xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 81b7f115fb272ef6fd6967f4121b64814b4bcf10)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/IR/ProfDataUtils.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/KnownBits.h"
22 #include "llvm/Transforms/InstCombine/InstCombiner.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include <optional>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "ppctti"
29 
30 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
31 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);
32 
33 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
34 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
35 
36 static cl::opt<bool>
37 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
38                 cl::desc("Enable using coldcc calling conv for cold "
39                          "internal functions"));
40 
41 static cl::opt<bool>
42 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
43                cl::desc("Do not add instruction count to lsr cost model"));
44 
45 // The latency of mtctr is only justified if there are more than 4
46 // comparisons that will be removed as a result.
47 static cl::opt<unsigned>
48 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
49                       cl::desc("Loops with a constant trip count smaller than "
50                                "this value will not use the count register."));
51 
52 //===----------------------------------------------------------------------===//
53 //
54 // PPC cost model.
55 //
56 //===----------------------------------------------------------------------===//
57 
58 TargetTransformInfo::PopcntSupportKind
59 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
60   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
61   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
62     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
63              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
64   return TTI::PSK_Software;
65 }
66 
67 std::optional<Instruction *>
68 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
69   Intrinsic::ID IID = II.getIntrinsicID();
70   switch (IID) {
71   default:
72     break;
73   case Intrinsic::ppc_altivec_lvx:
74   case Intrinsic::ppc_altivec_lvxl:
75     // Turn PPC lvx -> load if the pointer is known aligned.
76     if (getOrEnforceKnownAlignment(
77             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
78             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
79       Value *Ptr = II.getArgOperand(0);
80       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
81     }
82     break;
83   case Intrinsic::ppc_vsx_lxvw4x:
84   case Intrinsic::ppc_vsx_lxvd2x: {
85     // Turn PPC VSX loads into normal loads.
86     Value *Ptr = II.getArgOperand(0);
87     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
88   }
89   case Intrinsic::ppc_altivec_stvx:
90   case Intrinsic::ppc_altivec_stvxl:
91     // Turn stvx -> store if the pointer is known aligned.
92     if (getOrEnforceKnownAlignment(
93             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
94             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
95       Value *Ptr = II.getArgOperand(1);
96       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
97     }
98     break;
99   case Intrinsic::ppc_vsx_stxvw4x:
100   case Intrinsic::ppc_vsx_stxvd2x: {
101     // Turn PPC VSX stores into normal stores.
102     Value *Ptr = II.getArgOperand(1);
103     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
104   }
105   case Intrinsic::ppc_altivec_vperm:
106     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
107     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
108     // a vectorshuffle for little endian, we must undo the transformation
109     // performed on vec_perm in altivec.h.  That is, we must complement
110     // the permutation mask with respect to 31 and reverse the order of
111     // V1 and V2.
112     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
113       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
114              "Bad type for intrinsic!");
115 
116       // Check that all of the elements are integer constants or undefs.
117       bool AllEltsOk = true;
118       for (unsigned i = 0; i != 16; ++i) {
119         Constant *Elt = Mask->getAggregateElement(i);
120         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
121           AllEltsOk = false;
122           break;
123         }
124       }
125 
126       if (AllEltsOk) {
127         // Cast the input vectors to byte vectors.
128         Value *Op0 =
129             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
130         Value *Op1 =
131             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
132         Value *Result = UndefValue::get(Op0->getType());
133 
134         // Only extract each element once.
135         Value *ExtractedElts[32];
136         memset(ExtractedElts, 0, sizeof(ExtractedElts));
137 
138         for (unsigned i = 0; i != 16; ++i) {
139           if (isa<UndefValue>(Mask->getAggregateElement(i)))
140             continue;
141           unsigned Idx =
142               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
143           Idx &= 31; // Match the hardware behavior.
144           if (DL.isLittleEndian())
145             Idx = 31 - Idx;
146 
147           if (!ExtractedElts[Idx]) {
148             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
149             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
150             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
151                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
152           }
153 
154           // Insert this value into the result vector.
