xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 8aaabadeced32a1cd959a5b1524b9c927e82bcc0)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "ppctti"
21 
22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24 
25 // This is currently only used for the data prefetch pass which is only enabled
26 // for BG/Q by default.
27 static cl::opt<unsigned>
28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
29               cl::desc("The loop prefetch cache line size"));
30 
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33                 cl::desc("Enable using coldcc calling conv for cold "
34                          "internal functions"));
35 
36 static cl::opt<bool>
37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
38                cl::desc("Do not add instruction count to lsr cost model"));
39 
40 // The latency of mtctr is only justified if there are more than 4
41 // comparisons that will be removed as a result.
42 static cl::opt<unsigned>
43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
44                       cl::desc("Loops with a constant trip count smaller than "
45                                "this value will not use the count register."));
46 
47 //===----------------------------------------------------------------------===//
48 //
49 // PPC cost model.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 TargetTransformInfo::PopcntSupportKind
54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
55   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
56   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
57     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
58              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
59   return TTI::PSK_Software;
60 }
61 
62 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
63                               TTI::TargetCostKind CostKind) {
64   if (DisablePPCConstHoist)
65     return BaseT::getIntImmCost(Imm, Ty, CostKind);
66 
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   if (BitSize == 0)
71     return ~0U;
72 
73   if (Imm == 0)
74     return TTI::TCC_Free;
75 
76   if (Imm.getBitWidth() <= 64) {
77     if (isInt<16>(Imm.getSExtValue()))
78       return TTI::TCC_Basic;
79 
80     if (isInt<32>(Imm.getSExtValue())) {
81       // A constant that can be materialized using lis.
82       if ((Imm.getZExtValue() & 0xFFFF) == 0)
83         return TTI::TCC_Basic;
84 
85       return 2 * TTI::TCC_Basic;
86     }
87   }
88 
89   return 4 * TTI::TCC_Basic;
90 }
91 
92 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
93                                     const APInt &Imm, Type *Ty,
94                                     TTI::TargetCostKind CostKind) {
95   if (DisablePPCConstHoist)
96     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
97 
98   assert(Ty->isIntegerTy());
99 
100   unsigned BitSize = Ty->getPrimitiveSizeInBits();
101   if (BitSize == 0)
102     return ~0U;
103 
104   switch (IID) {
105   default:
106     return TTI::TCC_Free;
107   case Intrinsic::sadd_with_overflow:
108   case Intrinsic::uadd_with_overflow:
109   case Intrinsic::ssub_with_overflow:
110   case Intrinsic::usub_with_overflow:
111     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
112       return TTI::TCC_Free;
113     break;
114   case Intrinsic::experimental_stackmap:
115     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
116       return TTI::TCC_Free;
117     break;
118   case Intrinsic::experimental_patchpoint_void:
119   case Intrinsic::experimental_patchpoint_i64:
120     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
121       return TTI::TCC_Free;
122     break;
123   }
124   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
125 }
126 
127 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
128                                   const APInt &Imm, Type *Ty,
129                                   TTI::TargetCostKind CostKind) {
130   if (DisablePPCConstHoist)
131     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);
132 
133   assert(Ty->isIntegerTy());
134 
135   unsigned BitSize = Ty->getPrimitiveSizeInBits();
136   if (BitSize == 0)
137     return ~0U;
138 
139   unsigned ImmIdx = ~0U;
140   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
141        ZeroFree = false;
142   switch (Opcode) {
143   default:
144     return TTI::TCC_Free;
145   case Instruction::GetElementPtr:
146     // Always hoist the base address of a GetElementPtr. This prevents the
147     // creation of new constants for every base constant that gets constant
148     // folded with the offset.
149     if (Idx == 0)
150       return 2 * TTI::TCC_Basic;
151     return TTI::TCC_Free;
152   case Instruction::And:
153     RunFree = true; // (for the rotate-and-mask instructions)
154     LLVM_FALLTHROUGH;
155   case Instruction::Add:
156   case Instruction::Or:
157   case Instruction::Xor:
158     ShiftedFree = true;
159     LLVM_FALLTHROUGH;
160   case Instruction::Sub:
161   case Instruction::Mul:
162   case Instruction::Shl:
163   case Instruction::LShr:
164   case Instruction::AShr:
165     ImmIdx = 1;
166     break;
167   case Instruction::ICmp:
168     UnsignedFree = true;
169     ImmIdx = 1;
170     // Zero comparisons can use record-form instructions.
