID) { 103 default: 104 return TTI::TCC_Free; 105 case Intrinsic::sadd_with_overflow: 106 case Intrinsic::uadd_with_overflow: 107 case Intrinsic::ssub_with_overflow: 108 case Intrinsic::usub_with_overflow: 109 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 110 return TTI::TCC_Free; 111 break; 112 case Intrinsic::experimental_stackmap: 113 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 114 return TTI::TCC_Free; 115 break; 116 case Intrinsic::experimental_patchpoint_void: 117 case Intrinsic::experimental_patchpoint_i64: 118 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 119 return TTI::TCC_Free; 120 break; 121 } 122 return PPCTTIImpl::getIntImmCost(Imm, Ty); 123 } 124 125 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 126 const APInt &Imm, Type *Ty) { 127 if (DisablePPCConstHoist) 128 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty); 129 130 assert(Ty->isIntegerTy()); 131 132 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 133 if (BitSize == 0) 134 return ~0U; 135 136 unsigned ImmIdx = ~0U; 137 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 138 ZeroFree = false; 139 switch (Opcode) { 140 default: 141 return TTI::TCC_Free; 142 case Instruction::GetElementPtr: 143 // Always hoist the base address of a GetElementPtr. This prevents the 144 // creation of new constants for every base constant that gets constant 145 // folded with the offset. 146 if (Idx == 0) 147 return 2 * TTI::TCC_Basic; 148 return TTI::TCC_Free; 149 case Instruction::And: 150 RunFree = true; // (for the rotate-and-mask instructions) 151 LLVM_FALLTHROUGH; 152 case Instruction::Add: 153 case Instruction::Or: 154 case Instruction::Xor: 155 ShiftedFree = true; 156 LLVM_FALLTHROUGH; 157 case Instruction::Sub: 158 case Instruction::Mul: 159 case Instruction::Shl: 160 case Instruction::LShr: 161 case Instruction::AShr: 162 ImmIdx = 1; 163 break; 164 case Instruction::ICmp: 165 UnsignedFree = true; 166 ImmIdx = 1; 167 // Zero comparisons can use record-form instructions. 168 LLVM_FALLTHROUGH; 169 case Instruction::Select: 170 ZeroFree = true; 171 break; 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Ret: 175 case Instruction::Load: 176 case Instruction::Store: 177 break; 178 } 179 180 if (ZeroFree && Imm == 0) 181 return TTI::TCC_Free; 182 183 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 184 if (isInt<16>(Imm.getSExtValue())) 185 return TTI::TCC_Free; 186 187 if (RunFree) { 188 if (Imm.getBitWidth() <= 32 && 189 (isShiftedMask_32(Imm.getZExtValue()) || 190 isShiftedMask_32(~Imm.getZExtValue()))) 191 return TTI::TCC_Free; 192 193 if (ST->isPPC64() && 194 (isShiftedMask_64(Imm.getZExtValue()) || 195 isShiftedMask_64(~Imm.getZExtValue()))) 196 return TTI::TCC_Free; 197 } 198 199 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 200 return TTI::TCC_Free; 201 202 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 203 return TTI::TCC_Free; 204 } 205 206 return PPCTTIImpl::getIntImmCost(Imm, Ty); 207 } 208 209 unsigned PPCTTIImpl::getUserCost(const User *U, 210 ArrayRef<const Value *> Operands) { 211 if (U->getType()->isVectorTy()) { 212 // Instructions that need to be split should cost more. 213 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 214 return LT.first * BaseT::getUserCost(U, Operands); 215 } 216 217 return BaseT::getUserCost(U, Operands); 218 } 219 220 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo, 221 SmallPtrSetImpl<const Value *> &Visited) { 222 const PPCTargetMachine &TM = ST->getTargetMachine(); 223 224 // Loop through the inline asm constraints and look for something that 225 // clobbers ctr. 226 auto asmClobbersCTR = [](InlineAsm *IA) { 227 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 228 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 229 InlineAsm::ConstraintInfo &C = CIV[i]; 230 if (C.Type != InlineAsm::isInput) 231 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 232 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 233 return true; 234 } 235 return false; 236 }; 237 238 // Determining the address of a TLS variable results in a function call in 239 // certain TLS models. 240 std::function<bool(const Value *)> memAddrUsesCTR = 241 [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool { 242 // No need to traverse again if we already checked this operand. 