155           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
156                                                   IC.Builder.getInt32(i));
157         }
158         return CastInst::Create(Instruction::BitCast, Result, II.getType());
159       }
160     }
161     break;
162   }
163   return std::nullopt;
164 }
165 
166 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
167                                           TTI::TargetCostKind CostKind) {
168   if (DisablePPCConstHoist)
169     return BaseT::getIntImmCost(Imm, Ty, CostKind);
170 
171   assert(Ty->isIntegerTy());
172 
173   unsigned BitSize = Ty->getPrimitiveSizeInBits();
174   if (BitSize == 0)
175     return ~0U;
176 
177   if (Imm == 0)
178     return TTI::TCC_Free;
179 
180   if (Imm.getBitWidth() <= 64) {
181     if (isInt<16>(Imm.getSExtValue()))
182       return TTI::TCC_Basic;
183 
184     if (isInt<32>(Imm.getSExtValue())) {
185       // A constant that can be materialized using lis.
186       if ((Imm.getZExtValue() & 0xFFFF) == 0)
187         return TTI::TCC_Basic;
188 
189       return 2 * TTI::TCC_Basic;
190     }
191   }
192 
193   return 4 * TTI::TCC_Basic;
194 }
195 
196 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
197                                                 const APInt &Imm, Type *Ty,
198                                                 TTI::TargetCostKind CostKind) {
199   if (DisablePPCConstHoist)
200     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
201 
202   assert(Ty->isIntegerTy());
203 
204   unsigned BitSize = Ty->getPrimitiveSizeInBits();
205   if (BitSize == 0)
206     return ~0U;
207 
208   switch (IID) {
209   default:
210     return TTI::TCC_Free;
211   case Intrinsic::sadd_with_overflow:
212   case Intrinsic::uadd_with_overflow:
213   case Intrinsic::ssub_with_overflow:
214   case Intrinsic::usub_with_overflow:
215     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
216       return TTI::TCC_Free;
217     break;
218   case Intrinsic::experimental_stackmap:
219     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
220       return TTI::TCC_Free;
221     break;
222   case Intrinsic::experimental_patchpoint_void:
223   case Intrinsic::experimental_patchpoint_i64:
224     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
225       return TTI::TCC_Free;
226     break;
227   }
228   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
229 }
230 
231 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
232                                               const APInt &Imm, Type *Ty,
233                                               TTI::TargetCostKind CostKind,
234                                               Instruction *Inst) {
235   if (DisablePPCConstHoist)
236     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
237 
238   assert(Ty->isIntegerTy());
239 
240   unsigned BitSize = Ty->getPrimitiveSizeInBits();
241   if (BitSize == 0)
242     return ~0U;
243 
244   unsigned ImmIdx = ~0U;
245   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
246        ZeroFree = false;
247   switch (Opcode) {
248   default:
249     return TTI::TCC_Free;
250   case Instruction::GetElementPtr:
251     // Always hoist the base address of a GetElementPtr. This prevents the
252     // creation of new constants for every base constant that gets constant
253     // folded with the offset.
254     if (Idx == 0)
255       return 2 * TTI::TCC_Basic;
256     return TTI::TCC_Free;
257   case Instruction::And:
258     RunFree = true; // (for the rotate-and-mask instructions)
259     [[fallthrough]];
260   case Instruction::Add:
261   case Instruction::Or:
262   case Instruction::Xor:
263     ShiftedFree = true;
264     [[fallthrough]];
265   case Instruction::Sub:
266   case Instruction::Mul:
267   case Instruction::Shl:
268   case Instruction::LShr:
269   case Instruction::AShr:
270     ImmIdx = 1;
271     break;
272   case Instruction::ICmp:
273     UnsignedFree = true;
274     ImmIdx = 1;
275     // Zero comparisons can use record-form instructions.
276     [[fallthrough]];
277   case Instruction::Select:
278     ZeroFree = true;
279     break;
280   case Instruction::PHI:
281   case Instruction::Call:
282   case Instruction::Ret:
283   case Instruction::Load:
284   case Instruction::Store:
285     break;
286   }
287 
288   if (ZeroFree && Imm == 0)
289     return TTI::TCC_Free;
290 
291   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
292     if (isInt<16>(Imm.getSExtValue()))
293       return TTI::TCC_Free;
294 
295     if (RunFree) {
296       if (Imm.getBitWidth() <= 32 &&
297           (isShiftedMask_32(Imm.getZExtValue()) ||
298            isShiftedMask_32(~Imm.getZExtValue())))
299         return TTI::TCC_Free;
300 
301       if (ST->isPPC64() &&
302           (isShiftedMask_64(Imm.getZExtValue()) ||
303            isShiftedMask_64(~Imm.getZExtValue())))
304         return TTI::TCC_Free;
305     }
306 
307     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
308       return TTI::TCC_Free;
309 
310     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
311       return TTI::TCC_Free;
312   }
313 
314   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
315 }
316 
317 // Check if the current Type is an MMA vector type. Valid MMA types are
318 // v256i1 and v512i1 respectively.