171     LLVM_FALLTHROUGH;
172   case Instruction::Select:
173     ZeroFree = true;
174     break;
175   case Instruction::PHI:
176   case Instruction::Call:
177   case Instruction::Ret:
178   case Instruction::Load:
179   case Instruction::Store:
180     break;
181   }
182 
183   if (ZeroFree && Imm == 0)
184     return TTI::TCC_Free;
185 
186   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
187     if (isInt<16>(Imm.getSExtValue()))
188       return TTI::TCC_Free;
189 
190     if (RunFree) {
191       if (Imm.getBitWidth() <= 32 &&
192           (isShiftedMask_32(Imm.getZExtValue()) ||
193            isShiftedMask_32(~Imm.getZExtValue())))
194         return TTI::TCC_Free;
195 
196       if (ST->isPPC64() &&
197           (isShiftedMask_64(Imm.getZExtValue()) ||
198            isShiftedMask_64(~Imm.getZExtValue())))
199         return TTI::TCC_Free;
200     }
201 
202     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
203       return TTI::TCC_Free;
204 
205     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
206       return TTI::TCC_Free;
207   }
208 
209   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
210 }
211 
212 unsigned
213 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
214                         TTI::TargetCostKind CostKind) {
215   // We already implement getCastInstrCost and perform the vector adjustment there.
216   if (!isa<CastInst>(U) && U->getType()->isVectorTy()) {
217     // Instructions that need to be split should cost more.
218     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
219     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
220   }
221 
222   return BaseT::getUserCost(U, Operands, CostKind);
223 }
224 
225 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
226                              SmallPtrSetImpl<const Value *> &Visited) {
227   const PPCTargetMachine &TM = ST->getTargetMachine();
228 
229   // Loop through the inline asm constraints and look for something that
230   // clobbers ctr.
231   auto asmClobbersCTR = [](InlineAsm *IA) {
232     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
233     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
234       InlineAsm::ConstraintInfo &C = CIV[i];
235       if (C.Type != InlineAsm::isInput)
236         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
237           if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
238             return true;
239     }
240     return false;
241   };
242 
243   // Determining the address of a TLS variable results in a function call in
244   // certain TLS models.
245   std::function<bool(const Value *)> memAddrUsesCTR =
246       [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool {
247     // No need to traverse again if we already checked this operand.
248     if (!Visited.insert(MemAddr).second)
249       return false;
250     const auto *GV = dyn_cast<GlobalValue>(MemAddr);
251     if (!GV) {
252       // Recurse to check for constants that refer to TLS global variables.
253       if (const auto *CV = dyn_cast<Constant>(MemAddr))
254         for (const auto &CO : CV->operands())
255           if (memAddrUsesCTR(CO))
256             return true;
257 
258       return false;
259     }
260 
261     if (!GV->isThreadLocal())
262       return false;
263     TLSModel::Model Model = TM.getTLSModel(GV);
264     return Model == TLSModel::GeneralDynamic ||
265       Model == TLSModel::LocalDynamic;
266   };
267 
268   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
269     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
270       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
271 
272     return false;
273   };
274 
275   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
276        J != JE; ++J) {
277     if (CallInst *CI = dyn_cast<CallInst>(J)) {
278       // Inline ASM is okay, unless it clobbers the ctr register.
279       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
280         if (asmClobbersCTR(IA))
281           return true;
282         continue;
283       }
284 
285       if (Function *F = CI->getCalledFunction()) {
286         // Most intrinsics don't become function calls, but some might.
287         // sin, cos, exp and log are always calls.
288         unsigned Opcode = 0;
289         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
290           switch (F->getIntrinsicID()) {
291           default: continue;
292           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
293           // we're definitely using CTR.
294           case Intrinsic::set_loop_iterations:
295           case Intrinsic::loop_decrement:
296             return true;
297 
298           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
299           // because, although it does clobber the counter register, the
300           // control can't then return to inside the loop unless there is also
301           // an eh_sjlj_setjmp.