243 if (!Visited.insert(MemAddr).second) 244 return false; 245 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 246 if (!GV) { 247 // Recurse to check for constants that refer to TLS global variables. 248 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 249 for (const auto &CO : CV->operands()) 250 if (memAddrUsesCTR(CO)) 251 return true; 252 253 return false; 254 } 255 256 if (!GV->isThreadLocal()) 257 return false; 258 TLSModel::Model Model = TM.getTLSModel(GV); 259 return Model == TLSModel::GeneralDynamic || 260 Model == TLSModel::LocalDynamic; 261 }; 262 263 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) { 264 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 265 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 266 267 return false; 268 }; 269 270 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 271 J != JE; ++J) { 272 if (CallInst *CI = dyn_cast<CallInst>(J)) { 273 // Inline ASM is okay, unless it clobbers the ctr register. 274 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { 275 if (asmClobbersCTR(IA)) 276 return true; 277 continue; 278 } 279 280 if (Function *F = CI->getCalledFunction()) { 281 // Most intrinsics don't become function calls, but some might. 282 // sin, cos, exp and log are always calls. 283 unsigned Opcode = 0; 284 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 285 switch (F->getIntrinsicID()) { 286 default: continue; 287 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr 288 // we're definitely using CTR. 289 case Intrinsic::set_loop_iterations: 290 case Intrinsic::loop_decrement: 291 return true; 292 293 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 294 // because, although it does clobber the counter register, the 295 // control can't then return to inside the loop unless there is also 296 // an eh_sjlj_setjmp. 297 case Intrinsic::eh_sjlj_setjmp: 298 299 case Intrinsic::memcpy: 300 case Intrinsic::memmove: 301 case Intrinsic::memset: 302 case Intrinsic::powi: 303 case Intrinsic::log: 304 case Intrinsic::log2: 305 case Intrinsic::log10: 306 case Intrinsic::exp: 307 case Intrinsic::exp2: 308 case Intrinsic::pow: 309 case Intrinsic::sin: 310 case Intrinsic::cos: 311 return true; 312 case Intrinsic::copysign: 313 if (CI->getArgOperand(0)->getType()->getScalarType()-> 314 isPPC_FP128Ty()) 315 return true; 316 else 317 continue; // ISD::FCOPYSIGN is never a library call. 318 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 319 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 320 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 321 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 322 case Intrinsic::rint: Opcode = ISD::FRINT; break; 323 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 324 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 325 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 326 case Intrinsic::round: Opcode = ISD::FROUND; break; 327 case Intrinsic::lround: Opcode = ISD::LROUND; break; 328 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 329 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 330 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 331 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; 332 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; 333 } 334 } 335 336 // PowerPC does not use [US]DIVREM or other library calls for 337 // operations on regular types which are not otherwise library calls 338 // (i.e. soft float or atomics). If adapting for targets that do, 339 // additional care is required here. 340 341 LibFunc Func; 342 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 343 LibInfo->getLibFunc(F->getName(), Func) && 344 LibInfo->hasOptimizedCodeGen(Func)) { 345 // Non-read-only functions are never treated as intrinsics. 346 if (!CI->onlyReadsMemory()) 347 return true; 348 349 // Conversion happens only for FP calls. 