319 static bool isMMAType(Type *Ty) {
320   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
321          (Ty->getPrimitiveSizeInBits() > 128);
322 }
323 
324 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
325                                                ArrayRef<const Value *> Operands,
326                                                TTI::TargetCostKind CostKind) {
327   // We already implement getCastInstrCost and getMemoryOpCost where we perform
328   // the vector adjustment there.
329   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
330     return BaseT::getInstructionCost(U, Operands, CostKind);
331 
332   if (U->getType()->isVectorTy()) {
333     // Instructions that need to be split should cost more.
334     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
335     return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
336   }
337 
338   return BaseT::getInstructionCost(U, Operands, CostKind);
339 }
340 
341 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
342                                           AssumptionCache &AC,
343                                           TargetLibraryInfo *LibInfo,
344                                           HardwareLoopInfo &HWLoopInfo) {
345   const PPCTargetMachine &TM = ST->getTargetMachine();
346   TargetSchedModel SchedModel;
347   SchedModel.init(ST);
348 
349   // Do not convert small short loops to CTR loop.
350   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
351   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
352     SmallPtrSet<const Value *, 32> EphValues;
353     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
354     CodeMetrics Metrics;
355     for (BasicBlock *BB : L->blocks())
356       Metrics.analyzeBasicBlock(BB, *this, EphValues);
357     // 6 is an approximate latency for the mtctr instruction.
358     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
359       return false;
360   }
361 
362   // Check that there is no hardware loop related intrinsics in the loop.
363   for (auto *BB : L->getBlocks())
364     for (auto &I : *BB)
365       if (auto *Call = dyn_cast<IntrinsicInst>(&I))
366         if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
367             Call->getIntrinsicID() == Intrinsic::loop_decrement)
368           return false;
369 
370   SmallVector<BasicBlock*, 4> ExitingBlocks;
371   L->getExitingBlocks(ExitingBlocks);
372 
373   // If there is an exit edge known to be frequently taken,
374   // we should not transform this loop.
375   for (auto &BB : ExitingBlocks) {
376     Instruction *TI = BB->getTerminator();
377     if (!TI) continue;
378 
379     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
380       uint64_t TrueWeight = 0, FalseWeight = 0;
381       if (!BI->isConditional() ||
382           !extractBranchWeights(*BI, TrueWeight, FalseWeight))
383         continue;
384 
385       // If the exit path is more frequent than the loop path,
386       // we return here without further analysis for this loop.
387       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
388       if (( TrueIsExit && FalseWeight < TrueWeight) ||
389           (!TrueIsExit && FalseWeight > TrueWeight))
390         return false;
391     }
392   }
393 
394   LLVMContext &C = L->getHeader()->getContext();
395   HWLoopInfo.CountType = TM.isPPC64() ?
396     Type::getInt64Ty(C) : Type::getInt32Ty(C);
397   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
398   return true;
399 }
400 
401 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
402                                          TTI::UnrollingPreferences &UP,
403                                          OptimizationRemarkEmitter *ORE) {
404   if (ST->getCPUDirective() == PPC::DIR_A2) {
405     // The A2 is in-order with a deep pipeline, and concatenation unrolling
406     // helps expose latency-hiding opportunities to the instruction scheduler.
407     UP.Partial = UP.Runtime = true;
408 
409     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
410     // often outweigh the cost of a division to compute the trip count.
411     UP.AllowExpensiveTripCount = true;
412   }
413 
414   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
415 }
416 
417 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
418                                        TTI::PeelingPreferences &PP) {
419   BaseT::getPeelingPreferences(L, SE, PP);
420 }
421 // This function returns true to allow using coldcc calling convention.