302           case Intrinsic::eh_sjlj_setjmp:
303 
304           case Intrinsic::memcpy:
305           case Intrinsic::memmove:
306           case Intrinsic::memset:
307           case Intrinsic::powi:
308           case Intrinsic::log:
309           case Intrinsic::log2:
310           case Intrinsic::log10:
311           case Intrinsic::exp:
312           case Intrinsic::exp2:
313           case Intrinsic::pow:
314           case Intrinsic::sin:
315           case Intrinsic::cos:
316             return true;
317           case Intrinsic::copysign:
318             if (CI->getArgOperand(0)->getType()->getScalarType()->
319                 isPPC_FP128Ty())
320               return true;
321             else
322               continue; // ISD::FCOPYSIGN is never a library call.
323           case Intrinsic::fma:                Opcode = ISD::FMA;        break;
324           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
325           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
326           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
327           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
328           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
329           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
330           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
331           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
332           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
333           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
334           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
335           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
336           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
337           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
338           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
339           }
340         }
341 
342         // PowerPC does not use [US]DIVREM or other library calls for
343         // operations on regular types which are not otherwise library calls
344         // (i.e. soft float or atomics). If adapting for targets that do,
345         // additional care is required here.
346 
347         LibFunc Func;
348         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
349             LibInfo->getLibFunc(F->getName(), Func) &&
350             LibInfo->hasOptimizedCodeGen(Func)) {
351           // Non-read-only functions are never treated as intrinsics.
352           if (!CI->onlyReadsMemory())
353             return true;
354 
355           // Conversion happens only for FP calls.
356           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
357             return true;
358 
359           switch (Func) {
360           default: return true;
361           case LibFunc_copysign:
362           case LibFunc_copysignf:
363             continue; // ISD::FCOPYSIGN is never a library call.
364           case LibFunc_copysignl:
365             return true;
366           case LibFunc_fabs:
367           case LibFunc_fabsf:
368           case LibFunc_fabsl:
369             continue; // ISD::FABS is never a library call.
370           case LibFunc_sqrt:
371           case LibFunc_sqrtf:
372           case LibFunc_sqrtl:
373             Opcode = ISD::FSQRT; break;
374           case LibFunc_floor:
375           case LibFunc_floorf:
376           case LibFunc_floorl:
377             Opcode = ISD::FFLOOR; break;
378           case LibFunc_nearbyint:
379           case LibFunc_nearbyintf:
380           case LibFunc_nearbyintl:
381             Opcode = ISD::FNEARBYINT; break;
382           case LibFunc_ceil:
383           case LibFunc_ceilf:
384           case LibFunc_ceill:
385             Opcode = ISD::FCEIL; break;
386           case LibFunc_rint:
387           case LibFunc_rintf:
388           case LibFunc_rintl:
389             Opcode = ISD::FRINT; break;
390           case LibFunc_round:
391           case LibFunc_roundf:
392           case LibFunc_roundl:
393             Opcode = ISD::FROUND; break;
394           case LibFunc_trunc:
395           case LibFunc_truncf:
396           case LibFunc_truncl:
397             Opcode = ISD::FTRUNC; break;
398           case LibFunc_fmin:
399           case LibFunc_fminf:
400           case LibFunc_fminl:
401             Opcode = ISD::FMINNUM; break;
402           case LibFunc_fmax:
403           case LibFunc_fmaxf:
404           case LibFunc_fmaxl:
405             Opcode = ISD::FMAXNUM; break;
406           }
407         }
408 
409         if (Opcode) {
410           EVT EVTy =
411               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
412 
413           if (EVTy == MVT::Other)
414             return true;
415 
416           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
417             continue;
418           else if (EVTy.isVector() &&
419                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
420             continue;
421 
422           return true;
423         }
424       }
425 
426       return true;
427     } else if (isa<BinaryOperator>(J) &&
428                J->getType()->getScalarType()->isPPC_FP128Ty()) {
429       // Most operations on ppc_f128 values become calls.
430       return true;
431     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
432                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
433       CastInst *CI = cast<CastInst>(J);
434       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
435           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
436           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
437           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
438         return true;
439     } else if (isLargeIntegerTy(!TM.isPPC64(),
440                                 J->getType()->getScalarType()) &&
441                (J->getOpcode() == Instruction::UDiv ||
442                 J->getOpcode() == Instruction::SDiv ||
443                 J->getOpcode() == Instruction::URem ||
444                 J->getOpcode() == Instruction::SRem)) {
445       return true;
446     } else if (!TM.isPPC64() &&
447                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
448                (J->getOpcode() == Instruction::Shl ||
449                 J->getOpcode() == Instruction::AShr ||
450                 J->getOpcode() == Instruction::LShr)) {
451       // Only on PPC32, for 128-bit integers (specifically not 64-bit
452       // integers), these might be runtime calls.