350 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 351 return true; 352 353 switch (Func) { 354 default: return true; 355 case LibFunc_copysign: 356 case LibFunc_copysignf: 357 continue; // ISD::FCOPYSIGN is never a library call. 358 case LibFunc_copysignl: 359 return true; 360 case LibFunc_fabs: 361 case LibFunc_fabsf: 362 case LibFunc_fabsl: 363 continue; // ISD::FABS is never a library call. 364 case LibFunc_sqrt: 365 case LibFunc_sqrtf: 366 case LibFunc_sqrtl: 367 Opcode = ISD::FSQRT; break; 368 case LibFunc_floor: 369 case LibFunc_floorf: 370 case LibFunc_floorl: 371 Opcode = ISD::FFLOOR; break; 372 case LibFunc_nearbyint: 373 case LibFunc_nearbyintf: 374 case LibFunc_nearbyintl: 375 Opcode = ISD::FNEARBYINT; break; 376 case LibFunc_ceil: 377 case LibFunc_ceilf: 378 case LibFunc_ceill: 379 Opcode = ISD::FCEIL; break; 380 case LibFunc_rint: 381 case LibFunc_rintf: 382 case LibFunc_rintl: 383 Opcode = ISD::FRINT; break; 384 case LibFunc_round: 385 case LibFunc_roundf: 386 case LibFunc_roundl: 387 Opcode = ISD::FROUND; break; 388 case LibFunc_trunc: 389 case LibFunc_truncf: 390 case LibFunc_truncl: 391 Opcode = ISD::FTRUNC; break; 392 case LibFunc_fmin: 393 case LibFunc_fminf: 394 case LibFunc_fminl: 395 Opcode = ISD::FMINNUM; break; 396 case LibFunc_fmax: 397 case LibFunc_fmaxf: 398 case LibFunc_fmaxl: 399 Opcode = ISD::FMAXNUM; break; 400 } 401 } 402 403 if (Opcode) { 404 EVT EVTy = 405 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true); 406 407 if (EVTy == MVT::Other) 408 return true; 409 410 if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) 411 continue; 412 else if (EVTy.isVector() && 413 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) 414 continue; 415 416 return true; 417 } 418 } 419 420 return true; 421 } else if (isa<BinaryOperator>(J) && 422 J->getType()->getScalarType()->isPPC_FP128Ty()) { 423 // Most operations on ppc_f128 values become calls. 424 return true; 425 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 426 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 427 CastInst *CI = cast<CastInst>(J); 428 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 429 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 430 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) || 431 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType())) 432 return true; 433 } else if (isLargeIntegerTy(!TM.isPPC64(), 434 J->getType()->getScalarType()) && 435 (J->getOpcode() == Instruction::UDiv || 436 J->getOpcode() == Instruction::SDiv || 437 J->getOpcode() == Instruction::URem || 438 J->getOpcode() == Instruction::SRem)) { 439 return true; 440 } else if (!TM.isPPC64() && 441 isLargeIntegerTy(false, J->getType()->getScalarType()) && 442 (J->getOpcode() == Instruction::Shl || 443 J->getOpcode() == Instruction::AShr || 444 J->getOpcode() == Instruction::LShr)) { 445 // Only on PPC32, for 128-bit integers (specifically not 64-bit 446 // integers), these might be runtime calls. 447 return true; 448 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 449 // On PowerPC, indirect jumps use the counter register. 450 return true; 451 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 452 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 453 return true; 454 } 455 456 // FREM is always a call. 457 if (J->getOpcode() == Instruction::FRem) 458 return true; 459 460 if (ST->useSoftFloat()) { 461 switch(J->getOpcode()) { 462 case Instruction::FAdd: 463 case Instruction::FSub: 464 case Instruction::FMul: 465 case Instruction::FDiv: 466 case Instruction::FPTrunc: 467 case Instruction::FPExt: 468 case Instruction::FPToUI: 469 case Instruction::FPToSI: 470 case Instruction::UIToFP: 471 case Instruction::SIToFP: 472 case Instruction::FCmp: 473 return true; 474 } 475 } 476 477 for (Value *Operand : J->operands()) 478 if (memAddrUsesCTR(Operand)) 479 return true; 480 } 481 482 return false; 483 } 484 485 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 486 AssumptionCache &AC, 487 TargetLibraryInfo *LibInfo, 488 HardwareLoopInfo &HWLoopInfo) { 489 const PPCTargetMachine &TM = ST->getTargetMachine(); 490 TargetSchedModel SchedModel; 491 SchedModel.init(ST); 492 493 // Do not convert small short loops to CTR loop. 494 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 495 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 496 SmallPtrSet<const Value *, 32> EphValues; 497 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 498 CodeMetrics Metrics; 499 for (BasicBlock *BB : L->blocks()) 500 Metrics.analyzeBasicBlock(BB, *this, EphValues); 501 // 6 is an approximate latency for the mtctr instruction. 502 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 503 return false; 504 } 505 506 // We don't want to spill/restore the counter register, and so we don't 507 // want to use the counter register if the loop contains calls. 