422 // Returning true results in coldcc being used for functions which are cold at
423 // all call sites when the callers of the functions are not calling any other
424 // non coldcc functions.
425 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
426   return EnablePPCColdCC;
427 }
428 
429 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
430   // On the A2, always unroll aggressively.
431   if (ST->getCPUDirective() == PPC::DIR_A2)
432     return true;
433 
434   return LoopHasReductions;
435 }
436 
437 PPCTTIImpl::TTI::MemCmpExpansionOptions
438 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
439   TTI::MemCmpExpansionOptions Options;
440   Options.LoadSizes = {8, 4, 2, 1};
441   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
442   return Options;
443 }
444 
445 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
446   return true;
447 }
448 
449 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
450   assert(ClassID == GPRRC || ClassID == FPRRC ||
451          ClassID == VRRC || ClassID == VSXRC);
452   if (ST->hasVSX()) {
453     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
454     return ClassID == VSXRC ? 64 : 32;
455   }
456   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
457   return 32;
458 }
459 
460 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
461   if (Vector)
462     return ST->hasVSX() ? VSXRC : VRRC;
463   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
464                   Ty->getScalarType()->isDoubleTy()))
465     return ST->hasVSX() ? VSXRC : FPRRC;
466   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
467                   Ty->getScalarType()->isPPC_FP128Ty()))
468     return VRRC;
469   else if (Ty && Ty->getScalarType()->isHalfTy())
470     return VSXRC;
471   else
472     return GPRRC;
473 }
474 
475 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
476 
477   switch (ClassID) {
478     default:
479       llvm_unreachable("unknown register class");
480       return "PPC::unknown register class";
481     case GPRRC:       return "PPC::GPRRC";
482     case FPRRC:       return "PPC::FPRRC";
483     case VRRC:        return "PPC::VRRC";
484     case VSXRC:       return "PPC::VSXRC";
485   }
486 }
487 
488 TypeSize
489 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
490   switch (K) {
491   case TargetTransformInfo::RGK_Scalar:
492     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
493   case TargetTransformInfo::RGK_FixedWidthVector:
494     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
495   case TargetTransformInfo::RGK_ScalableVector:
496     return TypeSize::getScalable(0);
497   }
498 
499   llvm_unreachable("Unsupported register kind");
500 }
501 
502 unsigned PPCTTIImpl::getCacheLineSize() const {
503   // Starting with P7 we have a cache line size of 128.
504   unsigned Directive = ST->getCPUDirective();
505   // Assume that Future CPU has the same cache line size as the others.
506   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
507       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
508       Directive == PPC::DIR_PWR_FUTURE)
509     return 128;
510 
511   // On other processors return a default of 64 bytes.
512   return 64;
513 }
514 
515 unsigned PPCTTIImpl::getPrefetchDistance() const {
516   return 300;
517 }
518 
519 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
520   unsigned Directive = ST->getCPUDirective();
521   // The 440 has no SIMD support, but floating-point instructions
522   // have a 5-cycle latency, so unroll by 5x for latency hiding.
523   if (Directive == PPC::DIR_440)
524     return 5;
525 
526   // The A2 has no SIMD support, but floating-point instructions
527   // have a 6-cycle latency, so unroll by 6x for latency hiding.
528   if (Directive == PPC::DIR_A2)
529     return 6;
530 
531   // FIXME: For lack of any better information, do no harm...
532   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
533     return 1;
534 
535   // For P7 and P8, floating-point instructions have a 6-cycle latency and
536   // there are two execution units, so unroll by 12x for latency hiding.
537   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
538   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
539   // Assume that future is the same as the others.
540   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
541       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
542       Directive == PPC::DIR_PWR_FUTURE)
543     return 12;
544 
545   // For most things, modern systems have two execution units (and
546   // out-of-order execution).
547   return 2;
548 }
549 
550 // Returns a cost adjustment factor to adjust the cost of vector instructions
551 // on targets which there is overlap between the vector and scalar units,
552 // thereby reducing the overall throughput of vector code wrt. scalar code.
553 // An invalid instruction cost is returned if the type is an MMA vector type.