453       return true;
454     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
455       // On PowerPC, indirect jumps use the counter register.
456       return true;
457     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
458       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
459         return true;
460     }
461 
462     // FREM is always a call.
463     if (J->getOpcode() == Instruction::FRem)
464       return true;
465 
466     if (ST->useSoftFloat()) {
467       switch(J->getOpcode()) {
468       case Instruction::FAdd:
469       case Instruction::FSub:
470       case Instruction::FMul:
471       case Instruction::FDiv:
472       case Instruction::FPTrunc:
473       case Instruction::FPExt:
474       case Instruction::FPToUI:
475       case Instruction::FPToSI:
476       case Instruction::UIToFP:
477       case Instruction::SIToFP:
478       case Instruction::FCmp:
479         return true;
480       }
481     }
482 
483     for (Value *Operand : J->operands())
484       if (memAddrUsesCTR(Operand))
485         return true;
486   }
487 
488   return false;
489 }
490 
491 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
492                                           AssumptionCache &AC,
493                                           TargetLibraryInfo *LibInfo,
494                                           HardwareLoopInfo &HWLoopInfo) {
495   const PPCTargetMachine &TM = ST->getTargetMachine();
496   TargetSchedModel SchedModel;
497   SchedModel.init(ST);
498 
499   // Do not convert small short loops to CTR loop.
500   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
501   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
502     SmallPtrSet<const Value *, 32> EphValues;
503     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
504     CodeMetrics Metrics;
505     for (BasicBlock *BB : L->blocks())
506       Metrics.analyzeBasicBlock(BB, *this, EphValues);
507     // 6 is an approximate latency for the mtctr instruction.
508     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
509       return false;
510   }
511 
512   // We don't want to spill/restore the counter register, and so we don't
513   // want to use the counter register if the loop contains calls.
514   SmallPtrSet<const Value *, 4> Visited;
515   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
516        I != IE; ++I)
517     if (mightUseCTR(*I, LibInfo, Visited))
518       return false;
519 
520   SmallVector<BasicBlock*, 4> ExitingBlocks;
521   L->getExitingBlocks(ExitingBlocks);
522 
523   // If there is an exit edge known to be frequently taken,
524   // we should not transform this loop.
525   for (auto &BB : ExitingBlocks) {
526     Instruction *TI = BB->getTerminator();
527     if (!TI) continue;
528 
529     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
530       uint64_t TrueWeight = 0, FalseWeight = 0;
531       if (!BI->isConditional() ||
532           !BI->extractProfMetadata(TrueWeight, FalseWeight))
533         continue;
534 
535       // If the exit path is more frequent than the loop path,
536       // we return here without further analysis for this loop.
537       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
538       if (( TrueIsExit && FalseWeight < TrueWeight) ||
539           (!TrueIsExit && FalseWeight > TrueWeight))
540         return false;
541     }
542   }
543 
544   LLVMContext &C = L->getHeader()->getContext();
545   HWLoopInfo.CountType = TM.isPPC64() ?
546     Type::getInt64Ty(C) : Type::getInt32Ty(C);
547   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
548   return true;
549 }
550 
551 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
552                                          TTI::UnrollingPreferences &UP) {
553   if (ST->getCPUDirective() == PPC::DIR_A2) {
554     // The A2 is in-order with a deep pipeline, and concatenation unrolling
555     // helps expose latency-hiding opportunities to the instruction scheduler.
556     UP.Partial = UP.Runtime = true;
557 
558     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
559     // often outweigh the cost of a division to compute the trip count.
560     UP.AllowExpensiveTripCount = true;
561   }
562 
563   BaseT::getUnrollingPreferences(L, SE, UP);
564 }
565 
566 // This function returns true to allow using coldcc calling convention.
567 // Returning true results in coldcc being used for functions which are cold at
568 // all call sites when the callers of the functions are not calling any other
569 // non coldcc functions.