508 SmallPtrSet<const Value *, 4> Visited; 509 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 510 I != IE; ++I) 511 if (mightUseCTR(*I, LibInfo, Visited)) 512 return false; 513 514 SmallVector<BasicBlock*, 4> ExitingBlocks; 515 L->getExitingBlocks(ExitingBlocks); 516 517 // If there is an exit edge known to be frequently taken, 518 // we should not transform this loop. 519 for (auto &BB : ExitingBlocks) { 520 Instruction *TI = BB->getTerminator(); 521 if (!TI) continue; 522 523 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 524 uint64_t TrueWeight = 0, FalseWeight = 0; 525 if (!BI->isConditional() || 526 !BI->extractProfMetadata(TrueWeight, FalseWeight)) 527 continue; 528 529 // If the exit path is more frequent than the loop path, 530 // we return here without further analysis for this loop. 531 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 532 if (( TrueIsExit && FalseWeight < TrueWeight) || 533 (!TrueIsExit && FalseWeight > TrueWeight)) 534 return false; 535 } 536 } 537 538 LLVMContext &C = L->getHeader()->getContext(); 539 HWLoopInfo.CountType = TM.isPPC64() ? 540 Type::getInt64Ty(C) : Type::getInt32Ty(C); 541 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 542 return true; 543 } 544 545 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 546 TTI::UnrollingPreferences &UP) { 547 if (ST->getCPUDirective() == PPC::DIR_A2) { 548 // The A2 is in-order with a deep pipeline, and concatenation unrolling 549 // helps expose latency-hiding opportunities to the instruction scheduler. 550 UP.Partial = UP.Runtime = true; 551 552 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 553 // often outweigh the cost of a division to compute the trip count. 554 UP.AllowExpensiveTripCount = true; 555 } 556 557 BaseT::getUnrollingPreferences(L, SE, UP); 558 } 559 560 // This function returns true to allow using coldcc calling convention. 561 // Returning true results in coldcc being used for functions which are cold at 562 // all call sites when the callers of the functions are not calling any other 563 // non coldcc functions. 564 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 565 return EnablePPCColdCC; 566 } 567 568 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 569 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 570 // on combining the loads generated for consecutive accesses, and failure to 571 // do so is particularly expensive. This makes it much more likely (compared 572 // to only using concatenation unrolling). 573 if (ST->getCPUDirective() == PPC::DIR_A2) 574 return true; 575 576 return LoopHasReductions; 577 } 578 579 PPCTTIImpl::TTI::MemCmpExpansionOptions 580 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 581 TTI::MemCmpExpansionOptions Options; 582 Options.LoadSizes = {8, 4, 2, 1}; 583 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 584 return Options; 585 } 586 587 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 588 return true; 589 } 590 591 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 592 assert(ClassID == GPRRC || ClassID == FPRRC || 593 ClassID == VRRC || ClassID == VSXRC); 594 if (ST->hasVSX()) { 595 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 596 return ClassID == VSXRC ? 64 : 32; 597 } 598 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 599 return 32; 600 } 601 602 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 603 if (Vector) 604 return ST->hasVSX() ? VSXRC : VRRC; 605 else if (Ty && (Ty->getScalarType()->isFloatTy() || 606 Ty->getScalarType()->isDoubleTy())) 607 return ST->hasVSX() ? VSXRC : FPRRC; 608 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 609 Ty->getScalarType()->isPPC_FP128Ty())) 610 return VRRC; 611 else if (Ty && Ty->getScalarType()->isHalfTy()) 612 return VSXRC; 613 else 614 return GPRRC; 615 } 616 617 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 618 619 switch (ClassID) { 620 default: 621 llvm_unreachable("unknown register class"); 622 return "PPC::unknown register class"; 623 case GPRRC: return "PPC::GPRRC"; 624 case FPRRC: return "PPC::FPRRC"; 625 case VRRC: return "PPC::VRRC"; 626 case VSXRC: return "PPC::VSXRC"; 627 } 628 } 629 630 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 631 if (Vector) { 632 if (ST->hasQPX()) return 256; 633 if (ST->hasAltivec()) return 128; 634 return 0; 635 } 636 637 if (ST->isPPC64()) 638 return 64; 639 return 32; 640 641 } 642 643 unsigned PPCTTIImpl::getCacheLineSize() const { 644 // Check first if the user specified a custom line size. 645 if (CacheLineSize.getNumOccurrences() > 0) 646 return CacheLineSize; 647 648 // On P7, P8 or P9 we have a cache line size of 128. 