554 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
555                                                        Type *Ty1, Type *Ty2) {
556   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
557   // instruction cost is returned. This is to signify to other cost computing
558   // functions to return the maximum instruction cost in order to prevent any
559   // opportunities for the optimizer to produce MMA types within the IR.
560   if (isMMAType(Ty1))
561     return InstructionCost::getInvalid();
562 
563   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
564     return InstructionCost(1);
565 
566   std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
567   // If type legalization involves splitting the vector, we don't want to
568   // double the cost at every step - only the last step.
569   if (LT1.first != 1 || !LT1.second.isVector())
570     return InstructionCost(1);
571 
572   int ISD = TLI->InstructionOpcodeToISD(Opcode);
573   if (TLI->isOperationExpand(ISD, LT1.second))
574     return InstructionCost(1);
575 
576   if (Ty2) {
577     std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
578     if (LT2.first != 1 || !LT2.second.isVector())
579       return InstructionCost(1);
580   }
581 
582   return InstructionCost(2);
583 }
584 
585 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
586     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
587     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
588     ArrayRef<const Value *> Args,
589     const Instruction *CxtI) {
590   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
591 
592   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
593   if (!CostFactor.isValid())
594     return InstructionCost::getMax();
595 
596   // TODO: Handle more cost kinds.
597   if (CostKind != TTI::TCK_RecipThroughput)
598     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
599                                          Op2Info, Args, CxtI);
600 
601   // Fallback to the default implementation.
602   InstructionCost Cost = BaseT::getArithmeticInstrCost(
603       Opcode, Ty, CostKind, Op1Info, Op2Info);
604   return Cost * CostFactor;
605 }
606 
607 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
608                                            ArrayRef<int> Mask,
609                                            TTI::TargetCostKind CostKind,
610                                            int Index, Type *SubTp,
611                                            ArrayRef<const Value *> Args) {
612 
613   InstructionCost CostFactor =
614       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
615   if (!CostFactor.isValid())
616     return InstructionCost::getMax();
617 
618   // Legalize the type.
619   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
620 
621   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
622   // (at least in the sense that there need only be one non-loop-invariant
623   // instruction). We need one such shuffle instruction for each actual
624   // register (this is not true for arbitrary shuffles, but is true for the
625   // structured types of shuffles covered by TTI::ShuffleKind).
626   return LT.first * CostFactor;
627 }
628 
629 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
630                                            TTI::TargetCostKind CostKind,
631                                            const Instruction *I) {
632   if (CostKind != TTI::TCK_RecipThroughput)
633     return Opcode == Instruction::PHI ? 0 : 1;
634   // Branches are assumed to be predicted.
635   return 0;
636 }
637 
638 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
639                                              Type *Src,
640                                              TTI::CastContextHint CCH,
641                                              TTI::TargetCostKind CostKind,
642                                              const Instruction *I) {
643   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
644 
645   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
646   if (!CostFactor.isValid())
647     return InstructionCost::getMax();
648 
649   InstructionCost Cost =
650       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
651   Cost *= CostFactor;
652   // TODO: Allow non-throughput costs that aren't binary.
653   if (CostKind != TTI::TCK_RecipThroughput)
654     return Cost == 0 ? 0 : 1;
655   return Cost;
656 }
657 
658 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
659                                                Type *CondTy,
660                                                CmpInst::Predicate VecPred,
661                                                TTI::TargetCostKind CostKind,
662                                                const Instruction *I) {
663   InstructionCost CostFactor =
664       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
665   if (!CostFactor.isValid())
666     return InstructionCost::getMax();
667 
668   InstructionCost Cost =
669       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
670   // TODO: Handle other cost kinds.
671   if (CostKind != TTI::TCK_RecipThroughput)
672     return Cost;
673   return Cost * CostFactor;
674 }
675 
676 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
677                                                TTI::TargetCostKind CostKind,
678                                                unsigned Index, Value *Op0,
679                                                Value *Op1) {
680   assert(Val->isVectorTy() && "This must be a vector type");
681 
682   int ISD = TLI->InstructionOpcodeToISD(Opcode);
683   assert(ISD && "Invalid opcode");
684 
685   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
686   if (!CostFactor.isValid())
687     return InstructionCost::getMax();
688 
689   InstructionCost Cost =
690       BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
691   Cost *= CostFactor;
692 
693   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
694     // Double-precision scalars are already located in index #0 (or #1 if LE).