570 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
571   return EnablePPCColdCC;
572 }
573 
574 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
575   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
576   // on combining the loads generated for consecutive accesses, and failure to
577   // do so is particularly expensive. This makes it much more likely (compared
578   // to only using concatenation unrolling).
579   if (ST->getCPUDirective() == PPC::DIR_A2)
580     return true;
581 
582   return LoopHasReductions;
583 }
584 
585 PPCTTIImpl::TTI::MemCmpExpansionOptions
586 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
587   TTI::MemCmpExpansionOptions Options;
588   Options.LoadSizes = {8, 4, 2, 1};
589   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
590   return Options;
591 }
592 
593 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
594   return true;
595 }
596 
597 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
598   assert(ClassID == GPRRC || ClassID == FPRRC ||
599          ClassID == VRRC || ClassID == VSXRC);
600   if (ST->hasVSX()) {
601     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
602     return ClassID == VSXRC ? 64 : 32;
603   }
604   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
605   return 32;
606 }
607 
608 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
609   if (Vector)
610     return ST->hasVSX() ? VSXRC : VRRC;
611   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
612                   Ty->getScalarType()->isDoubleTy()))
613     return ST->hasVSX() ? VSXRC : FPRRC;
614   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
615                   Ty->getScalarType()->isPPC_FP128Ty()))
616     return VRRC;
617   else if (Ty && Ty->getScalarType()->isHalfTy())
618     return VSXRC;
619   else
620     return GPRRC;
621 }
622 
623 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
624 
625   switch (ClassID) {
626     default:
627       llvm_unreachable("unknown register class");
628       return "PPC::unknown register class";
629     case GPRRC:       return "PPC::GPRRC";
630     case FPRRC:       return "PPC::FPRRC";
631     case VRRC:        return "PPC::VRRC";
632     case VSXRC:       return "PPC::VSXRC";
633   }
634 }
635 
636 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
637   if (Vector) {
638     if (ST->hasQPX()) return 256;
639     if (ST->hasAltivec()) return 128;
640     return 0;
641   }
642 
643   if (ST->isPPC64())
644     return 64;
645   return 32;
646 
647 }
648 
649 unsigned PPCTTIImpl::getCacheLineSize() const {
650   // Check first if the user specified a custom line size.
651   if (CacheLineSize.getNumOccurrences() > 0)
652     return CacheLineSize;
653 
654   // On P7, P8 or P9 we have a cache line size of 128.
655   unsigned Directive = ST->getCPUDirective();
656   // Assume that Future CPU has the same cache line size as the others.
657   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
658       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
659     return 128;
660 
661   // On other processors return a default of 64 bytes.
662   return 64;
663 }
664 
665 unsigned PPCTTIImpl::getPrefetchDistance() const {
666   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
667   // default, only on the BG/Q).
668   return 300;
669 }
670 
671 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
672   unsigned Directive = ST->getCPUDirective();
673   // The 440 has no SIMD support, but floating-point instructions
674   // have a 5-cycle latency, so unroll by 5x for latency hiding.
675   if (Directive == PPC::DIR_440)
676     return 5;
677 
678   // The A2 has no SIMD support, but floating-point instructions
679   // have a 6-cycle latency, so unroll by 6x for latency hiding.
680   if (Directive == PPC::DIR_A2)
681     return 6;
682 
683   // FIXME: For lack of any better information, do no harm...
684   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
685     return 1;
686 
687   // For P7 and P8, floating-point instructions have a 6-cycle latency and
688   // there are two execution units, so unroll by 12x for latency hiding.
689   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
690   // Assume that future is the same as the others.
691   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
692       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
693     return 12;
694 
695   // For most things, modern systems have two execution units (and
696   // out-of-order execution).
697   return 2;
698 }
699 
700 // Adjust the cost of vector instructions on targets which there is overlap
701 // between the vector and scalar units, thereby reducing the overall throughput
702 // of vector code wrt. scalar code.
703 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
704                                      Type *Ty2) {
705   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
706     return Cost;
707 
708   std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
709   // If type legalization involves splitting the vector, we don't want to
710   // double the cost at every step - only the last step.