649 unsigned Directive = ST->getCPUDirective(); 650 // Assume that Future CPU has the same cache line size as the others. 651 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 652 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE) 653 return 128; 654 655 // On other processors return a default of 64 bytes. 656 return 64; 657 } 658 659 unsigned PPCTTIImpl::getPrefetchDistance() const { 660 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 661 // default, only on the BG/Q). 662 return 300; 663 } 664 665 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 666 unsigned Directive = ST->getCPUDirective(); 667 // The 440 has no SIMD support, but floating-point instructions 668 // have a 5-cycle latency, so unroll by 5x for latency hiding. 669 if (Directive == PPC::DIR_440) 670 return 5; 671 672 // The A2 has no SIMD support, but floating-point instructions 673 // have a 6-cycle latency, so unroll by 6x for latency hiding. 674 if (Directive == PPC::DIR_A2) 675 return 6; 676 677 // FIXME: For lack of any better information, do no harm... 678 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 679 return 1; 680 681 // For P7 and P8, floating-point instructions have a 6-cycle latency and 682 // there are two execution units, so unroll by 12x for latency hiding. 683 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 684 // Assume that future is the same as the others. 685 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 686 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE) 687 return 12; 688 689 // For most things, modern systems have two execution units (and 690 // out-of-order execution). 691 return 2; 692 } 693 694 // Adjust the cost of vector instructions on targets which there is overlap 695 // between the vector and scalar units, thereby reducing the overall throughput 696 // of vector code wrt. scalar code. 697 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1, 698 Type *Ty2) { 699 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 700 return Cost; 701 702 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1); 703 // If type legalization involves splitting the vector, we don't want to 704 // double the cost at every step - only the last step. 705 if (LT1.first != 1 || !LT1.second.isVector()) 706 return Cost; 707 708 int ISD = TLI->InstructionOpcodeToISD(Opcode); 709 if (TLI->isOperationExpand(ISD, LT1.second)) 710 return Cost; 711 712 if (Ty2) { 713 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2); 714 if (LT2.first != 1 || !LT2.second.isVector()) 715 return Cost; 716 } 717 718 return Cost * 2; 719 } 720 721 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 722 TTI::OperandValueKind Op1Info, 723 TTI::OperandValueKind Op2Info, 724 TTI::OperandValueProperties Opd1PropInfo, 725 TTI::OperandValueProperties Opd2PropInfo, 726 ArrayRef<const Value *> Args, 727 const Instruction *CxtI) { 728 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 729 730 // Fallback to the default implementation. 731 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 732 Opd1PropInfo, Opd2PropInfo); 733 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr); 734 } 735 736 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 737 Type *SubTp) { 738 // Legalize the type. 739 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 740 741 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 742 // (at least in the sense that there need only be one non-loop-invariant 743 // instruction). We need one such shuffle instruction for each actual 744 // register (this is not true for arbitrary shuffles, but is true for the 745 // structured types of shuffles covered by TTI::ShuffleKind). 746 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp, 747 nullptr); 748 } 749 750 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 751 const Instruction *I) { 752 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 753 754 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src); 755 return vectorCostAdjustment(Cost, Opcode, Dst, Src); 756 } 757 758 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 759 const Instruction *I) { 760 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 761 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr); 762 } 763 764 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 765 assert(Val->isVectorTy() && "This must be a vector type"); 766 767 int ISD = TLI->InstructionOpcodeToISD(Opcode); 768 assert(ISD && "Invalid opcode"); 769 770 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); 771 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr); 772 773 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 774 // Double-precision scalars are already located in index #0 (or #1 if LE). 