695     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
696         Index == (ST->isLittleEndian() ? 1 : 0))
697       return 0;
698 
699     return Cost;
700 
701   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
702     unsigned EltSize = Val->getScalarSizeInBits();
703     // Computing on 1 bit values requires extra mask or compare operations.
704     unsigned MaskCost = VecMaskCost && EltSize == 1 ? 1 : 0;
705     if (ST->hasP9Altivec()) {
706       if (ISD == ISD::INSERT_VECTOR_ELT)
707         // A move-to VSR and a permute/insert.  Assume vector operation cost
708         // for both (cost will be 2x on P9).
709         return 2 * CostFactor;
710 
711       // It's an extract.  Maybe we can do a cheap move-from VSR.
712       unsigned EltSize = Val->getScalarSizeInBits();
713       if (EltSize == 64) {
714         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
715         if (Index == MfvsrdIndex)
716           return 1;
717       } else if (EltSize == 32) {
718         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
719         if (Index == MfvsrwzIndex)
720           return 1;
721       }
722 
723       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
724       // The cost of the load constant for a vector extract is disregarded
725       // (invariant, easily schedulable).
726       return CostFactor + MaskCost;
727 
728     } else if (ST->hasDirectMove()) {
729       // Assume permute has standard cost.
730       // Assume move-to/move-from VSR have 2x standard cost.
731       if (ISD == ISD::INSERT_VECTOR_ELT)
732         return 3;
733       return 3 + MaskCost;
734     }
735   }
736 
737   // Estimated cost of a load-hit-store delay.  This was obtained
738   // experimentally as a minimum needed to prevent unprofitable
739   // vectorization for the paq8p benchmark.  It may need to be
740   // raised further if other unprofitable cases remain.
741   unsigned LHSPenalty = 2;
742   if (ISD == ISD::INSERT_VECTOR_ELT)
743     LHSPenalty += 7;
744 
745   // Vector element insert/extract with Altivec is very expensive,
746   // because they require store and reload with the attendant
747   // processor stall for load-hit-store.  Until VSX is available,
748   // these need to be estimated as very costly.
749   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
750       ISD == ISD::INSERT_VECTOR_ELT)
751     return LHSPenalty + Cost;
752 
753   return Cost;
754 }
755 
756 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
757                                             MaybeAlign Alignment,
758                                             unsigned AddressSpace,
759                                             TTI::TargetCostKind CostKind,
760                                             TTI::OperandValueInfo OpInfo,
761                                             const Instruction *I) {
762 
763   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
764   if (!CostFactor.isValid())
765     return InstructionCost::getMax();
766 
767   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
768     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
769                                   CostKind);
770   // Legalize the type.
771   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
772   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
773          "Invalid Opcode");
774 
775   InstructionCost Cost =
776       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
777   // TODO: Handle other cost kinds.
778   if (CostKind != TTI::TCK_RecipThroughput)
779     return Cost;
780 
781   Cost *= CostFactor;
782 
783   bool IsAltivecType = ST->hasAltivec() &&
784                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
785                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
786   bool IsVSXType = ST->hasVSX() &&
787                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
788 
789   // VSX has 32b/64b load instructions. Legalization can handle loading of
790   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
791   // PPCTargetLowering can't compute the cost appropriately. So here we
792   // explicitly check this case.
793   unsigned MemBytes = Src->getPrimitiveSizeInBits();
794   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
795       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
796     return 1;
797 
798   // Aligned loads and stores are easy.
799   unsigned SrcBytes = LT.second.getStoreSize();
800   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
801     return Cost;
802 
803   // If we can use the permutation-based load sequence, then this is also
804   // relatively cheap (not counting loop-invariant instructions): one load plus
805   // one permute (the last load in a series has extra cost, but we're
806   // neglecting that here). Note that on the P7, we could do unaligned loads
807   // for Altivec types using the VSX instructions, but that's more expensive
808   // than using the permutation-based load sequence. On the P8, that's no
809   // longer true.
810   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
811       *Alignment >= LT.second.getScalarType().getStoreSize())
812     return Cost + LT.first; // Add the cost of the permutations.