711   if (LT1.first != 1 || !LT1.second.isVector())
712     return Cost;
713 
714   int ISD = TLI->InstructionOpcodeToISD(Opcode);
715   if (TLI->isOperationExpand(ISD, LT1.second))
716     return Cost;
717 
718   if (Ty2) {
719     std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
720     if (LT2.first != 1 || !LT2.second.isVector())
721       return Cost;
722   }
723 
724   return Cost * 2;
725 }
726 
727 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
728                                        TTI::TargetCostKind CostKind,
729                                        TTI::OperandValueKind Op1Info,
730                                        TTI::OperandValueKind Op2Info,
731                                        TTI::OperandValueProperties Opd1PropInfo,
732                                        TTI::OperandValueProperties Opd2PropInfo,
733                                        ArrayRef<const Value *> Args,
734                                        const Instruction *CxtI) {
735   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
736 
737   // Fallback to the default implementation.
738   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
739                                            Op2Info,
740                                            Opd1PropInfo, Opd2PropInfo);
741   return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
742 }
743 
744 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
745                                Type *SubTp) {
746   // Legalize the type.
747   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
748 
749   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
750   // (at least in the sense that there need only be one non-loop-invariant
751   // instruction). We need one such shuffle instruction for each actual
752   // register (this is not true for arbitrary shuffles, but is true for the
753   // structured types of shuffles covered by TTI::ShuffleKind).
754   return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
755                               nullptr);
756 }
757 
758 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
759                                  TTI::TargetCostKind CostKind,
760                                  const Instruction *I) {
761   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
762 
763   int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
764   Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src);
765   // TODO: Allow non-throughput costs that aren't binary.
766   if (CostKind != TTI::TCK_RecipThroughput)
767     return Cost == 0 ? 0 : 1;
768   return Cost;
769 }
770 
771 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
772                                    TTI::TargetCostKind CostKind,
773                                    const Instruction *I) {
774   int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
775   return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
776 }
777 
778 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
779   assert(Val->isVectorTy() && "This must be a vector type");
780 
781   int ISD = TLI->InstructionOpcodeToISD(Opcode);
782   assert(ISD && "Invalid opcode");
783 
784   int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
785   Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
786 
787   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
788     // Double-precision scalars are already located in index #0 (or #1 if LE).
789     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
790         Index == (ST->isLittleEndian() ? 1 : 0))
791       return 0;
792 
793     return Cost;
794 
795   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
796     // Floating point scalars are already located in index #0.
797     if (Index == 0)
798       return 0;
799 
800     return Cost;
801 
802   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
803     if (ST->hasP9Altivec()) {
804       if (ISD == ISD::INSERT_VECTOR_ELT)
805         // A move-to VSR and a permute/insert.  Assume vector operation cost
806         // for both (cost will be 2x on P9).
807         return vectorCostAdjustment(2, Opcode, Val, nullptr);
808 
809       // It's an extract.  Maybe we can do a cheap move-from VSR.
810       unsigned EltSize = Val->getScalarSizeInBits();
811       if (EltSize == 64) {
812         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
813         if (Index == MfvsrdIndex)
814           return 1;
815       } else if (EltSize == 32) {
816         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
817         if (Index == MfvsrwzIndex)
818           return 1;
819       }
820 
821       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
822       // The cost of the load constant for a vector extract is disregarded
823       // (invariant, easily schedulable).
824       return vectorCostAdjustment(1, Opcode, Val, nullptr);
825 
826     } else if (ST->hasDirectMove())
827       // Assume permute has standard cost.
828       // Assume move-to/move-from VSR have 2x standard cost.
829       return 3;
830   }
831 
832   // Estimated cost of a load-hit-store delay.  This was obtained
833   // experimentally as a minimum needed to prevent unprofitable
834   // vectorization for the paq8p benchmark.  It may need to be
835   // raised further if other unprofitable cases remain.
836   unsigned LHSPenalty = 2;
837   if (ISD == ISD::INSERT_VECTOR_ELT)
838     LHSPenalty += 7;
839 
840   // Vector element insert/extract with Altivec is very expensive,
841   // because they require store and reload with the attendant
842   // processor stall for load-hit-store.  Until VSX is available,
843   // these need to be estimated as very costly.
844   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
845       ISD == ISD::INSERT_VECTOR_ELT)
846     return LHSPenalty + Cost;
847 
848   return Cost;
849 }
850 
851 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
852                                 MaybeAlign Alignment, unsigned AddressSpace,
853                                 TTI::TargetCostKind CostKind,
854                                 const Instruction *I) {
855   // Legalize the type.