775 if (ISD == ISD::EXTRACT_VECTOR_ELT && 776 Index == (ST->isLittleEndian() ? 1 : 0)) 777 return 0; 778 779 return Cost; 780 781 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 782 // Floating point scalars are already located in index #0. 783 if (Index == 0) 784 return 0; 785 786 return Cost; 787 788 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 789 if (ST->hasP9Altivec()) { 790 if (ISD == ISD::INSERT_VECTOR_ELT) 791 // A move-to VSR and a permute/insert. Assume vector operation cost 792 // for both (cost will be 2x on P9). 793 return vectorCostAdjustment(2, Opcode, Val, nullptr); 794 795 // It's an extract. Maybe we can do a cheap move-from VSR. 796 unsigned EltSize = Val->getScalarSizeInBits(); 797 if (EltSize == 64) { 798 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 799 if (Index == MfvsrdIndex) 800 return 1; 801 } else if (EltSize == 32) { 802 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 803 if (Index == MfvsrwzIndex) 804 return 1; 805 } 806 807 // We need a vector extract (or mfvsrld). Assume vector operation cost. 808 // The cost of the load constant for a vector extract is disregarded 809 // (invariant, easily schedulable). 810 return vectorCostAdjustment(1, Opcode, Val, nullptr); 811 812 } else if (ST->hasDirectMove()) 813 // Assume permute has standard cost. 814 // Assume move-to/move-from VSR have 2x standard cost. 815 return 3; 816 } 817 818 // Estimated cost of a load-hit-store delay. This was obtained 819 // experimentally as a minimum needed to prevent unprofitable 820 // vectorization for the paq8p benchmark. It may need to be 821 // raised further if other unprofitable cases remain. 822 unsigned LHSPenalty = 2; 823 if (ISD == ISD::INSERT_VECTOR_ELT) 824 LHSPenalty += 7; 825 826 // Vector element insert/extract with Altivec is very expensive, 827 // because they require store and reload with the attendant 828 // processor stall for load-hit-store. Until VSX is available, 829 // these need to be estimated as very costly. 830 if (ISD == ISD::EXTRACT_VECTOR_ELT || 831 ISD == ISD::INSERT_VECTOR_ELT) 832 return LHSPenalty + Cost; 833 834 return Cost; 835 } 836 837 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 838 MaybeAlign Alignment, unsigned AddressSpace, 839 const Instruction *I) { 840 // Legalize the type. 841 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 842 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 843 "Invalid Opcode"); 844 845 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 846 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr); 847 848 bool IsAltivecType = ST->hasAltivec() && 849 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 850 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 851 bool IsVSXType = ST->hasVSX() && 852 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 853 bool IsQPXType = ST->hasQPX() && 854 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 855 856 // VSX has 32b/64b load instructions. Legalization can handle loading of 857 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 858 // PPCTargetLowering can't compute the cost appropriately. So here we 859 // explicitly check this case. 860 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 861 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 862 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 863 return 1; 864 865 // Aligned loads and stores are easy. 866 unsigned SrcBytes = LT.second.getStoreSize(); 867 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 868 return Cost; 869 870 // If we can use the permutation-based load sequence, then this is also 871 // relatively cheap (not counting loop-invariant instructions): one load plus 872 // one permute (the last load in a series has extra cost, but we're 873 // neglecting that here). Note that on the P7, we could do unaligned loads 874 // for Altivec types using the VSX instructions, but that's more expensive 875 // than using the permutation-based load sequence. On the P8, that's no 876 // longer true. 877 if (Opcode == Instruction::Load && 878 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 879 Alignment >= LT.second.getScalarType().getStoreSize()) 880 return Cost + LT.first; // Add the cost of the permutations. 