813 
814   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
815   // P7, unaligned vector loads are more expensive than the permutation-based
816   // load sequence, so that might be used instead, but regardless, the net cost
817   // is about the same (not counting loop-invariant instructions).
818   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
819     return Cost;
820 
821   // Newer PPC supports unaligned memory access.
822   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
823     return Cost;
824 
825   // PPC in general does not support unaligned loads and stores. They'll need
826   // to be decomposed based on the alignment factor.
827 
828   // Add the cost of each scalar load or store.
829   assert(Alignment);
830   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
831 
832   // For a vector type, there is also scalarization overhead (only for
833   // stores, loads are expanded using the vector-load + permutation sequence,
834   // which is much less expensive).
835   if (Src->isVectorTy() && Opcode == Instruction::Store)
836     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
837          ++i)
838       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
839                                  nullptr, nullptr);
840 
841   return Cost;
842 }
843 
844 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
845     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
846     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
847     bool UseMaskForCond, bool UseMaskForGaps) {
848   InstructionCost CostFactor =
849       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
850   if (!CostFactor.isValid())
851     return InstructionCost::getMax();
852 
853   if (UseMaskForCond || UseMaskForGaps)
854     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
855                                              Alignment, AddressSpace, CostKind,
856                                              UseMaskForCond, UseMaskForGaps);
857 
858   assert(isa<VectorType>(VecTy) &&
859          "Expect a vector type for interleaved memory op");
860 
861   // Legalize the type.
862   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
863 
864   // Firstly, the cost of load/store operation.
865   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
866                                          AddressSpace, CostKind);
867 
868   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
869   // (at least in the sense that there need only be one non-loop-invariant
870   // instruction). For each result vector, we need one shuffle per incoming
871   // vector (except that the first shuffle can take two incoming vectors
872   // because it does not need to take itself).
873   Cost += Factor*(LT.first-1);
874 
875   return Cost;
876 }
877 
878 InstructionCost
879 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
880                                   TTI::TargetCostKind CostKind) {
881   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
882 }
883 
884 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
885                                        const Function *Callee,
886                                        const ArrayRef<Type *> &Types) const {
887 
888   // We need to ensure that argument promotion does not
889   // attempt to promote pointers to MMA types (__vector_pair
890   // and __vector_quad) since these types explicitly cannot be
891   // passed as arguments. Both of these types are larger than
892   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
893   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
894     return false;
895 
896   return llvm::none_of(Types, [](Type *Ty) {
897     if (Ty->isSized())
898       return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
899     return false;
900   });
901 }
902 
903 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
904                             LoopInfo *LI, DominatorTree *DT,
905                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
906   // Process nested loops first.
907   for (Loop *I : *L)
908     if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
909       return false; // Stop search.
910 
911   HardwareLoopInfo HWLoopInfo(L);
912 
913   if (!HWLoopInfo.canAnalyze(*LI))
914     return false;
915 
916   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
917     return false;
918 
919   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
920     return false;
921 
922   *BI = HWLoopInfo.ExitBranch;
923   return true;
924 }
925 
926 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
927                                const TargetTransformInfo::LSRCost &C2) {
928   // PowerPC default behaviour here is "instruction number 1st priority".
929   // If LsrNoInsnsCost is set, call default implementation.