856   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
857   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
858          "Invalid Opcode");
859 
860   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
861                                     CostKind);
862   Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
863 
864   bool IsAltivecType = ST->hasAltivec() &&
865                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
866                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
867   bool IsVSXType = ST->hasVSX() &&
868                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
869   bool IsQPXType = ST->hasQPX() &&
870                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
871 
872   // VSX has 32b/64b load instructions. Legalization can handle loading of
873   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
874   // PPCTargetLowering can't compute the cost appropriately. So here we
875   // explicitly check this case.
876   unsigned MemBytes = Src->getPrimitiveSizeInBits();
877   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
878       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
879     return 1;
880 
881   // Aligned loads and stores are easy.
882   unsigned SrcBytes = LT.second.getStoreSize();
883   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
884     return Cost;
885 
886   // If we can use the permutation-based load sequence, then this is also
887   // relatively cheap (not counting loop-invariant instructions): one load plus
888   // one permute (the last load in a series has extra cost, but we're
889   // neglecting that here). Note that on the P7, we could do unaligned loads
890   // for Altivec types using the VSX instructions, but that's more expensive
891   // than using the permutation-based load sequence. On the P8, that's no
892   // longer true.
893   if (Opcode == Instruction::Load &&
894       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
895       *Alignment >= LT.second.getScalarType().getStoreSize())
896     return Cost + LT.first; // Add the cost of the permutations.
897 
898   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
899   // P7, unaligned vector loads are more expensive than the permutation-based
900   // load sequence, so that might be used instead, but regardless, the net cost
901   // is about the same (not counting loop-invariant instructions).
902   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
903     return Cost;
904 
905   // Newer PPC supports unaligned memory access.
906   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
907     return Cost;
908 
909   // PPC in general does not support unaligned loads and stores. They'll need
910   // to be decomposed based on the alignment factor.
911 
912   // Add the cost of each scalar load or store.
913   assert(Alignment);
914   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
915 
916   // For a vector type, there is also scalarization overhead (only for
917   // stores, loads are expanded using the vector-load + permutation sequence,
918   // which is much less expensive).
919   if (Src->isVectorTy() && Opcode == Instruction::Store)
920     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
921          ++i)
922       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
923 
924   return Cost;
925 }
926 
927 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
928                                            unsigned Factor,
929                                            ArrayRef<unsigned> Indices,
930                                            unsigned Alignment,
931                                            unsigned AddressSpace,
932                                            TTI::TargetCostKind CostKind,
933                                            bool UseMaskForCond,
934                                            bool UseMaskForGaps) {
935   if (UseMaskForCond || UseMaskForGaps)
936     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
937                                              Alignment, AddressSpace, CostKind,
938                                              UseMaskForCond, UseMaskForGaps);
939 
940   assert(isa<VectorType>(VecTy) &&
941          "Expect a vector type for interleaved memory op");
942 
943   // Legalize the type.
944   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
945 
946   // Firstly, the cost of load/store operation.
947   int Cost =
948       getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
949                       CostKind);
950 
951   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
952   // (at least in the sense that there need only be one non-loop-invariant
953   // instruction). For each result vector, we need one shuffle per incoming
954   // vector (except that the first shuffle can take two incoming vectors
955   // because it does not need to take itself).
956   Cost += Factor*(LT.first-1);
957 
958   return Cost;
959 }
960 
961 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
962                                            TTI::TargetCostKind CostKind) {
963   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
964 }
965 
966 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
967                             LoopInfo *LI, DominatorTree *DT,
968                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
969   // Process nested loops first.
970   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
971     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
972       return false; // Stop search.
973 
974   HardwareLoopInfo HWLoopInfo(L);
975 
976   if (!HWLoopInfo.canAnalyze(*LI))
977     return false;
978 
979   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
980     return false;
981 
982   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
983     return false;
984 
985   *BI = HWLoopInfo.ExitBranch;
986   return true;
987 }
988 
989 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
990                                TargetTransformInfo::LSRCost &C2) {
991   // PowerPC default behaviour here is "instruction number 1st priority".
992   // If LsrNoInsnsCost is set, call default implementation.
993   if (!LsrNoInsnsCost)
994     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
995                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
996            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
997                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
998   else
999     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1000 }
1001