881 882 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 883 // P7, unaligned vector loads are more expensive than the permutation-based 884 // load sequence, so that might be used instead, but regardless, the net cost 885 // is about the same (not counting loop-invariant instructions). 886 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 887 return Cost; 888 889 // Newer PPC supports unaligned memory access. 890 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 891 return Cost; 892 893 // PPC in general does not support unaligned loads and stores. They'll need 894 // to be decomposed based on the alignment factor. 895 896 // Add the cost of each scalar load or store. 897 assert(Alignment); 898 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 899 900 // For a vector type, there is also scalarization overhead (only for 901 // stores, loads are expanded using the vector-load + permutation sequence, 902 // which is much less expensive). 903 if (Src->isVectorTy() && Opcode == Instruction::Store) 904 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 905 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 906 907 return Cost; 908 } 909 910 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 911 unsigned Factor, 912 ArrayRef<unsigned> Indices, 913 unsigned Alignment, 914 unsigned AddressSpace, 915 bool UseMaskForCond, 916 bool UseMaskForGaps) { 917 if (UseMaskForCond || UseMaskForGaps) 918 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 919 Alignment, AddressSpace, 920 UseMaskForCond, UseMaskForGaps); 921 922 assert(isa<VectorType>(VecTy) && 923 "Expect a vector type for interleaved memory op"); 924 925 // Legalize the type. 926 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 927 928 // Firstly, the cost of load/store operation. 929 int Cost = 930 getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace); 931 932 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 933 // (at least in the sense that there need only be one non-loop-invariant 934 // instruction). For each result vector, we need one shuffle per incoming 935 // vector (except that the first shuffle can take two incoming vectors 936 // because it does not need to take itself). 937 Cost += Factor*(LT.first-1); 938 939 return Cost; 940 } 941 942 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 943 ArrayRef<Value *> Args, 944 FastMathFlags FMF, unsigned VF, 945 const Instruction *I) { 946 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 947 } 948 949 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 950 ArrayRef<Type *> Tys, 951 FastMathFlags FMF, 952 unsigned ScalarizationCostPassed, 953 const Instruction *I) { 954 if (ID == Intrinsic::bswap && ST->hasP9Vector()) 955 return TLI->getTypeLegalizationCost(DL, RetTy).first; 956 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 957 ScalarizationCostPassed, I); 958 } 959 960 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 961 LoopInfo *LI, DominatorTree *DT, 962 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 963 // Process nested loops first. 964 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 965 if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo)) 966 return false; // Stop search. 967 968 HardwareLoopInfo HWLoopInfo(L); 969 970 if (!HWLoopInfo.canAnalyze(*LI)) 971 return false; 972 973 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 974 return false; 975 976 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 977 return false; 978 979 *BI = HWLoopInfo.ExitBranch; 980 return true; 981 } 982 983 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 984 TargetTransformInfo::LSRCost &C2) { 985 // PowerPC default behaviour here is "instruction number 1st priority". 986 // If LsrNoInsnsCost is set, call default implementation. 987 if (!LsrNoInsnsCost) 988 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 989 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 990 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 991 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 992 else 993 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 994 } 995