930   if (!LsrNoInsnsCost)
931     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
932                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
933            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
934                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
935   else
936     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
937 }
938 
939 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
940   return false;
941 }
942 
943 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
944   const PPCTargetMachine &TM = ST->getTargetMachine();
945   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
946   if (!TM.isELFv2ABI())
947     return false;
948   return BaseT::shouldBuildRelLookupTables();
949 }
950 
951 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
952                                     MemIntrinsicInfo &Info) {
953   switch (Inst->getIntrinsicID()) {
954   case Intrinsic::ppc_altivec_lvx:
955   case Intrinsic::ppc_altivec_lvxl:
956   case Intrinsic::ppc_altivec_lvebx:
957   case Intrinsic::ppc_altivec_lvehx:
958   case Intrinsic::ppc_altivec_lvewx:
959   case Intrinsic::ppc_vsx_lxvd2x:
960   case Intrinsic::ppc_vsx_lxvw4x:
961   case Intrinsic::ppc_vsx_lxvd2x_be:
962   case Intrinsic::ppc_vsx_lxvw4x_be:
963   case Intrinsic::ppc_vsx_lxvl:
964   case Intrinsic::ppc_vsx_lxvll:
965   case Intrinsic::ppc_vsx_lxvp: {
966     Info.PtrVal = Inst->getArgOperand(0);
967     Info.ReadMem = true;
968     Info.WriteMem = false;
969     return true;
970   }
971   case Intrinsic::ppc_altivec_stvx:
972   case Intrinsic::ppc_altivec_stvxl:
973   case Intrinsic::ppc_altivec_stvebx:
974   case Intrinsic::ppc_altivec_stvehx:
975   case Intrinsic::ppc_altivec_stvewx:
976   case Intrinsic::ppc_vsx_stxvd2x:
977   case Intrinsic::ppc_vsx_stxvw4x:
978   case Intrinsic::ppc_vsx_stxvd2x_be:
979   case Intrinsic::ppc_vsx_stxvw4x_be:
980   case Intrinsic::ppc_vsx_stxvl:
981   case Intrinsic::ppc_vsx_stxvll:
982   case Intrinsic::ppc_vsx_stxvp: {
983     Info.PtrVal = Inst->getArgOperand(1);
984     Info.ReadMem = false;
985     Info.WriteMem = true;
986     return true;
987   }
988   case Intrinsic::ppc_stbcx:
989   case Intrinsic::ppc_sthcx:
990   case Intrinsic::ppc_stdcx:
991   case Intrinsic::ppc_stwcx: {
992     Info.PtrVal = Inst->getArgOperand(0);
993     Info.ReadMem = false;
994     Info.WriteMem = true;
995     return true;
996   }
997   default:
998     break;
999   }
1000 
1001   return false;
1002 }
1003 
1004 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1005                                        Align Alignment) const {
1006   // Only load and stores instructions can have variable vector length on Power.
1007   if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1008     return false;
1009   // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1010   // therefore cannot be used in 32-bit mode.
1011   if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1012     return false;
1013   if (isa<FixedVectorType>(DataType)) {
1014     unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1015     return VecWidth == 128;
1016   }
1017   Type *ScalarTy = DataType->getScalarType();
1018 
1019   if (ScalarTy->isPointerTy())
1020     return true;
1021 
1022   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1023     return true;
1024 
1025   if (!ScalarTy->isIntegerTy())
1026     return false;
1027 
1028   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1029   return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1030 }
1031 
1032 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1033                                               Align Alignment,
1034                                               unsigned AddressSpace,
1035                                               TTI::TargetCostKind CostKind,
1036                                               const Instruction *I) {
1037   InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1038                                                   AddressSpace, CostKind, I);
1039   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1040     return Cost;
1041   // TODO: Handle other cost kinds.
1042   if (CostKind != TTI::TCK_RecipThroughput)
1043     return Cost;
1044 
1045   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1046          "Invalid Opcode");
1047 
1048   auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1049   assert(SrcVTy && "Expected a vector type for VP memory operations");
1050 
1051   if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1052     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1053 
1054     InstructionCost CostFactor =
1055         vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1056     if (!CostFactor.isValid())
1057       return InstructionCost::getMax();
1058 
1059     InstructionCost Cost = LT.first * CostFactor;
1060     assert(Cost.isValid() && "Expected valid cost");
1061 
1062     // On P9 but not on P10, if the op is misaligned then it will cause a
1063     // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1064     // ones.
1065     const Align DesiredAlignment(16);
1066     if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1067       return Cost;
1068 
1069     // Since alignment may be under estimated, we try to compute the probability
1070     // that the actual address is aligned to the desired boundary. For example
1071     // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1072     // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1073     // aligned.
1074     float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1075     float MisalignmentProb = 1.0 - AlignmentProb;
1076     return (MisalignmentProb * P9PipelineFlushEstimate) +
1077            (AlignmentProb * *Cost.getValue());
1078   }
1079 
1080   // Usually we should not get to this point, but the following is an attempt to
1081   // model the cost of legalization. Currently we can only lower intrinsics with
1082   // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1083   return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1084 }
1085 
1086 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1087   return TLI->supportsTailCallFor(CB);
1088 }
1089